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Abstract: This research uses data analysis and mining techniques to determine the technological
expansion of measurement systems in a public service company. It integrates technical, economic,
geographic, and social variables into the analysis using machine learning techniques to discover
patterns and relationships in large data sets. The fuzzy logic methodology is applied using the
MATLAB programming tool “Fuzzy Logic” to build algorithms that allow for the correct selection
of measurement, achieving greater efficiency and precision in the assignment of meter types. The
results show that 98% of the metering systems in the significant part are electronic meters, with the
“Residential BT” rate being the most extensive data set. Implementing the “fuzzy logic” technique
recognizes that more than 60% of the meters are electronic, with the registration of active energy,
reactive energy, and demand, allowing for greater control over the marketing variables of the
distribution system operator. This research suggests that a future restructuring of electrical metering
systems benefits the company and its users. By applying the analysis, a portfolio of viable projects for
the replacement of measurement systems is obtained, and they are grouped into two clusters based
on the total cost of the technological change.

Keywords: fuzzy logic; distribution systems; advance metering infrastructure; planning; measure-
ment systems

1. Introduction

Electrical distribution systems are essential for ensuring the efficient and safe delivery
of electrical energy from distribution substations to final consumption points, providing
power to homes, companies, and industries [1]. This theoretical framework’s primary focus
is the methodological planning of measurement systems for utilities, with a particular
emphasis on electrical measurement systems and the methodological application of fuzzy
logic with its main theoretical foundations.

Electrical energy measurement technology is crucial for accurate and fair billing to end
consumers and ensuring the quality of the electrical supply. Electronic and smart meters
are currently the most widely used technologies due to their high accuracy and advanced
communication capabilities [2]. However, the choice of the type of energy meter depends
on the specific needs of each electrical distribution system operator and user [3]. They can
be used for various applications in electrical distribution systems, such as electrical energy
billing, identifying electrical grid faults, and detecting electrical power quality problems [4].
The information collected by energy meters can be used to improve energy efficiency and
reduce energy consumption in homes and businesses [5].

Ecuador has initiatives to implement smart meters that allow more precise measure-
ment and greater efficiency in electrical energy management [6]. These smart meters are
equipped with communication technology that allows for real-time data transmission and
better management of electrical energy consumption [7,8].
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The transformation of the electrical energy system is occurring worldwide, moving
from a conventional unidirectional structure to one that is more open, configurable, and
participatory by consumers and other actors in the sector [9]. Since 2010, the electricity
sector has experienced essential changes in using and implementing new technologies
to allow better use and greater efficiency in generating, transporting, and distributing
electricity [10]. This change has culminated in the emergence of a broader electricity
market [11,12].

Some of the most common applications of electric energy meters in electrical distribu-
tion systems include detecting system failures [13], monitoring power quality [14], demand
management [15], selecting appropriate measuring devices based on the company’s spe-
cific needs [16], designing a measurement system that allows energy consumption to be
measured and analyzed in real-time [17], and monitoring and controlling systems [18].
Implementing a well-designed electrical energy metering system can generate significant
savings in energy costs and improve the operational efficiency of utilities [19].

Evaluating the effective and robustness of electrical energy measurement systems
is essential to determine whether they are meeting the objectives for which they were
implemented. Different evaluation techniques can be used, such as comparing results with
theoretical values or performing performance tests under adverse conditions [20].

Most utilities in Latin America and the Caribbean lack planning for integrating ad-
vanced measurement systems to improve marketing processes. The average energy loss
rate in Latin American and Caribbean countries is 15.65% [21]. In Ecuador, technical in-
vestments and data analysis models achieved a significant reduction of 25.04% in 2008 to
13.03% in 2018 [22]. Investment in energy loss reduction programs has been limited due to
the need for more public policies, laws, and regulations governing distribution systems [23].
This social and cultural inequality is causing a reduction in metering systems to reduce
electricity bills. Electricity providers must maintain accurate records of measurement
system readings in real-time to offer optimal operation and service.

In electrical engineering, fuzzy logic has been used to optimize the control of electrical
energy generation and distribution systems, such as regulating frequency and voltage, active
and reactive power, and protecting electrical systems [24]. Examples of the application of
fuzzy logic in different fields include the automation of industrial processes, decision-
making in expert systems, robotics, computer vision, artificial intelligence, and electrical
engineering [25].

In the context of electrical energy measurement systems, fuzzy logic can be applied
to model and control variables such as energy consumption, electrical demand, and en-
ergy efficiency. For instance, one of the most common applications of fuzzy logic is in
fuzzy demand control, which involves implementing a control system that adjusts energy
consumption in real time based on the needs of the user system fuzzy demand control.
This involves implementing a control system that adjusts energy consumption in real-time.
This application, as demonstrated in a study by Ramos and Sun, can generate significant
savings in energy costs and improve the utility’s operational efficiency. Another practical
application of fuzzy logic is predicting energy consumption, as shown in a study by Atef.
In this study, fuzzy logic is applied in voltage measurement in electrical energy distribu-
tion systems. A study developed by Akbari et al. [26,27] presents a voltage measurement
technique in electrical power distribution systems that uses fuzzy logic to improve mea-
surement accuracy. A study by Kumar et al. [28] presents a power quality measurement
technique that uses fuzzy logic to improve measurement accuracy.

The practical applications of fuzzy logic in electrical energy measurement systems are
numerous and significant. It enables the modeling of complex and non-linear systems, the
handling of imprecise or uncertain information, and the incorporation of expert knowledge
and prior experience into the design of measurement systems [29]. This, in turn, enhances
system accuracy and efficiency. Fuzzy logic also offers greater flexibility and adaptability
to different conditions and environments, as it can automatically adjust measurement
system rules and parameters in real-time in response to changes in power consumption
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and other external factors. However, it is important to note that fuzzy logic does have its
limitations. For instance, it may not provide a clear explanation of the relationship between
variables, which can make it challenging to interpret the results. Additionally, it can be
computationally expensive and time-consuming in complex systems, which may limit its
practicality in certain applications. Lastly, it is based on assumptions and approximations,
which may lead to less-accurate results in some cases. Despite these limitations, fuzzy logic
remains an essential tool in electrical energy measurement systems and has proven useful
in various applications.

This work uses fuzzy logic to determine the methodological planning that influences
the technological expansion of utility measurement systems. The specific objectives include
using analytics and data mining techniques to define the types of measurement systems,
applying fuzzy logic to validate variable use in planning, and evaluating the selection
methodology based on a portfolio of projects.

The contribution of this research is the use of the fuzzy logic tool to determine the
methodological planning that influences the technological expansion of smart metering
systems for utilities. Through the use of data analytics techniques, it validates the use
of variables in planning and evaluates and generates a portfolio of projects that must be
implemented according to the utility investments.

This article aims to present a comprehensive review as follows: Section 2 describes an
in-depth analysis of the variables involved in the methodology to analyze and determine
utility patterns. Section 3 describes the methods used in the case study. In Section 4, an
analysis is carried out, and the results of the methodology are discussed. Section 5 reports
conclusions based on the results obtained from the methodological implementation and
the potential applications in the electrical industry.

2. Statistical Analysis of Data

This statistical analysis aims to analyze the electricity consumption in five regions
of Cuenca, divided into urban and rural areas. Variables such as consumption group,
economic and geographic aspects, electricity consumption stratum, tariff type, and meter
brands will be considered to provide a clear understanding of electricity consumption
behavior in these zones. The data used in the statistical analysis were sourced from a com-
pany that sells and distributes electricity, ensuring accurate information on consumption.
The company uses rigorous processes to ensure data quality and accuracy, including verifi-
cation of meter accuracy and regular calibration of measurement equipment. Descriptive
statistical methods identify patterns, trends, and relationships, reducing the margin of error
and improving the representation of results, as seen in Table 1.

Table 1. Literature review and methodology used in fuzzy logic.

Methodology Concept Algorithm/Method Reference

Theoretical study [1,23,25,30]

Smart
meters

Smart meters [2,3,16]

System AMI [6,19]

Local and regional analysis [7,8,21,22]

Opportunities with
smart meters and smart grids

[4,10,15]

Fuzzy
logic

Data analysis with
smart meters and smart grids

[13,14,17]

Fuzzy
logic

Management and
energy measurement [26,28]

Energy management in
buildings and homes

[31,32]

Network reconfiguration
for energy saving

[32,33]

Control and automation [24,34,35]
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2.1. Geographic Area Analysis

This study analyzed 220,000 users from an electric power distribution system op-
erator’s data set, as shown in Table 2, dividing the sample into five groups based on
socioeconomic characteristics. The data were analyzed using MATLAB, allowing for a
wide range of analyses to explore relationships between variables and provide a deeper
understanding of the collected data. This study aimed to compare electricity consumption
patterns across different geographical areas.

Table 2. Representative data of the sample.

Location Number of Samples

El Batán 1000
Monay 1000
San Sebastian 1000
Totoracocha 1000
Valle 1000
Total 5000

Figure 1 corresponds to a scatter diagram, where it is possible to differentiate the
variables of the selected geographical areas.

Figure 1. Scatterplot of regions.

2.2. Analysis of Electric Meter Brands

The statistical analysis involves analyzing each sample separately and studying its
characteristics. A significant sample size helps identify patterns and trends in energy
consumption in each region based on the type of meter brand, as shown in Table 3.

The analysis of meter brands in the regions reveals that Hexing has the highest
frequency (56%), followed by Xili (14%) and Lintin 8%. Wasion and Sunrise have lower
frequencies (6% and 4%, respectively). This information can help utility companies make
strategic decisions about meter management and equipment. A word cloud representation,
as shown in Figure 2, can be used to visualize the frequency of different brands in region
measurements, guiding supplier selection and equipment maintenance decisions.

This study analyzed the brands and types of 5000 m, finding that 98% were electronic
and 2% were electromechanical. The Hexing brand was the preferred electronic meter, while
the Xili, Lintin, Wasion, and Sunrise brands offered both electronic and electromechanical
meters. Most of the meters were electronic, indicating a trend toward modern technology in
energy consumption measurements. The results suggest a trend towards electronic meters
across all brands.
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Table 3. Meter brands.

Meter Brand Quantity Meter Brand Quantity

ABB 3 Landis 1
Aeg 1 Lintin 386
Aem 60 Nansen 1
Conteleca 4 Ningbo 3
Elster 40 Sanxing 1
Fae 26 Schneider 1
Galileo 1 Sco 19
General Electric 1 Siemens 3
Hexing 2815 No known brand 2
Hiking 6 Songhe 173
Holley 22 Star 158
Honeywell 3 Sunrise 213
Intech 52 Wasion 312
Krizik 1 Xili 679

Nummissing 13

Figure 2. Word cloud of meter brands.

2.3. Analysis of the Types of Electrical Connections

The analysis of electrical connection types revealed that 5% of the connections were
single-phase, 87% were two-phase, and 8% were three-phase. These data helps in under-
standing the utilities.

2.4. Analysis of Electricity Consumption Groups

This section examines a significant variable, categorized into residential, commercial,
and industrial consumption groups, as shown in Table 4. The table highlights their unique
usage patterns, requirements, and electrical energy consumption.

Table 4. Division according to consumption group.

Consumer Group Quantity Frequency

Commercial 394 8%
Residential 4499 90%
Industrial 69 1%
Others 38 1%

The analysis revealed that 58% of the connections were two-phase, with the Hexing
brand being the most used in the residential sector, accounting for 90% of electricity
consumption in the regions analyzed. Different meters and connections could influence
the commercial sector’s 8% consumption, requiring further analysis to identify trends. The
low percentage of consumption in the industrial sector and others suggests they are not
significant in electricity consumption.
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2.5. Analysis of the Types of Electricity Tariffs

This section analyses the consumption trends of electricity tariffs in the regions, focus-
ing on residential groups. The BT residential tariff was the most used, accounting for 85%
of the total sample. The analysis revealed that most consumers belonged to this group, ac-
counting for 84% of the total. The LV commercial tariff was the second-most used, followed
by the LV residential tariff for the PEC program and the BT industrial artisanal tariff. The
consumption tariff can influence electricity consumption and its cost to consumers. The LV
residential tariff was the most used, accounting for 84% of the total. The presence of the
LV commercial and PEC residential tariffs was also significant; 6% each. The BT industrial
artisanal tariff stands out, with 1%, indicating a low presence of electricity consumption in
the industrial sector.

2.5.1. Analysis of the BT Commercial Tariff

The BT commercial tariff was analyzed with a 6% relevance, and its performance was
predominant in Totoracocha, with 95 customers. The other regions were El Batán with
82 customers, San Sebastián with 66 customers, Monay with 35 customers, and Valle with
26 customers. The analysis reveals that the region with the highest membership level in this
tariff was Totoracocha. Most regions had similar customer numbers, except for Totoracocha,
which had the highest number of customers, indicating higher commercial activity. San
Sebastian had the lowest number of customers, indicating lower commercial activity in the
urban area. The analysis suggests that the LV commercial tariff is a significant factor in the
area’s commercial activity.

2.5.2. Analysis of the LV Residential Tariff

The analysis of commercial tariffs revealed that residential tariffs were 90% relevant in
all regions, with the LV residential tariff being the most used. The number of customers
with this tariff was balanced across all regions, with no region significantly impacting the
electric voltage levels used for households and small industries. The results are presented
in Table 5.

Table 5. LV residential tariffs by region.

LV Residential Tariff Residential PEC Program Ind. Artisanal

El Batán 19% 17% 31%
Monay 20% 28% 24%

San Sebastián 20% 16% 13%
Totoracocha 20% 14% 20%

Valle 21% 26% 11%

2.6. Analysis of Electricity Consumption Strata

The analysis identifies five electricity consumption strata: E, D, C, B, and A, each with
a specific monthly consumption range. Stratum E has the lowest consumption (1–60 kWh),
while stratum A has the highest (310+ kWh). This analysis helps identify the distribution of
electricity consumption in different regions and its relationship with consumption groups
and corresponding electricity tariffs, as shown in Figure 3.

The strata are categories based on a user’s electricity consumption and ability to pay,
which are used to apply different tariffs. Figure 3 shows outliers with mean data that
are greater than the median, providing relevant data for monthly readings in kW/h for
each client. The analysis reveals that Valle has the lowest consumption stratum, with a
higher percentage of low electricity consumption. This suggests a potential for energy
conservation initiatives in this area. El Batán, on the other hand, has a higher concentration
of customers in higher-consumption strata, indicating a need for increased energy supply
and infrastructure in this area. This could lead to higher electricity consumption costs.
These findings can be used to inform energy planning and policy decisions, particularly in
the context of commercial and industrial projections for El Batán compared to other regions.
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kWh/mes

kWh/mes

Figure 3. Distribution of electricity consumption strata in each region.

Furthermore, the analysis of meter types and their behavior in each region can be used
to create a new distribution of meters based on their electricity consumption stratum, as
illustrated in Table 6. This study found that 98% of meters in the area were electronic, with
the remaining 2% being electromechanical. The distribution of electronic meters across
different electricity consumption strata indicates that electricity consumption is evenly
distributed among different socioeconomic groups, suggesting a higher level of technology
and efficiency in recording consumption compared to electromechanical meters. This is
significant, as it indicates a more accurate and efficient way of measuring and managing
electricity consumption.

The analysis of electricity consumption strata using electronic meters revealed that 98%
of the metering system was electronic. In the residential tariff, Table 6 shows that stratum E
had 27% of the customers, followed by stratum D (26%), stratum C (21%), stratum B (11%),
and stratum A (4%). These results are specific to electronic meters and suggest a lower
consumption strata.

Table 6. Distribution of electricity consumption strata based on electronic meters.

Strata kWh Electronic Meters Residential Commercial Industrial

E 1–60 1505 1338 131 18
D 61–110 1353 1289 49 6
C 111–180 1098 1043 45 5
B 187–310 615 556 41 16
A >301 307 187 99 2

The analysis of electronic meters in the commercial tariff reveals that stratum E had the
highest frequency at 3%, followed by stratum A at 2%. Strata D, C, and B had frequencies of
1% each. The total number of meters in the commercial tariff was significantly lower than
in the residential tariff, indicating differences in stratum frequencies. The low percentage of
meters in stratum A may indicate lower energy consumption among commercial consumers.
Interestingly, stratum E had the highest frequency, suggesting that customers in this tariff
are on par with those in the residential tariff.

2.7. Economic Variable Analysis

In previous sections, we analyzed various variables, including the electricity con-
sumption strata, meters used, consumption groups, and tariffs applied to the sample. The
focus is now on analyzing the economic variable based on different electricity consumption
strata, as shown in Table 7. This analysis helps us to understand how electricity costs
are distributed in different strata, providing significant implications for planning and
decision-making related to electricity consumption.
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Table 7. Billing distribution according to electricity consumption strata.

Strata Residential Commercial Industrial El Batán Monay San Sebastián Totoracocha Valle

E 13,587 3129 508 2056 2500 2315 2789 3933
D 22,482 1498 209 4290 5206 3679 4208 5099
C 31,124 1751 269 6453 7062 5766 6206 5637
B 24,015 2474 1124 5743 5327 4480 4345 4120
A 16,197 18,280 5211 5085 2736 3927 2438 2011

The billing analysis reveals that most customers are in strata D and C, with higher
total billing compared to other strata. Additionally, stratum B has higher billing, while
stratum E has the lowest. The residential consumption groups show that strata C and
B have the highest billing, while stratum A has the lowest. Commercial tariff billing is
lower than residential, with stratum A representing the most significant revenue. The
commercial tariff also contributes significantly to revenue, especially in stratum A. In the
commercial tariff, stratum A has the highest billing, with USD 18,279.58, while the other
strata have significantly lower billing. In the industrial tariff, stratum A has the highest
revenue, followed by stratum B. However, strata C, D, and E have lower contributions to
the total revenue.

Table 7 shows the analysis of billing by stratum for each region, identifying regions
with the highest electricity consumption for resource distribution and energy planning. The
analysis of residential rates in the city reveals that Valle has the highest billing, with a total
of USD 3932.72. El Batán, the lowest-billing region, has a significant value of USD 2055.80,
indicating electricity consumption in that area. In stratum D, Monay has the highest total
billing value, followed by the rural region of Valle and El Batán and Totoracocha. San
Sebastián has the lowest turnover value, costing USD 3678.86.

Stratum C has the highest total billing value, followed by Monay and El Batán. The
total billing value increases as the stratum and energy consumption increase. However, in
San Sebastian, the total billing value is lower than the other strata, suggesting lower energy
consumption.

In stratum A, El Batán has the highest value, followed by Monay and San Sebastián.
The total values correspond to consumption of over 310 kWh, which is higher in this
stratum. Lower strata have lower bills, while higher strata have higher bills.

Similarly, according to the commercial consumption group, the billing development
of each region is analyzed. The data on commercial rates in Cuenca’s strata is of significant
importance, as they reveal the variations in energy consumption patterns. In stratum E,
which corresponds to 1–60 kWh consumption intervals, rates are relatively low, with San
Sebastian having the highest rate. In stratum D, which corresponds to a consumption
interval of 61–110 kWh, rates are higher but still relatively low, with El Batán having the
highest rate. In stratum C, which corresponds to a consumption interval of 111–180 kWh,
rates are higher but still relatively low, with Totoracocha having the highest rate. In stratum
B, which corresponds to a consumption interval of 181–310 kWh, rates are even higher,
with El Batán having the highest tariffs. In stratum D, the lowest rate is in St. Sebastian,
while the lowest rate is in stratum D. In stratum A, which corresponds to a consumption
interval of more than 310 kWh, rates are the highest, with Totoracocha having the highest
rate. In conclusion, commercial rates in Cuenca vary significantly according to strata and
region, with higher rates in higher consumption strata and certain regions.

2.8. Analysis of Total Turnover

A detailed analysis of the total billing for each region, as depicted in Figure 4, was
conducted to better understand the distribution of electricity costs across different geo-
graphic areas.

The data show that El Batán had the highest contribution to total income, with USD
33,317.05. San Sebastian followed with USD 31,845.41, while Monay had USD 30,432.04.
Totoracocha and Valle had lower contributions to the total revenue, with USD 29,687.81
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and USD 23,732.20, respectively. The data suggest that regions with higher socioeconomic
and commercial levels contribute more to the energy utility distribution revenue. The
higher strata in El Batán and San Sebastián had the highest residential and commercial
rates, indicating higher electricity consumption and a significant presence of companies
and businesses. Lower-strata regions like Monay, Totoracocha, and El Valle had lower rates,
indicating lower electricity consumption and a less significant presence of businesses.

Figure 4. Distribution of the total turnover of each region.

3. Methodology

This research uses analytical and data mining techniques and fuzzy logic algorithms to
select metering systems for utilities. The methodology helps in decision-making regarding
the planning and technological expansion of metering systems, considering market trends
and limitations. The application of fuzzy logic validates the use of variables in planning
technological expansion, allowing for more accurate and efficient results. MATLAB 2021b
software is chosen due to its ability to implement fuzzy logic algorithms and complex data
processing, making it suitable for analyzing electrical metering systems. The Fuzzy Logic
toolbox add-on provides a wide range of tools and functions for designing, simulating, and
analyzing control systems based on fuzzy logic. As shown in Figure 5.

Figure 5. Collection and process integration diagram.
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3.1. Development of the Fuzzy Logic Model

The fuzzy logic algorithm uses billing in USD and consumption in KWh as in-
put variables. Billing is divided into three membership functions (low, medium, and
high) [30], ranging from $0 to $500, and consumption into three membership functions
(minor, medium, and major), ranging from 0 to 400 KWh. These variables are crucial for
planning metering system expansion and making informed decisions.

The fuzzy logic algorithm uses a meter-type variable with five membership functions
as an output variable. These functions are electronic; electronic with active, reactive, and
demand (ARD) register; electronic with ARD and radio frequency register; electronic
multirate radio frequency; and AMI electronic meter. The range of values and their
membership functions are shown in Table 8.

Table 8. Definition of output parameters.

Output Parameters Belonging Function Range

Output

Electronic 0∼0.2
Electronic with ARD 0.2∼0.4
Electronic with RF reg. 0.4∼0.6
Multi-rate RF electronics 0.6∼0.8
Electronic AMI 0.8∼1

The output variable chosen for this fuzzy logic algorithm is the type of meter, which
aims to determine the ideal meter for each user in each region.

3.2. Fuzzy Logic Implementation in MATLAB

The default fuzzy logic editor window appears as shown in Figure 6.

Figure 6. Fuzzy logic MATLAB editor window.

We load the Fuzzy Logic toolbox plug-in in the development environment to design
and simulate fuzzy logic systems. The Fuzzy Logic plug-in in MATLAB defined two input
variables, billing in USD and consumption in KWh, and an output variable, the meter
type. The Fuzzy Tools add-on in MATLAB is valuable for defining these variables and their
membership functions intuitively and efficiently. This helps in determining the ideal meter
type for each region, ensuring accurate and useful results in fuzzy logic decision making.
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3.3. Definition of Membership Functions

The parameterization using fuzzy logic involves defining membership functions for
each input variable and output variable, such as turnover in USD and billing in USD, as
shown in Table 9.

Table 9. Definition of invoicing input parameters.

Membership Function Degrees of Membership Degrees of Membership

Under Triangular
Minimum value: 0 Minimum value: 0
Maximum value: 125 Maximum value: 100
Peak value: 250 Peak value: 50

Medium Triangular
Minimum value: 0 Minimum value: 50
Maximum value: 375 Maximum value: 200
Peak value: 250 Peak value: 125

High Triangular
Minimum value: 250 Minimum value: 150
Maximum value: 500 Maximum value: 400
Peak value: 500 Peak value: 275

Triangular membership functions exhibit abrupt transitions between values, maximiz-
ing overlap for a uniform and smooth output surface graph. They have a triangle shape,
with the lowest membership value at the minimum, the highest at the maximum, and the
maximum at the middle.

For the input variable “Consumption in KWh”, the following membership functions
are defined in Table 9.

For the output variable “Meter type”, the following membership functions are defined,
as shown in Table 10.

Table 10. Definition of output parameters for meter type.

Membership Function Degrees of Membership

Electronic Triangular
Minimum value: 0
Maximum value: 0.1
Peak value: 0.05

Electronic with ARD Triangular
Minimum value: 0.1
Maximum value: 0.3
Peak value: 0.2

Electronic with RF reg. Triangular
Minimum value: 0.3
Maximum value: 0.5
Peak value: 0.4

Multirate RF Electronics Triangular
Minimum value: 0.5
Maximum value: 0.7
Peak value: 0.6

Electronic AMI Triangular
Minimum value: 0.7
Maximum value: 1
Peak value: 0.85

3.4. Application of Fuzzy Rules to the Model

The fuzzy logic algorithm uses fuzzy sets to map the input values to the degrees of
membership, representing uncertainty or vagueness. This is implemented in MATLAB as a
5000X1 matrix. The input variables represent billing in USD and consumption in kWh for
5000 users. This allows the fuzzy logic application to determine the relationship between
billing and other variables, such as meter type or electricity consumption. The fuzzy rules
for inference and defuzzification are established, obtaining a discrete value for the output
variable. The membership function assigns fuzzy values to a set, representing uncertainty
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in membership. Rules are transferred to the fuzzy logic algorithm to make decisions based
on input data, such as planning metering system expansion.

3.5. Defuzzification Process in the Fuzzy Algorithm Model

Defuzzification converts the fuzzy logic system’s fuzzy output into a valid numerical
value. The centroid method is a widely used method, where the centroid of the membership
function from fuzzy inference is calculated and used as the system’s output value.

Defuzzification Method Centroid

In the centroid method, the centroid or center of gravity of the membership function
of the output variable is calculated. The centroid is defined as the sum of the products of
the membership functions and their corresponding membership values divided by the total
sum of the membership values. The MATLAB Fuzzy toolbox uses the centroid method to
defuzzify an output fuzzy set, calculating the corresponding centroid using the weighted
area centroid algorithm. This weighted measure calculates the centroid of the output area
by weighing the degree of membership at each point with its respective value. This results
in a 2D plot of consumption in kWh vs. the type of meter, as shown in Figure 7. The result
shows an increasing trend in consumption in KWh, indicating that higher consumption
necessitates meters with higher capacities and functionalities. This is reflected in the graph
as an expanding surface.

Figure 7. Two-dimensional graph of the relationship between consumption and meter type in the
fuzzy logic model.

Figure 8 shows the relationship between meter type and billing in dollars, calculated
by weighting the output surface’s membership degrees. The graph shows an increasing
trend as billing in USD increases, indicating an increase in the required meter type. These
data align with the statistical analysis in Section 2. The centroid is calculated and used as
the output value of the fuzzy system, but it may not correspond to any linguistic value in
the discourse universe.

Figure 8. Two-dimensional graph of the relationship between billing and meter type in the fuzzy
logic model.
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3.6. Simulink Model

The Simulink block model is developed to analyze a fuzzy logic system for selecting
an electronic counter based on customer billing values and electricity consumption. A
block diagram with feedback is designed as shown in Figure 9, with blocks corresponding
to billing in dollars and consumption in kWh added to the diagram.

Figure 9. Block diagrams of the fuzzy logic model.

After the fuzzy logic algorithm is run, the results are visualized and exported to a
matrix for further analysis. This process allows for the simulation of 5000 clients, enabling
planning decisions for metering system expansion. The results can then be exported to an
analysis program for further interpretation, providing a comprehensive understanding
of the system’s performance and potential areas for improvement. Figure 10 displays the
billing curves for 5000 users in five regions, displaying the billing input variable in dollars
and meter type values for each utility user.

Figure 10. Diagram of fuzzy logic billing.

Figure 11 displays the kWh consumption curves for 5000 users in five regions, display-
ing the consumption density in kWh and degrees of membership corresponding to meter
type, with the y-axis representing kWh usage density.
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Figure 11. Diagram of consumption in kWh of fuzzy logic.

Using the results obtained from the input variables of the model, the output variable
indicates the membership values obtained, along with their range of membership, as shown
in Figure 12.

Figure 12. Two-dimensional output diagram of the fuzzy logic meter type.

The fuzzy logic model shown in Figure 12 shows a significant decrease in electronic
meter usage in the sample cluster, with 98 % of users currently using electronic meters.
However, an increase is observed in the range of 0.2 to 0.4, corresponding to the Active,
Reactive, and Demand Register (ARD) meter type, which has a significant sample for the
data set. A smooth curve is observed for electronic meters with register and radio frequency,
indicating few or no meters for selected users. The results can be exported to an Excel file
for further data analysis, allowing for precise meter types and other relevant information
to improve the model for future applications.

4. Analysis of Results

This section analyzes the fuzzy logic results for technological planning for meters,
determining economic feasibility based a cost–benefit analysis. It provides valuable infor-
mation for decision-making in metering system technology upgrade projects for electricity
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distribution system operators and generates ideas for service quality improvement. In
Section 2, the data analysis revealed that 98% of urban and rural regions have electronic
meters, while only 2% use electromechanical meters. The distribution of these meters is
based on a significant sample of 5000 users, with only 2% using electromechanical meters.

The majority of meters in certain areas are electronic, except in San Sebastian, where
there are more electromechanical meters than in other regions. This suggests that San
Sebastian’s electrical infrastructure may influence the choice of the type of meter.

Figure 13 corresponds to a heatmap representing the current status of the measurement
systems in the regions, correlating with the electronic meters distributed in each region.

Figure 13. Heatmap of the distribution of electronic meters in the regions.

4.1. Application of Fuzzy Logic

Table 11 presents a frequency distribution analysis revealing the frequency of electronic
meters affecting fuzzy logic implementation. The Active, Reactive, and Demand Recording
(ARD) type is the highest frequency, with 3010 and 60% relative frequencies. The second-
most-common frequency is the 1575 frequency, followed by the 32% relative frequency. The
least-common frequency is the 415 frequency and 8% relative frequency. Currently, 98% of
electronic meters are used, resulting in a 66% decrease in all regions. This study highlights
the importance of frequency distribution in implementing fuzzy logic.

Table 11. Distribution of meters based on fuzzy logic results across different regions.

Meter Type Frequency Relative Frequency

Electronic 1575 32%
Electronic ARD 3010 60%
Electronic1 ARD with RF 415 8%
TOTAL 5000 100%

The majority of users (32%) are suited for electronic meters, with 60% of these being
equipped with electronic meters with ARD and 8% with ARD and radio frequency. How-
ever, no results were obtained for electronic multi-rate radio frequency and AMI meters,
suggesting a lack of potential customers for energy demand for the selected samples. The
heatmap in Figure 14 can help provide a more precise study projection.
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Figure 14. Heatmap of the final distribution of electric meters.

4.2. Analysis of Meter Distribution in Each Region

Analyzing electric energy consumption in each region using fuzzy logic reveals that
the electronic and ARD electronic meters have similar frequencies. However, the ARD
electronic meter with radio frequency is lower, as shown in Table 12. In El Batán, San
Sebastián, and Totoracocha, the electronic meter with an ARD register is the most used,
while in Monay, the electronic meter is the most common. The most common meter in Valle
is the electronic meter with an ARD register, with a relative frequency of 61%. Although
rural regions have less favorable results for electronic meters, they have the highest use
rate of 5% for ARD registers with radio frequency. This indicates a remarkable growth
projection above urban regions, with 90% of meters being electronic.

Figure 15 presents a heatmap for both electronic and electronic meters with ARD
recording.

Figure 15. Heatmap of electronic meters and ARD in each region.



Energies 2024, 17, 4603 17 of 24

Table 12. Distribution of meters in each region.

Regions Electronic Electronic ARD Electronic ARD with Radio Frequency

El Batán 104 790 106
Monay 544 426 30
San Sebastian 536 449 15
Totoracocha 391 609 0
Valle 0 736 264
TOTAL [%] 31.5% 60.2% 8.3%

4.3. Analysis by Type of Consumption

The fuzzy logic methodology was used to analyze the frequency of meter types based
on consumption type in each region, as shown in Table 13. The most commonly used type
was the electronic meter with an ARD register for two-phase consumption, with a relative
frequency of 53%. This rate was predominant in all regions, with 27% for convention and
electronic meters. The three-phase tariff had a lower presence, with a relative frequency of
5% in ARD electronic meters and 3% in conventional electronic meters.

Table 13. Distribution of meters according to type of electricity consumption.

Meter Type Single-Phase Two-Phase Three-Phase

Electronic 88 1345 142
Electronic ARD 137 2641 232
Electronic ARD with radio 20 378 17
Frequency
TOTAL [%] 5% 87% 8%

4.4. Analysis by Type of Consumption in Each Region

The analysis of electricity consumption in different regions primarily focuses on two-
phase and three-phase consumption due to their significant role in electricity consumption,
as depicted in Figure 16 as a heatmap of metering systems.

Using the fuzzy logic methodology, the frequency and relative frequency of each meter
are determined, and their relationship with the type of consumption will allow us to make
more relevant decisions to the study, as detailed in Table 14.

Figure 16. Heatmap of the distribution of electric meters by type of meter.
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Table 14. Distribution of meters by type of meter in each region.

Two-Phase Three-Phase

Region Electronic Electronic ARD Electronic ARD with
Radio Frequency

Electronic Electronic ARD Electronic ARD with
Radio Frequency

El Batán 2% 14% 2% 0% 1% 0%
Monay 10% 7% 1% 1% 1% 0%
San Sebastian 8% 7% 0% 1% 1% 0%
Totoracocha 7% 11% 0% 1% 1% 0%
Valle 0% 14% 5% 0% 0% 0%

4.4.1. Analysis of Two-Phase Consumption Type

The type of two-phase meter in the regions is primarily determined by its ARD register.
The Totoracocha region has the highest relative frequency of the two-phase meters, with
12% for electronic meters with ARD registers and 11% for electronic meters. San Sebastian
has the lowest relative frequency for both meters, with 7% for electronic meters with ARD
registers and 8% for electronic meters. These data are crucial for planning and managing
electric service in each region. Generally, the type of meter with an ARD register has a
higher frequency in the two-phase tariff, suggesting it may be more suitable for this type
of tariff.

4.4.2. Analysis of Three-Phase Consumption Type

The three-phase tariff type has a lower frequency than the two-phase tariff type, with
the relative frequency of three-phase meters being less than 2% in all regions except Valle.
San Sebastian has the highest number of three-phase meters, while Totoracocha has the
lowest number. A significant heat projection is also detected in San Sebastian, which has
the highest number of three-phase meters.

4.5. Analysis Based on Consumption Group

The analysis focuses on the contribution of commercial, residential, and industrial
electricity consumption groups to total electricity consumption in each region. It identifies
patterns and trends based on their geographical areas, thereby providing valuable insights
into overall electricity consumption patterns, as seen in Table 15.

Table 15. Distribution of meters according to electricity consumption group.

Meter Type Commercial Residential Industrial

Electronic 132 1415 23
Electronic ARD 240 2697 41
Electronic ARD with RF 22 387 5
Total 394 4499 69

The residential consumption group is the most prevalent in terms of the number of
meters installed in the regions, with 28% for electronic meters, 54% for electronic meters
with ARD registration, and 8% for electronic meters with radio frequency. On the other
hand, the commercial consumption group is representative of 3% for electronic meters, 5%
for electronic meters with ARD registers, and 0% for electronic meters with ARD registers
with radio frequency. The industrial consumption group is the least representative, with 0%
for electronic and radio frequency meters and 1% for electronic meters with ARD registers.

4.5.1. Analysis of Commercial Consumption Group by Region

The most common type of meter for commercial consumption is the electronic meter
with an ARD register, accounting for 5% of the total number. San Sebastian has the highest
number of meters for all three types, followed by Totoracocha, as shown in Table 16.
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Table 16. Distribution of meters according to commercial consumption group.

Location Electronic Electronic ARD Electronic ARD with Radio Frequency

El Batán 10 84 14
Monay 28 17 1
San Sebastian 58 44 2
Totoracocha 36 74 0
Valle 0 21 5
Total [%] 34% 61% 6%

The electronic meters in Monay, San Sebastian, and Totoracocha have a higher relative
frequency than the other regions, accounting for 1% of the total number of meters for this
consumption group. El Batán and Totoracocha have a higher relative frequency of electronic
meters with ARD registration, representing 2% and 1% of the total number, respectively.

Finally, in the case of the electronic meters with ARD registers with radio frequency,
El Batán has the highest number of meters of this type, representing 0.2% of the total
meters for the consumption group. Variations in the frequency of meters by region may
indicate differences in consumption patterns among different geographic areas, as shown
in Figure 17.

Figure 17. Heatmap of the distribution of ARD electronic meters with radio frequency according to
commercial consumption group.

4.5.2. Analysis of the Residential Consumption Group

The data depicted in Table 17 show that the most commonly used meter for residential
consumption is the electronic meter with ARD register, followed by the electronic meter,
and finally, the electronic meter with an ARD register with radio frequency. However, as
shown in Figure 17, Valle does not use electronic meters.

Table 17. Distribution of meters according to residential consumption group.

Location Electronic Electronic ARD Electronic ARD with Radio Frequency

El Batán 92 682 89
Monay 508 397 28
San Sebastian 470 389 13
Totoracocha 345 525 0
Valle 0 704 257
Total 1415 2697 387
Total [%] 31% 60% 9%
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The Valle region also has a higher use of meters in this consumption group, with 14%
of users using the electronic meter with an ARD register with radio frequency, as shown in
Figure 18.

In general, the residential consumption group is the one that represents the highest
percentage of users, with 90% of the installed meters. The urban regions of Monay and El
Batán use electronic ARD registers with radio frequency, despite representing a minority of
users. However, the rural region of Valle significantly exceeds these regions in meter usage,
as shown in Figure 19. The electronic meter with ARD recording is the most widely used,
possibly due to its accuracy in measurement and ability to record the energy consumed
over time. The rural region of Valle also significantly exceeds these regions in meter usage.

Figure 18. Heatmap of the distribution of ARD electronic meters according to residential consumption
group.

Figure 19. Heatmap of the distribution of ARD electronic meters with radio frequency according to
residential consumption group.
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4.5.3. Analysis of the Industrial Consumption Group

The data provided show that electricity consumption in the industrial consumption
group is deficient across all regions, representing less than 1% in most cases, as shown in
Table 18.

Table 18. Distribution of meters according to industrial consumption group.

Location Electronic Electronic ARD Electronic ARD with Radio Frequency

El Batán 0 18 2
Monay 7 8 1
San Sebastian 7 2 0
Totoracocha 9 6 0
Valley 0 7 2
Total [%] 45% 45% 10%

This could be because the economic activities in these areas do not require significant
electrical energy consumption, or they could be using energy sources other than electricity,
but there is almost no visual representation, as indicated in Figure 20.

Figure 20. Distribution heatmap according to industrial consumption group.

The data provided may not accurately represent the total electricity consumption in
each region, as they are based on electronic meters from a random sample of 1000 users
per region. Fuzzy logic techniques are used to estimate actual consumption. Trends can
be identified by comparing the results of the three consumption groups. The residential
consumption groups have the highest number of meters in each category, with most
belonging to the electronic ARD category. The commercial consumption groups have
significant numbers of electronic ARD meters, while residential consumption groups have
similar numbers. The industrial consumption groups have lower numbers of meters than
the other groups.

4.6. Analysis Based on Type of Electricity Tariff

The analysis of the fuzzy logic results of electricity consumption in different regions
reveals that the kind of tariff may vary depending on the amount of energy consumed.
For commercial consumption, 2% of the electronic meters belonged to the LV commercial
tariff, while 4% belonged to the ARD register category. The MT commercial tariff with
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demand had a 1% presence in both electronic meters and ARD-registered electronic meters
in several regions, indicating significant commercial demand.

Residential consumption showed that 51% of users belonged to the BT residential
tariff group, followed by 27% and 7% of electronic meters with ARD registration and radio
frequency. This suggests that consumers may opt for more advanced electronic meters for
residential use.

In the residential LV tariff for the PEC program, only 3% of consumers had electronic
ARD meters, while only 2% had electronic meters, and 1% had electronic meters with ARD
and radio frequency. This suggests that consumers in the PEC program are less willing to
use advanced electronic meters.

In summary, the majority of residential consumers would opt for advanced electronic
meters, while industrial companies would use only 1% of ARD electronic meters in the BT
industrial artisanal tariff. A more generalized approach is needed to identify patterns and
trends in tariff behavior in the region and design appropriate project planning strategies
for electricity metering systems in different sectors.

5. Conclusions

In conclusion, after performing the corresponding analysis and research, obtaining
significant patterns and relevant relationships from a conglomerate of data is of great
importance in the technological analysis of the metering system of an energy distribu-
tion and commercialization utility company. Using the fuzzy logic methodology, it was
determined that the change in technology of the metering system could be considered
for medium- or long-term planning. The sample analysis was carried out for 5000 users,
where more than 60% were deemed suitable for the changeover to the electronic meter with
Active, Reactive, and Demand Register (ARD), and only 36% would continue using the
conventional electronic meter. At present, 98% of these metering systems are electronic
meters, and the remaining 2% belong to the electromechanical category.

Two-phase connections represented most of the sample population, comprising 87%
of the sample.

Finally, based on the data provided, based on a logical and coherent inference, the
highest strata (B, C, and A) were found in the regions of El Batán and San Sebastián,
which are considered more affluent areas. These regions have the highest residential and
commercial rates, indicating higher electricity consumption. In addition, the industrial tariff
was also higher in El Batán, suggesting that there is a significant presence of companies
and businesses in this area. Therefore, these regions contribute more to the overall revenue
of the electric utility companies, and more technological changes are represented in these
regions using the fuzzy logic methodology.

The rural region of Valle showed significant growth in population and energy con-
sumption. According to the fuzzy logic methodology, no variable is required, whether it
represents its consumption group, the type of tariff, or conventional electronic meters. As a
result, electronic meters with active, reactive, and ARD demand registers are considered
ideal for this rural region.
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ANN Artificial neural network
SVM Support vector machine
OPF Optimum path forest
AUC Area under the curve
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