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Abstract
Containerization technologies have been an important element in the spread of cloud
computing adoption, since they have enabled the deployment of modern applications in
a  more  efficient  way.  They  offer  several  advantages:  container  virtualization
mechanisms  are  much  less  resource  intensive  compared  to  traditional  virtualization
technologies, containers have great portability, since application code and libraries are
packaged together in a standardized way, they allow developers to build applications
based on microservices much more easily, and they still  maintain great security and
isolation of the applications running inside.

Even though containers can offer a good level of security and isolation, the flexibility of
containerization  technologies  means  that  their  optimal  configuration  is  a  non-trivial
task,  which,  together  with  bugs  present  in  any  of  its  layers,  can  end  up  creating
vulnerabilities that can be potentially exploited by malicious actors. Security breaches
are a central  issue in the current technological landscape and are gaining increasing
attention  due  to  the  amount  of  them  that  happen  every  year  and  their  nefarious
consequences for  confidentiality, integrity and availability.

Container  vulnerabilities  can  be  broadly  classified  in  container  application
vulnerabilities, container configuration vulnerabilities, container image vulnerabilities,
container engine vulnerabilities and host vulnerabilities. In this project, we aim to study
each of these types of vulnerabilities, search the open source tools available to tackle
each  of  them and  compare  a  set  of  such  tools  to  determine  which  ones  are  more
adequate.

Keywords: container; image; Docker; virtualization; application; security; integrity; 
confidentiality; availability; vulnerability; analysis; tool; free software; open source 
software; detection.
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Resum
Les tecnologies de contenidors han sigut un element important en la difusió de l'adopció
de  la  computació  al  núvol,  donat  que  han  permés  el  desplegament  d'aplicacions
modernes  d'una  manera  molt  més  eficient.  Oferixen  diversos  avantatges:  els
mecanismes de virtualització de contenidors utilitzen considerablement menys recursos
comparat amb les tecnologies de virtualització tradicionals, els contenidors tenen una
gran portabilitat, ja que el codi de l'aplicació i les biblioteques són empaquetats junts
d'una manera estandarditzada, permeten als desenvolupadors crear aplicacions basades
en microserveis molt més fàcilment, i tot això mantenint un bon nivell de seguretat i
aïllament de les aplicacions que s'hi executen.

Tot i el bon nivell de seguretat i aïllament que els contenidors poden oferir, la flexibilitat
de les tecnologies de contenidors implica que la seua configuració òptima no és una
tasca gens trivial, cosa que, junt amb els errors presents en qualsevol de les seues capes,
pot  acabar  creant  vulnerabilitats  que  poden  ser  potencialment  explotades  per  actors
malintencionats.  Les  fallades  de  seguretat  són  un assumpte  central  en  el  panorama
tecnològic actual i estan guanyant una creixent atenció degut a la quantitat d'elles que
ocorren cada any i a les conseqüències nefastes que tenen per a la confidencialitat, la
integritat i la disponibilitat.

Les  vulnerabilitats  dels  contenidors  poden  ser  classificades  de  manera  general  en
vulnerabilitats de les aplicacions dels contenidors, vulnerabilitats de la configuració dels
contenidors, vulnerabilitats de les imatges dels contenidors, vulnerabilitats del motor de
contenidors i vulnerabilitats del sistema amfitrió. En aquest projecte, es pretén estudiar
cadascun  d'aquests  tipus  de  vulnerabilitats,  cercar  les  ferramentes  de  codi  obert
disponibles per a abordar cadascuna d'elles i comparar un conjunt de tals ferramentes
per a determinar quines són les més adequades.

Paraules  clau: contenidor;  imatge;  Docker;  virtualització;  aplicació;  seguretat;
integritat; confidencialitat; disponibilitat; vulnerabilitat; anàlisi; ferramenta; programari
lliure; codi obert; detecció.
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Resumen
Las tecnologías de contenedores han sido un elemento importante en la difusión de la
adopción  de  la  computación  en  la  nube,  dado  que  han  permitido  el  despliegue  de
aplicaciones modernas de una manera mucho más eficiente. Ofrecen varias ventajas: los
mecanismos  de  virtualización  de  contenedores  utiliza  considerablemente  menos
recursos comparado con las tecnologías de virtualización tradicionales, los contenedores
tienen una gran portabilidad, ya que el código de la aplicación y las bibliotecas son
empaquetados juntos de una manera estandarizada, permiten a los desarrolladores crear
aplicaciones basadas en microservicios mucho más fácilmente, y todo eso manteniendo
un buen nivel de seguridad y aislamiento de las aplicaciones que se ejecutan.

A pesar del buen nivel de seguridad y aislamiento que los contenedores pueden ofrecer,
la flexibilidad de las tecnologías de contenedores implica que su configuración óptima
no es una tarea nada trivial, cosa que, junto con los errores presentes en cualquiera de
sus  capas,  puede  acabar  creando  vulnerabilidades  que  pueden  ser  potencialmente
explotadas por actores malintencionados. Los fallos de seguridad son un asunto central
en el panorama tecnológico actual y están ganando una creciente atención debido a la
cantidad de ellos que ocurren cada año y a las consecuencias nefastas que tienen para la
confidencialidad, la integridad y la disponibilidad.

Las vulnerabilidades de los contenedores pueden ser clasificadas de manera general en
vulnerabilidades  de  las  aplicaciones  de  los  contenedores,  vulnerabilidades  de  la
configuración  de  los  contenedores,  vulnerabilidades  de  las  imágenes  de  los
contenedores,  vulnerabilidades  del  motor  de  contenedores  y  vulnerabilidades  del
sistema anfitrión.  En este proyecto,  se pretende estudiar  cada uno de estos tipos  de
vulnerabilidades,  buscar  las herramientas de código abierto disponibles para abordar
cada una de ellas y comparar un conjunto de tales herramientas para determinar cuáles
son las más adecuadas.

Palabras  clave: contenedor;  imagen;  Docker;  virtualización; aplicación;  seguridad;
integridad;  confidencialidad;  disponibilidad;  vulnerabilidad;  análisis;  herramienta;
software libre; código abierto; detección.
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1. Introduction
In this chapter we describe the motivation behind this project and the goals we aim to
achieve  with  it.  Furthermore,  we  also  describe  the  methodology  followed  for  the
elaboration  of  the  theoretical  and  practical  sections  and  detail  the  structure  of  the
project.

1.1. Motivation
The security of computer systems has been an essential issue since the beginning of our
computer-governed  society.  At  their  conception,  computers  were  not  designed
specifically to be secure, but to work correctly. Because of this, when their use started
spreading, it was obvious that there was a serious problem that needed to be addressed.
Historically, cybersecurity has tried to follow the footsteps of technological innovation,
since new technologies often introduce unintended side effects that only time after are
noticed, understood and solved.

The prominent opinion in the current cybersecurity space is that security by obscurity,
that is, when the security of a system is based in hiding and obfuscating its source code,
is  not  a  good  approach  in  the  long  term.  Instead,  having  the  source  code  publicly
available  and checked by as  many people  as  possible  is  the  most  effective  way of
finding flaws that would have gone unnoticed otherwise. The cybersecurity community
appreciates the usage of open source programs that can be audited more thoroughly and
transparently, which in turn allows to better understand and trust the results obtained.
For this  reason, we consider that a good way to contribute to the adoption of open
source tools is by testing their effectiveness in various scenarios.

In the world of virtualization, containers are by no means a new technology, but their
usage has gone mainstream quite recently following a trend of designing software based
on a microservice architecture.  Therefore,  this  project is  motivated because it  is not
always easy to understand the intricacies of containerization technologies and all the
ways  in  which   weaknesses  can  appear,  so  it  can  be  helpful  to  get  to  know their
functioning in  depth  and determine  which  are  the  best  practices  and tools  that  can
provide the best coverage against security incidents.

1.2. Goals
The goal of this project is to understand in a more comprehensive way all the layers and
components that make up a modern implementation of a containerization engine and the
ways and  tools that can be used in order to provide a good security coverage.
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1.3. Methodology
On the one hand, to carry out the theoretical research needed for this project, we have
obtained information from a variety of sources such as books, scientific papers, articles
and project repositories and documentation sites.

On the other hand, to carry out the practical tests for the evaluation of the container
security tools, we have employed a set of vulnerability scanners and a container engine
like Docker to manage the life cycle of container images.

1.4. Structure
This project is divided into seven main sections that we will detail below.

The first part offers an introduction to the project and explains which are the main goals
and motivations behind it.

The second part constitutes a walk through the technological context that has an impact
on  the  project,  which  is  made  up  of  three  main  areas:  virtualization  technologies,
computer security and free and open source software.

The third part delves into the architecture of a modern containerization implementation
and explains various aspects of its internal workings and functions.

The  fourth  section  describes  the  different  types  of  vulnerabilities  involved  in  the
security of containers and gives examples of each of them.

The fifth section offers an exposition of some of the most relevant open source tools for
the security of containers and explains their capabilities.

The  sixth  section  describes  the  preparation  and  results  of  the  tests  carried  out  to
compare the efficacy of a set of image vulnerability scanners.

Finally, the seventh part offers a series of conclusions from the work done throughout
the project.
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2. State of the art
This project lies at the intersection among different areas in computer science, namely
how  to  improve  the security of containers by  means  of open  source tools  for
vulnerability analysis.  In  order  to  better  understand  how  much  progress  we  have
achieved in each area, we will elaborate on the evolution of each one in the following
subsections.

2.1. Virtualization technologies
Virtualization  is  a  technology  that  enables  the  creation  of  multiple  simulated
environments or resources from a single physical hardware system (1). The need for the
virtualization of computing resources has been around for nearly as long as computers
themselves. In the 1960s, computers were mainly made up of external equipment used
for input and output and internal arithmetic circuits, which had a huge difference in
speed (2). This made computers extremely inefficient, and so a paper titled Time sharing
in large fast computers, written by C. Strachey in 1959, encouraged the adoption of a
time sharing paradigm. It offered the main advantage of allowing many programs to run
at the same time, which in turn helped reduce the computer’s idle time and gave it the
ability to overlap computation and I/O operations. However, in order to achieve this
new resource management, it was necessary to introduce a layer between the proper
hardware  and  programs,  which  was  called  Director,  one  of  the  first  ideas  of  the
necessity of the modern concept of operating system.

Time sharing created the base on which the first attempts of virtualization started to
appear.  The  initial  objective  of  managing  the  computer  resources  among  different
processes led to the appearance of more complex ideas like memory protection and
isolation to prevent programs from interfering with each other. Soon, these concepts got
developed even further,  so that  it  could be possible  to  isolate  resources  of  the host
machine in such a way as to create the illusion that those resources conformed a real
physical machine (3).

The first attempts at implementing resource virtualization appeared in the mid 1960s
and early 1970s with some IBM machines like M44/44X or System/360 that already
showed one of the key advantages of virtualization technology, that is, the possibility of
using a single physical machine to test and execute programs in different environments
(including the operating system).

Also during the 1960s and 1970s, the inclusion of the  chroot Unix system call  that
allows for file system namespace isolation is said to have set the origin of containers, at
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that time called capabilities. However, these initial capabilities lacked many kinds of
isolation  techniques  that  are  present  in  current  technologies  due  in  part  to  the
complexity of implementing them with the hardware of that time.

During this time, companies had mainframes to which users connected by means of
light terminals, thus making it useful to isolate user tasks among them. However, during
the 1980s personal computers started to spread, which meant that terminals, and thus
mainframes, were not as commonly used anymore (4). This, together with the difficulty
of  hardware to  support  efficient  implementations,  their  complexity  and performance
issues made virtualization to be left aside.

Modern  virtualization  technologies  started  appearing  in  the  late  1990s  thanks  to  a
paradigm shift in the way that resources were consumed: the advent of the Internet.
When companies started putting their websites online, they usually hosted them on their
own servers. However, as smaller companies and individuals started creating their own
websites, it was very prohibitive to build and maintain their own physical server. Soon,
a set of companies emerged with the purpose of letting others rent a subset of their
server resources in order to allow them to publish their content online. This brought
back the necessity to isolate the resources assigned to each customer and reengaged the
development of virtualization technologies such as VMware, Xen, KVM or Hyper-V.
Still, there were some issues like the lack of full support by the x86 architecture, which
made it necessary to add extensions, and the struggle to find the right balance between
security and performance.

Also during the 1990s, but more extensively during the 2000s, key technologies for
container implementations started to appear.  More specifically,  process isolation and
resource control, which enabled the isolation of file systems, processes, the network
stack and users was introduced in the Linux kernel via namespaces and cgroups (5) (6).
Another set of key features was added to the Linux kernel, such as a framework called
Linux  Security  Module  that  allowed  to  load  security  extensions  to  the  kernel  as
modules.  This  framework enabled  other  security  extensions  such as  AppArmor  and
SELinux, both conceived at the beginning of the 2000s, to insert access control checks.
Also to be noted is the inclusion of a set of patches to the Linux kernel called seccomp,
which allows for further process restrictions.

All  these  technologies  in  the  Linux  kernel  propelled  the  development  of  modern
container solutions during the 2010s such as Docker, LXC or Podman by allowing the
usage of kernel features. Also during this time, an entire ecosystem of applications and
services offered through the Internet started to mature, which introduced new software
development paradigms such as microservice architectures that benefited greatly from
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container  technologies.  However,  as  these  applications  grew  more  complex  and
sophisticated, surged the need for an orchestration technology, which gave birth to tools
such as Docker Swarm, Kubernetes or LXD.

Although  the  evolution  of  virtualization  and  containerization  technologies  has  been
intertwined for  a  long time,  it  is  important  to  consider  the  key differences  of  their
modern implementations in order to understand their implications on two key areas:
performance and security.

Both  virtualization  and  containerization  create  an  abstraction  layer  over  computer
physical resources in order to divide them into isolated bundles. The main technical
difference between both concepts lays in the way such isolation is carried out.

On the one hand, virtualization relies on a hypervisor, a software layer that coordinates
the division and assignation of resources among virtual machines. Hypervisors can be of
type 1 if they interact directly with the physical resources without the presence of a host
operating system, or of type 2 if, instead, they lay on top of a host operating system.
Virtual machines are virtual environments that simulate a physical computer in software
form and usually require the installation of a guest operating system on them in order to
be  functional,  which  introduces  duplicities  in  the  software  stack  that  have  a  huge
penalty on performance (7).

Figure 1: Virtualization software stack1

On the other hand, containerization appears as as means of smoothing that performance
hit  of  virtualization  by  reducing  the  size  of  the  software  stack.  Thus,  instead  of

1 https://raw.githubusercontent.com/dazzyddos/dazzyddos.github.io/master/Images/DockerBuildSec/  
vmvsdocker.jpg

17

https://raw.githubusercontent.com/dazzyddos/dazzyddos.github.io/master/Images/DockerBuildSec/vmvsdocker.jpg
https://raw.githubusercontent.com/dazzyddos/dazzyddos.github.io/master/Images/DockerBuildSec/vmvsdocker.jpg


Open source tools for container vulnerability analysis

virtualizing  a  whole  operating  system,  the  virtualized  environment,  now  called
container,  makes  use of  the underlying host  operating system kernel  and creates  an
isolated environment on top of it, which comprises libraries and applications. This way,
containers can improve  performance at the cost of  security, since they usually offer
less isolation capabilities than virtual machines.

Figure 2: Containerization software stack2

2.2. Computer security
Computer  security  refers  to  the  practice  of  ensuring  confidentiality,  integrity  and
availability of systems and data (8). The history of computer security is also a long one,
and dates back to the origins of computers. The first instances of hacking did not even
happen on computers,  but on phones back in  the 1960s in  order  to make free long
distance  calls,  which  shows  that  tinkering  and  pushing  the  design  limitations  of
technology might be an innate instinct of humanity. During this time, the main focus in
computer  security  was  physical  access,  since  it  was  mostly  the  only way in  which
computers of that time could be compromised (9).

In the 1970s ARPANET appeared,  which was used as a testing environment for the
development of what would later become the Internet. At this time, some researchers
started developing one of the first computer virus and antivirus, Creeper and Reaper.
Later on in the 1980s, the Internet started being deployed and brought with it a greater
interconnection among the academic and governmental computers of the time. This was
the perfect environment for the first cybersecurity incidents to take place, like the leak
of military US documents that ended up in the hands of Russia’s KGB. 

2 https://raw.githubusercontent.com/dazzyddos/dazzyddos.github.io/master/Images/DockerBuildSec/  
vmvsdocker.jpg
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The 1990s and 2000s saw the widespread adoption of  the Internet  in  the consumer
space,  which opened a unique opportunity for hackers to  start  sharing malware and
carrying  out  large  scale  cyberattacks  that  had  nefarious  consequences  not  only  for
individuals  but  also  for  companies.  This  led  to  the  appearance  of  the  first  modern
commercial  antivirus  software  and  forced  the  entire  Information  Technology  (IT)
industry to take computer security seriously.

During 2010s, the first state sponsored attacks started being carried out, which further
increased  the  damage  of  security  incidents  on  governments  and  enterprises.
Additionally,  the widespread adoption of smartphones, the rise of Internet of Things
(IoT) devices or the generalized use of cloud computing made modern society even
more dependent on online services and applications.

Before we continue, it is important to keep in mind the meaning of some concepts:

• A weakness is  a condition in a software or hardware component that,  under
certain  circumstances,  could  contribute  to  the  introduction  of  vulnerabilities
(10).

• A  vulnerability is  an  exploitable  instance  of  one  or  more  weaknesses  that
enables an attacker to cause a negative impact to the confidentiality, integrity or
availability of an application (11).

• An  exploit is  a  piece  of  code  designed  to  take  advantage  of  one  or  more
vulnerabilities in order for an attacker to gain access or control of a system (12).

In  order  to  improve  the  distribution  and  collaboration  among  organizations  and
researchers of information about security incidents, a series of public databases were
created. One of them is the Common Weakness Enumeration (CWE) (10), a community
developed list of common software vulnerability types  with descriptions and guidance
on  mitigations.  A  complement  to  the  CWE  is  the  Common  Vulnerabilities  and
Exposures  (CVE)  (11),  a  standardized  system for  identifying  and  tracking  publicly
known  vulnerabilities  of  specific  products  or  systems.  The  Known  Exploited
Vulnerabilities (KEV) (13) is a subset of the CVE database created in 2021 by the US
Cybersecurity  &  Infrastructure  Security  Agency  (CISA)  agency  that  focuses  on
vulnerabilities in  software,  hardware,  applications or systems that  are actively being
exploited  by  threat  actors.  This  list  aims  to  help  organizations  prioritize  their
vulnerability management procedures  (14). Also important to mention is the Common
Vulnerability  Scoring  System (CVSS)  (15),  a  standardized  framework to  assess  the
severity and impact of cybersecurity vulnerabilities. The goal of this scoring system is
to help the security community by enabling the prioritization of vulnerability responses,
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making vulnerability  assessments  objective and consistent  and allowing an effective
communication.

If we dive deeper into weaknesses, they can be categorized in many different ways. The
CWE offers a  research view (16) that is useful for understanding their classification
from a high level perspective. According to it, the top level categories are:

• Improper Access Control: Lack of or incorrect access restriction to a resource for
an unauthorized actor.

• Improper  Interaction  Between  Multiple  Correctly-Behaving  Entities:  Two
entities  that  behave correctly  when running independently behave incorrectly
when integrated into a larger system.

• Improper  Control  of  a  Resource  Through  its  Lifetime:  The  control  over  a
resource  throughout  its  lifetime  of  creation,  use  and  release  is  incorrectly
maintained.

• Incorrect  Calculation:  A calculation generates incorrect  or  unintended results
that are later used in security sensitive decisions or resource management.

• Insufficient  Control  Flow Management:  The  control  flow of  the  code  is  not
sufficiently managed during execution, creating conditions in which it can be
modified in unexpected ways.

• Protection Mechanism Failure:  Protection mechanisms that provide sufficient
defenses against attacks are not used or are used incorrectly 

• Incorrect Comparison: Two entities are compared in a security relevant context,
but the comparison is incorrect, which may produce a weakness.

• Improper Check or Handling of Exceptional Conditions: Exceptional conditions
that rarely occur during normal operation are not properly handled.

• Improper Neutralization: It is not correctly ensured that structured data is well
formed and that security properties are met before being read or sent.

• Improper  Adherence to Coding Standards:  Development coding rules are  not
followed,  which  can  lead  to  weaknesses  or  increase  the  severity  of
vulnerabilities.

Those categories are further subdivided in order to describe weaknesses in more detail.
For instance, some of the most common and impactful software weaknesses described
in the  2023 CWE Top 25 (17) are:  out-of-bounds write,  out-of-bounds read,  improper
input validation, use after free, NULL pointer dereference, missing authorization, use of
hard-coded credentials, etc.
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In the scope of container technologies, there are different types of vulnerabilities. If we
go from top to bottom in the software stack, first we can find application vulnerabilities,
which are vulnerabilities associated with flaws present in binary and library files, as
well  as  badly  configured  settings  of  an  application.  Next,  we  find  configuration
vulnerabilities,  which  are  associated  with  flaws  in  the  container  settings  related  to
permissions, storage and networking that could allow unexpected behaviors to occur.
Then,  we  have image  vulnerabilities,  which  are  due  to  flaws  in  container  images.
Moreover,  container  engine  vulnerabilities are  vulnerabilities  associated  with  flaws
present in  container virtualization engines such as Docker or Podman.  For instance,
isolation vulnerabilities could allow attackers to get out of the virtualized environment.
Finally, we have host vulnerabilities, which are associated with flaws present in the host
machine where containers run. These vulnerabilities include improper operating system
settings or vulnerable system software.

In order to tackle the complex task of managing the correct detection and patching of
such a wide array of vulnerabilities, specific tools called vulnerability scanners can be
of great help. Vulnerability scanners are automated tools that check computer networks,
systems and applications for signs of security weaknesses that could be exploited by
hackers  (18). Vulnerability scanners generally run a series of tests that are performed
and tuned based on the scope of the analysis carried out. The main types of vulnerability
scanners  in  the  scope  of  containerization  are  application  vulnerability  scanners,
configuration  vulnerability  scanners,  image  vulnerability  scanners,  network
vulnerability scanners and host vulnerability scanners (19) (20) (21).

Application  vulnerability  scanners  scan  applications  and  websites  in  search  of
misconfigurations and vulnerabilities with a focus on the view that users have of the
system, which can be useful to understand how much a system is exposed depending on
the  user  role  (and,  therefore,  authentication  privileges).  Furthermore,  they  can  be
divided into two types: static and dynamic. Static application vulnerability scanners are
executed before the application is run, while dynamic application vulnerability scanners
stay active and monitor the application for the duration of its execution.

Configuration vulnerability scanners are tools that analyze the files used to configure
the deployment of containers, like Dockerfiles, and alert of any kind of settings that
could be problematic or create risks for the security of containers, such as volume and
network settings or the presence of secrets stored in an unsafe way.

Image vulnerability scanners retrieve an image from the repository, decompose it into
its  different layers and examines each layer in search of vulnerabilities, be it  in the
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packages or the libraries present in it. In order to detect vulnerabilities, these tools query
some databases like the CVE and check for indicators that allow to identify them.

Network vulnerability  scanners  can  be  deployed on physical  or  virtual  machines  in
order  to  scan  networks  by  sending probes  looking for  open ports  and services  and
testing  each  service  afterwards  in  search  of  misconfigurations,  weaknesses  or
vulnerabilities.  They  can  be  further  divided  into  two  types:  internal  and  external.
Internal network vulnerability scanners focus on analyzing the private network of the
organization, whereas external network vulnerability scanners analyze the network from
the outside.

Host vulnerability scanners are deployed as agents on each of the machines  of interest
in order to scan for local vulnerabilities in the system, with a focus on the operating
system, libraries and programs running on the host. The information gathered is then
usually sent to a central server for analysis. They can also be divided into static and
dynamic scanners, depending on whether they run just once or supervise constantly the
state of the host.

2.3. Free and open source software
The birth and evolution of the concepts of free and open source software have had a
huge influence in the way software is developed and distributed. Up until the end of the
1970s,  there  was  a  widespread  culture  among  universities  and  computer  science
communities of unrestricted sharing of software alongside its source code, mainly to
facilitate the exchange of ideas and ways to improve or reuse parts of the program (22).

The early years after the birth of the Unix operating system as a research project at
AT&T’s Bell Laboratories in 1969 consisted in a collaborative development and sharing
among computer scientists, effectively acting as free and open source software at a time
when such concept did not exist yet. The following years, the development of Unix
gained traction thanks in part to the contribution of ideas by programmers from all over
the world and the licensing for educational institutions.

This climate of openness started to change in the 1980s when, in 1984, AT&T initiated
the  commercialization  of  Unix,  which  meant  that  it  was  no  longer  a  freely  shared
product. Therefore, universities did no longer have permission to share the source code
in  educational  contexts  and  it  became  much  harder  for  developers  to  share  and
collaborate on code. Another consequence of the software commercialization trend in
the 1980s was that software stopped being distributed with binary and source code files
together  as  it  had  been  the  norm  until  then.  Now,  companies  such  as  IBM  were
spreading the practice of only distributing binary files, which prevented programmers
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from modifying  or  studying  the  functionality  and  effectively  made  software  closed
source.

It is important to understand, though, that the underlying problem was not, for instance,
that AT&T was making money with Unix licenses, but the fact that selling the software
had become the end commercial goal. This implied a shift in perspective from carrying
forward  computer  science  knowledge  to  merely  generating  a  revenue  stream  from
selling software.

As  a  response  to  this  movement  of  commercialization  and  closed  source  software,
something  that  he  had  experienced  personally  at  the  Massachusetts  Institute  of
Technology  (MIT)  lab  where  he  worked,  Richard  Stallman  announced  in  1983  the
creation of the GNU’s Not Unix (GNU) project, which aimed to create a complete Unix
compatible operating system and distribute it freely. During the first years, the GNU
project  had  a  slow  pace  of  development  due  to  the  skepticism  of  its  feasibility.
However,  by  the  1990s  there  were  already  donations  from  several  companies  and
individuals, and work on many programs of the operating system were underway.
In  1985,  Stallman  created  the  Free  Software  Foundation  (23),  which  provided
institutional grounding and enabled to include GNU in a bigger initiative to promote
free software.  Around the same time,  he also published the  GNU Manifesto  (24),  a
document stating his vision for the GNU project, and the Free Software Definition (25),
where he defines what is free software and which are the fundamental freedoms that
should be inherent to it . Therefore, according to Stallman a piece of software is free if
users have the following four freedoms (26):

• Freedom to run the program for any purpose.

• Freedom to study how the program works and adapt it to particular needs.

• Freedom to redistribute copies.

• Freedom to improve the program and release such improvements publicly.

In  order  to  give  free  software  legal  copyright  protection,  the  GNU General  Public
License (GPL) license was created and published in 1989, which gave programmers and
users  a  series of  rights  and obligations  when it  comes to  the use,  modification and
distribution of a program and its source code.

Up until  that  point,  the  GNU project  had  matured  enough to  have  produced  many
programs and utilities that were being used around the globe and secure funds through
donations.  However,  a  fundamental  piece  of  the  puzzle  was  still  left,  the  kernel.

23



Open source tools for container vulnerability analysis

Development  of  an  in-house  kernel  called  Hurd  had begun  some time  ago,  but  its
technical complexity was dragging its development significantly.

This stagnation would become less of a problem in 1991, when a man called Linus
Torvalds  announced  publicly  that  he  was  developing  a  kernel  based  on  Minix,  a
minimal Unix-like operating system used for educational purposes. This kernel, later
named Linux, would end up being developed collaboratively by programmers from all
over the world in conjunction with Torvalds, reigniting the flame of open collaboration
and  sharing  of  code.  More  and  more  people  started  to  gain  interest  in  Linux  and
contribute to its development, which explains how, by 1993, the version 1.0 had been
published. Such a fast development enabled companies, as soon as 1994, to start selling
machines  with  the  Linux  kernel  and  GNU utilities,  proving  its  potential  for  wider
adoption.

At first,  the incentives that Torvalds had for writing Linux were more practical than
ideological, since he simply wished for a no cost operating system that he could use and
modify.  However, soon he discovered the natural consonance with the free software
movement and ended up joining forces with the GNU project by licensing the Linux
kernel with the GPL license, thus giving birth to the GNU/Linux operating system. In
fact, one of the first instances of a GNU/Linux distribution still in use today is Debian,
launched in 1994.

However,  tensions  began  to  arise  among  GNU and  Linux  programmers  due  to  the
differing ideas they had on whether utilitarianism should be given a priority over the
long-term vision of free software movement. These tensions escalated when, in 1998, a
meeting among influential figures of the free and open source community decided to
officially create the  open source software term as an alternative to  free software. This
new term would enable them to  convince corporations to adopt a new way of software
development without all the heavy ideological connotations that had been attributed to
the free software movement. At their root, free software and open source software share
the same end goal, but they disagree on the means used for achieving it.

Also  in  1998,  the  Open  Source  Initiative  (27) was  created  as  an  organization  that
provided an umbrella for the open source community. They published the Open Source
Definition (28), a document that describes the criteria that software has to comply with
to be called open source,  which talk about distribution,  source code,  derivation and
licensing.

The 1990s and early 2000s saw the development  of many software applications for
personal computers and the web such GNOME, KDE, Apache, Samba, PHP, MySQL,
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OpenOffice,  Thunderbird or Firefox,  often taking up a significant  percentage of the
market.  This  demonstrates  how  people  regained  interest  in  building  free  and  open
source software and understand its benefits for everyone, up to the point that, currently,
many big companies  are  heavily invested  in  funding and developing free  and open
source software.
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3. Container engine architecture
Container  engines  are  the  tools  that  work  together  to  offer  containerization
functionalities in a consistent and manageable way. Since Docker is one of the most
widespread container  engines,  it  will  be  used  as  a  reference for  the  analysis  of  the
architecture of a container engine. Knowing the internal structure of a container engine
is a prerequisite for understanding which kinds of vulnerabilities may affect any of its
components and how to prevent them. Therefore, below we will dive into the structure
of a container engine, first from a higher level and then from a lower level perspective.

From a high level view, the Docker engine is structured in a client-server model with
several components, such as the Docker client, the Docker daemon, images, containers,
volumes and networks. Below, we will explain each of them in further detail.

Figure 3: Overview of the Docker engine architecture3

The Docker client, docker, is a program that acts as an interface between users and the
Docker  engine,  allowing  them  to  generate  commands  to  manipulate  the  different
settings  and  components  of  the  system.  These  commands  are  built  using  a
Representational  State  Transfer  (REST)  Application  Programming  Interface  (API)
exposed by the Docker daemon and are sent to it via Unix sockets or network interfaces
(29).

3 https://docs.docker.com/guides/images/docker-architecture.webp  
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The Docker daemon,  dockerd, is a program that sits in a host waiting for commands
from the Docker client. These commands are then analyzed and a set of actions are
carried out by the proper system components.
Images are immutable templates with instructions that tell Docker how to instantiate a
container.  They  are  described  on  Dockerfiles  that  specify  all  the  necessary  files,
binaries, libraries and settings. Images are usually created by combining other images
into  a  new  one,  similar  to  a  stack  made  up  of  many  layers.  This  provides  great
flexibility, modularity and reusability so that only the necessary features are included.
Images can reside locally or be published and downloaded from registries (30).

Containers are executable instances of images materialized as processes that run in an
isolated environment with limited resources. The two key Linux kernel features that
allow  this  are  cgroups and  namespaces.  In  short,  cgroups provide  mechanisms  for
limiting how many system resources a set of tasks can use, whereas namespaces are an
abstraction that allows to limit which system resources a set of tasks can see (31).

Volumes are a mechanism that allow data to persist independently of the life cycle of
containers,  while  also  allowing  to  back  up  data  more  easily,  sharing  data  among
multiple containers or storing data in a remote host.

Networks can be created in order to enable Docker containers to communicate among
each  other  inside  a  host  or  communicate  with  other  programs  on  the  Internet.  A
container may be connected to one or more defined networks and may have some ports
exposed to the outside. When a network is created, other resources are made available
alongside it, such as an Internet Protocol (IP) address, a gateway, a routing table and
Domain Name Service (DNS) services.

If we dive deeper into the architecture of the Docker engine, we can see that the Docker
daemon delegates some tasks to other components.  For instance, while the management
of images is mostly performed directly by dockerd, the management of the life cycle of
containers  is  carried  out  by  a  container  runtime,  which  in  the  case  of  Docker  is
containerd.
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Figure 4: Detailed view of the Docker daemon4

Containerd is  a high level container runtime that leverages Linux kernel features in
order to create an abstraction layer for other tools (like dockerd) to manage the life cycle
of containers and their resources, such as file systems and networks (32). Its low level
counterpart is runc, a container runtime based on the Open Container Initiative, which
defines the industry standard around container formats and runtimes  (33),  that is in
charge of spawning and running containers.

As an example of the interaction among all the different components, when a user issues
a command involving the creation of a container, the command is sent from the Docker
client  docker to the Docker daemon dockerd. When dockerd receives the command, it
validates  it,  retrieves  the  image  that  will  be  used  to  create  the  container  and  asks
containerd to  perform the necessary actions to  create  and start  the execution of the
container. Afterwards, containerd allocates the necessary resources for the container and
then delegates the actual running of the container to runc.

4 https://www.docker.com/wp-content/uploads/2022/12/docker-engine-1-11-runc-1.png  
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4. Container vulnerabilities
In  the  previous  State  of  the  art section,  we  already  introduced  a  classification  of
vulnerabilities  from  a  containerization  perspective,  that  is,  in  which  layer  of  the
containerization stack they occur. Now, after having understood the underlying structure
of  modern  containerization  technology,  it  is  time  to  dive  deeper  into  the  possible
vulnerabilities in each layer.

4.1. Application vulnerabilities
Container application vulnerabilities refer to the vulnerabilities present in the binary and
library files of the program that a container runs, which consist of the code and settings
that define its functionality.

The amount of vulnerabilities in this category is large, as is the number of applications
that  use  Docker  for  their  deployment.  The  vulnerabilities  present  in  containerized
applications  have  a  more  noticeable  impact  on  users,  since  the  integrity  and
confidentiality of the user’s data is much easily impacted by an exploit.

4.2. Configuration vulnerabilities
Container  configuration  vulnerabilities  occur  when  the  settings  related  to  the
permissions,  resources  and isolation  level  of  containers  don't  provide  the  necessary
security level for the kind of application running in them.

One area of interest in this regard is the set of Linux kernel capabilities enabled for each
container, which define the privileges associated to them. If configured incorrectly, a
container could be granted more privileges than required, allowing attackers that get
control  of  the  container  application  to  further  damage  the  whole  system  through
privilege escalation (34).

A similar issue regards the execution of the Docker daemon and containers under the
root user,  which is done primarily in order to leverage various features that are not
supported in rootless mode. However, running Docker in a root environment can expose
the whole system to exploitation by attackers who manage to break out of the container
isolation.

Sidecar  containers  are  a  design  pattern  in  which  a  complementary  container  runs
alongside the main one to  support its  functionality.  Despite  their  advantage when it
comes to modularizing the application logic, they present some dangers in a kind of
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attacks  called  sidecar  injection,  where  attackers  inject  malware  inside  a  sidecar
container in order to compromise the whole cluster. One injection method consists in
installing kubectl inside one of the containers and then running a script to install and run
a cryptominer by leveraging the sh command. Mitigating these kinds of attacks involves
giving containers as few privileges and permissions as possible (35).

There are usually many Docker containers running in parallel on a given physical host
and sharing its resources among them. Resource sharing has to be managed carefully by
imposing limits on memory space or processing time, since otherwise, attackers could
take advantage of loose resource limits to cause a denial of service that could bring the
whole system down.

Another  important  aspect  is  the  connectivity  among  containers.  By  default,  all
containers running in a host are connected to a network, which can be convenient in
some circumstances but could also be a security risk if sensitive containers are exposed
to untrusted ones.

An often overlooked topic is the correct management of sensitive data. Docker offers
mechanisms such as Docker Secrets which provide a method to prevent the exposure of
sensitive information in places where attackers could obtain it in order to carry out an
attack on the application or the system.

An example of vulnerabilities in this category is CVE-2021-212855, a vulnerability in
which  malformed  Docker  image  manifests  crash  the  Docker  daemon  and  cause
uncontrolled resource consumption.

4.3. Image vulnerabilities
Container image vulnerabilities refer to all the vulnerabilities present in the binary and
library files and other components of all the layers that make up an image. 

In  order  to  run  an  application  inside  a  container,  certain  software  must  be  present
beforehand. This software could either be other binary or library files that the main
application needs. Inevitably, some of these files will contain bugs that, depending on
how they affect the application, could render the application or container itself more
vulnerable to attacks (36).

In order to minimize the impact that bugs can have on image security, it is important to
frequently update images with the latest security patches in order to reduce the time
window during which vulnerabilities could be exploited. In addition, creating images as

5 https://www.cve.org/CVERecord?id=CVE-2021-21285  
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minimal  as  possible  is  a  good  mitigation  against  exploitations,  since  by  removing
unnecessary tools (package managers, network tools, terminal shells, compilers, etc.)
the attack surface is significantly reduced.

Since creating new images usually involves using another image as a base, it is essential
to check the source of an image. Otherwise, malicious actors could publish their own
apparently innocuous images which, instead, contain backdoors. This results in a supply
chain attack that could allow them to take control of any container based on that image.

Other issues regarding the integrity of images are related with the place where they are
stored.  For  instance,  in  Docker,  images  are  stored  in  public  or  private  registries
managed by different organizations. In either case, if the registry is chosen without care,
a malicious registry could tamper with the images and compromise the security of any
containerized solution that uses those images.

Some examples of vulnerabilities in this category are CVE-2022-428896, a vulnerability
in the  Text4Shell library that allows arbitrary code execution; or CVE-2021-442287, a
vulnerability in the  Log4j 2 library that allows remote code execution for an attacker
who  can  control  log  messages  or  message  parameters.  These  vulnerabilities  affect
several official Docker images, which also impacts derived images and makes updating
to a patched version essential to prevent exploits.

4.4. Container engine vulnerabilities
Container engine vulnerabilities involve vulnerabilities found in any of the components
of the container engine, with special emphasis on the Docker daemon and the Docker
runtime components.

The container engine usually needs to run in an environment with elevated privileges.
Accordingly, vulnerabilities affecting it pose a high threat to the security of the whole
system  since  any  bug  exploitable  by  a  threat  actor  could  allow  them  to  get  root
privileges on the host.

One way that attackers could access the Docker engine is through the local Unix socket
that it listens to. Since this is the main access point to the engine, its exposure to the
outside world (for example through a TCP socket) should be considered with extreme
care. Otherwise, there is a high risk of an attacker connecting to it and leveraging it to
get root privileges on the host (34).

6 https://www.cve.org/CVERecord?id=CVE-2022-42889  
7 https://www.cve.org/CVERecord?id=CVE-2021-44228  
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Another way that attackers could access the Docker engine is by exploiting bugs that
allow them to break container isolation. When a threat actor gets access to a container, it
can leverage the presence of certain vulnerabilities in the container runtime to escape
the isolation layer that prevents access to the main host, which would allow them to
compromise the host system with root privileges.

Some examples of vulnerabilities in this category are CVE-2024-411108, a vulnerability
in the Docker engine that allows an attacker to bypass authorization plugins by means of
a specially crafted API request; CVE-2024-216269, a vulnerability in runc caused by an
internal file descriptor leak that allows an attacker to spawn a container with a working
directory in the host file system namespace and therefore escape isolation; or CVE-
2024-2365210, a vulnerability in BuildKit that allowed a malicious BuildKit front end or
Dockerfile to remove a file outside the container file system.

4.5. Host vulnerabilities
Host vulnerabilities are a kind of vulnerabilities found in the host system on which the
container engine runs.

There are many places in a host system where vulnerabilities can reside, such as binary
or library files of the different system components, but one of the most critical is the
Linux kernel. This is because the abstraction created by a container engine to isolate
containers  relies  on  technologies  and  features  present  in  the  Linux  kernel,  such  as
namespaces and  cgroups,  and  therefore,  any  exploitable  Linux  kernel  vulnerability
could end up allowing attackers to break the isolation layer and access the system.

Another fundamental issue related to the security of a host system is network access. In
order to interconnect the systems that host all the containers that make up, for example,
a solution based on microservices, it is often necessary to employ complex settings to
maximize the reliability and performance of the network. Because of this, it is easy to
make  mistakes  and  leave  holes  that  attackers  can  leverage  to  access  the  internal
network.

Some examples of vulnerabilities in this category are CVE-2022-049211, a vulnerability
in  the  Linux  kernel  cgroup functionality  that  would  allow  an  attacker  to  escalate
privileges and bypass isolation unexpectedly; or CVE-2021-2128512, a vulnerability in
the Linux kernel flags initialization that could allow a regular user to escalate privileges.

8 https://www.cve.org/CVERecord?id=CVE-2024-41110  
9 https://www.cve.org/CVERecord?id=CVE-2024-21626  
10 https://www.cve.org/CVERecord?id=CVE-2024-23652  
11 https://www.cve.org/CVERecord?id=CVE-2022-0492  
12 https://www.cve.org/CVERecord?id=CVE-2021-21285  
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5. Vulnerability scanners
As  we  saw  previously,  vulnerability  scanners  can  be  classified  into  5  categories
depending on the features they provide: application, configuration, image, network and
host  vulnerability  scanners.  It  is  important  to  keep in mind,  however,  that  this  is  a
theoretical classification, and therefore, actual vulnerability scanning tools often offer a
combination of functionalities from different categories.

In order to ensure the security properties of a containerized environment, it is necessary
to use a combination of tools capable of dealing with the vulnerabilities present in each
layer of the containerization architecture: application, configuration, image, container
engine and host system.

In  this  section,  we  strive  to  offer  a  description  of  tools  that  can  help  deal  with
vulnerabilities in each layer. Most of them will be specifically tailored to containers, but
we also mention more general tools that are worth being taken into consideration.

In the case of application vulnerabilities, we can find tools such as Snyk Code, Snyk
Open Source, OSV-Scanner and Nikto.

Snyk (37) is a security platform that enables software developers to secure applications
in all phases of the development cycle. One of the tools that it offers is Snyk Code (38),
a static analyzer that uses a semantic AI-based analysis engine that can analyze various
sensitive aspects of the code of an application:

• API usage: It identifies API misuses, null dereferences, type mismatches and use
of  insecure  functions  by  modeling  the  use  of  memory  in  variables  and
references.

• Coding issues: It identifies dead code, predefined branches or branches having
the same code on each side.

• Control flows: It identifies null dereferences or  race conditions by modeling
each possible control flow.

• Data flows: It follows the flow of data from the source to the sink to perform
taint analysis.

• Hard-coded secrets: It scans the code to detect hard-coded secrets 

• Type  inference:  When  dynamically  typed  languages  are  used,  it  is  able  to
determine the initial type of a variable.
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• Value ranges: It infers the possible values of variables used to call functions in
order to track array errors, division by zero errors and null dereferences.

It is possible to deploy Snyk Code as a full Software as a Service (SaaS) solution, which
requires to  upload the code to  the Internet,  deploy it  as a self-hosted SaaS solution
through a brokered architecture or deploy the engine locally to avoid any code uploads.

Another one is  Snyk Open Source  (39), a static analyzer specialized in finding and
fixing vulnerabilities in the open source libraries used in an application. It is able to scan
each open source library and show detailed information of each vulnerability  found
together with the actions needed to fix it, usually by using pull or merge requests.

A similar tool is OSV-Scanner (40), which analyzes a project’s list of dependencies and
searches its OSV database for vulnerabilities. The OSV database  (41) is a distributed
and open source database for producing and consuming vulnerability information for
open source projects, for vulnerabilities. It works by specifying a root directory from
which OSV-Scanner will search lockfiles, Software Bills of Materials (SBOMs) and Git
directories  to  determine the dependencies  that  need to  be checked against  the OSV
vulnerability database. It can be deployed as a program installed locally or as a Docker
container.

For analyzing applications directly  facing the Internet,  tools  like Nikto can be very
useful.  Nikto (42) is  a scanner  that performs tests  against  web servers in  search of
potential  risks  and  security  vulnerabilities  in  items  such  as  server  and  software
misconfigurations, default files and programs, insecure files and programs or outdated
servers and programs. It can be installed locally or be run as a Docker container. It
works by providing a list  of IP addresses and ports  to test  and, optionally,  a set  of
plugins to be used during the scanning process.

In the case of configuration vulnerabilities, there are useful tools like SecretScanner and
Docker Bench for Security.

SecretScanner (43) is a tool that retrieves and searches containers and host file systems
and matches their contents against a database of more than a hundred secret types. This
helps prevent attackers from accessing sensitive information or credentials that could
give access to critical IT infrastructure. SecretScanner is run as a Docker container to
which the image, container or host file system to be scanned is provided. The output is
written to a JSON file that can be read on the terminal with the help of the jq program.
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Docker Bench for Security (44) is a script provided by Docker that performs a series
of automated tests that check the settings related to the Docker engine and container
deployment  manifests.  It  can  be  run  locally  as  a  bash  script  or  through  a  Docker
container.  After  the  tests  are  finished,  the  output  is  saved  to  a  JSON log file  with
detailed information.

In the case of image vulnerabilities, we have tools such as Grype and Syft (the open
source version of Anchore (45)), Snyk Containers, Trivy, Clair and Dagda.

Grype (46) is an image vulnerability scanner that scans file systems, system packages
and programming language packages of Docker, OCI and Singularity image formats.
Grype  can  receive  input  from  different  programs  that  generate  a  Software  Bill  of
Materials  (SBOM), which increases its  speed. It  can be run locally  or on a Docker
container  with  options  to  customize  its  behavior.  The  sources  of  the  vulnerability
database used by Grype are varied,  ranging from Ubuntu Linux Security or Debian
Linux CVE Tracker  to  GitHub Security  Advisories,  RedHat  RHSas,  Amazon Linux
ALAS or National Vulnerability Databse (NVD).

Syft (47) is a tool that generates SBOMs from Docker, OCI or Singularity container
images, file systems and archives. It is specially thought to be combined with Grype,
providing details of the packages and dependencies used in software and thus making it
easier to manage vulnerabilities, license compliance and software supply chain security.

Snyk Containers  (48) is a vulnerability scanner that analyzes operating system and
application packages and manifest files of each layer of a container image, looks them
up in a vulnerability database and displays the collected information with possible ways
to patch the vulnerabilities. The sources of the vulnerability database are both public
and private, such as NVD, Debian, Ubuntu or RedHat. Additionally, it provides many
integrations  with  GitHub,  Gitlab,  Google,  Harbor,  Microsoft  or  Amazon  image
registries.

Trivy (49) is  a  vulnerability  scanner  specialized  in  container  and  virtual  machine
images, file systems and Kubernetes and AWS clusters. It scans system and application
packages and libraries, configuration files, secrets and software licenses in search of
misconfigurations  or  vulnerabilities.  It  can  be  run  either  locally  or  on  a  Docker
container, and the results generated can be stored in a text file. In addition, it supports
external plugins for enhancing its functionality.
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Clair (50) is a vulnerability scanner for Docker and OCI containers. Its architecture is
based on the ClairCore library wrapped by a web interface and notification service. The
analysis process is made up of the following steps:

• Indexing: When a container image manifest is provided, Clair will separate each
layer,  scan  its  contents  and  generate  an  intermediate  representation  called
IndexReport.

• Matching: The IndexReport is analyzed and the vulnerabilities described in it are
matched with its vulnerability database.

• Notifying:  If  a  new vulnerability  is  discovered,  the  notification  service  will
generate an alert if it affects any of the manifests provided to Clair.

The local deployment of Clair can be customized in order to improve its performance,
such as dividing the databases used by it or the number of processes it runs in order to
distribute the load.

Dagda (51) is a vulnerability scanner that analyzes Docker images and containers to
detect  vulnerabilities  and malware.  Its  vulnerability  database  is  populated  with  data
from CVEs, Bugtraq IDs (BIDs) Red Hat Security Advisories (RHSAs) and Offensive
Security known exploits. Dagda can be run locally or through a Docker container, and
when  a  scan  is  started,  it  retrieves  information  about  the  operating  system  and
application packages, searches the database for existing vulnerabilities, and stores the
results into its database. In addition, Dagda is also able to monitor real-time events of
the Docker daemon and running Docker containers to detect anomalous activities.

An important but often overlooked issue in container image security is the protection of
the  container  image  registry.  According  to  (52),  despite  there  being  several  public
registries  with  strong  security  features,  many  companies  still  prefer  to  host  their
container images in their own private registries. The problem lies in the fact that many
of  these  registries  are  not  properly  secured,  leaving  sensitive  data  exposed  to  the
Internet  and  the  door  open  for  malicious  image  injections.  An  open  source  image
registry such as Harbor (53) can prevent this by scanning and signing the images that
are stored in the registry, as well as offering a granular approach to user authentication
methods and permissions.

Finally, in the case of container engine and host vulnerabilities, we can use tools such as
Falco, cAdvisor, Wazuh and Snort.

Falco (54) is  a  monitoring  and  detection  tool  for  Docker  containers,  hosts  and
Kubernetes clusters that collects events from various sources, compares them against a
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set of defined rules and, if an abnormal situation is detected, creates a notification that
can be sent to standard output, a file, syslog, a program or an HTTP endpoint. Event
sources can go from Linux kernel syscalls to Kubernetes audit logs, AWS cloud events
or third party Falco plug-ins. It comes with a predefined set  of rules that check the
following behavior:

• Privilege escalation using privileged containers

• Namespace changes with tools like setns 

• Read/write to directories like /etc, usrbin, /usr/sbin, etc.

• Creation of symlinks

• Changes of ownership and mode

• Unexpected network connections or socket mutations

• Spawned processes using exeve 

• Executing shell binaries such as sh, bash, csh, zsh, etc.

• Executing SSH binaries such as ssh, scp, sftp, etc.

• Mutating Linux coreutils executables

• Mutating login binaries

• Mutating  shadowutil or  passwd executables  suh  as  shadowconfig,  pwck,
chpasswd, getpasswd, change, useradd, etc.

cAdvisor (55) is  another  tool  that  monitors  the  resource  usage  and  performance
characteristics of running containers. For every container, it collects resource isolation
parameters, historical resource usage, histograms of complete historical resource usage
and network statistics, aggregates and processes it and then exposes the information
through a local web interface. This enables the detection of network and resource usage
anomalies that could be a symptom of ongoing exploits.  It  can be run as a Docker
container by providing access to the various system directories it needs to observe.

Wazuh (56) is a security platform that unifies different security functions for endpoints
and cloud workloads into a single platform. It can be used for a multitude of use cases,
such  as  monitoring  Docker  events,  detecting  unauthorized  or  hidden  processes,
detecting operating system vulnerabilities, monitoring file integrity, monitoring system
calls, etc. It is made up of four components:

• Agents are deployed on each endpoint, which can be a physical machine or a
virtual one, and provide threat detection by monitoring the file system, reading
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log messages, collecting inventory data, scanning system settings and looking
for malware.

• The indexer is a scalable text search and analytics engine that stores data about
threat alerts.

• The server processes the data received by the agents and triggers alerts when
anomalies are detected.

• The dashboard is a web interface accessible through a browser that works as the
interface  through which  users  can  analyze  and  visualize  security  events  and
manage the whole platform.

Snort (57) is a tool  that can be used as a packet sniffer, a packet logger or a network
intrusion prevention system. As the first,  it  reads the packets from the network and
shows them in a continuous stream. As the second, it writes the packet information to a
file in disk. As the later, it is capable of performing real-time traffic analysis by carrying
out protocol analysis,  content search and detection of various attacks such as buffer
overflows or stealth port scans. In order to alert of anomalies, Snort is equipped with
rules that can be customized to every situation.
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6. Vulnerability scanner testing
In this section, we will describe the necessary steps to prepare the environment for the
tests and the results obtained after having carried them out.

6.1. Preparation
The system in which we will perform out testing is configured with an Ubuntu 22.04
LTS operating  system on  an  amd64  processor  architecture  with  8GB of  RAM and
512GB of disk memory.

The first step consists in installing the Docker engine, in our case version 27.2.0, and
docker-compose version 1.29.2.

Afterwards, we download 3 version of 10 of the most popular container images from
Docker Hub, which will be used to compare the detection capabilities of each tool. We
decided to download 3 versions for each image (published in 2024, 2022 and 2020) so
that we can compare how the presence and detection of vulnerabilities changes with
older  and  newer  software  versions.  The  list  of  images  together  with  their  specific
versions can be found below:

Table 1: Container images and their versions used for testing

IMAGE YEAR
2020 2022 2024

couchbase 6.6.0 7.1.1 7.6.3

httpd 2.4.46 2.4.54 2.4.62

memached 1.6.7 1.6.17 1.6.29

mongo 4.2.9 5.0.13 8.0.0-rc18-noble

mysql 8.0.21 8.0.30 9.0.1

nginx 1.19.2 1.22.1 1.27.1

node 14.8.0 16.17.0 22.7.0

postgres 13 15 16,4

redis 6.0.8 7.0.5 7.4.0

ubuntu 19,1 21,1 24,04
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Finally, we need to install and configure the image vulnerability scanners that will be
used for our tests:  Grype,  Trivy,  Snyk Containers and Clair.  Below we describe the
installation and configuration process and offer simple usage instructions.

Grype

Installation
In order to install Grype version 0.80.0, we need to download a script from the project’s
repository and provide the directory where it  will  be installed.  The command to be
executed is as follows:

Usage
In order to scan an image, it is enough to provide its name as an argument:

Trivy

Installation
To install Trivy version 0.54.1, we can also perform the same procedure as before with a
similar command provided by the project’s documentation, which will download the
correct binary and put it in the provided directory:

Usage
To scan an image, we need to provide the correct target and subject to the program. In
our case, the target will be image, and the subject will be the name of the image that we
want to scan:

Snyk Containers

Installation
In order to install Snyk Containers version 1,1293.0, we need to log in with a GitHub
account to its website. After that, we follow the steps indicated by the tutorial, selecting
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curl -sSfL https://raw.githubusercontent.com/anchore/grype/main/install.sh \
    | sh -s -- -b /usr/local/bin

grype <image>

curl -sfL https://raw.githubusercontent.com/aquasecurity/trivy/main/contrib \ 
    /install.sh | sudo sh -s -- -b /usr/local/bin v0.54.1

trivy <target> <subject>

https://raw.githubusercontent.com/anchore/grype/main/install.sh
https://raw.githubusercontent.com/aquasecurity/trivy/main/contrib


the  CLI  integration  method,   downloading  and  installing  the  binary  in  the  correct
directory following the commands given:

and authenticating the machine:

Usage
In order to scan a container image, we need to provide some arguments together with
the image name:

Clair

Installation
The easiest way to install Clair version 4.7.4, is to clone its GitHub repository in our
machine and use docker-compose to deploy a local container cluster:

This  cluster  is  made  of  a  Quay  container,  a  PostgreSQL container  that  hosts  the
vulnerability  database,  a  Traefik container  that  displays  configuration information at
address localhost:8080, and a Clair container that hosts the core services.

Next, we need to install the clairctl tool to interact with the container cluster from the
GitHub releases page by downloading the correct binary for our architecture and placing
it in the desired directory, such as /usr/local/bin/.

Finally, we need to place the default  config.yaml file at the root of the cloned project
directory:

Usage
Now, to use Clair we just need to provide the image name that we want to analyze:
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curl https://static.snyk.io/cli/latest/snyk-linux -o snyk
chmod +x ./snyk
mv ./snyk /usr/local/bin/ 

snyk auth

snyk container test <repository>:<tag>

git clone git@github.com:quay/clair.git
cd clair
docker-compose up -d

cp local-dev/clair/config.yaml config.yaml

clairctl report <image_name>
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6.2. Results
As we have seen through this project, container security is a vast topic that involves
many different aspects such as applications, operating system, networking, etc. For this
reason, we decided to focus our testing on a concrete area, container images, which are
one of the fundamental blocks of modern container technologies.

The tests that we have carried out involve the use of 4 image vulnerability scanners and
3 different versions of 10 Docker images, as mentioned in the previous section. The
procedure consists  in  executing each tool,  analyzing each image and annotating the
amount of vulnerabilities discovered by it.

Starting with the images from the year 2024, the results obtained can be visualized in
Table  3 and  Figure  5.  One  of  the  most  noticeable  features  of  this  diagram  is  the
difference  in  the  amount  of  detected  vulnerabilities  among  different  images.  For
instance,  while  the  image  node:22.7.0 has  around  1200  vulnerabilities,  others  like
httpd:24.4.62 or nginx:1.27.1 have at most 150 of them.

The reason for this contrast lies mainly in the fact that more complex images like  node
have more image layers and, therefore, they include more libraries and binaries. The
increased amount of files means that there is a greater chance of a vulnerability having
been introduced by a programming error, for example. This would explain why images
such as  node have generally more detected vulnerabilities than much simpler images
such as ubuntu. For this reason, it is  a good advice to use a base image that is as small
and simple as possible and then add on top of it only the strictly necessary packages
needed for the intended purpose of the container.
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Table 2: Vulnerabilities detected in image versions from 2024
2024 SCANNER

IMAGE Grype Trivy Snyk Containers Clair
couchbase:7.6.3 340 48 119 159
httpd:2.4.62 129 128 67 128
memcached:1.6.29 72 77 38 77
mongo:8.0.0.-rc18-noble 78 22 8 40
mysql:9.0.1 61 8 64 17
nginx:1.27.1 152 157 99 157
node:22.7.0 640 1163 189 1164
postgres:16.4 195 147 56 162
redis:7.4.0 126 77 38 92
ubuntu:24.04 8 6 5 8



Figure 5: Vulnerabilities detected in image versions from 2024

Moving on, we can observe the results for the image versions from 2022 (Table 3 and
Figure 6) and from 2020 (Table 4 and Figure 7). What we can notice in every diagram is
that there is a certain variability of the vulnerabilities that each tool is able to detect in
each image, which can be clearly seen in for images like node, couchbase or postgres.

The cause for this variation can be attributed to two main factors. One of them is the
fact  that  these  vulnerability  scanners  usually  do not  use  only  one  database  as  their
source of vulnerabilities but a set of them. Given that different tools use a different
combination of source databases, their  ability to identify a potential  vulnerability as
such may vary.  The second factor  lies in  the logic of each vulnerability  scanner  in
change  of  detecting  signs  of  possible  vulnerabilities.  Since  each  tool  introduces  a
different approach to detecting evidences of the presence of vulnerability, the amount of
false positives and false negatives may vary.
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Figure 6: Vulnerabilities detected in image versions from 2022
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Table 3: Vulnerabilities detected in image versions from 2022

2022 SCANNER
IMAGE Grype Trivy Snyk Containers Clair

couchbase:7.1.1 2126 129 295 435
httpd:2.4.54 273 254 149 253
memcached:1.6.17 178 181 98 180
mongo:5.0.13 700 253 95 329
mysql:8.0.30 178 174 209 30
nginx:1.22.1 301 305 187 305
node:16.17.0 2914 5005 784 2
postgres:15.0 356 284 124 297
redis:7.0.5 265 182 101 195
ubuntu:21.10 41 8 16 1
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To illustrate this variability, let’s consider the results for the ubuntu:21.10 image. While
Grype was able to detect 41 vulnerabilities, Trivy could only detect 8 of them. Both
agree in the detection of vulnerabilities CVE-22-1304, CVE-2022-34903, CVE-2022-
2068 and CVE-2022-2097, but Grype also detected others such as CVE-2022-27943,
CVE-2021-46195, CVE-2021-37750 or CVE-2020-16156.

In some cases, the tools are able to indicate, for a vulnerable package, which version
solves the vulnerability, so that it can be manually upgraded if necessary. For instance,
in  the  same  image  as  before,  the  package  e2fsporgs in  version  1.46.3-1ubuntu3 is
affected by the vulnerability CVE-2022-1304, and Grype is able to identify that the
version 1.46.3-1ubuntu3.1 is no longer vulnerable. Another example is libssl1.1 version
1.1.1l-1ubuntu1.3,  which has the vulnerability CVE-2022-2068 and CVE-2022-2097.
Trivy indicates that while version 1.1.1l-2ubuntu1.5 is no longer vulnerable to the first
vulnerability, version 1.1.1l-1ubuntu1.6 also solves the second vulnerability.

An intriguing fact that we have noticed in the tests of the image versions from 2020 is
that the vulnerability scanner Clair reports that more than half of the images do not have
any vulnerabilities, contrary to the rest of the tools. Our intuition is that Clair might be
working on the assumption that, in a production environment, the software in use gets
updated at least a couple of times a year, so it is highly unlikely (and we hope so) that
an image version from two or four years ago would be used. In such a scenario, Clair
can reduce the size of the vulnerability database by populating it with only more recent
vulnerabilities, which would explain why it did not detect older ones.
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Table 4: Vulnerabilities detected in image versions from 2020

2020 SCANNER
IMAGE Grype Trivy Snyk Containers Clair

couchbase:6.6.0 361 117 123 336
httpd:2.4.46 424 404 240 1
memcached:1.6.7 268 280 155 1
mongo:4.2.9 553 339 197 576
mysql:8.0.21 405 422 201 1
nginx:1.19.2 634 667 409 0
node:14.8.0 5015 2851 1028 21
postgres:13.0 523 544 242 1
redis:6.0.8 286 277 154 1
ubuntu:19.10 48 6 3 0
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Figure 7: Vulnerabilities detected in image versions from 2020

Since it is difficult to compare the amount of vulnerabilities detected from one year to
another in the diagrams above, we have elaborated a new diagram (Figure 8) that shows
the sum of all the vulnerabilities detected by each tool grouped by year. As one would
expect, the general observed trend is that the older a piece of software is, the higher the
chance is of finding new vulnerabilities in it. This demonstrates that it is a valid advice
to insist in updating software regularly and as soon as possible in order to prevent the
exploitation of old and new vulnerabilities, which are highly valued by attackers.
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Figure 8: Vulnerabilities detected in all images by year

It may be convenient to also make some comments on the time performance of each
tool. The scanning process of the image vulnerability scanners used in our tests can be
divided into two parts.

The first part consists in checking whether the vulnerability database is updated. If it is
not,  the vulnerability database update is retrieved from the Internet, a process that may
vary in time. For instance, for tools like Grype or Trivy it may take up as much as 1 or 2
minutes (depending on the Internet connection),  whereas for Clair  it  can take up as
much as 5 minutes. Snyk is a special case here, since it performs the analysis on its own
servers online. Because of this, the command line tool does not store a local copy of the
database and the update process on the servers happens transparently to the user.

The second part consists in actually analyzing and querying the database, a process that
mostly depends on the size of the image. For example, an image like  httpd is much
smaller compared to node, so the time employed in analyzing it is going to be lower.

In order to illustrate these differences, let’s consider the time it takes the four tools we
have used before to analyze two images of varying size, httpd:2.4.62 and node:22.7.0.
In the first diagram (Figure 9) we can observe the execution time of each tool when a
database update (if  applicable)  needs to be performed and when it  does not  for the
image httpd:2.4.62.
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As we can appreciate, even though Grype and Trivy have some noticeable differences in
execution time (24s vs 2s and 10s vs 0,5s), Clair has a large difference mainly due to its
long update time (223s vs 5s).

In the case of the execution time for the image node:22.7.0 (Figure 10), we observe a
similar proportion between the results where an update in needed and results where an
update is not, although the time it takes for Trivy and Snyk to analyze the node image is
around 3 times longer and for Grype and Clair it is 6 and  7 times longer, respectively.

Finally, as we assumed, the execution time of Snyk does not vary, since it does not store
any local database.
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Figure 9: Execution time for httpd:2.4.62
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Figure 10: Execution time for node:22.7.0
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7. Conclusions
Container technologies are one of the key enablers of the cloud computing revolution
thanks to the easier management and the more efficient resource utilization they offer,
allowing the deployment of new services and platforms at a much larger scale.

In  this  project,  we  have  seen  how the  technological  context  around  containers  has
evolved, from the origin of virtualization technologies, the increasing importance and
complexity of computer security and the philosophical and industrial revolution of free
and  open  source  software,  creating  a  paradigm  of  better  collaboration  and
interoperability between technologies.

We have also explored the intricacies of how a modern containerization engine operates,
which parts it is made of, and how they interact with each other to offer a seamless and
practical solution for creating and managing containers.

In  addition,  we  have  categorized  the  different  types  of  container  vulnerabilities
depending on where they appear in the containerization software stack, described their
properties and discovered the ways in which they can be tackled, thanks to open source
tools that offer various capabilities tailored to different types of vulnerabilities.

In order to understand how these tools actually perform in real life scenarios, we have
carried out some practical tests with popular open source vulnerability scanners and
container  images.  The  results  have  shown  a  noticeable  variability  in  the  detection
capabilities of each tool depending on a combination of factors.

The  best  recommendations  for  an  improved  container  security  state  lies  in  using
containers as up to date as possible, reducing the size of containers to the bare minimum
and  using  a  combination  of  vulnerability  analysis  tools  in  all  stages  of  software
development,  from code  analyzers  to  runtime  monitoring  tools,  all  in  the  effort  of
reducing the amount of vulnerabilities that end up being exploited.

The future work regarding our project would include other experiments that could allow
us to identify the number of true and false positives and negatives or the accuracy of the
tools. Such experiments would involve crafting a custom container image based on an
image without vulnerabilities, introducing each vulnerability manually in order to be
certain about the exact amount of them, and comparing the detections of each tool.
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9. Annexes
Annex 1: Sustainable Development Goals
Degree of relationship of the project with the Sustainable Development Goals (ODGs):

Table 5: Relationship between the project and the SDGs

Sustainable Development Goal High Medium Low Not
related

1. No Poverty x

2. Zero Hunger x

3. Good Health and Well-Being x

4. Quality Education x

5. Gender Equality x

6. Clean Water and Sanitation x

7. Affordable and Clean Energy x

8. Decent Work and Economic Growth x

9. Industry, Innovation and Infrastructure x

10. Reduced Inequalities x

11. Sustainable Cities and Communities x

12. Responsible Consumption and Production x

13. Climate Action x

14. Life Below Water x

15. Life on Land x

16, Peace, Justice and Strong Institutions x

17. Partnerships x

The 2030 Agenda for  Sustainable  Development  was  adopted  by all  United  Nations
member states in 2015, providing a road map for peace and prosperity. It is based on the
17  Sustainable  Development  Goals,  which  define  strategies  for  ending  poverty,
improving health and education, reducing inequality, preserving the environment and
encourage economic growth.
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Public administrations (such as schools, universities, governments or hospitals) are one
of the most targeted entities in cyberattacks, party due to the huge impact on the society
that an interruption of operation can cause. Our project can have a positive impact on
Good  Health  and  Well-Being,  Quality  Education and Sustainable  Cities  and
Communities  by promoting a better understanding of the security risks of the systems
deployed and how to deal with them so that they are more resilient against attacks.

Every day, an increasing number of industries are adopting a microservice architecture
for the deployment of their  systems, which means that usually they will  be using a
containerization  solution  like  Docker.  Understanding  the  causes  and  the  impact  of
attacks against the infrastructure and how to detect and mitigate them is essential to
ensure  the  continued  development  of  new  technologies  and  the  creation  of  new
opportunities, which is reflected in Industry, Innovation and Infrastructure and Decent
Work and Economic Growth.

Finally, containers allow a better server utilization because they simplify how they are
shared among different users and applications. This allows for a reduction in the high
energy usage attributed to data centers and cloud architectures, thus having a positive
impact on Climate Action.
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