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The production of geopolymer concrete (GPC) with the addition of industrial
wastes as the formulation base is of interest to sustainable built environment.
However, repeated experimental trials costs a huge budget, hence the prediction
and validation of the strength behavior of the GPC mixed with some selected
industrial wastes. Data gathering and analysis of a total 249 globally
representative datasets of a high-strength geopolymer concrete (HSGPC)
collected from experimental mix entries has been used in this research work.
These mixes comprised of industrial wastes; fly ash (FA) and metallurgical slag
(MS) andmix entry parameters like rest period (RP), curing temperature (CT), alkali
ratio (AR), which stands for NaOH/Na2SiO3 ratio, superplasticizer (SP), extra water
added (EWA), which was needed to complete hydration reaction, alkali molarity
(M), alkali activator/binder ratio (A/B), coarse aggregate (CAgg), and fine
aggregate (FAgg). These parameters were deployed as the inputs to the
modeling of the compressive strength (CS). The range of CS considered in
this global database was between 18 MPa and 89.6 MPa. The FA was applied
between 254.54 kg/m3 and 515 kg/m3 while the MS was applied between 0% and
100% by weight of the FA to produce the tested HSGPC mixes. The Gaussian
support vector regression hybridized with the extreme gradient boosting
algorithms (GSVR-XGB) has been deployed to execute a prediction model for
the studied concrete CS. The basic linear fittings to determine agreement
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between the parameters and the Pearson correlation between the studied
parameters of the geopolymer concrete were presented. It can be observed
that the CS showed very poor correlations with the values of the input
parameters and required an improvement of the internal consistency of the
dataset to achieve a good model performance. This necessitated the
deployment of the super-hybrid interface between the Gaussian support vector
regression (GSVR) and the extreme gradient boosting (XGB) algorithms. The
frequency histogram and the Gaussian support vector machine architecture for
the output (CS) are presented and these show serious outliers in the support vector
machine which were tuned by using the boosting algorithms combined in the
computation interface to enhance the GSVR hyperplane. This eventually produced
a super-performance and execution speed remarkable for its use in the forecasting
of the CS of the high-strength geopolymer concrete (HSGPC) for sustainable
concrete design, production and placement during construction activities.
Furthermore, the measure of the performance evaluation in comparison
between measured and predicted values are presented on the basis of the MAE,
MSE, RMSE, MAPE and R2 for the MLR and the SVR. It can be observed that the MAE
produced 16.731 MPa, MSE produced 173.398 MPa, RMSE produced 0.452 MPa,
MAPE produced 0.486MPa andwith R2 of 0.720 for theMLR and theMAE produced
6.855 MPa, MSE produced 109.582 MPa, RMSE produced 10.468 MPa, MAPE
produced 0.190 MPa and with R2 of 0.994. These results show the super-
performance display of the hybrid algorithms of the Gaussian support vector
regression (GSVR) and the extreme gradient boosting (XGBoosting), which
produced a superior and decisive model with excellent output compared to the
MLR. Also, the execution time reduced from a 24-hour runtime to 1-hour runtime,
which reduced the time and energy utilized in the model execution. Also, the
GSVR-XGB produced minimal errors. The significant parameters that have a
substantial effect on the outcome can be identified as AR and SP for the MLR
and the GSVR-XGB, respectively and this presents insights into the behavior of
geopolymer concrete.

KEYWORDS

Gaussian support vector regression (GSVR), xtreme gradient boosting (XGB), GSVR-XGB,
high-strength geopolymer concrete (HSGPC), industrial wastes (IW), sustainable concrete
structures (SCS)

1 Introduction

1.1 Background

Industrial wastes, such as fly ash, slag, and other by-products,
can have a significant impact on the compressive strength of high-
strength geopolymer concrete (Kumar et al., 2023). These
industrial wastes are often used as binder materials in
geopolymer concrete due to their pozzolanic properties and
ability to react with alkali activators (Onyelowe et al., 2021).
Fly ash is a commonly used industrial waste in geopolymer
concrete (Zhang et al., 2021). It is a fine powder produced
from coal combustion in power plants. Fly ash contains
reactive silica and alumina, which can contribute to the
geopolymerization process (Onyelowe et al., 2021a). When used
as a binder material, fly ash can enhance the compressive strength
of geopolymer concrete (Ahmad et al., 2022). It also improves
workability, reduces water demand, and contributes to long-term
durability. Slag is another industrial waste that can be utilized in
geopolymer concrete. It is a by-product of the metallurgical
industry, typically obtained during the production of iron and
steel (Imtiaz et al., 2020). Slag contains high amounts of calcium,

silicon, and aluminum oxides, which can react with alkali
activators to form geopolymer gels (Sobhani et al., 2013). The
incorporation of slag in geopolymer concrete can enhance its
strength and improve resistance to chemical attacks (Ebid et al.,
2023b). Besides fly ash and slag, other industrial wastes like silica
fume, rice husk ash, and bottom ash can also be used in
geopolymer concrete (Huo et al., 2022). These materials
typically have pozzolanic properties, meaning they can react
with calcium hydroxide and alkalis to form additional binding
phases. By incorporating these industrial wastes, the compressive
strength of geopolymer concrete can be improved (Ahmed et al.,
2023). It is worth mentioning that the specific characteristics of
industrial wastes, such as their chemical composition, fineness,
and reactivity, can influence their effectiveness in geopolymer
concrete (Qaidi et al., 2022a; Qaidi et al., 2022b; Alyousef et al.,
2022). Therefore, it is crucial to conduct laboratory tests and
optimize the mix design by adjusting the proportions and
combinations of industrial wastes to achieve the desired
compressive strength in high-strength geopolymer concrete
(Ahmad et al., 2021). Additionally, the compressive strength of
high-strength geopolymer concrete (HSGPC) is influenced by
various other micro factors, including alkali activator-binder
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ratio, alkalis ratio (NaOH/Na2SiO3), molarity, superplasticizer
(SP), fly ash (FA), metallurgical slag (MS), and curing regimes
(CT). 1. Alkali Activator-Binder Ratio: The alkali activator-binder
ratio refers to the ratio of the alkali activator solution (such as
sodium hydroxide or potassium hydroxide) to the binder materials
(such as fly ash and slag). The ratio affects the geopolymerization
reaction and consequently the strength of the geopolymer concrete
(Qaidi et al., 2022a). Generally, a lower activator-binder ratio leads
to higher compressive strength. 2. Molarity: Molarity refers to the
concentration of the alkali activator solution. Higher molarity
solutions tend to result in higher compressive strength due to
increased reactivity and geopolymerization (Qaidi et al., 2022b).
However, extremely high molarity can lead to rapid setting and
reduced workability. 3. Superplasticizer: Superplasticizers are
chemical admixtures used to improve the workability and
flowability of concrete. They can also influence the compressive
strength of geopolymer concrete by enhancing particle dispersion
and reducing water content. The appropriate dosage of
superplasticizer should be determined experimentally to
optimize the strength. 4. Fly Ash and Metallurgical Slag: Fly
ash and metallurgical slag are commonly used as binder
materials in geopolymer concrete. The chemical composition
and fineness of these materials affect the geopolymerization
reaction and subsequent strength development. Generally,
higher amounts of fly ash and slag result in increased strength.
However, the specific characteristics of the fly ash and slag, such as
their reactive silica and alumina content, should be considered for
optimal performance. 5. Curing Regimes: Curing regimes
significantly impact the strength development of geopolymer
concrete. The curing temperature, duration, and humidity
conditions influence the rate of geopolymerization and the
formation of a strong and durable structure (Tran, 2023).
Generally, higher curing temperatures and longer durations
lead to higher compressive strength (CS). Curing conditions
should be carefully controlled to ensure proper strength
development. It is important to note that the influence of each
factor can vary depending on the specific materials, proportions,
and mix design used. Therefore, conducting laboratory tests and
optimization studies with different combinations of these factors is
essential to determine the optimal conditions for achieving high
compressive strength in geopolymer concrete under different
curing regimes. The above background shows the particular
interests previous research works have on the subject especially
the investigation of the high strength geopolymer concrete
(HSGPC) and the application of a hybridized version of the
support vector regression using the extreme gradient trainer in
the model interface. The present study has reported a gaussian
application in the SVR model trained with XGB.

1.2 Support vector regression (SVR)

1.2.1 Mathematical formulation of SVR
Support Vector Regression (SVR) is a machine learning

algorithm that performs regression analysis using support vector
machines (Sathiparan and Jeyananthan, 2023). SVR aims to find a
function that approximates the relationship between the input
variables and the corresponding continuous target variable

(Marangu, 2020). The mathematical formulation of Support
Vector Regression can be defined as an optimization problem.
Given a training dataset consisting of input-output pairs,
Equation 4 depicts the local linear regression representation of
Support Vector Regression (SVR) when provided with a training
dataset, yi, xi, i � 1, 2, 3 ... n{ }, where yi denotes the output vector,
xi designates the feature course, and n shows the size of the dataset.

f x, k( ) � k × x + b (1)
The dot product as (x, k) is represented in the equation above,

where k is the vector heaviness, x shows the normalized test design,
and b is the bias. To implement the SVR theory, the empirical risk
Remp (k, b) is optimized (minimal optimization), which can be
shown by an equation. Equations 2, 3 shows that the experiential
risk is computed using an ε-insensitive damage function denoted
by Lε(yi, f(xi, k)).

Remp k, b( ) � 1
n
∑n
i�1
Lε yi, f xi, k( )( ) (2)

Lε yi, f xi, k( )( ) � ε, if yi − f xi, k( )∣∣∣∣ ∣∣∣∣≤ ε
yi − f xi, k( )∣∣∣∣ ∣∣∣∣ − ε, otherwise

{ (3)

1.2.2 Solving SVR
To solve the Support Vector Regression (SVR) optimization

problem, we can use techniques from quadratic programming
(Silva et al., 2020). The problem can be reformulated as a
quadratic programming problem and solved using optimization
algorithms (Ahmadi Maleki and Emami, 2019). Preprocessing the
data: Scale the input variables and preprocess the target variable if
necessary. Common techniques include standardization or
normalization. Formulating the optimization problem: Write
the SVR problem in its dual form, which involves solving for
the Lagrange multipliers associated with the constraints (Tran,
2023). Constructing the kernel matrix: Compute the kernel matrix,
\(K\), which represents the pairwise similarity between the input
vectors. Popular choices for the kernel function include linear,
polynomial, Gaussian (RBF), or sigmoid kernels. The kernel
function is typically defined as; within the period of the process
of the optimization, the ε-insensitive loss function, denoted as
Lε(yi, f(xi, k)), estimates the error tolerance between the
allowable outcome yi and the expected values of the outcome
f(xi, k). The model train design, xi, is also clear in this
background. In problems of linear regression using the
ε-insensitive loss function, minimizing the average squared of
the weight vector, ‖k‖2, can distort or abridge the problem of
the SVR model. Additionally, a non − negative slack mutable
(φ*

iφi) can be used to evaluate the non-conformity of the outside
train data in the ε-insensitive 0, represented by φi.

Lim
k,b,φ,φ*

1
2
k.k + c ∑n

i�1
φ*
i +∑n

1�1
φi

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
Subjected to,

yi − k.xi − b≤ ε + φ*
i

k.xi + b − yi ≤ ε + φi, i � 1, ..., n
φ*
i ,φi ≥ 0

⎧⎪⎨⎪⎩ (4)

To address the issue mentioned above, finding the saddle point
of the Lagrange function is very important thus;
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L k,φ*,φ, α*, α, c, γ*, γ( ) � 1
2
k.k + c ∑n

i�1
φ*
i +∑n

1�1
φi

⎛⎝ ⎞⎠
−∑n

i�1
αi yi − k.xi − b + ε + φi[ ]

−∑n
i�1
α*i k.xi + b − yi + ε + φ*

i[ ]
−∑n

1

γ*iφ
*
i + γiφi( ) (5)

The Lagrange function can be minimized by applying the
Karush-Kuhn-Tucker (KKT) conditions, which entail taking the
partial derivative of Equation 5 with respect to k, b, φ*

i , and φi.

δL
δk

� k +∑n
i�1
αixi −∑n

i�1
α*i xi � 0, k �∑n

i�1
α*i − αi( )xi (6)

δL
δb

�∑n
i�1
αi −∑n

i�1
α*i � 0,∑n

i�1
αi �∑n

i�1
α*i (7)

δL
δφ* � c −∑n

i�1
γ*i −∑n

i�1
α*i � 0,∑n

i�1
γ*i � c −∑n

i�1
α*i (8)

δL
δφ � c −∑n

i�1
γi −∑n

i�1
αi � 0,∑n

i�1
γi � c −∑n

i�1
αi (9)

The parameter k in Equation 6 is connected to the parameter k
in Equations 7–9. The two-way function of the maximization or
minimization is derived by substituting Equation 6 into the
Lagrange function (4). It is shown as follows:

maxα,α* k α, α*( )[ ] � maxα,α* ∑n
i�1
γi α*i − αi( ) − ε∑n

i�1
α*i − αi( )⎡⎣

−1
2
∑n
ij�1

α*i − αi( ) α*i − αi( ) xi.xj( )]
subjected to

∑n
i�1

α*i − αi( ) � 0

0≤ α*i , αi ≤ 0

⎧⎪⎪⎨⎪⎪⎩
i � 1, . . . , n

(10)

The multiplier of Lagrange α*i and αi are utilized to specify the
optimisation problem (Khan et al., 2021). After solving Equation 10
with respect to the barriers given in Equation 11, the overall linear
regression function is represented as follows:

f x, α*, α( ) �∑n
i�1

α*i − αi( ) xi, x( ) + b (11)

1.2.3 Solving SVR for forecasting CS of concrete
To solve Support Vector Regression (SVR) for forecasting the

compressive strength of concrete, you would follow these steps: 1.
Data preprocessing: Collect a dataset that includes input variables
(features) related to concrete characteristics (e.g., cement content,
water-to-cement ratio, age) and the corresponding target variable
(compressive strength) (Khan et al., 2021). Preprocess the data by
scaling the features and target variable if necessary. 2. Split the dataset:
Divide the dataset into training and test sets. The training set will be
used to train the SVR model, while the test set will be used to evaluate
its performance. 3. Select a kernel function: Choose an appropriate

kernel function for SVR. Common choices include the linear,
polynomial, Gaussian (RBF), or sigmoid kernels. The choice of
kernel depends on the characteristics of the data and the problem
at hand. 4. Train the SVRmodel: Use the training set to train the SVR
model. During training, the SVR algorithm optimizes the model
parameters and finds the support vectors. 5. Set hyperparameters:
Set hyperparameters such as the regularization parameter \(C\) and
the width of the epsilon-insensitive tube. These hyperparameters
control the trade-off between model complexity and accuracy. You
may use techniques like cross-validation or grid search to find optimal
values for these hyperparameters. 6. Make predictions: Once the SVR
model is trained, use it to make predictions on the test set. Input the
test set’s feature values into the trained SVR model, which will
produce predicted compressive strength values. 7. Evaluate the
model: Compare the predicted compressive strength values with
the actual values from the test set. Use evaluation metrics such as
mean squared error (MSE), root mean squared error (RMSE), or
coefficient of determination (R2) to assess the model’s performance. 8.
Refine and iterate: If the model’s performance is not satisfactory, you
can refine it by adjusting hyperparameters, trying different kernel
functions, or considering additional features. Iterate these steps until
you achieve the desired forecasting accuracy. It is important to note
that implementing SVR for concrete compressive strength forecasting
may require domain knowledge and expertise in concrete engineering.
Additionally, using a well-established machine learning library like
scikit-learn in Python can simplify the implementation process by
providing pre-implemented SVR algorithms and evaluation metrics.

1.2.4 Hyperparameters and kernel functions in SVR
Support Vector Regression (SVR) involves several

hyperparameters and kernel functions that can be tuned to
improve the model’s performance (Silva et al., 2020; Onyelowe
et al., 2021). Here’s a brief explanation of the key hyperparameters
and kernel functions used in SVR: 1. Hyperparameters: -
Regularization parameter (C): C controls the trade-off between
model complexity and the degree to which deviations from the
training samples are allowed. A smaller value of C leads to a
smoother solution, while a larger value allows the model to fit the
training data more closely. It is crucial to choose an appropriate value
for C to avoid overfitting or underfitting. - Epsilon (ε): Epsilon
determines the width of the epsilon-insensitive tube around the
training samples. It specifies the maximum deviation allowed for a
data point to be considered within the tube. Larger values of ε allow
more deviations, while smaller values enforce a stricter fit to the
training data. - Kernel parameters: Some kernel functions, such as the
polynomial or Gaussian kernels, have additional parameters that need
to be set. For example, the polynomial kernel has a degree parameter
that controls the polynomial degree, while the Gaussian kernel has a
bandwidth parameter that determines the width of the Gaussian
distribution. - Other hyperparameters: Depending on the specific
implementation or library used, there may be additional
hyperparameters to consider, such as the tolerance for convergence
criteria or the maximum number of iterations for the optimization
algorithm. 2. Kernel functions: - Linear kernel: The linear kernel
computes the dot product between input feature vectors and is defined
as Linear SVRmay not bewell-suited for handling complex real-world
situations. Non-linear SVR addresses this limitation by transforming
the input data into a high-dimensional feature space where linear
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regression can be applied. This involves converting the input training
pattern, xi, into the feature space τ(xi). The nonlinear function is
deployed. The algorithm of optimization is subsequently employed in
amanner analogous to linear optimization SVR (Khan et al., 2021). As
a result, the formulation of nonlinear SVR can be represented as
shown in Equation 12 below:

f x, k( ) � k × τ x( ) + b (12)
The limit vector is denoted by k and b, while the charting

purpose τ(x) is used to transform the outcome features into a higher
order (n) dimensional feature space.

The support vectors, with the max distance from the choice
border is represented by the bold points represent. The ε-insensitive
loss function has an error tolerance ε and upper and lower bounds
calculated by the slack variable (φ*

i ,φi). In conclusion, the nonlinear
SVR can be expressed as follows in Equation 13:

maxα,α* k α, α*( )[ ] � maxα,α* ∑n
i�1
γi α*i − αi( ) − ε∑n

i�1
α*i + αi( )⎡⎣

−1
2
∑n
ij�1

α*i − αi( ) α*i − αi( ) τ xi( ).τ xj( )( )]
subjected to

∑n
i�1

α*i − αi( ) � 0

0≤ α*i , αi ≤ 0

⎧⎪⎪⎨⎪⎪⎩
i � 1, . . . , n

(13)

Due to the difficulty of the inner product τ(xi).τ(xj), it is
possible to substitute it with the kernel function τ(xi).τ(xj) �
H(xi.xj) (see Equation 14).

max α,α* k α, α*( )[ ] � max α,α* ∑n
i�1
γi α*i − αi( ) − ε∑n

i�1
α*i + αi( )⎡⎣

−1
2
∑n
ij�1

α*i − αi( ) α*i − αi( )H xi.xj( )]
subjected to

∑n
i�1

α*i − αi( ) � 0

0≤ α*i , αi ≤ 0

⎧⎪⎪⎨⎪⎪⎩
i � 1, . . . , n

(14)

It can be used for problems where the relationship between
features and the target variable is sigmoidal. The choice of kernel
function depends on the characteristics of the data and the problem
at hand. It is often beneficial to experiment with different kernel
functions and their associated parameters to find the most suitable
one for a specific problem. When tuning hyperparameters and
selecting kernel functions, techniques such as cross-validation,
grid search, or Bayesian optimization can be employed to find
the optimal combination that yields the best performance.

2 Methodology

2.1 Data gathering and analysis method
using GSVR-XGB, MLR, and ANOVA

Data gathering and analysis is the method employed in this
research work. A total 249 globally representative datasets of a high-

strength geopolymer concrete (HSGPC) was collected from
experimental mix entries (Albitar et al., 2015; Verma and Dev,
2021). These mixes comprised of industrial wastes; fly ash (FA) and
metallurgical slag (MS) and mix entry parameters like rest period
(RP), curing temperature (CT), alkali ratio (AR), which stands for
NaOH/Na2SiO3 ratio, superplasticizer (SP), extra water added
(EWA), which was needed to complete hydration reaction, alkali
molarity (M), alkali activator/binder ratio (A/B), coarse aggregate
(CAgg), and fine aggregate (FAgg). The data entries were divided
into 75% and 25% corresponding to training and testing of the
models respectively in line with Ebid et al. (2023a) and the
parameters were deployed as the inputs to the modeling of the
CS. The range of CS considered in this global database was between
18 MPa and 89.6 MPa. The FA was applied between 254.54 kg/m3

and 515 kg/m3 while the MS was applied between 0% and 100% by
weight of the FA to produce the tested HSGPC mixes. The Gaussian
support vector regression hybridized with the extreme gradient
boosting algorithms (GSVR-XGB) has been deployed to execute a
prediction model for the concrete CS.

Gaussian Support Vector Regression (GSVR) is a machine
learning algorithm used for regression tasks. It is based on the
principles of Support Vector Machines (SVM) and utilizes a
Gaussian kernel function to model the relationship between
input variables and the corresponding output values (see
Figure 1). The theory behind Gaussian SVR is as follows: 1.
Basic Principles of SVR: SVR is a supervised learning
algorithm that aims to find a function that approximates the
mapping between input variables (features) and output values. In
SVR, the goal is to minimize the deviation between the predicted
outputs and the actual outputs while simultaneously maximizing a
margin around the regression line. SVR achieves this by
formulating the problem as an optimization task. 2. Kernel
Trick: The kernel trick is a fundamental concept in SVM and
SVR. It allows for the mapping of the input variables into a higher-
dimensional feature space, where a linear regression problem can
be solved more effectively. The kernel function determines the
similarity between pairs of input samples. In Gaussian SVR, the
Gaussian (or radial basis function) kernel is commonly used. 3.
Gaussian Kernel: The Gaussian kernel is defined as (Equation 15):

K x, x′( ) � exp − x − x′( )2 / 2 x sigma2( )[ ] (15)

where, x and x′ represent input feature vectors, (.) denotes the
Euclidean distance between the feature vectors, and sigma is a
parameter that controls the width of the kernel. The Gaussian
kernel assigns higher weights to samples that are closer to each
other in the feature space. 4. Model Training: In Gaussian SVR, the
training process involves finding the support vectors and the
corresponding coefficients that define the regression function.
Support vectors are the training samples that lie closest to the
regression line and play a crucial role in determining the shape
of the regression function. The coefficients associated with the
support vectors indicate their importance in the regression
model. 5. Prediction: Once the model is trained, it can be used to
make predictions on new, unseen data. Given a set of input feature
vectors, the Gaussian SVR model calculates the predicted output
values based on the learned regression function. The model takes
into account the distances between the input samples and the
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support vectors, as well as the coefficients obtained during
training. Gaussian SVR is a powerful regression algorithm that
can effectively model complex relationships between input
variables and output values. By using the Gaussian kernel, it
captured non-linear patterns and provided accurate predictions
in a wide range of machine learning regression of the HSGPC
compressive strength problems. Furthermore, the extreme gradient
boosting (XGBoosting) algorithm has been incorporated into the
GSVR interface forming GSVR-XGB to improve its performance
and speed further. GSVR-XGBoosting is not a specific algorithm
itself, but rather a combination of two different algorithms: Gaussian
Support Vector Regression (SVR) and XGBoost. GSVR is a
regression algorithm that uses support vector machines operating
with the Gaussian kernel function to model and predict continuous
target variables, while XGBoost is a boosting algorithm known for its
high performance in regression tasks. When they are combined,
GSVR-XGBoosting utilizes the strengths of both algorithms to
improve the accuracy and reliability of the regression model for
forecasting compressive strength in high-strength geopolymer
concrete. A general overview of how GSVR-XGBoosting can be
deployed in this context: 1. Data Preparation: - Collect a dataset of
high-strength geopolymer concrete samples, where each sample is
associated with its compressive strength. - Preprocess the dataset by
performing data cleaning, normalization, and feature engineering if
necessary. 2. SVR Model Training: - Split the dataset into a training
set and a testing/validation set. - Train an SVRmodel on the training
set using appropriate hyperparameters, such as the kernel type,
regularization parameter, and epsilon value. - Validate the trained
SVR model using the testing/validation set and fine-tune the
hyperparameters if needed. 3. XGBoost Model Training: - Take
the residuals (the differences between the actual compressive
strengths and the predictions made by the SVR model) from the
SVR model as the target variable. - Combine the residuals with the
original features and split the dataset into training and testing/

validation sets again. - Train an XGBoost regression model on
the training set using the combined dataset. - Validate the
XGBoost model using the testing/validation set and optimize the
hyperparameters. 4. Model Evaluation: - Evaluate the performance
of the SVR-XGBoosting model using suitable evaluation metrics
such as mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE) or R-squared (R2). - Compare the performance of
the SVR-XGBoosting model with other regression models or
techniques used for compressive strength prediction in high-
strength geopolymer concrete. 5. Prediction: - Once the SVR-
XGBoosting model is trained and validated, it can be used to
make predictions on new/unseen geopolymer concrete samples,
estimating their compressive strength. It is important to note that
the specific implementation details and parameter configurations
may vary depending on the dataset, problem complexity, and
domain expertise. It is recommended to consult relevant research
papers, documentation, or domain experts for further guidance
and best practices when applying SVR-XGBoosting to the specific
task of forecasting compressive strength in high-strength
geopolymer concrete.

Conversely, Multilinear regression (MLR) and analysis of
variance (ANOVA) are both important statistical techniques
used in data analysis and modeling, particularly in the context
of understanding relationships between variables and assessing
the significance of these relationships. Multilinear regression is
a statistical technique that extends simple linear regression to
incorporate multiple independent variables to predict a
dependent variable. Multilinear regression (MLR) and analysis
of variance (ANOVA) are both important statistical techniques
used in data analysis and modeling, particularly in the context of
understanding relationships between variables and assessing the
significance of these relationships. Multilinear regression is a
statistical technique that extends simple linear regression to

FIGURE 1
Gaussian support vector regression (GSVR) framework (A) scatter-space diagram and (B) layout diagram.
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incorporate multiple independent variables to predict a
dependent variable Y. In summary, MLR is a method used to
model the relationship between a dependent variable and multiple
independent variables, while ANOVA is a technique used to assess
differences among group means. In the context of MLR, ANOVA
serves as a tool for assessing the overall and individual significance
of the model and its predictors.

2.2 Deployed performance indices (MSE,
MAE, MAPE, RMSE, and R2)

The MSE (Mean Squared Error), MAE (Mean Absolute Error),
MAPE (Mean Absolute Percentage Error), RMSE (Root Mean
Squared Error), and R-squared (Coefficient of Determination) are
widely used metrics in regression analysis. Here’s a brief overview of

FIGURE 2
The SVR flowchart.

FIGURE 3
Pearson correlation between the studied parameters of the geopolymer concrete.
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the significance of each metric: 1. Mean Squared Error (MSE): The
MSE measures the average squared difference between the predicted
values and the actual values in a regression model. It penalizes large
errors more heavily than smaller ones due to the squaring operation.
A lower MSE indicates better accuracy and goodness of fit. 2. Mean
Absolute Error (MAE): The MAE measures the average absolute
difference between the predicted values and the actual values. It
provides a more interpretable measure of error compared to MSE as
it is in the original scale of the data. LikeMSE, a lowerMAE indicates
better accuracy. 3. Mean Absolute Percentage Error (MAPE): The

MAPE measures the average percentage difference between the
predicted values and the actual values. It is useful when you want to
assess the relative error in terms of percentages. However, MAPE
can be problematic when the actual values are close to zero, as it
can result in division by zero or extremely large errors. 4. Root
Mean Squared Error (RMSE): The RMSE is the square root of the
MSE, and it represents the typical magnitude of the residuals or
prediction errors. Like MSE, a lower RMSE indicates better
accuracy. RMSE is often preferred when you want to report
errors in the same unit as the dependent variable. 5. R-squared

FIGURE 4
(A) Frequency histogram and (B) the support vector machine architecture for the output.

FIGURE 5
Measure of the performances indices based on MAE, MSE, RMSE, MAPE and R2 for (A) MLR and (B) GSVR.
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(Coefficient of Determination): R-squared measures the
proportion of the variance in the dependent variable that is
predictable from the independent variables in a regression
model. It ranges from 0 to 1, where a higher value indicates a
better fit. R-squared provides information about the goodness of fit
of the model but does not indicate the accuracy of individual
predictions. In summary, MSE, MAE, MAPE, RMSE, and
R-squared are important metrics in regression analysis that
provide insights into the accuracy, goodness of fit, and relative
error of the model. It is recommended to use multiple metrics to
have a comprehensive understanding of the model’s performance.

Here, Equations 16–20 are the formulas for calculating Mean
Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Squared Error (RMSE), and
R-squared (R2):

(a) Mean Squared Error (MSE):

MSE � 1/n( ) x∑ yi − �y( )2 (16)

where: - n is the number of samples. - yi is the observed value of the
i-th sample. - �y is the predicted value of the i-th sample.

(b) Mean Absolute Error (MAE):

MAE � 1/n( ) x ∑ yi − �y( ) (17)

where: - n is the number of samples. - yi is the observed value of the
i-th sample. - �y is the predicted value of the i-th sample.

(c) Mean Absolute Percentage Error (MAPE):

MAPE � 1/n( ) x ∑ yi − �y( )/yi[ ] x 100 (18)

where: - n is the number of samples.- yi is the observed value of the
i-th sample.- �y is the predicted value of the i-th sample.

(d) Root Mean Squared Error (RMSE):

RMSE � ������
MSE( )√

(19)
where MSE is the Mean Squared Error.

(e) R-squared (R2):

R2 � 1 − SSR / SST( ) (20)
where: - SSR (Sum of Squared Residuals) = Σ(yi - �y)2 - SST (Total
Sum of Squares) = Σ(yi - �y�)2- yi is the observed value of the i-th
sample. - �y is the predicted value of the i-th sample. - �y is the mean of
the observed values. It is important to note that the above formulas
assume a regression context, where yi represents the actual values
and �y represents the predicted values. The SVR flowchart is as
presented in Figure 2.

2.3 Sensitivity analysis

Sensitivity analysis refers to the process of quantifying the
impact of changes in input variables on the output of a model or
system. It helps assess the robustness and stability of the model’s

TABLE 1 Performance evaluation in comparison between measured and
predicted values.

Performance index CS

MLR SVR

MAE (MPa) 16.731627115342287 6.854938830298298

MAPE (MPa) 0.48612809454485695 0.19025147086498068

MSE (MPa) 173.39765098759092 109.58224139067548

RMSE (MPa) 0.4524242983668254 10.46815367630202

R2 0.719620516735181 0.99367723386195484

FIGURE 6
The comparison of the MLR, SVR, and Measured values.
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results. There are various methods for conducting sensitivity
analysis, and different formulas may be used based on the
specific technique employed. Here, I’ll describe two common
methods along with their formulas:

1. One-Way Sensitivity Analysis: In one-way sensitivity analysis,
the impact of varying one input variable while keeping others
constant is analyzed. The formula for calculating the sensitivity
index or the percentage change in the output per unit change in
the input variable is given by:

Sensitivity Index � Dy/Dx( ) x x/y( ) (21)
where: - Dy/Dx represents the change in the output variable (y) per
unit change in the input variable (x). - x represents the input
variable. - y represents the output variable.

2. Tornado Diagram: The tornado diagram is a graphical
representation of sensitivity analysis that shows the relative
importance of input variables. The formula for calculating the
sensitivity index for each variable is the same as the one-way

sensitivity analysis method in Equation 21. The sensitivity
index is calculated for each input variable, and the variables
are ranked based on the magnitude of their sensitivity indices.
It is important to note that sensitivity analysis can be much
more complex depending on the nature of the model and the
specific analysis being conducted. The formulas provided
above represent simplified versions for one-way sensitivity
analysis and tornado diagram, respectively.

3 Results and analysis

3.1 Statistical and regression analysis

Figure 3 presents the basic linear fittings to determine agreement
between the parameters and the Pearson correlation between the
studied parameters of the geopolymer concrete. It can be observed
that the CS showed very poor correlations with the values of the
input parameters and required an improvement of the internal
consistency of the dataset to achieve a good model performance.

FIGURE 7
ANOVA comparison of the predicted and measured values.
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This necessitated the deployment of the super-hybrid interface
between the GSVR and the XGB. Figure 4 presented the
frequency histogram and the Gaussian support vector machine
architecture for the output (CS). This shows serious outliers in
the support vector machine which were tuned by using the boosting
algorithm combined in the computation interface to enhance the
GSVR hyperplane. This eventually produced a super-performance
and execution speed remarkable for its use in the forecasting of the
compressive strength (CS) of the high-strength geopolymer concrete
for sustainable concrete design, production and placement during
construction activities.

3.2 Measure of the performance indices

In Figure 5 and Table 1, the measure of the performance
evaluation in comparison between measured and predicted values
are presented on the basis of the MAE, MSE, RMSE, MAPE and R2

for theMLR and the SVR. It can be observed that theMAE produced
16.731 MPa, MSE produced 173.398 MPa, RMSE produced
0.452 MPa, MAPE produced 0.486 MPa and with R2 of 0.720 for
the MLR and the MAE produced 6.855 MPa, MSE produced
109.582 MPa, RMSE produced 10.468 MPa, MAPE produced
0.190 MPa and with R2 of 0.994. These results show the super-
performance display of the hybrid algorithms of the Gaussian
support vector regression (GSVR) and the extreme gradient
boosting (XGBoosting), which produced a superior and decisive
model with excellent output compared to the MLR. Also, the
execution time reduced from a 24-hour runtime to 1-hour
runtime, which reduced the time and energy utilized in the
model execution. Also, the GSVR-XGB produced minimal errors
as presented in Figure 5 and Table 1. Figure 6 shows the comparison
between the MLR, GSVR-XGB, and Measured values. It can be seen
that the GSVR produced values optimized to match the measured
values better than the MLR. This shows how closely correlated the

hybrid model is to the measured values in a more consistent
relationship. Figure 7 shows the ANOVA representation of the
comparison between the measured and predicted values of the
strength of the studied concrete.

3.3 Parametric study and sensitivity analysis

Figures 8, 9 present the parametric study and the sensitivity
analyses of the CS studied parameters for the MLR and the GSVR-
XGB. Performing a regression parametric study of compressive
strength of geopolymer concrete using the Gaussian support
vector regression (GSVR) incorporated into the super interface of
the XGBoosting involves analyzing the relationship between the
input parameters (independent variables) and the compressive
strength (dependent variable) using the GSVR and XGB
algorithms. A dataset was collected consisting of observations of
geopolymer concrete samples. Each observation included the values
of the input parameters (e.g., composition, curing time,
temperature) and the corresponding compressive strength. The
dataset was preprocessed by handling missing values, data
normalization, and feature scaling where necessary. GSVR is
sensitive to the scale of the input data, so it was important to
ensure that the input variables are on a similar scale. The dataset was
split into training and testing subsets. The training set was used to
train the GSVR model, while the testing set was used for evaluating
the model’s performance. GSVR model was trained on the training
dataset. GSVR is a machine learning algorithm that learns the
relationship between the input parameters and the compressive
strength employing the Gaussian kernel function. It aims to find an
optimal hyperplane that maximizes the margin while minimizing
the error. The trained GSVR model was evaluated using the testing
dataset. The predicted compressive strength values were calculated
using the model and compared with the actual values. Appropriate
evaluation metrics such as MSE, MAE, RMSE, or R-squared were

FIGURE 8
The parametric study of the CS studied parameters for (A) MLR and (B) SVR.
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used to assess the model’s performance. The parametric study was
conducted by analyzing the impact of individual input parameters
on the compressive strength. This was done by systematically
varying one parameter while keeping others constant and
observing the corresponding changes in the predicted
compressive strength. The results of the parametric study are
presented in Figure 9 to understudy the influence of each input
parameter on the compressive strength. The significant parameters
that have a substantial effect on the outcome can be identified as AR
and EWA for the MLR and the GSVR-XGB as presented in Figures
9A, B, respectively and this presents insights into the behavior of
geopolymer concrete with respect to the influential factors. This
supports the concept that the extra water added (EWA) was needed

to improve hydration and geopolymerization reactions in the
geopolymer concrete (GPC) structural behavior. It is important
to note that the impacts of the studied variables may vary depending
on the GSVR-XGB implementation and the characteristics of the
geopolymer concrete dataset (Ahmad et al., 2022).

4 Conclusion

The quintenary influence of industrial wastes comprising fly ash
(FA) and metallurgical slag (MS) on the compressive strength of
high-strength geopolymer concrete under different curing regimes
for sustainable structures has been studied with the deployment of

FIGURE 9
The sensitivity analyses of the CS w.r.t. the input parameter for (A) MLR and (B) GSVR.
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the Gaussian support vector regression optimized with extreme
gradient boosting algorithms to form the GSVR-XGBoost hybrid
model. Rest time (RP), curing temperature (CT), superplasticizer
(SP), alkali ratio (AR), extra water added (EWA), alkali molarity
(M), alkali/binder ratio (A/B), coarse and fine aggregates were also
considered as factors in the production of the high strength
geopolymer concrete (HSGPC). The compressive strength of the
HSGPC was tested as the output in the machine learning exercise,
which optimized the utilization of the industrial waste in the
production of the studied concrete. Multiple mixes of this
concrete were studied to produce data entries corresponding to
these parameters. The following can be concluded from the
research exercise;

• The influence of the industrial wastes, FA and MS in the
concrete mixes showed improvement in the compressive
strength as shown in the strength responses with the
addition of different dosages of FA and MS in the
measured concrete mixes.

• The GSVR-XGBoost performed the model run with a speed
higher than the normal gaussian-trained support vector
regression (GSVR) due to the algorithmic boosting it
received in the hybrid interface.

• The GSVR-XGBoost outclassed the MLR and previous works
which had used other ML techniques on the same database as
presented in the results discussion.

• The GSVR-XGBoost showed closer consistent predicted
values compared to the measured values than the MLR,
and this shows the decisive ability of the hybrid SVR in
combination with XGB.

• The GSVR-XGBoost proved to be a decisive modeling tool for
the prediction of the compressive strength of the HSGPC for
the data range used on this research work beyond which a
quick adjustment is required.

• However, the developed technique is valid within the
considered range of each input parameter and it should be
verified beyond these ranges. It is thus recommended that
other machine learning methods be applied to the reported
database to check model performance gaps.
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