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Resumen

La cuantificación de incertidumbre involucra diversos métodos y técnicas com-

putacionales para abordar las brechas inherentes en la modelización matemáti-

ca de fenómenos reales. Estos métodos son especialmente útiles para modelar

procesos biológicos, f́ısicos y sociales que contienen elementos que no pueden

ser determinados con precisión. Por ejemplo, la tasa de transmisión de una

enfermedad infecciosa o la tasa de crecimiento de un tumor están influidas por

factores genéticos, ambientales o de comportamiento que no se comprenden

completamente, introduciendo incertidumbres que afectan los resultados.

Esta tesis doctoral tiene como objetivo desarrollar y ampliar técnicas anaĺıticas

y computacionales para cuantificar la incertidumbre en sistemas de ecuaciones

diferenciales aleatorias utilizando la función de densidad de probabilidad del

sistema. Empleando el teorema de transformación de variables aleatorias y la

ecuación de Liouville (continuidad), abordamos problemas de cuantificación

de incertidumbre hacia adelante e inversos en sistemas aleatorios con datos

reales. También diseñamos un método computacional para estimar eficiente-

mente la densidad de probabilidad de un sistema resolviendo la ecuación de

Liouville mediante aceleración de GPU. Finalmente, examinamos la evolución

de la incertidumbre en una clase de sistemas forzados por impulsos, proporcio-
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nando nuevos conocimientos sobre la dinámica de sus funciones de densidad

de probabilidad.
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Resum

La quantificació de la incertesa implica diversos mètodes i tècniques computa-

cionals per a abordar les llacunes inherents en la modelització matemàtica

de fenòmens del món real. Aquests mètodes són especialment valuosos per a

modelar processos biològics, f́ısics i socials que contenen elements que no poden

ser determinats amb precisió. Per exemple, la taxa de transmissió d’una malal-

tia infecciosa o la taxa de creixement d’un tumor estan inflüıdes per factors

genètics, ambientals o de comportament que no es comprenen completament,

introduint incerteses que afecten els resultats.

Aquesta tesi doctoral té com a objectiu desenvolupar i ampliar tècniques

anaĺıtiques i computacionals per a quantificar la incertesa en sistemes d’equa-

cions diferencials aleatòries utilitzant la funció de densitat de probabilitat

del sistema. Mitjançant el teorema de transformació de variables aleatòries i

l’equació de Liouville (continüıtat), abordem problemes de quantificació de la

incertesa cap avant i inversos en sistemes aleatoris amb dades reals. També

dissenyem un mètode computacional per a estimar eficientment la densitat

de probabilitat d’un sistema resolent l’equació de Liouville amb acceleració de

GPU. Finalment, examinem l’evolució de la incertesa en una classe de sistemes

forçats per impulsos, proporcionant noves perspectives sobre la dinàmica de

les seues funcions de densitat de probabilitat.

xi





Abstract

Uncertainty quantification involves various methods and computational tech-

niques to address inherent gaps in the mathematical modeling of real-world

phenomena. These methods are particularly valuable for modeling biological,

physical, and social processes that contain elements that cannot be precisely

determined. For example, the transmission rate of an infectious disease or the

growth rate of a tumor is influenced by genetic, environmental, or behavioral

factors that are not fully understood, introducing uncertainties that impact

outcomes.

This PhD thesis aims to develop and extend analytical and computational

techniques for quantifying uncertainty in random differential equation sys-

tems using a system’s probability density function. By employing the random

variable transformation theorem and the Liouville (continuity) equation, we

tackle both forward and inverse uncertainty quantification problems in ran-

dom systems with real-world data. We also design a computational method

to efficiently estimate a system’s probability density by solving the Liouville

equation with GPU acceleration. Finally, we examine uncertainty evolution

in a class of impulse-forced systems, providing new insights into the dynamics

of their probability density functions.
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Chapter 1

Introduction

“The noblest pleasure is the joy of understanding”. This celebrated quote

is attributed to Leonardo da Vinci and is a shared experience among most

scientists. Understanding the inner workings of the world around us is an

everlasting source of intellectual pleasure, curiosity, and imagination. It is the

fuel that has powered most scientific endeavors, resulting in discoveries and

inventions that have greatly influenced our world.

Mathematical models have long been the main tool used to tackle the deep

questions that arise in science and engineering. One of the most powerful tools

developed in this regard is continuous-time dynamical systems, specifically dif-

ferential equation systems. Complex phenomena such as cloud evolution in

atmospheric physics, population growth in ecology, neuron activation in biol-

ogy, or even engineering systems such as spring-damper systems in a vehicle,

are non-stationary. Differential equation systems describe a system’s rate of

change, allowing us to understand and predict its evolution. Most phenomena

can be mathematically described as a function evolving smoothly with respect

to time, which solves the corresponding differential equation.
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Our understanding of nature is also non-deterministic. Dynamical systems

consist of an input, a set of parameters, and an output. When analyzing

and predicting the behavior of a real-world system, one must obtain a set of

measurements to calibrate the model parameters so that the dynamical system

output closely resembles the measurement data. However, having a perfect fit

between the model output and the measurements is impossible. The reason

behind this impossibility can be classified into two categories [1, 2]:

• Mathematical models usually simplify real-world systems, leaving out

some variables that, unawarely, may affect the system’s evolution. This

is usually termed as epistemic, or structural uncertainty.

• Measurement devices have error tolerances, implying that whatever mea-

surement has been taken to obtain a given parameter or initial condition,

one must consider a given amount of uncertainty. Also, some mod-

els include variables that cannot be directly measured or present high

variability. These facts entail that the information given by the math-

ematical model must also account for uncertainty in model parameters

(initial/boundary conditions, source term, and/or coefficients). This is

usually termed aleatoric uncertainty.

Therefore, to have a truly accurate and realistic model of a real-world system,

one has to quantify all the uncertainties appearing in the model. One mainly

distinguishes two types of differential equations with uncertainty: Stochastic

Differential Equations (SDEs) and Random Differential Equations (RDEs).

The former term is reserved for differential equations driven by white noise

(the formal derivative of the Wiener process) while the latter term refers to

those differential equations driven by other types of random inputs, such as col-

ored noise. The rigorous handling of SDEs requires special mathematical tools

like Itô or Malliavin stochastic calculus [3–7]. Under this approach, noise is

prefixed by specific patterns like Gaussian or Lévy stochastic processes. SDEs

have been particularly useful when modeling phenomena whose dynamics are

affected by irregular fluctuations, such as vibrations in Mechanics, or ther-

mal noise in Thermodynamics [8, Ch. 5], but they have demonstrated to be

particularly fruitful in Finance [9, 10].
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The latter term, RDEs, allows for a more natural and flexible approach when

modeling uncertainties since they permit assigning appropriate probability

distributions to each model parameter (initial/boundary conditions, external

source, and/or coefficients), reflecting the intrinsic random features of the

models more accurately [2, 11–14]. In this setting, the deterministic input

parameters of the equation (initial and/or boundary conditions, forcing term,

and coefficients) are substituted by their respective random counterpart: ran-

dom variables and stochastic processes. A main advantage of RDEs is that a

wide range of probability distributions can be allocated for input parameters.

This key fact has stimulated the extensive application of RDEs in dealing with

real applications where uncertainties play a major role in properly describing

the dynamics of the corresponding phenomenon under analysis using many

techniques, including generalized polynomial chaos, collocation methods, ran-

dom Fröbenius expansions, equivalent linearization, perturbation techniques,

etc., [2, 11, 12, 14]. This thesis focuses on developing new techniques to study

RDEs and their application to study some relevant mathematical models.

Aside from the rigorous calculation of the solution of the RDE, which is a

stochastic process, many contributions also focus on the computation of its

mean and variance functions because of the great statistical information they

provide. However, a more significant goal than computing one-dimensional

moments of the solution is the determination of the First Probability Density

Function (1-PDF), or simply PDF, of the solution [12, Ch.3]. The PDF defines

a distribution function for the stochastic process at a given instant, which

defines much probabilistic information about the solution process. The 1-

PDF permits computing any one-dimensional higher moment of the solution

provided they exist as well as the probability that the solution varies within

any specific interval of interest.

This thesis adds knowledge and practical computational tools for quantifying

uncertainty in RDEs based on the corresponding 1-PDF. The tools built are

then applied to multiple examples to show their versatility and potential. It

also fills a knowledge gap in the case of delta-impulsive systems, both additive

and multiplicative.
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THESIS OUTLINE

This PhD thesis is structured in eight chapters. To follow the connecting

thread in this dissertation, we write a motivation at the beginning of each

chapter.

First, in Chapter 2 we introduce some notation and concepts that are repeat-

edly used in the thesis. This includes probabilistic concepts, the Random

Variable Transformation (RVT) theorem and the Liouville Partial Differential

Equation (PDE), or simply Liouville equation. Regarding the latter, we also

include the main idea that will be used to compute its solution. Finally, we

end with the definition of a prediction region and the Principle of Maximum

Entropy (PME) that will be useful when fitting a probability density function

to real data.

Then, in Chapter 3 we perform a comprehensive uncertainty quantification

analysis of the randomized Gompertz model by deriving an explicit expression

for the first probability density function of its solution’s stochastic process.

The analysis includes calculating key probabilistic characteristics, such as the

time distribution until the solution reaches a specific value and the stationary

distribution of the solution. The theoretical findings are then applied to two

examples: one of a numerical nature and another involving real-world data to

model the weight dynamics of a species.

In Chapter 4, we examine the random Baranyi–Roberts model, which charac-

terizes the dynamics of two interacting cell populations. The initial conditions

are treated as random variables, with their distributions determined using

sample data and the PME. A finite volume scheme is employed to numeri-

cally approximate the probability density function of the solution through the

Liouville equation. Using this framework, we develop an optimization proce-

dure to identify the optimal parameter values for the Baranyi–Roberts model,

ensuring that the system’s expectation align with the sample data.

Then, Chapter 5, motivated by the insights from the attempt to devise an effi-

cient Liouville solver described in the previous chapter, presents and analyzes

a numerical approach to efficiently solve the Liouville equation in the context
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of RDEs using GPU computing. This method combines wavelet compression-

based adaptive mesh refinement, Lagrangian particle methods, and radial basis

function interpolation to create a versatile algorithm applicable to multiple di-

mensions. We discuss the advantages and limitations of this algorithm. To

demonstrate its effectiveness, we compute the PDF for some 2D and 3D ran-

dom ODE systems with applications in physics and epidemiology.

In Chapter 6, we explore the random generalized logistic differential equa-

tion. We begin by constructing its solution rigorously using the sample-path

approach and mean-square calculus. Next, we derive the PDF at each time

instant by applying the RVT technique and solving the associated Liouville

equation. We also demonstrate that, under specific conditions, the stochastic

solution and its density function converge to the corresponding solution and

density function of the logistic and Gompertz models, respectively. The chap-

ter concludes with examples that combine the computational techniques from

the previous chapter to construct reliable approximations of the PDF of the

stochastic solution, including an application to a real-world problem.

Finally, in Chapter 7, we study a general class of random differential equa-

tions with Dirac-delta forcing at a finite number of time instants via its PDF.

We consider the case of additive impulses and state-multiplicative impulses.

We combine the Liouville equation and the random variable transformation

method to conduct our study. Finally, all our theoretical findings are illus-

trated on two stochastic models, widely used in mathematical modeling, for

which numerical simulations are carried out using the computational approach

described in Chapter 5.

Finally, I would like to highlight that this thesis was developed as part of

the objectives of the following Spanish competitive research project under the

supervision of one of its two principal investigators: Ecuaciones Diferenciales

Aleatorias. Cuantificación de la Incertidumbre y Aplicaciones (Random Dif-

ferential Equations. Uncertainty Quantification and Applications). PID2020-

115270GB-I00. IPs: Juan Carlos Cortés López and Rafael Villanueva Micó.

Agencia Estatal de Investigación. I also highlight that I was awarded the
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doctorate scholarship granted by Programa de Ayudas de Investigación y De-

sarrollo (PAID-21), Universitat Politècnica de València (UPV).
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Chapter 2

Methodology

This chapter will give a brief theoretical overview of the main methods used

in the thesis. The following chapters will give analytical and computational

details about their implementation. We first remind some notation regarding

measure theory, and probability theory specifically, that will be useful. We

assume that the reader is familiarized with basic topics in Lebesgue integration

theory and PDEs.
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Chapter 2. Methodology

2.1 Probability concepts

We will begin by fixing some notation and concepts that will be needed to

successfully follow the theoretical development of the current thesis. To do

so, we follow Loève’s introduction from [15, Ch. 3] and some key ideas from

Soong’s book [12]. Note that probability theory is a subset of measure theory,

so most notation and ideas are shared with the well-known Lebesgue measure

theory in Rd, d positive integer.

Definition 2.1.1. A probability space (Ω,F ,P) consists of a sample space

or sure event Ω, a non-empty σ-algebra F of events and the probability

measure P : F → [0, 1]. Without any loss of generality, we assume that the

space is complete; that is, every subset of a null event is also a null event. If

not, we can complete the space by adding the required sets.

Definition 2.1.2. A random variable X : Ω → R is a function such that

X−1(B) ∈ F , ∀B ∈ B, where B is the Borel σ-algebra on R with its usual

topology.

Definition 2.1.3. A random vector X = (X1, . . . , Xd) : Ω → Rd is a func-

tion such that each of its components Xi, i ∈ {1, . . . , d} is a random variable.

As in the case of the classical Lebesgue theory, we can define the integral

operator for probability spaces.

Definition 2.1.4. The expectation of a random variable X as the integral

of X in the sure event Ω respect to the underlying probability measure P. That

is:

E[X] :=

∫
Ω

X(ω)dP(ω).

Since the expectation is defined as an integral respect to a measure, we can

build norms in the probability space as follows:

Definition 2.1.5. Given a random variable X, we define its p-th moment

as the expectation of |X|p. This naturally defines a norm and a normed space,

respectively, as follows:
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2.1 Probability concepts

∥X∥pLp(Ω,P) := E[|X|p] =
∫
Ω

|X(ω)|pdP(ω).

Lp(Ω,P) =
{
X : Ω → R | ∥X∥Lp(Ω,P) <∞

}
, p ∈ [1,∞).

For X ∈ Lp(Ω,P), we say that X is a p-th order random variable.

In the case, p = ∞, we have the following space and norm, respectively:

L∞(Ω,P) = {X : Ω → R | ∃M > 0,P[|X| < M ] = 1} ,
∥X∥L∞(Ω,P) = inf{M > 0 |P[|X| < M ] = 1}.

For X ∈ L∞(Ω,P), we say that X is an essentially bounded random vari-

able.

In the case of random vectors, we define their respective norms as ∥X∥Lp
d(Ω,P) =

max{∥Xi∥Lp(Ω,P) : 1 ≤ i ≤ d}.

Note that, since (Ω,F ,P) is a finite measure space, we have Lp ⊆ Lq, when

p ≥ q. For example, if we consider a random variable such that E[|X|2] < +∞,

that means E[|X|] < +∞ and thus this random variable has finite mean and

variance since V[X] = E[X2]− E2[X]. Throughout the thesis, we will assume

(unless specified otherwise) that random variables live in L2(Ω,P) (therefore,
d-dimensional random vectors will live in L2

d(Ω,P)).

With this information we can now write the definitions of limits of random

variables in their probability space.

Definition 2.1.6. Consider a sequence of random variables {Xk}k∈N defined

in the same probability space (Ω,F ,P). We have the following convergence

types:

• The sequence converges in probability to a random variable X if, for

any ε > 0,

P[|Xn −X| ≥ ε] −−−−→
n→+∞

0. (2.1.1)
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• The sequence converges almost surely (a.s) to a random variable X

if for every ε > 0,

P

[ ⋃
k≥n

{|Xk −X| ≥ ε}
]
−−−−→
n→+∞

0. (2.1.2)

Equivalently, we can rewrite this as follows:

P
[{
ω ∈ Ω : lim

n→+∞
Xn(ω) = X(ω)

}]
= 1. (2.1.3)

• The sequence converges in the p-th moment, for p ∈ [1,∞) moment

if

lim
n→+∞

∥Xn −X∥Lp(Ω,P) = lim
n→+∞

E[|Xn −X|p] = 0. (2.1.4)

A special case we will consider is p = 2, called mean-square conver-

gence.

Almost sure and mean-square convergence implies convergence in probability,

but mean-square and almost sure convergence do not imply each other in

general [12, Fig. 4.1].

Definition 2.1.7. Given T ⊂ R, a real-valued stochastic process is a

non-countable family of real-valued random vectors indexed by elements of T ;

that is,

{X : T × Ω → Rn : t ∈ T , ω ∈ Ω}, X(t, ·) is a random vector ∀t ∈ T .

In practice, T = [t1, t2], 0 ≤ t1 < t2 ≤ ∞ (for convenience, we interpret the

parameter t as time, so we assume it is nonnegative). Furthermore, if X(t, ·) ∈
L2
d(Ω,P)∀t ∈ T , we say that it is a second order stochastic process.

Given this kind of stochastic process, we can talk about the continuity and

differentiability of stochastic processes.

Definition 2.1.8. A stochastic process X(t, ω) is sample continuous, or

pathwise continuous if its sections, Xω̃(t) := X(t, ω̃) : T → Rd are con-

tinuous (in the classical, deterministic sense) for P-almost every fixed ω̃ ∈ Ω.
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Likewise, it will be sample differentiable, or pathwise differentiable if

its sections are differentiable for P-almost every sample.

See [12, App. A.1, A.2] for a deeper consideration of sample calculus. However,

the idea is simple: a stochastic process is pathwise continuous, or pathwiseC1,

or verifies any other property in the pathwise sense, if the corresponding de-

terministic property is verified for almost every sample.

Another important definition is continuity and differentiability in the Lp
d(Ω,P)

spaces, which we now define.

Definition 2.1.9. A stochastic process X(t, ·) ∈ Lp
d(Ω,P), t ∈ T , is contin-

uous in the Lp sense if

lim
h→0

∥X(t+ h)−X(t)∥Lp
d(Ω,P) = 0. (2.1.5)

Likewise, we say that it is differentiable in the Lp sense if there exists a

stochastic process, which we denote by dX
dt
(t, ·) ∈ Lp

d(Ω,P), such that

lim
h→0

∥∥∥∥X(t+ h)−X(t)

h
− dX

dt
(t)

∥∥∥∥
Lp
d(Ω,P)

= 0. (2.1.6)

In the specific case of p = 2, we say that a process is mean square contin-

uous and mean square differentiable, respectively.

2.1.1 Random differential equations

With all the previous information, we can now formulate an RDE model. If

not stated otherwise, when speaking of a generic RDE, we will consider an

RDE system such that

• The vector-valued function v(·, t) : Rd −→ Rd, which we call the (vector)

field of the RDE, is assumed to be a Lipschitz-continuous function,

uniformly in t ∈ [t0,∞), and continuous and bounded in t. This way, we

can assume certain existence and uniqueness properties (see [16–18]).
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• X(t) = X(t, ω), t ≥ t0, ω ∈ Ω is a stochastic process verifying:
dX

dt
(t) = v(X(t), t), t > t0,

X(t0) = X0 ∈ L2
d(Ω,Rd).

(2.1.7)

The sense in which the stochastic process verifies the RDE system will be

detailed in each specific problem. The pathwise notion is the strongest

and the usual one in a computational setting [8, 12, 19–21]. Unless

specified otherwise, we will work with this definition, although the mean

square notion is also of great theoretical value.

One may also consider a generic RDE with a finite number of random pa-

rameters in its formulation. In this case, we consider the generic RDE to

verify:

• The vector-valued function v(·, t,A) : Rd −→ Rd now depends on the

samples, or realizations, of the parameter random vector. We will assume

that the event E = E1 ∩ E2, where

E1 = {ω ∈ Ω : v(·, t,A(ω)) is Lipschitz in R uniformly in t},
E2 = {ω ∈ Ω : v(x, ·,A(ω)) is continuous in [t0,∞) for all x ∈ R},

has probability 1, i.e., P[E] = 1.

• X(t) = X(t, ω), t ≥ t0, ω ∈ Ω is a stochastic process verifying:
dX

dt
(t) = v(X(t), t,A), t > t0,

X(t0) = X0 ∈ L2
d(Ω,Rd),

(2.1.8)

where A ∈ L2
m(Ω,P) is a real-valued random vector. The same comment

about the pathwise notion applies to this case.
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2.2 Probability distribution

Let us first consider the definition of the PDF of a random variable or vector.

Recall from Theorem 2.1.2 that, given a probability space (Ω,F ,P), a random

variable X defined in that space must verify X−1(B) ∈ F for any Borel-

measurable set B. This means that P(X−1(B)) ∈ [0, 1]. This motivates the

following definitions.

Definition 2.2.1. Given a random vector X in the complete probability space

(Ω,F ,P), we define the law, or distribution, of X, denoted by µX : Bd →
[0, 1], as the push-forward of P by X; that is

µX(B) := X#P(B) := P[X−1(B)], B ∈ Bd.

If µX happens to be absolutely continuous with respect to some measure m in

Rd, the Radon-Nykodym theorem [15, Ch. 2, Secs. 8B, 8C] then guarantees

that we can find an m-integrable function fX such that

µX(B) =

∫
B

fX(x)dm(x).

Now we have the following two common situations:

• If m = Ld, which is the classical Lebesgue measure in Rd, then we say

that X is an absolutely continuous random vector, and f is called

the probability density function (PDF) of X.

• If m is the counting measure, then X is an discrete random vector,

and f is called the probability mass function (PMF) of X.

In the case of random variables, since the usual topology for R is defined by

open intervals, we can also define the cumulative density function (CDF)

by

FX(x) := µX((−∞, x]) = P[X−1(−∞, x]].
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2.2.1 Probability density function evolution

Obtaining the PDF of a stochastic process has been classically done via Monte

Carlo sampling. The calculation of the 1-PDF at a certain time instant via

Monte-Carlo sampling consists of numerically obtaining samples of the ran-

dom variables appearing in the RDE and then simulating their evolution up

to the corresponding time to build the histogram that represents the 1-PDF

at the desired time [22]. This method is widely used in RDEs, SDEs, ran-

dom PDEs, and stochastic PDEs, among others, because it is fairly simple

to implement in its naive version. However, it is also true that many sam-

ples must be used to obtain an accurate, smooth representation of the PDF

[23, 24]. Nevertheless, improved Monte-Carlo techniques, such as variance-

reduction, multi-level, etc., have been successfully designed to speed up the

raw Monte-Carlo method [25].

Random Variable Transformation theorem

Another well-known method, the RVT theorem, is an analytical method that

works directly over the densities of the random variables involved in the RDE.

In fact, the RVT theorem gives a closed formula of the 1-PDF at any time

instant. The theorem can be stated as follows:

Theorem 2.2.2. [12, 26] (RVT theorem) Let X, Y : Ω −→ Rm be two

random vectors with PDFs fX and fY, respectively. Assume that there is a

one-to-one C1 mapping h : Rm −→ Rm, such that X = h(Y) with
∣∣ ∂h
∂Y

(y)
∣∣ ̸= 0

for all y. Then, denoting h−1 as the inverse mapping of h,

fX(x) = fY(h
−1(x))

∣∣∣∣∂h−1

∂x
(x)

∣∣∣∣ , (2.2.1)

where
∣∣∣∂h−1

∂x
(x)
∣∣∣ denotes the absolute value of the determinant of the Jacobian

matrix.

Note that, in essence, (2.2.1) is a change of measure formula. In the specific

application to RDEs, the mapping h is, in fact, the time-wise and pathwise flow

of the differential equation; that is, a function Φ(· ; t0,X0(ω)) : [t0,+∞) → Rd
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that verifies (2.1.7) for P-almost every ω ∈ Ω. Particularly, for every t ≥ t0 we

have X(t, ω) = h(X0(ω)) = Φ(t; t0,X0(ω)). Therefore, (2.2.1) says that the

density of X(t, ·) can be obtained as the Radon-Nykodym derivative (respect

to the Lebesgue measure) of the push-forward measure obtained via the flow

function v(· , t), of the measure associated with the density ofX0(·) (see Figure
2.1, [27, Ch. 3]).

Xt0 ∼µt0 =

∫
f0 dLd µt = (v(·, t))#µt0

Xt ∼µt =

∫
ft dLd

RVT theorem

(Initial density f0) (Push-forward)

(Density at time t)

Figure 2.1: Schematic representation of the RVT theorem application in RDEs. Ld denotes
the Lebesgue measure in the appropriate Rd space.

This analytical approach provides great insight into the random dynamics of

the problem’s solution. This method has been successfully applied to deter-

mine the 1-PDF of many RDEs ([28–34], random difference equations [33,

35], and random PDEs [36]). The RVT method has been demonstrated to

be very useful to compute approximations of the 1-PDF of the aforemen-

tioned type of random equations in combination with other techniques such

as Karhunen-Loève expansions [37, 38], Fröbenius expansions [39], differential

transform method [40], the homotopy method [41], numerical schemes [42, 43],

etc. However, it relies on the knowledge of a closed-form or friendly analytical

solution of the corresponding RDE [44, 45] solution and its inverse respect to

the initial condition term, which is often impossible to obtain analytically.
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Chapter 2. Methodology

The Liouville equation

Another approach, which is the main tool used in this thesis, is based on the

Liouville, or Continuity, Equation [12, 46–50]. The Liouville equation is a

fundamental PDE in classical mechanics and statistical physics and plays a

crucial role in applied mathematics due to its significance in understanding

dynamic systems where certain quantities are conserved through the evolu-

tion of the system [51–55]. This equation describes the time evolution of a

density function in the phase space of a dynamical system, which characterizes

the probabilistic behavior of a collection of particles or a continuous medium.

The Liouville equation appears in various disciplines in different forms; for ex-

ample, in fluid dynamics, it describes the conservation of mass and momentum

of a certain fluid for compressible flows; in plasma physics, it is instrumental

in understanding the behavior of ionized gases and the dynamics of charged

particles. Since the PDF of an RDE satisfies the Liouville equation, an alter-

native to calculate the PDF consists in solving this equation analytically or

numerically (see [12, Th. 6.2.2], [46, Th. 4.4]).

The main result upon which we set our work is the following:

Theorem 2.2.3. [12, 46, 56] Consider the RDE (2.1.7) with the assumed

conditions on the vector field v(·, t). Let D ⊆ Rd be a positively invariant set

for the RDE; i.e. {X([t0,∞), ω)}ω∈Ω ⊂ D, P-almost surely. Then, the 1-PDF

of the stochastic process X(t), denoted by f = fX(t), verifies the Liouville PDE:

∂tf(x, t) +∇x · [v f ](x, t) = 0, x ∈ D, t > t0,

f(x, t0) = f0(x), x ∈ D,

f(x, t)v(x, t) · n(x) = 0, x ∈ ∂D, t ≥ t0,

(2.2.2)

where f0 is the PDF of X0, n is the normal vector of the boundary and ∇x

and ∇x · denote the gradient and divergence operators, respectively. Also, D =

D ∪ ∂D.
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2.2 Probability distribution

Note that the last condition (homogeneous Neumann conditions at the bound-

ary) is only considered wherever ∂D is bounded. Unless specified, we will

assume that ∂D is, at least, piece-wise C1, and that f0 is integrable and C1

inside its support.

Theorem 2.2.3 and the RVT theorem are very closely related: Every solution

of the Liouville equation is of the form described by the RVT theorem (the

push-forward of a measure), and functions of the form described by the RVT

theorem verify the Liouville equation. For some of the different proofs of Theo-

rem 2.2.3 and the relationship with the RVT Theorem 2.2.2, see Appendices A

and B. Despite the connection between the two, the Liouville equation allows

for a broad application in practice due to a fundamental property discussed

in the following section. Under the conditions of the theorem, the Liouville

equation can be verified in the weak or strong sense depending on the regu-

larity of the initial density f0. However, in this thesis we only deal with the

strong solution of the Liouville equation.

Solving the Liouville equation

Solving the Liouville equation analytically to obtain a PDF requires a similar

effort to using the RVT theorem. Furthermore, using a numerical method

for the Liouville equation avoids the limitation of the RVT theorem: Needing

some sort of closed-form expression or approximation of the solution stochastic

process. However, finding a general method for solving this equation is not

straightforward by any means.

For the time being, we will make a slight notation abuse in this section: I will

write Φ(t; ·,a) = Φ(t; t0, ·), and Φ(t) = Φ(t; ·,a) as well. This notation usage

will be brief, and I believe it does not lead to confusion.

Let us first give some insight into the special form of the Liouville equation.

Consider (2.2.2), and let us consider the random parameter case of the Liou-

ville equation from Equation (2.1.8). If

P[{ω ∈ Ω : v(·, t,A(ω)) ∈ C1(D), ∀t ≥ t0}] = 1,

17



Chapter 2. Methodology

then, for almost any realization a of A, Equation (2.2.2) can be written as

∂tf(x, t |a) + v(x, t,a) · ∇xf(x, t |a) = −f(x, t |a)∇x · v(x, t,a), (2.2.3)

for x ∈ D, t > t0, and its solution can be analyzed through its characteristic

equations [47, 56, 57]. These curves describe the time evolution of a particle,

whose trajectory is Φ(t) = (ϕ1, . . . , ϕd) ∈ Rd, in phase space and the value of

the desired PDE solution at that particle’s position. These equations form a

system of Ordinary Differential Equations (ODEs), which are given by

d

dt
Φ(t) = v(Φ(t), t,a), Φ(0) = x0,

d

dt
f(Φ(t), t |a) = −f(Φ(t), t |a)∇x · v(Φ(t), t,a), f(Φ(0), 0 |a) = f0(x0),

(2.2.4)

where x0 is a generic point in D, which represents the initial position of the

particle to be simulated. The first equation defines the time evolution of the

particle’s position, whereas the last equation in (2.2.4) defines the evolution

of the PDF value in the considered particle. Now, the characteristic curves,

which form the solution of the characteristic equations (2.2.4), are defined by

Φ(t; x0,a) = x0 +

∫ t

t0

v(Φ(s; x0,a), s,a)ds, t ≥ t0, (2.2.5)

f(Φ(t; x0,a), t |a) = f0(x0) exp

(
−
∫ t

t0

∇x · v(Φ(s; x0,a), s,a)ds

)
, t ≥ t0,

(2.2.6)

where Φ(t; x0,a) denotes the characteristic curve at time t, starting at x0,

with parameter values a.

It is well known that the flow function of an ODE with a “sufficiently regular”

vector field (for example, Lipschitz in space, continuous in time) is differen-

tiable. As a simple consequence of the inverse function theorem, wherever the

vector field is non-zero, and the flow function has continuous derivatives, one

can define its inverse function, which will be differentiable (see [58, Th. 1.1.7]

for more details). Mathematically, it is a differentiable function Ψ(t;x,a) such
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2.2 Probability distribution

that Φ(t; Ψ(t;x,a),a) = x. This function is called the inverse flow function.

See Figure 2.2 for a graphical representation of both functions.

t0

t

x0 Ψ(t0; t,x)

Φ(t; t0,x0) x

Figure 2.2: The flow function (red) gives the position x at time t of the characteristic curve
starting at x0. The inverse flow function (blue) gives the point where the curve must start,
x0, so that it is located at x at time t.

With the notion of the inverse flow in mind, we can now write (2.2.6) as

f(x, t |a) = f0(Ψ(t;x,a)) exp

(
−
∫ t

t0

∇x · v(Φ(s; Ψ(t;x,a),a), s,a)ds

)
.

(2.2.7)

Note that Equation (2.2.7) actually defines a change of variables and, together

with Equation (2.2.6) and the relation we have with the RVT theorem, we have∫
Rn

f(x, t |a)dx =

∫
Rn

f0(x)dx = 1, (2.2.8)

for all t ≥ 0 and a. Finally, the PDF of the RDE solution (independent

of parameter realizations) is finally obtained by marginalizing the joint PDF

of both the solution and the random parameter vector A, which, using the

definition for the conditional PDF, can be written as

f(x, t) =

∫
Rm

f(x, t |a)fA(a)da = EA[f(x, t |A)], (2.2.9)

where fA is the joint PDF of the random vector parameters A and EA denotes

the expectation operator with respect to A. This shows that the PDF can

be obtained by calculating (2.2.7) for all realizations a of A and then averag-

ing. Furthermore, when computational techniques are required for this task,
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Chapter 2. Methodology

expression (2.2.9) allows the use of either quadrature formulas [59] or Monte

Carlo integration strategies [22–24, 60].

The characteristic equations give a particle’s point of view about the evolu-

tion of the system. However, although the PDE is transformed into a family of

ODEs, the task at hand for obtaining the solution is still complicated. There

are several methods to obtain a numerical approach for deterministic PDEs,

e.g., finite difference methods (FDM), finite volume methods (FVM), and fi-

nite element methods (FEM). However, these methods suffer when simulating

convection/transport-dominated problems because of the incorrect introduc-

tion of numerical dissipation. Furthermore, the computational complexity of

grid-based methods grows exponentially with the problem dimensionality. De-

signing the numerical approach is one of the main topics of the thesis and will

be fully detailed in Chapter 5.

2.3 Prediction region

Finding an appropriate definition for a prediction region has been a long-

standing question that still remains open. Classically, in 1D RDEs, a predic-

tion region is built by simulating the evolution of several samples from the

initial condition and then building the sample quantiles (usually an interval

centered at the mean and whose width is given by a multiple of the standard

deviation of the samples). However, there is no natural way to generalize

this concept in higher dimensions; building a natural confidence region is not

trivial or straightforward.

Since we are interested in obtaining the PDF of the solution stochastic process,

we will consider a special kind of prediction region, one that is greatly defined

by the structure of the PDF. But first, let us consider the following lemma

with its short proof:

Lemma 2.3.1. Let α ∈ [0, 1] and consider a PDF f ∈ L1 ∩ C0, such that

{x : f(x) = λ} is a Lebesgue-null set for all λ ∈ (0, ∥f∥∞]. Consider J :
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2.3 Prediction region

[0, ∥f(·, t)∥∞] → [0, 1] defined as

J(λ) =

∫
{f≥λ}

f(x)dx = µf ({f ≥ λ}), (2.3.1)

where {f ≥ λ} := {x : f(x) ≥ λ}. Then, there exists a λ∗ such that J(λ∗) =

1− α.

Proof. We are going to prove that function J is continuous and monotone.

The result will then follow trivially.

Let 0 ≤ λ1 < λ2 = λ1 + h ≤ ∥f∥∞. Firstly, it is clear that J is monotonically

decreasing. Indeed, since f ≥ 0, µf is a non-negative measure. Therefore,

{f ≥ λ2} ⊂ {f ≥ λ1} ⇒ µf ({f ≥ λ2}) ≤ µf ({f ≥ λ1}),

and thus, J(λ1) > J(λ2).

Now, regarding continuity, let us consider λ1 > 0. We have

|J(λ1)− J(λ2)| =
∣∣∣∣∫

{λ1≤f≤λ1+h}
f(x)dx

∣∣∣∣ (2.3.2)

=

∫
R
f(x)1{λ1≤f≤λ1+h}(x)dx (2.3.3)

= µf ({λ1 ≤ f ≤ λ1 + h}). (2.3.4)

Since f ∈ L1, the dominated convergence theorem applies and we can take

limits inside the integral at (2.3.3), giving:

lim
h→0

|J(λ1)− J(λ1 + h)| = µf ({f = λ1}) = 0 (2.3.5)

because µf << Ld; that is, the measure generated by f is absolutely continu-

ous respect to the Lebesgue measure (by construction), and we considered f

such that {f = λ1} had zero Lebesgue measure. Therefore, J is continuous in

(0, ∥f∥∞].
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Chapter 2. Methodology

In the λ = 0 case, note that J is monotonically decreasing and upper bounded

by J(0) = 1. Thus, it is convergent by the monotone convergence theorem.

As a result, J is continuous in [0, ∥f∥∞].

Finally, by Weierstrass’ extreme value theorem a continuous function in a

compact interval achieves any value between its minimum and maximum (both

included). In particular, it reaches 1− α at some λ∗.

Now we may consider the following prediction region definition:

Definition 2.3.2. We define the PDF-induced α-level prediction region as

Pα := {x ∈ D : f(x) ≥ λ∗}, (2.3.6)

where λ∗ is obtained by the previous lemma (2.3.1).

Note that, since the function J as defined in Lemma 2.3.1 is continuous and

monotone, we may apply the bisection method to numerically compute the

λ∗ value that defines Pα. This method will be used extensively in Chapters 5

to 7 to compute the prediction regions in the different models.

2.4 Principle of maximum entropy

The PME allows us to assign statistical distributions to some variables. It is

based on maximizing the mathematical concept of differential entropy, which

is a measure defining the lack of knowledge of a random variable. It will be a

key part of Chapters 4 and 6.

Given a random variable Y , with its associated PDF fY , the differential en-

tropy or Shannon’s entropy is given by

SY (f) = −
∫
D(Y )

f(y) log f(y)dy,

where D(Y ) is the domain of the random variable Y (see [61, Sec. 2.2]).

This value quantifies the loss of information of a random variable; the less the
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2.4 Principle of maximum entropy

information, the higher the entropy. In the extant literature, several chapters

have applied PME to reliable statistical distributions for random variables (see

[62–64]).

To assign reliable probabilistic distributions to a random variable, Y , the

PME seeks for a PDF, fY , by maximizing the functional SY (f) subject to the

available information for the unknown random variable such as the domain

D(Y ), its integral is the unit (m0 = 1), the meanm1 and other available higher

moments mk, k = 2, . . . ,K. Specifically, one solves the following optimization

problem

maximizing −
∫
D(Y )

fY (y) log fY (y)dy,

subject to

∫
D(Y )

ykfY (y)dy = mk, k = 0, 1, . . . ,K,

where mk are the k-order moments, which usually are known by metadata,

samples, etc.

The general form of the density, fY , maximizing SY (f) given {mi}Ki=0, is given

by

fY (y) = exp

{
−1−

K∑
k=1

λky
k

}
, y ∈ D(Y ), (2.4.1)

where the set {λk}Kk=0 are called the Lagrange multipliers for the optimization

problem (see [65, Th. 1, Ch.8]).

In our setting, the PME will be applied to assign a reliable density to the 2D

sample data at time t = 0, i.e., the two-dimensional vector of initial conditions.

According to the experimental procedure described at [66], cell densities grow

in separate cultures before being introduced in the same culture. Therefore,

it is logical to assume that the two initial random variables in system (4.0.1)-

(4.0.2), which model the densities’ time evolution in mixed culture, have sta-

tistically independent densities. Therefore, the joint PDF, represented by f0 in

the Liouville equation (2.2.2), can be expressed by f0(x1, x2) = f0,1(x1)f0,2(x2)
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for all (x1, x2) ∈ D. In our application, we will determine both f0,1 and f0,2
by separately using the PME in each cell culture population.
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Chapter 3

The Gompertz model subject

to random fluctuations in all

its parameters

In this chapter, we present a complete uncertainty quantification analysis of

the randomized Gompertz model via the computation of an explicit expression

to the first probability density function of its solution stochastic process, taking

advantage of the Liouville-Gibbs theorem for dynamical systems. The stochas-

tic analysis is completed by computing other important probabilistic informa-

tion of the model, such as the time distribution until the solution reaches an

arbitrary value of specific interest and the stationary distribution of the solu-

tion. Finally, we apply all our theoretical findings to two examples, the first of

numerical nature and the second to model the dynamics of weight of a species

using real-world data.
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Some important mathematical models that have been extensively studied to

describe population dynamics include the Malthusian, Verhulstian/Logistic,

and Gompertzian models [67]. Although simple, these models serve as corner-

stones for developing more sophisticated mathematical models aimed at de-

scribing the dynamics of various components of complex biological systems [68,

69]. Motivated by these facts, several interesting extensions of the aforemen-

tioned deterministic growth population models to stochastic scenarios have

been proposed. It is important to note that these extensions depend on the

mathematical properties of the random/stochastic noise introduced into the

corresponding deterministic model to formulate its stochastic counterpart.

In the context of SDEs, the classical Malthusian, Verhulstian, and Gom-

pertzian models have been studied and applied to model a variety of problems

like the price of a stock, the asymptotic analysis of equilibrium states for a

single species and tumor cell growth, for example (see [10, 70, 71] and refer-

ences therein, respectively). Whereas in the setting of RDEs both Malthusian

and Verhulstian models have also been extensively studied, see for instance

[72] and [44, 73–75], respectively. However, to the best of our knowledge, the

randomized Gompertz model has not yet been studied in the framework of

RDEs.

This chapter is organized as follows. First, we remind and adapt the main

results related to the Liouville-Gibbs theorem that will be required to deter-

mine a closed-form expression of the 1-PDF of the solution of the randomized

Gompertz model. This is done in Subsection 3.1.1. Section 3.1 is completed

by computing both the distribution of time until a certain number of indi-

vidual/particles reaches a prefixed level (Subsection 3.1.2) and the stationary

distribution of the solution (Subsection 3.1.3). In Section 3.2, all the the-

oretical results established in Section 3.1 are illustrated via two examples.

Conclusions are shown in Section 3.2.

We finish this section pointing out that throughout this chapter the exponen-

tial function will be denoted by e or exp, interchangeably.
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3.1 The randomized Gompertz model

3.1 The randomized Gompertz model

This section is addressed to determine the main probabilistic properties of the

randomized Gompertz model, namely, the 1-PDF of its solution stochastic

process, the distribution of the time until a certain number of the individuals

(also termed particles, depending upon the context of the problem) reaches

a prefixed level and, finally, the stationary distribution. All this crucial in-

formation is presented in the following subsections. The main mathematical

tools that will be applied to conduct our subsequent study are the Liouville

PDE and the so-called RVT theorem. The former is required to determine the

1-PDF of the randomized Gompertz model, and the latter to compute both

the distribution of the time and the stationary distribution.

3.1.1 Computing the 1-PDF of the randomized Gompertz model

The aim of this subsection is to obtain an explicit expression for the 1-PDF,

f(t, n), of the following Gompertz modelN ′(t) = N(t)[C −B ln(N(t))], t > t0 ≥ 0,

N(t0) = N0,
(3.1.1)

where N0, B and C are second-order random variables and the unknown N(t)

is a second-order stochastic process. Here, N(t) can represent the number

of cells/organisms, weight, or other biological magnitudes, being N0 its initial

value at the time instant t0. Parameters B > 0 and C > 0 represent the growth

rate (division rate in the case of cells) of the system and the difference between

the growth and “dampening factor” rates (death rate in the case of cells),

respectively [76]. Observe that according to the development exhibited in

Chapter 2, comparing (3.1.1) with the general problem (2.1.7) and its notation,

now n = 1 (X(t) ≡ X(t) = N(t)), m = 2 (A = (B,C)) and v(t,X(t),A) =

g(t,N(t), B,C) = N(t) [C −B ln(N(t))]. Using the notation n = n(t), the
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Liouville-Gibbs equation (2.2.2) writes
∂f(t, n, b, c)

∂t
+∇ · (f(t, n, b, c)n(c− b ln(n))) = 0, t > t0, n > 0,

f(t0, n, b, c) = f0(n0, b, c),

where f0 is the joint density of the random variables N0, B and C.

To obtain the solution by expression (2.2.7), we need to calculate the diver-

gence term and function n(t) = h(t, n0, b, c). On the one hand, g(t, n) =

n(c− b ln(n)), so its divergence with respect to the “spatial” components is its

derivative with respect to n, i.e.,

∇ · g(t, n) = c− b(ln(n) + 1).

On the other hand, it is well-known that the solution of the Gompertz model

(3.1.1) is given by

n = h(t, n0, b, c), where h(t, n0, b, c) = e−
c(e−b(t−t0)−1)

b ne−b(t−t0)

0 . (3.1.2)

Therefore, solving for n0 gives

n0 = h−1(t, n, b, c) = neb(t−t0)

e−
c
b (e

b(t−t0)−1). (3.1.3)

And so, we obtain

f(t, n, b, c) = f0(h
−1(t, n, b, c), b, c) ·

exp

{
−
∫ t

t0

c− b(ln(h(t, n0, b, c)) + 1) ds

} ∣∣∣
n0=h−1(t,n,b,c)

= f0(h
−1(t, n, b, c), b, c) exp (η(t, n, b, c)),

(3.1.4)
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where, after calculating the integral and performing its evaluation at n0 =

h−1(t, n, b, c) given by (3.1.3), one gets

η(t, n, b, c) = b(t− t0) +
c
b

(
eb(t−t0) − 1

)
+ cteb(t−t0)

−
(
eb(−t+t0)(1 + bt)− 1

)
ln

[
e−

c(−1+eb(t−t0))
b neb(t−t0)

]

+bt ln

e− c(−1+eb(−t+t0))
b

(
e−

c(−1+eb(t−t0))
b neb(t−t0)

)eb(−t+t0) .
(3.1.5)

Finally, we apply expression (2.2.9) to determine the PDF of the solution

stochastic process of the randomized Gompertz model (3.1.1) by marginalizing

f(t, n) =

∫
R2

f(t, n, b, c) dbdc, (3.1.6)

where f(t, n, b, c) is given by (3.1.3)–(3.1.5). In the case that the N0, B and C

are independent random variables, then f0(n0, b, c) = fn0
(n0)fB(b)fC(c) and

(3.1.4) writes

f(t, n, b, c) = fN0
(h−1(t, n, b, c))fB(b)fC(c) exp (η(t, n, b, c)). (3.1.7)

Finally, observe that once the 1-PDF f(t, n) has been determined, the compu-

tation of the one-dimensional moments turns out easily, provided they exist.

For instance, the mean and the standard deviation are given by

µN(t) = E[N(t)] =

∫
R
nf(t, n) dn, (3.1.8)

and

σN(t) =

√∫
R
n2f(t, n, b, c) dn− (µN(t))2, (3.1.9)

respectively.
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3.1.2 The distribution of the time until a certain number of

individuals reaches a prefixed level

The Gompertz model describes the dynamics of N(t) over the time t. In this

setting, a crucial question that often arises in research is to determine when

N(t) reaches a specific value of interest, say ρN . In other words, we may be

interested in determining the time instant TρN
:= T such that N(t) = ρN .

In our context, N(t) = N(t;N0, B,C) depends on model parameters N0, B,

and C, which are random variables, so the time T is also a random variable.

Hereinafter, we derive the distribution of T under very general hypotheses on

N0, B, and C taking advantage of the RVT method stated in Theorem 2.2.2.

To this end, let us fix a value ρN > 0. Then, the solution (3.1.2) can be

expressed as (observe that for convenience, the model parameters and time

are written using capital letters since now they are interpreted as random

variables)

ρN = e−
C(e−B(T−t0)−1)

B N e−B(T−t0)

0 .

According to Theorem 2.2.2 with k = 3, let us consider the following identifica-

tion V = (V1, V2, V3) = (N0, B,C) and W = (W1,W2,W3) with the following

transformation r : R3 −→ R3 whose components ri(v), i = 1, 2, 3, are given by

w1 = r1(v) = t = t0 − 1
b
ln
(

ln(ρN )− c
b

ln(n0)− c
b

)
,

w2 = r2(v) = b,

w3 = r3(v) = c.

Now, we compute the inverse mapping of r: s(w) = r−1(v), whose components

si, 1 ≤ i ≤ 3, are

n0 = s1(w) = ρe
w2(w1−t0)

N e−
w3
w2

(ew2(w1−t0)−1),

b = s2(w) = w2,

c = s3(w) = w3.
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The absolute value of the jacobian of this transformation s is

|J | =

∣∣∣∣∣∣∣det


∂n0

∂w1
0 0

∂n0

∂w2
1 0

∂n0

∂w3
0 1


∣∣∣∣∣∣∣ =

∣∣∣∣∂n0

∂t
(w1, w2, w3)

∣∣∣∣ (3.1.10)

= ρe
w2(w1−t0)

N e−
w3
w2

(ew2(w1−t0)−1)|w2 ln(ρN)− w3|ew2(w1−t0). (3.1.11)

Therefore, applying Theorem 2.2.2 the distribution of time T for a given value

ρN of N is given by

fT (t, ρN) = (3.1.12)∫
R2

f0(ρ
eb(t−t0)

N e−
c
b (e

b(t−t0)−1), b, c)ρe
b(t−t0)

N e−
c
b (e

b(t−t0)−1)|b ln ρN − c|eb(t−t0) dbdc,

where f0(n0, b, c) denotes the joint PDF of the random vector (N0, B,C). If we

assume independence between the model parameters N0, B and C, f0 would

factorize as the product of the corresponding marginals fN0
, fB and fC .

An important information that will be utilized later in the Example 3.2.2

is the average time of random variable T := TρN
for a fixed value of ρN .

This quantity is now straightforwardly obtained once the PDF of T has been

determined,

µT (ρN) := E[TρN
] = E[T ] =

∫
R
tfT (t, ρN) dt =

∫ +∞

t0

tfT (t, ρN) dt, (3.1.13)

where fT (t, ρN) is given by (3.1.12).

3.1.3 Stationary distribution of the solution

In this section, we will take advantage of the RVT theorem to calculate the

probability distribution of the stationary state. Taking limits as t → ∞ in

expression (3.1.2), it is straightforward to check that the steady-state of the

randomized Gompertz model is the random variable N∗ = eC/B. To compute

its PDF we will apply Theorem 2.2.2 with k = 2, V = (V1, V2) = (B,C),

W = (W1,W2) and the following deterministic mapping, r : R2 → R2, r(v) =
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Chapter 3. The Gompertz model subject to random fluctuations in all its parameters

(r1(v), r2(v)) where

w1 = r1(v) = ec/b, w2 = r2(v) = b.

Then, its inverse mapping, s : R2 → R2, is

b = s1(w) = w2, c = s2(w) = w2 ln (w1).

The absolute value of the Jacobian of mapping s can be easily calculated

|J2| =
∣∣∣∣∣det

[
0 w2

w1

1 ln (w1)

]∣∣∣∣∣ =
∣∣∣∣−w2

w1

∣∣∣∣ = w2

w1

.

The last equality holds because both P
[
{ω ∈ Ω : ec(ω)/b(ω) > 0}

]
= 1 and

P [{ω ∈ Ω : b(ω) > 0}] = 1. Therefore, the PDF of the random vector (N∗, B)

is

fN∗,B(w1, w2) = fB,C (w2, w2 ln (w1))
w2

w1

. (3.1.14)

Since we are assuming that the PDF f0 of model parameters, (N0, B,C), is

known, then the PDF of random vector (B,C) is given by

fB,C(b, c) =

∫
R
f0(n0, b, c) dn0.

So, applying this in (3.1.14) and taking into account that w1 = n∗ and w2 = b,

one obtains

fN∗,B(n
∗, b) =

b

n∗

∫
R
f0(n0, b, b ln (n

∗)) dn0.

Finally, we can determine the PDF of the stationary state marginalizing this

distribution with respect to the random variable B. This yields

fN∗(n∗) =
1

n∗

∫
R

∫
R
b f0(n0, b, b ln (n

∗)) dn0 db. (3.1.15)
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In the usual case where all input parameters are independent random variables,

the previous expression can be simplified as

fN∗(n∗) =
1

n∗

∫
R
bfB (b) fC(b ln (n

∗))) db, (3.1.16)

since f0 (n0, b, b ln (n)) = fN0
(n0)fB(b)fC(b ln (n)) (where fN0

, fB and fC de-

note the PDFs of random variables N0, B and C, respectively) and fN0
has

unit mass; that is,
∫
R fN0

(n0) dn0 = 1.

Remark 3.1.1. Observe that since C is a positive random variable, in prac-

tice, the domain of integration in (3.1.16) must be calculated taking into ac-

count that the term b ln (n∗) must be positive. Even more, since B is also a

positive random variable, then N∗(ω) > 1 for all ω ∈ Ω. This fact will be used

later in Example 3.2.2.

3.2 Examples

In this section, we present two examples. Example 3.2.1 is devised to illustrate

the application of the theoretical results established throughout Section 3.1

considering statistical dependence/independence of model parameters N0, B,

and C. The nature in this example is just numerical. We complete this section,

including a second example where we show how to describe the dynamics

of a biological process using real data via the Gompertz model. In both

examples, we calculate the 1-PDF of the solution stochastic process, its mean

and standard deviation functions together with confidence intervals, as well as

the stationary distribution. Additionally, we compute the PDF the random

variable time as defined in Section 3.1.2.

Example 3.2.1. In this numerical example, we will examine two scenarios

with respect to the dependence/independence of model parameters N0, B, and

C and their impact on the Gompertz model output. To this end, we will first

consider that the random vector (N0, B,C) has a Multinormal distribution

whose variance-covariance matrix, say Σ, is non-diagonal (so, N0, B and C

are dependent random variables) and, secondly, when Σ is diagonal (so, N0,

B and C are independent random variables). Then, we show how the 1-PDF
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Chapter 3. The Gompertz model subject to random fluctuations in all its parameters

of the solution stochastic process, the mean and standard deviation functions,

the PDF of the time random variable, and the stationary distribution change

in each scenario.

• Scenario 1 (dependence): The random vector (N0, B,C) has a Multinor-

mal distribution truncated to T = R+×R+×R+, (N0, B,C) ∼ NT (µ,Σ),

with the following mean vector and variance-covariance matrix

µ = (0.8, 1, 1.5), Σ =
1

10

 1 0 1

0 1.2 1

1 1 2

 , (3.2.1)

respectively. Then, the PDF of random vector (N0, B,C) is f0(n0, b, c) ={
0.001676 e−25b2−30c2+b(15+50c−50n0)+(16−35n0)n0+c(−8+60n0) n0, b, c > 0,

0 otherwise.

(3.2.2)

• Scenario 2 (independence): The random vector (N0, B,C) has a Multi-

normal distribution truncated to T = R+ × R+ × R+, (N0, B,C) ∼
NT (µ,Σ), with the following mean vector and variance-covariance ma-

trix

µ = (0.8, 1, 1.5), Σ =
1

10

 1 0 0

0 1.2 0

0 0 2

 , (3.2.3)

respectively. Then, the PDF of random vector (N0, B,C) is f0(n0, b, c) =

fN0
(n0)fB(b)fC(c) ={
1.30656 e−4.17(−1+b)2−2.5(−1.5+c)2−5(−0.8+n0)

2

n0, b, c > 0,

0 in other case.
(3.2.4)

In Figure 3.1, we show the 1-PDF, f(t, n), of the solution stochastic process

for different time instants in the interval [0, 1] in both scenarios. To com-

pute f(t, n) in the scenario 1, we have used expressions (3.1.6) together with

(3.1.3)–(3.1.5) where f0 is given by (3.2.2). While to compute f(t, n) in the

scenario 2, we have applied (3.1.6), (3.1.3), (3.1.5) and (3.1.7) where f0 is

given by (3.2.4). From this graphical representation, we can observe that the
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1-PDF corresponding to scenario 2 is more leptokurtic than in scenario 1. This

fact is in agreement with the results shown in Figure 3.2 where the expectation

(calculated via (3.1.8)) and the standard deviation (calculated via (3.1.9)) in

each scenario are compared. In Figure 3.2, we see that the variability of the

solution is, in general, greater considering dependent random inputs (scenario

1). We observe that near the time instant t = 1, the variability in the depen-

dent case is smaller than in the independent one. This fact can be explained

from Figure 3.3 since at t = 1, we see that the right-tail of the PDF, f(n, 1),

obtained in scenario 2 is heavier than in scenario 1.

Figure 3.1: 1-PDF of the solution stochastic process, f(t, n), of the Gompertz model (3.1.1)
whose input is a multinormal distribution (N0, B,C) ∼ NT (µ,Σ), at different time instants
in the interval [0, 1], in both scenarios. Left (scenario 1-dependent random variables): µ and
Σ are given by (3.2.1). Right (scenario 2-independent random variables): µ and Σ are given
by (3.2.3). Example 3.2.1.
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Independent RVs
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σ(t)

Dependent RVs
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Figure 3.2: Expectation (left), µ(t), and standard deviation (right), σ(t), in scenario 1
(dependent random variables) and in scenario 2 (independent random variables) in the time
interval [0, 1]. Example 3.2.1.
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PDF of RV N(1)
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Independent RVs

Figure 3.3: PDF of the solution stochastic process in the time instant t = 1, f(1, n), in
scenario 1 (dependent random variables) and in scenario 2 (independent random variables).
Example 3.2.1.
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According to Subsection 3.1.2, we can also compute the PDF of the time T until

a certain number of individuals/particles reach a fixed value, ρN . In Figure 3.4

we show the PDF of T for different values of ρN ∈ {1, 1.25, 1.5, 1.75, 2, 2.25, 2.50}.
By applying (3.1.13), in Table 3.1 we collect the expectation of T for the dif-

ferent values of ρN in scenarios 1 and 2. To carry out computations, we have

used expressions (3.1.13) and (3.1.12), taking f0 the PDF defined in (3.2.2)

(in scenario 1) and (3.2.4) (in scenario 2). With data chosen in our numerical

experiments, we observe that in the case of independent random inputs (sce-

nario 2), the time µT (ρN) needed to reach each prefixed value ρN is smaller

than in the dependent case (scenario 1).

Figure 3.4: PDF of the time T until a given number of individuals reach a fixed value
ρ = ρN ∈ {1, 1.25, 1.5, 1.75, 2, 2.25, 2.50}. Left (scenario 1-dependent random variable).
Right (scenario 2-independent random variables). Example 3.2.1.

ρN 1 1.25 1.5 1.75 2 2.25 2.5
µT (ρN) Dep. 0.232 0.414 0.592 0.774 0.967 1.173 1.386
µT (ρN) Indep. 0.169 0.359 0.551 0.745 0.934 1.106 1.255

Table 3.1: Expectation of the time needed to reach certain fixed values, ρN ∈
{1, 1.25, 1.5, 1.75, 2, 2.25, 2.50} in scenario 1 (dependent random variables) and in scenario 2
(independent random variables). Example 3.2.1.
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Chapter 3. The Gompertz model subject to random fluctuations in all its parameters

Finally, we compute the distribution of the stationary state N∗ = eC/B, using

the results derived in Subsection 3.1.3. In Figure 3.5 we have plotted the PDF

of N∗, fN∗(n∗) from expressions (3.1.15) (scenario 1) and (3.1.16) (scenario

2). In this latter case, observe that fB and fC correspond to the PDF of

the following Gaussian random variables B ∼ N(µB = 1;σ2
B = 12/100) and

C ∼ N(µC = 15/10;σ2
C = 2/10). From Figure 3.5, we observe that in this

particular case, the stationary corresponding to scenario 2 has a heavier right

tail.

10 20 30 40

0.05

0.10

0.15

0.20

0.25

PDF Stationary State - Dependent RVs

10 20 30 40

0.05

0.10

0.15

0.20

PDF Stationary State - Independent RVs

Figure 3.5: PDFs of the stationary state for each scenario. Left: scenario 1-dependent
random variables. Right: scenario 2-independent random variables. Example 3.2.1.

Example 3.2.2. In real applications, the Gompertz model is used to explain

the dynamics of data that has been sampled. This model has been used to ex-

plain the growth of species, tumors, etc., via measurements like weight, volume,

etc. In this example, we use data corresponding to weight measurements, in

kilograms, for a randomly bred male Pearl Gray Guinea Fowl population dur-

ing 23 consecutive days [77]. We have assumed that model parameters are

independent random variables, and, for them, we choose the following distri-

butions:

N0 ∼ U([0.019779, 0.032472]) (uniform distribution),

B ∼ G(3841.397958, 0.000057) (gamma distribution),

C ∼ N|T (0.105982, 0.002643) (truncated normal distribution in T = [0.09, 0.12]).

Now, we justify the selection made for the above-mentioned distributions of

each model input. We will assume independence between N0, B, and C since,
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from a computational point of view, this assumption simplifies the calculations.

Anyway, the subsequent computations may be carried out in the case that input

parameters are statistically dependent, as was shown in Example 3.2.1. For

the sake of clarity, down below, we explain, in several steps, the underlying

reasoning for selecting the probability distribution of each model input as well

as how we have calculated their corresponding parameters.

Step 1: Initially, the model inputs whose information is more limited are B and

C. We only know that both are positive. So, we are going to assign them

positive distributions having certain flexibility (specifically, having two

degrees of freedom, i.e., two parameters, and whose respective shape’s

density probability varies with such parameters) so that we can better

capture their intrinsic uncertainty. Specifically, we will assume that B

has a Gamma distribution with parameters b1, b2 > 0, B ∼ G(b1, b2), and

C has a Normal distribution with mean, µ > 0, and standard deviation,

σ > 0, truncated in certain interval T ⊂ R+, N|T (µ, σ). For the initial

condition N0 we will assume that it has a Uniform distribution in the

interval [n0,1, n0,2]. These six parameters (b1, b2), (µ, σ) and (n0,1, n0,2)

together with the interval T will be determined later.

Step 2: We first calculate (deterministic) values for model inputs n0, b, and c that

best fit, in the mean square sense, the sampled data. We have used the

command “NonlinearModelFit” (by Mathematica software) that provides

the estimates of model inputs and their errors,

n0 = 0.026615, ϵn0
= 0.000776,

b = 0.226409, ϵb = 0.003654,

c = 0.1046, ϵc = 0.002296.

These (deterministic) estimates will be used later to determine the pa-

rameters, (n0,1, n0,2), (b1, b2) and (µ, σ), of the probability distributions,

assigned in Step 1, to each model input N0, B and C, respectively. Specif-

ically, we will consider that the previous values for (n0, ϵn0
), (b, ϵb) and

(c, ϵc) represent (approximately) their means and standard deviations,

respectively. As, initially, we are assuming that C has a Normal dis-

tribution with mean c = 0.1046 and standard deviation ϵc = 0.002296,

39



Chapter 3. The Gompertz model subject to random fluctuations in all its parameters

truncated a certain interval T to be determined, we take T large enough

so that it contains its total probability density. We will take, for example,

T = (0.09, 0.12) since P [{ω ∈ Ω : 0.09 < C(ω) < 0.12}] ≈ 1, i.e.∫ 0.12

0.09

1√
2π 0.0022962

e−
1
2(

c−0.1046
0.002296 )

2

dc ≈ 1.

Step 3: Now, we will determine the parameters (n0,1, n0,2), (b1, b2) and (µ, σ)

by minimizing the mean square error between sampled data, nj, 0 ≤
j ≤ 22, and the expectation of the solution stochastic process N(t) =

N(t;n0,1, n0,2, b1, b2, µ, σ) evaluated at the time instants t = tj, 0 ≤ j ≤
22:

min
n0,1,n0,2,b1,b2,µ,σ>0

E(n0,1, n0,2, b1, b2, µ, σ) = (3.2.5)

22∑
j=0

(E [N(tj;n0,1, n0,2, b1, b2, µ, σ)]− nj)
2
,

where the above expectation is computed using expression (3.1.8). In or-

der to calculate the minimum of the above error function E, we have

used the Nelder-Mead algorithm. Nelder-Mead is a simplex-type method

that requires an initial value (seed) to apply it. We use the deterministic

information shown in Step 2 to set the starting values that, hereinafter,

will be denoted by (n0
0,1, n

0
0,2), (b

0
1, b

0
2) and (µ0, σ0). The starting values

for random variable C match, obviously, the mean and standard deviation

calculated via the deterministic fitting shown in Step 2, so µ0 = 0.1046

and σ0 = 0.002296. For N0, we calculate (n0
0,1, n

0
0,2) using the Moment

Matching Method [78] for the mean and the variance of a Uniform dis-

tribution,

0.026615 = E[N0] =
n0
0,1 + n0

0,2

2
, 0.0007762 = V[N0] =

(n0
0,2 − n0

0,1)
2

12
.

Solving the above nonlinear system, we obtain n0
0,1 = 0.020285 and n0

0,2 =

0.032944. Similarly, we calculate the estimates b01 = 3838.25 and b02 =
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0.000059 solving the system

0.226409 = E[B] = b01b
0
2, 0.0036542 = V[B] = b01

(
b02
)2
.

With this starting value, the error is E(n0
0,1, n

0
0,2, b

0
1, b

0
2, µ

0, σ0) = 0.011507.

After minimizing the objective function (3.2.5), we obtain

n∗
0,1 = 0.019779, n∗

0,2 = 0.032472, b∗1 = 3841.297958,

b∗2 = 0.000057, µ∗ = 0.105982, σ∗ = 0.002643,

being the error 0.006635.

In Figure 3.6, we show the data (points), the mean of the solution (solid curve),

and the confidence interval (dotted curves). The mean, µN(t), has been cal-

culated by (3.1.8) and (3.1.3)–(3.1.6), being f0(n0, b, c) = fN0
(n0)fB(b)fC(c)

and

fN0
(n0) =

78.7836, if n0 ∈ [0.019779, 0.032472],

0, otherwise,

fB(b) =

4.119667 · 104203 e−17542.9b b3840.4, if b > 0,

0, otherwise,

fC(c) =

150.943 e−71577.4(−0.105982+c)2 , if 0.09 < c < 0.12,

0, otherwise,

and t0 = 0. The confidence interval has been calculated by µN(t) ± 1.96σN(t)

where σN(t) has been calculated via (3.1.9). From Figure 3.6, we can see

that this confidence interval captures very well the uncertainty of sample data.

In Figure 3.7, we show the evolution of the 1-PDF, f(t, n), of the solution

stochastic process, N(t), together with the data (points), mean (solid curve)

and confidence intervals (dotted curves). We observe that variability slightly

increases as time goes on in agreement with the fitting shown in Figure 3.6.
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5 10 15 20
Time (d)

0.5

1.0

1.5

Weight (Kg)

Real data

μN(t)

μN(t)±1.96σN(t)

Figure 3.6: Model fitting: Sample data (points), expectation function (solid curve) and
confidence interval (dotted curves) centered in the mean µN (t) and radius 1.96σN (t), being
σN (t) the standard deviation function. Example 3.2.2.

Now, using expression (3.1.12), in Figure 3.8, we show the PDF of random

variable time T (in days) until the Pearl Gray Guinea Fowl species has a

prefixed weight ρ = ρN (in kilograms). In Table 3.2, we collect the expected

value of T for different values of ρ = ρN using expression (3.1.13). According

to these values, for example, it is expected that after 9 or 10 days, the species

will weigh 1 kg. It is worthwhile pointing out that the numerical values shown

in Table 3.2 agree with the graphical representation shown in Figure 3.8.

ρN 0.25 0.5 0.75 1 1.25 1.50
µT (ρN) 3.628197 5.746689 7.682120 9.719286 12.575619 18.112325

Table 3.2: Expected time (µT (ρN ), measured in days, needed for the weight to reach certain
prefixed values (ρN ), measured in kilograms. Example 3.2.2.
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Figure 3.7: Representation of the 1-PDF, f(t, n) of the solution stochastic process, N(t),
for fixed time values. In the horizontal plane t − f(t, n), we have projected the plot shown
in Figure 3.6. Example 3.2.2.
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Figure 3.8: Graphical representation of the PDF of the random variable time T for the
prefixed values of ρ = ρN shown in Table 3.2. Example 3.2.2.
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We conclude this example calculating, from expression (3.1.16), the PDF of

the asymptotic state, N∗ = eC/B,

fN∗(n∗) =


∫ 0.12/ ln(n∗)

0.09/ ln(n∗)

1

n∗

(
a1 · 10a2ba3 e−a4b−a5(−a6+b ln (n∗))2

)
db, if n∗ > 1,

0, otherwise.

where a1 = 6.218349, a2 = 4025, a3 = 2840.4, a4 = 17543.9, a5 = 71577.4 and

a6 = 0.105982. Observe that, using Remark 3.1.1, the domain of integration

has been determined so that b ln(n∗) ∈ (0.09, 0.12), taking into account that

B > 0 (recall that it has a Gamma distribution). In Figure, 3.9 we show the

PDF of the equilibrium, fN∗(n∗), as well as its mean,

m∗ =

∫
R
n∗fN∗(n∗) dn∗ = 1.622966, (3.2.6)

and the confidence interval

[m∗ − 1.96σ∗,m∗ + 1.96σ∗] = [1.577268, 1.668664],

σ∗ =
√∫

R(n
∗)2fN∗(n∗) dn∗ − (m∗)2 = 0.023315.

(3.2.7)

For the sake of clarity, in Figure 3.10, we show a graphical representation

of the model fitting together with the equilibrium, including the means and

confidence intervals. We can observe that for a finite time (until t = 22),

the diameter of the confidence interval increases slowly. It is expected that

its maximum diameter will be reached as t → ∞, so the confidence interval

graphically represented for the equilibrium accounts for this quantity. This

quantifies the maximum expected uncertainty.
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Figure 3.9: PDF of the equilibrium random variable N∗ = eC/B . In the horizontal axis,
the mean (point) and the confidence interval (dashed lines) are indicated. They have been
calculated by (3.2.6) and (3.2.7), respectively. Example 3.2.2.
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Figure 3.10: Graphical representation of the model fitting together with the equilibrium
including the means (solid lines), confidence intervals (dotted lines) and data (points). Ex-
ample 3.2.2.
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Conclusions

In this chapter we have studied, from a probabilistic standpoint, the fully ran-

domized Gompertz model. This important model plays a key role in describing

the dynamics of biological and biophysical parts of complex systems, which

often involve uncertainties. The study has been conducted under very general

hypotheses regarding the probability distributions of model parameters, which

confers a wide range of applicability to our theoretical findings. The numerical

experiments and modeling carried out in our examples show very good results.

Publications

The results presented in this thesis chapter have been published in [26]. In

regard to this chapter, the PhD candidate has contributed by working on

its complete development with more emphasis on the theoretical results and

preparing the visualization of the numerical examples.
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Chapter 4

Random microbial growth in

a competitive environment

The Baranyi–Roberts model describes the dynamics of the volumetric densi-

ties of two interacting cell populations. We randomize this model by consid-

ering that the initial conditions are random variables whose distributions are

determined by using sample data and the Principle of Maximum Entropy. Be-

cause the exact solution of this equation is unaffordable, we use a finite volume

scheme to numerically approximate the solution’s probability density function

via the Liouville equation. Based on this, we design an optimization procedure

to determine the optimal parameter values of the Baranyi–Roberts model so

that the expectation fits the sample data.
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As described in [66], the Baranyi-Roberts model can be used to describe

growth that comprises several phases: lag phase, exponential phase, decelera-

tion phase, and stationary phase. The system can be seen as a generalization

of a family of multi-species interaction systems (see [79]). These systems can

be classified as competition, mutualism, and predation systems (see [80, 81]).

The Baranyi-Roberts model assumes that cell growth accelerates as cells ad-

just to new growth conditions and then decelerates as resources are depleted.

When modeling growth in a mixed culture, we assume that interactions be-

tween strains are density-dependent, for example, due to resource competi-

tion. The Baranyi-Roberts model is given by the following non-autonomous

and nonlinear system of differential equations

dN1

dt
= α1(t) r1N1

(
1− Nν1

1

Kν1
1

− c2
Nν2

2

Kν1
1

)
, N1(0) = N0

1 , (4.0.1)

dN2

dt
= α2(t) r2N2

(
1− Nν2

2

Kν2
2

− c1
Nν1

1

Kν2
2

)
, N2(0) = N0

2 , (4.0.2)

where N1 > 0 and N2 > 0 are the densities of cell populations 1 and 2, re-

spectively; ri > 0 are the respective specific growth rates, Ki > 0 are the

maximum densities and νi > 0 are the deceleration parameters. The param-

eters ci > 0 are the competition coefficients, and the adjustment functions,

α1, α2 : [0,+∞) → (0, 1], which describe the fraction of the population that

has adjusted to the new growth conditions by time t, may be chosen as con-

stant functions or may be chosen to be the ones given by Baranyi and Roberts

(see [66] and references therein) αi(t) = q0,i/(q0,i+e−mi t), where q0,i character-

izes the physiological states of the initial populations and mi are the rates at

which the physiological states adjust to the new growth conditions. As the aim

of the present chapter is to introduce randomness in the foregoing model, for

the sake of simplicity in this first stage, we shall assume that α1(t) = α2(t) = 1

for all t ≥ 0.

In this chapter we present a procedure to quantify uncertainty in the Baranyi-

Roberts model, with random parameters, and calibrated with real data. In

particular, we apply classical Donor Cell Upwind (DCU) finite volume scheme

[82, Ch. 20] to calculate the 1-PDF as the solution to the Liouville equation.
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4.1 Model analysis

The 1-PDF is approximated by numerically solving the corresponding Liou-

ville equation assuming that the initial conditions are random variables. The

study is conducted using real test data taken from [66]. We will determine

suitable parametric probability distributions for the random initial conditions

by applying the PME (see Chapter 2). These distributional parameters, to-

gether with the other model parameters, will be calculated using a tailor-made

procedure based on the application of an optimization algorithm named Parti-

cle Swarm Optimization (PSO) (see [83]). Afterward, we calculate predictions

of the expectation of the aforementioned biological model at different time

instants. These predictions are constructed thanks to the previous approxi-

mation of the 1-PDF of the solution.

This chapter is organized as follows. In Section 4.1, we investigate some inter-

esting dynamic and asymptotic information about the Baranyi-Robters model,

as well as the PDF of its solution. Afterward, in Section 4.2, we review the

mathematical background of the PME and how it is applied to the present

study. In Sections 4.3-4.5, we present the procedure and the numerical results

obtained in our study. Finally, we draw our main conclusions as well as some

remarks on future work in Section 4.6.

4.1 Model analysis

Despite the classical and well-studied nature of multi-species interaction sys-

tems, finding stability properties of (4.0.1)-(4.0.2) is not trivial by any means.

We have been able to obtain an asymptotic stability result through system

linearization. However, numerical simulations show that the unique interior

equilibrium point for the system (4.0.1)-(4.0.2) is a globally asymptotically

stable point, and its attraction region is the entire initial set D := [0, 1]× [0, 1]

except for the other 3 trivial equilibrium points (see Figures 4.1 and 4.2). In
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particular,

0 = r1N1

(
1− Nν1

1

Kν1
1

− c2
Nν2

2

Kν1
1

)
, (4.1.1)

0 = r2N2

(
1− Nν2

2

Kν2
2

− c1
Nν1

1

Kν2
2

)
(4.1.2)

has 3 trivial solutions, (0, 0), (K1, 0) and (0,K2). But there is another one in

the interior of D, which can be found through a numerical root finder. Figures

4.1 and 4.2 show the vector field and how the parameters affect the dynamics

of the system.

Let us analyze the asymptotic behavior of the Baranyi-Roberts system (4.0.1)-

(4.0.2). Let x∞ be its unique interior equilibrium point. Let the flow function

v = (v1, v2) : D → R2 be defined as

v(x1, x2) =

r1 x1

(
1− x

ν1
1

K
ν1
1

− c2
x
ν2
2

K
ν1
1

)
r2 x2

(
1− x

ν2
2

K
ν2
2

− c1
x
ν1
1

K
ν2
2

) (4.1.3)

whose differential matrix at x∞ = (x∞
1 , x

∞
2 ) is

Dv(x∞) =

 − r1 ν1
(x∞

1 )ν1

K
ν1
1

− r1 c2 ν2
x∞
1 (x∞

2 )ν2−1

K
ν1
1

− r2 c1 ν1
x∞
2 (x∞

1 )ν1−1

K
ν2
2

− r2 ν2
(x∞

2 )ν2

K
ν2
2

 . (4.1.4)

Notice that, to calculate the matrix Dv(x∞), we have first computed ∇v1
and ∇v2 at x∞ and we have then applied the equilibrium condition given by

Equations (4.1.1)-(4.1.2).

Lyapunov’s indirect method [84, Sec. 3.3] consists in studying the asymptotic

behavior of a system by analyzing the asymptotic behavior of its linearized

counterpart. It is widely used when studying highly nonlinear systems where

using Lyapunov functions may not be useful (see [84] and references therein).

The result may be stated in our case as follows:
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(a) Growth parameters: r1 = 0.82, r2 = 0.55.
There is faster growth for N1. Therefore, we
can see a more horizontally aligned vector field.
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(b) Growth parameters: r1 = 0.2, r2 = 0.55.
There is faster growth for N2. Therefore, we
can see a more vertically aligned vector field.

Figure 4.1: Comparison of the flow function v(·) and its log-magnitude, log(∥v(·)∥2), given
by the Baranyi-Roberts system (4.0.1)-(4.0.2) with the set of parameters described in each
figure, and K1 = 0.9, K2 = 0.95, ν1 = 0.3, ν2 = 0.15, c1 = 0.01, c2 = 0.015 in both figures.
In darker color, the 4 equilibrium points given by the solutions of the nonlinear system
(4.1.1)-(4.1.2).

53



Chapter 4. Random microbial growth in a competitive environment

0 0.2 0.4 0.6 0.8 1

N1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
2

Stationary Baranyi-Roberts Vector Field

-8

-7

-6

-5

-4

-3

-2

(a) Competition parameters: c1 = 0.25, c2 =
0.35. There is greater competition between N1

and N2. Therefore, the equilibrium is obtained
closer to the origin than in the case of the pre-
vious Figure.
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(b) Growth parameters: c1 = 0.5, c2 = 0.5.
There is a very high competition between N1

and N2. Therefore, the equilibrium is obtained
very close to the origin.

Figure 4.2: Comparison of the flow function v(·) and its log-magnitude, log(∥v(·)∥2), given
by the Baranyi-Roberts system (4.0.1)-(4.0.2) with the set of parameters described in each
figure, and K1 = 0.9, K2 = 0.95, ν1 = 0.3, ν2 = 0.15, r1 = 0.2, r2 = 0.55 in both figures. In
darker color the 4 equilibrium points given by the solutions of the nonlinear system (4.1.1)-
(4.1.2).
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Theorem 4.1.1. ([84, Th. 3.7]). Let x∞ be an equilibrium point for the

nonlinear system

ẋ = v(x),

where v : D → Rn and D is a neighborhood of the equilibrium point. Let

A = Dv(x∞).

Then, denoting ℜ as the real part of a complex number, the following state-

ments are verified:

1. The equilibrium point is stable if ℜ(βi) < 0 for all eigenvalues βi of A.

2. The equilibrium point is unstable if ℜ(βi) > 0 for one or more of the

eigenvalues of A.

In our case, the eigenvalues for the matrix Dv(x∞) can be obtained as

β =
Tr (Dv(x∞))±

√
(Tr (Dv(x∞)))2 − 4Det(Dv(x∞))

2
,

where Tr denotes the trace of the matrix, and Det denotes the determinant of

the matrix. It can be easily seen, by using Equation (4.1.4), that Tr (Dv(x∞))

is negative for any set of admissible parameters. However, we can prove that

the determinant is positive only in certain cases. Indeed,

Det(Dv(x∞)) = r1 r2 ν1 ν2
(x∞

1 )ν1(x∞
2 )ν2

Kν1
1 K

ν2
2

− r1 r2 c1 c2 ν1 ν2
(x∞

1 )ν1(x∞
2 )ν2

Kν1
1 K

ν2
2

= r1 r2 ν1 ν2
(x∞

1 )ν1(x∞
2 )ν2

Kν1
1 K

ν2
2

(1− c1 c2).

It is obvious that the determinant’s sign will depend on the sign of 1 − c1 c2.

Therefore, if c1 c2 < 1, Theorem 4.1.1 assures that x∞ is a stable equilibrium

point. It can be checked that all the cases seen in Figures 4.1a-4.2b verify this

last inequality (see the parameters’ values in the captions).

The previous information about the asymptotic state of the Baranyi-Roberts

system (4.0.1)-(4.0.2) also shows what happens in the random case. which we

see and prove in the following result.
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Lemma 4.1.2. Let U ⊆ D be the local region of attraction of x∞ given by

Theorem 4.1.11. Consider X0 := (N0
1 , N

0
2 ) a random vector truncated in the

system’s domain D as defined previously. Assume, without loss of generality,∫
U
f0(x)dx = 1. Then the asymptotic state of f(·, t) will be the Dirac delta

function centered at x∞, δx∞ ([85, Less. 27]), in the sense of distributions.

Proof. First, we know from Theorem 2.2.1

1 =

∫
U

f0(x)dx = P[X−1
0 (U)] = P[{ω ∈ Ω : X0(ω) ∈ U}],

and, since U is a local region of attraction, we know that every curve starting

inside U will converge asymptotically to δx∞ . Let X(t, ω) := X(t,X0(ω)).

Then

P
[{
ω ∈ Ω : lim

t→+∞
X(t, ω) = x∞

}]
= 1.

Now, using that almost sure convergence implies convergence in distribution

and the Portmanteau lemma, we get (see [86]):

E[ϕ(X(t, ·))] −−−−→
t→+∞

E[ϕ(x∞)] ⇐⇒
∫
Ω

ϕ(X(t, ω))dP(ω) −−−−→
t→+∞

ϕ(x∞).

(4.1.5)

for all bounded, continuous functions ϕ. Now, because the Baranyi-Roberts

model in Eqs. (4.0.1) and (4.0.2) verifies the conditions of the Liouville equa-

tion Theorem Theorem 2.2.3, we know that X(t, ·) admits a PDF at every

t ≥ t0. Therefore, Eq. (4.1.5) can be rewritten as:∫
Ω

ϕ(X(t, ω))dP(ω) −−−−→
t→+∞

ϕ(x∞) ⇐⇒
∫
U

ϕ(x)f(x, t)dx −−−−→
t→+∞

∫
U

ϕ(x)δx∞(x)dx,

which proves convergence in the sense of distributions.
1Numerical computations show that the interior equilibrium point is globally stable; we will not

seek the exact attraction region. We will only use the fact that Theorem 4.1.1 guarantees the
existence of an attraction region.
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4.2 Assigning reliable probability distributions to the initial conditions

4.2 Assigning reliable probability distributions to the initial

conditions

To assign reliable probabilistic distributions to a random variable, Y , we will

use the PME as described in Chapter 2. Recall that the PME seeks for a PDF,

fY , by maximizing the functional SY (f) subject to the available information

for the unknown random variable such as the domain D(Y ), its integral is

the unit (m0 = 1), the mean m1 and other available higher moments mk,

k = 2, . . . ,K. Using the closed-form solution for the density, we have the

following problem:

for fY (y) = exp

{
−1−

K∑
k=1

λky
k

}
, y ∈ D(Y ),

minimizing

∣∣∣∣∫
D(Y )

ykfY (y)dy −mk

∣∣∣∣ , k = 0, 1, 2,

where mk are the k-order moments, among all possible Lagrange multipliers

(λ0, λ1, λ2) ∈ R3.

In our setting, the PME will be applied to assign a reliable density to the 2D

sample data at time t = 0, i.e., the two-dimensional vector of initial conditions.

According to the experimental procedure described at [66], cell densities grow

in separate cultures before being introduced in the same culture. Therefore,

it is logical to assume that the two initial random variables in system (4.0.1)-

(4.0.2), which model the densities’ time evolution in mixed culture, have sta-

tistically independent densities. Therefore, the joint PDF, represented by f0 in

the Liouville equation (2.2.2), can be expressed by f0(x1, x2) = f0,1(x1)f0,2(x2)

for all (x1, x2) ∈ D. In our application, we will determine both f0,1 and f0,2
by separately using the PME in each cell culture population.
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4.3 Application to study microbial growth in a competitive

environment

This section is devoted to applying the theoretical findings described above to

study the growth of two microbial strains that compete for the same resources

and space.

It is important to note that to measure the volumes and densities of microbial

strains, electronic devices may have certain measurement errors. To account

for this error, multiple measurements of the densities have been carried out

(see [66, Sec. Materials and Methods] for more details). Table 4.1 collects

the mean and the standard deviation of all volumetric density measurements

for the two microbial strains (denoted by Green Strain and Red Strain) at

different time instants.

Time (ti) Mean (m1,i) St. Dev.(σ1,i) Mean (m2,i) Std Dev.(σ2,i)
hours Green Strain Green Strain Red Strain Red Strain
t0 = 0 0.2864 0.0088 0.2298 0.0054

t1 = 0.2325 0.3078 0.0094 0.2456 0.0060
t2 = 0.46503 0.3310 0.0100 0.2699 0.0058
t3 = 0.6975 0.3544 0.0098 0.2982 0.0057
t4 = 1.014 0.3827 0.0093 0.3276 0.0066

Table 4.1: Mean and variance of the optical densities (OD) at different time instants of the
two E. Coli strains in mono-culture growth [66, Experiment B].

Using the Baranyi-Roberts dynamical system described in (4.0.1)-(4.0.2), we

study how the Green Strain and Red Strain compete in the same culture

medium. Since the objective of this chapter is to illustrate the applicability of

the proposed method in a real scenario, we will assume that the data collected

in Table 4.1 shows data from cells in a competitive mixed-culture, despite not

being the case. As it can be observed in Table 4.1, our data has intrinsic

uncertainty given by measurement errors (epistemic uncertainty), so it seems

reasonable to consider a randomized model. To do so, some of the model

parameters are treated as random variables instead of deterministic values.
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4.3 Application to study microbial growth in a competitive environment

In this chapter, we perform a first step in the spirit of introducing uncertainties

in the Baranyi-Roberts model by considering that the initial conditions, N0
1

and N0
2 , of the Initial Value Problem (IVP) (4.0.1)-(4.0.2) are independent

random variables. They represent, respectively, the initial volumetric density

of the Green Strain and Red Strain, which have been introduced in the culture

medium. Then, taking into account the values of the means, m1,i and m2,i

and of the standard deviations, σ1,i and σ2,i, i = 0, . . . , 4 (equivalently of the

first and second moments) of N0
1 and N0

2 (see Table 4.1), we have applied the

PME method to assign probability distributions, fN0
1
and fN0

2
, to N0

1 and N0
2 ,

respectively. This yields

fN0
1
(x) = e−1−λ

N0
1

0 −λ
N0

1
1 x−λ

N0
1

1 x2

, x ∈ [0, 1], (4.3.1)

fN0
2
(y) = e−1−λ

N0
2

0 −λ
N0

2
1 y−λ

N0
2

1 y2

, y ∈ [0, 1], (4.3.2)

where the values for the coefficients are given in Table 4.2. Therefore, the

joint PDF, f0(x, y), of the initial condition of the Baranyi-Roberts system

(4.0.1)-(4.0.2) is f0(x, y) = fN0
1
(x)fN0

2
(y).

λ
N0

1
0 440.89 (7.0067 · 10−7) λ

N0
2

0 471.01 (1.6053 · 10−6)

λ
N0

1
1 -3112.29 (3.8798 · 10−6) λ

N0
2

1 -4142.74 (2.0184 · 10−7)

λ
N0

1
2 5434.25 (1.6064 · 10−5) λ

N0
2

2 9014.1 (2.8044 · 10−5)

Table 4.2: Lagrange multipliers and their respective errors for the PME problem. Error
with respect to the mean and variance of the data, as described in Section 4.2, has been
minimized using the fsolve built-in algorithm in MATLAB ®.

Now that the joint PDF of the initial conditions of IVP (4.0.1)-(4.0.2) has

been determined, we can apply Theorem 2.2.3, which asserts that the solution

of the PDE given in Eqs. (2.2.2) and (2.2.3) defines the 1-PDF of the solution

stochastic process of the Baranyi-Roberts system. Unfortunately, a closed

form of the solution of the Liouville PDE is not affordable in our case. So, we

have used the Donor Cell Upwind DCU numerical scheme to approximate the

solution of that PDE for every fixed time instant t. This numerical scheme is

given by
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fn+1
i,j = fn

i,j −
∆t

∆x
(v1(xi, yj, tn)

+ (fn
i,j − fn

i−1,j) + v1(xi, yj, tn)
− (fn

i+1,j − fn
i,j))

(4.3.3)

− ∆t

∆y
(v2(xi, yj, tn)

+ (fn
i,j − fn

i,j−1) + v2(xi, yj, tn)
− (fn

i,j+1 − fn
i,j))

(4.3.4)

+ fn
i,j Divx v(xi, yj, tn), (4.3.5)

where x = (x, y), fn
i,j = f(xi, yj, tn), u

+ = max{u, 0} and u− := min{u, 0}.
Stability and convergence properties of this numerical scheme are analyzed in

[82, Chap. 20]. Most finite volume schemes developed for 2D hyperbolic PDEs

are modified versions of the DCU, by adding correction terms, flux limiters

and/or reconstruction algorithms in order to control the dissipation loss or

possible instabilities from such a simple scheme and obtain very sharp and

exact solutions in very few time-steps. The main advantage of the DCU scheme

(4.3.3)-(4.3.5) is that it is very easily implemented and that it is very fast due

to the fact that no extra terms are involved in the computation. The Courant-

Friedrichs-Lewy (CFL) conditions are the space and time discretization size

conditions used in every PDE numerical solver in order to assure stability and

convergence of the numerical method to the true solution of the problem. In

the particular case of the DCU scheme, the following CFL condition must be

verified
∆t

∆x
+

∆t

∆y
< 1,

where ∆x, ∆y and ∆t refer to the size of the space meshing in the x-direction,

the size of the meshing in the y-direction, and the time meshing, respectively.

In our computations, we have chosen ∆t
∆x

= ∆t
∆y

= 0.475, and ∆x = ∆y =

0.0067. Once the numerical scheme to approximate the 1-PDF of the solution

stochastic process of the Baranyi-Roberts model has been constructed, we will

proceed to seek the model parameter values that best describe the data shown

in Table 4.1. As indicated in the Introduction section, this has been done

by applying an optimization technique called PSO. In the next section, we

explain the procedure.
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4.4 Computational procedure design

The PSO is a bioinspired optimization method since it operates using similar

rules as the behavior of swarms of birds that try to explore and exploit a

certain region to find food (see [83]). The PSO algorithm basically generates

a family of possible solutions (swarm of birds) in the given parametrical search

space so that it evolves over every iteration to minimize the Fitness Function

(FF ). In our context, we apply PSO algorithm only to determine growth

parameters r1 and r2, while the rest of model parameters (K1, K2, v1, v2, c1
and c2) have been taken from [66] (see Table 4.3).

For a given pair of growth parameters r1 and r2, the FF is defined by the

following steps:

Step 1: Compute a discrete approximation of the 1-PDF at the time instants

tn ∈ T = {0, 0.2325, 0.4652, 0.6975, 1.0014}, (in hours) by numerically

solving the Liouville-Gibbs PDE, in the region (0, 1) × (0, 1), using the

DCU scheme (4.3.3)-(4.3.5). We take the joint PDF given by the product

of (4.3.1) and (4.3.2), with the parameters in Table 4.2, as the initial

condition. We also consider null Neumann boundary conditions and the

meshing parameters seen at the end of the previous section. This step

gives a set of discrete values for each time instant {fn
i, j}i, j, n. We use the

notation of (4.3.3)-(4.3.5).

Step 2: Compute the means at each time instant, E[N1(tn)] and E[N2(tn)],

using the values of {fn
i, j}i, j and the composite 1/3 Simpson’s rule (see

[87, Chap. 25]) in each integration dimension.

Step 3: Once the means for tn ∈ T have been computed, that is E[N1(tn)]

and E[N2(tn)], we obtain the total error, denoted by FF , where each

summand is the relative error between the aforementioned means and

the sample data, m1,i and m2,i, shown in Table 4.1,

FF =
4∑

i=0

ei, (4.4.1)
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where

ei =
Err(ti)

∥(m1,i,m2,i)∥2
and Err(ti) = ∥(E[N1(ti)],E[N2(ti)])−(m1,i,m2,i)∥2.

(4.4.2)

Once the fitness function FF has been defined, we apply the PSO algorithm

to seek suitable growth parameters r1 and r2 minimizing it.

4.5 Results

This section is aimed at showing the results obtained by implementing the

procedure described in the previous section.

We recall that the objective is to find the optimal values of r1 and r2 so that

the mean of the PDF given by the numerical scheme and the empirical mean

of the data are as close as possible. To do so, we have used the built-in

MATLAB function particleswarm to minimize FF , defined through the 3

steps described in Section 4.4.

In order to avoid the effect of randomness coming from generating the initial

positions of the particles in the PSO algorithm, multiple different procedures

have been executed at the same time. The obtained results are close enough

to guarantee we can neglect the above-mentioned effect of randomness.

Ki ri νi ci
Green Strain (i = 1) 0.6280 0.5382 1.4610 0.2
Red Strain (i = 2) 0.6190 0.5113 2.4840 0.25

Table 4.3: Parameters for the Baranyi-Roberts system after performing the optimization
procedure. Note that we have only determined the growth parameters r1 and r2 while the
other have been taken from [66, Experiment B].

The procedure with the best results takes over 7 hours to reach a suitable

minimum for the FF . The procedure has been carried out on an Ubuntu

16.04.7 LTS-based computer with a quad-core, 16-thread Intel Xeon E5-4620
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Figure 4.3: Punctual and accumulative errors ei and FF defined by (4.4.2) and (4.4.1),
respectively.

processor with 512 GB of RAM. The values of the optimized parameters, r1
and r2, are shown in Table 4.3.

Figure 4.3 shows the punctual and accumulative errors given, respectively,

by ei and FF defined in expressions (4.4.2) and (4.4.1), at the time instants

t ∈ T = {0, 0.2325, 0.4652, 0.6975, 1.014}, measured in hours. We observe the

relative error decreases as time goes on. Figures 4.4 and 4.5 show the vec-

tor field for the parameters in Table 4.3. In Figures 4.6a and 4.6b we have

performed a graphical comparison between the sampled data and the approx-

imation obtained by our stochastic model for both Green and Red Strains.

From both plots we observe a very good fitting. Furthermore, we can see the

time evolution of the joint PDF of the solution stochastic process in Figures

4.7a-4.7e. However, as it can be seen in Figures 4.7a-4.7e, the maximum height

of the joint PDF decreases very rapidly (observe the magnitude of the lateral
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Figure 4.4: Flow function, v(·), and its log-magnitude, log(∥v(·)∥2), given by the Baranyi-
Roberts system (4.0.1)-(4.0.2) and the optimized parameters in Table 4.3. In darker color,
the 4 equilibrium points given by the solutions of the nonlinear system (4.1.1)-(4.1.2).
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Figure 4.5: Zoomed-up view of Figure 4.4 in a neighborhood of the interior equilibrium
point x∞ = (0.5820, 0.5366). We can see how it clearly attracts all the points surrounding
the equilibrium point.
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(b) Red Strain comparison.

Figure 4.6: Visual comparison of the sample mean of each Strain data set from Table 4.1
with the mean computed by procedure described in Section 4.4.

colored bar), which means that the variance of the solution increases from

diffusion, probably due to the DCU numerical scheme’s nature.

Predicting or extrapolating the dynamics of complex and highly parameteri-

zable systems with randomness is a very difficult task. In our model setting,

and after the previous validation process, we are interested in predicting the

volumetric density of both strains of bacteria since such future projections

allow us to control the biological culture. In Figures 4.8a and 4.8b, we show

the predictions for Green and Red Strains over the time instants t6 = 1.234,

t7 = 1.466, t8 = 1.839 and t9 = 2.0716 hours. Comparing these figures with

the ones collected in [66, Experiment B], we observe the stochastic model is

able to capture the dynamics of volumetric density for the two strains of bac-

teria. This result has been obtained by only considering randomness in the

initial conditions and adjusting the model parameters r1 and r2.
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(a) Initial time: 0 hours. This function
is the one obtained by the PME, as de-
scribed in Section 4.2.
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(b) Second time instant: nearly 14 min-
utes elapsed.

Joint PDF at time t=0.46503 hours
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(c) Third time instant: nearly 28 min-
utes elapsed.

Joint PDF at time t=0.69753 hours
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(d) Fourth time instant: nearly 42 min-
utes elapsed.

Joint PDF at time t=1.0014 hours
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(e) Fifth time instant: over 1 hour
elapsed.

Figure 4.7: Joint 1-PDF evolution of the solution stochastic process in every time in-
stant given by data from Table 4.1. It can be seen how variance, which is reflected by the
width/height ratio, grows. Take into account that the color bar is not fixed and, therefore,
it re-scales itself at every time instant.
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Figure 4.8: Optimization, as computed in Section 4.4, and prediction of the mean paths
of the solution stochastic process. The available data spans over 2 hours of measurements.

4.6 Conclusion

In this chapter, a procedure to quantify uncertainty in random dynamical sys-

tems has been defined and applied to a biological model. Specifically, we have

used the classical Liouville equation, whose solution at every instant has been

obtained using a finite volume numerical scheme. Using real data from ex-

periments performed in the literature and the Principle of Maximum Entropy,

we have assigned a reliable probability density to the initial condition of the

dynamical system. We have successfully optimized two key model parame-

ters, representing the growth rates of both types of strains of bacteria so that

the mean of the solution stochastic process is as close as possible to the real

sample mean. The optimal values were obtained using the Particle Swarm

Optimization algorithm.
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Publications

The results presented in this thesis chapter have been published in [57]. Re-

garding this chapter, the PhD candidate has contributed by working on its

complete development with more emphasis on the theoretical results and

preparing the visualization of the numerical examples.
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Chapter 5

A GPU-accelerated

Lagrangian particle method

for solving the Liouville

equation

Motivated by the insights from the attempt to devise an efficient Liouville solver

described in the previous chapter, we now present and analyze a numerical ap-

proach to efficiently solve the Liouville equation in the context of RDEs using

GPU computing. Our method combines wavelet compression-based adaptive

mesh refinement, Lagrangian particle methods, and radial basis function in-

terpolation to create a versatile algorithm applicable to multiple dimensions.

We discuss the advantages and limitations of this algorithm. To demonstrate

its effectiveness, we compute the probability density function for some 2D and

3D random ODE systems with applications in physics and epidemiology.
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5.1 Introduction

In Chapter 4, we applied a classical numerical method, an FVM approach, to

study the evolution of the PDF associated to a two-dimensional RDE system.

This example showed the main advantage of the Liouville equation over other

methods discussed in Chapter 2: the possibility to use deterministic numerical

methods to quantify the system’s uncertainty evolution via its PDF. However,

it also showed two limitations that we aim to overcome in this chapter.

The first limitation is widely known in computational physics: grid-based

methods, such as finite difference, finite volume or finite element methods,

introduce artificial diffusion in convection-dominated problems (where there

is a relatively weak diffusion effect in the system). Another limiting factor is

that every degree of freedom in a physical system, that is, every equation in

an RDE system, translates into a spatial dimension of the Liouville equation.

Considering the computational cost and memory requirements needed to solve

PDEs in dimensions higher than 2 with standard grid-based methods, it is

understandable that the use of the equation was reduced only to the theoretical

or academic realm.

However, computer science has taken huge leaps in performance in the last

decades, especially since General Purpose Graphical Processing Units (GPG-

PUs, or simply GPUs) have become available for scientific simulation. Indeed,

GPU-based simulation has become a standard practice in fields such as ma-

chine learning, computational physics, and meteorology, where simulations

can take a huge advantage of their highly parallel architecture and energy ef-

ficiency. Because of the special nature of the Liouville equation, which will be

exploited throughout the current chapter, GPU-based solvers can become a

powerful ally for the efficient use of the Liouville equation in realistic scenarios,

reducing computation times from hours to a few minutes or even seconds.

This chapter is structured as follows: In Section 5.2, we provide a mathemati-

cal discussion of the methods used to design an efficient GPU-based Liouville

equation numerical solver. In Section 5.3, we discuss the details of the compu-

tational setup of each mathematical tool described in Section 5.2. Finally, in
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Section 5.4, we demonstrate the applicability of our Liouville equation numer-

ical solver by applying it to several relevant mathematical models formulated

with random differential equations.

Remark 5.1.1. Throughout this chapter, we will use a different notation, for

clarity. The PDF and the general RDE system will be referred to as

ρt := ρ(t, ·) = ρX(t)(t, ·), vt := v(t, ·),

respectively. Unless specified, we assume both are defined in the RDE system’s

positively invariant set D.

5.2 Methods

In this section, we discuss the mathematical basis used in the design of our

Liouville numerical solver, which is based on 3 main techniques: (1) adaptive

mesh refinement, (2) Radial Basis Function (RBF) interpolation and remesh-

ing, (3) Lagrangian particles and characteristic curves. The first two tech-

niques are discussed in a general setting; in the third subsection, we will also

show how we combine all techniques to form our solver.

5.2.1 Adaptive mesh refinement

The evolution of the PDF of an RDE’s solution can undergo large changes in

its variance throughout the simulation. For example, it may start as a very

narrow function because there is little uncertainty at the system’s initial state.

Likewise, the asymptotic state of the system may be deterministic, so the PDF

will converge to a Dirac delta. Evolving the PDF with enough resolution to

capture those low-variance situations will allow for better accuracy but at

a prohibitive computational cost. In contrast, a lower resolution will give a

faster simulation but lower accuracy, especially in low-variance cases.

Adaptive Mesh Refinement (AMR) delivers the best of both worlds: it allows

to evolve in greater detail only where needed while keeping the global compu-

tational cost as low as possible for faster simulation and lower computational
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memory requirements. There are many possibilities to perform AMR (patch,

block, structured, unstructured, Cartesian, etc. see [88]), but they share the

same philosophy: setting a finer grid where the gradient of the solution is

larger. One possible way to do this, which we have chosen, is the Wavelet-

compression-based AMR in a Cartesian grid [89]. This AMR approach method

allows for a fast, easily parallelizable, and memory-efficient technique for the

use cases of the numerical procedure described in this chapter.

Wavelet transforms are widely used in audio, image, and video compression

[90, 91]. Mathematically, the wavelet transform allows representing square-

integrable functions with an orthonormal L2 basis, whose spanned space form

a set of nested orthogonal spaces:

L2(R) = VL0
⊕WL0

⊕ . . .⊕WL, Wl ⊂Wl+1,

where VL0
is the approximation space at level L0, whose base we denote by

fL0 , and the collection of nested subspaces {Wl}Ll=L0
are the detail spaces.

Each Wl is generated by dilation and translation of a wavelet function g; that

is

glk(x) = 2l/2 g(2lx− k), ∀x ∈ R, (5.2.1)

and {glk}j form an L2(R)-orthonormal basis of Wl.

When applied to AMR, some remarks must be made. In one dimension, we

have one grid point associated with the wavelet function (detail coefficient)

and one with the scaling function (approximation coefficient), which will be-

come the detail coefficient at the next coarser level. In higher dimensions, we

will have 2d − 1 grid points associated with detail coefficients and one with

the approximation coefficient. At the next coarser level, 2d − 1 points associ-

ated with approximation coefficients will be associated with detail coefficients.

Therefore, we will refer to detail points at level l when referring to points as-

sociated with a detail coefficient at the refinement level l. We use the tensor

product of one-dimensional wavelets to handle the multidimensional case.

We can now write out the wavelet compression refinement procedure rigor-

ously. Let u : Rd → R be the function to be compressed. Let {ui := u(xi)}2dLi=1
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be a vector comprised of the finest discretization of u at level L; that is, u

evaluated at the equispaced grid G := {xi}2dLi=1. Then, we can represent each

point as:

ui =
2dL0∑
k=1

akf
L0

k (xi) +
L∑

l=L0+1

2dl∑
k=1

2d−1∑
µ=1

dl,µk gl,µk (xi). (5.2.2)

We will only advect the particles where the corresponding detail coefficient is

above a pre-established threshold ε > 0; that is, we will obtain the character-

istic curves defined by the solution to (5.2.9) at all points in GA :=
⋃L

l=L0+1 Gl,

where

Gl := {xi ∈ G : xi ∈ supp(gl, µk ), |dl, µk | ≥ ε, k = 1, . . . , 2dl, µ = 1, . . . , 2d−1}.

Fig. 5.1 shows the scheme of a wavelet cube in 3D; however, we can also

see the structure in lower dimensions. In 1D, the wavelet transform would

consist of the vertices {ak, dl,1k }. In 2D, the wavelet transform would have

{ak, dl,1k , d
l,2
k , d

l,3
k }. Note that the nodes that form a certain refinement level

are every other node from the previous, finer level. The nodes that do not pass

to the next refinement level are associated with detail coefficients; that is, the

nodes that belong to Gl are a subset of those not considered in the following

coarser level.

5.2.2 RBF interpolation and remeshing

One of the main strengths of Lagrangian methods is that they are meshless

methods; particles are not explicitly required to be set on a grid. However, as

explained in [92, 93], it is advisable to use an underlying mesh because it can

greatly improve the simulation’s quality. This implies performing ”scattered”

data interpolation because of the irregular particle spatial distribution after

the AMR step. Many kinds of interpolation techniques exist for scattered

data in multiple dimensions; we have based our interpolation procedure on

Wendland’s Compactly Supported Radial Basis Functions (CS-RBF, see [94,

95] for the definition and some comments on the advantages of this approach).
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ak

dl,4k

dl,6k

dl,2k
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dl,5k

dl,7k

Figure 5.1: Illustrative scheme on the location of approximation/detail coefficients for a
3D wavelet transform. Compare with Eq. (5.2.2).

Let X := {xi}Ni=1 ⊂ D ⊆ Rd be a set of points and u = (ui := u(xi))Ni=1 the

values of a given function u : D → R at the aforementioned locations. CS-

RBF interpolation consists of a function su,X defined by the linear combination

of a compactly supported, radially symmetric kernel, which we denote σ :

[0,∞) → [0,∞), centered at each particle location xi, and a set of weights

Λ = (λ1, . . . , λN) such that

u(x) ≃ su,X (x) :=
N∑

k=1

σ

(
∥x− xk∥

r

)
λk = σ(x)Λ, (5.2.3)

where r is the support radius of the RBF kernel and

su,X (x
i) = σ(xi)Λ = ui, ∀ i = 1, . . . , N.
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In matrix terms, this last condition amounts to solving the following linear

system


σ(x1)

σ(x2)
...

σ(xN)

Λ =


σ
(

∥x1−x1∥
r

)
σ
(

∥x1−x2∥
r

)
. . . σ

(
∥x1−xN∥

r

)
σ
(

∥x2−x1∥
r

)
σ
(

∥x2−x2∥
r

)
. . . σ

(
∥x2−xN∥

r

)
...

...
. . .

...

σ
(

∥xN−x1∥
r

)
σ
(

∥xN−x2∥
r

)
. . . σ

(
∥xN−xN∥

r

)


︸ ︷︷ ︸

=:Aσ


λ1

λ2

...

λN

 =


u1

u2

...

uN

 .

(5.2.4)

This matrix has very desirable properties for our purposes. For example,

it is symmetric. Also, using any of the functions defined in Iske [94, Table

3.2] returns a positive definite interpolation matrix, guaranteeing that the

interpolation problem is well-posed and allowing the use of efficient iterative

methods such as the conjugate gradient method. Furthermore, since the RBF

kernels are compactly supported, the interpolation matrix will be sparse, which

will be helpful when the number of particles is large.

Despite the versatility of this kind of interpolation scheme in a high-dimensional

space, there are some drawbacks. The main issue is that the kernel support

radius r must be chosen a priori. Specifically, the condition number of the

interpolation matrix and its error are given by the following relations (see

[96]):

cond2(Aσ) ≤ Cq−d−2k−1
X , qX := min{∥xi − xj∥2 : i ̸= j}, (5.2.5)

∥u− su,X∥L∞(D) ≤ C(u)ηk+1/2, η = sup

{
min

i∈{1,...,N}
∥x− xi∥ : x ∈ D

}
,

(5.2.6)

d denotes the spatial dimension, and k is related to the smoothness of the

interpolation kernel. Also, η, which is the covering density of the points with

respect to the domain D. On the one hand, the accuracy bound (5.2.6) is

determined by the covering density of the points in space; obviously, more

points covering the domain will result in a more accurate interpolation. On

the other hand, the matrix condition relation (5.2.5) shows that particles being
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very close to each other, will negatively affect the condition of the interpolation

matrix, resulting in numerical instabilities and deteriorated convergence.

A crucial goal for our purposes is to have a fast and accurate interpolation

scheme, which means trying to find a balance between the matrix condition

number and the interpolation accuracy. Therefore, we must balance the num-

ber (and closeness) of RBFs and their support radius. Choosing a small radius

will help in iteration speed when solving the linear system (5.2.4); in this case,

any given particle affects a small number of neighboring particles. Unfortu-

nately, having a small radius could result in a bed-of-nails interpolant (see

Fig. 5.2). Contrarily, a very big radius will negatively affect iteration speed

and matrix condition number (see also [97, Pg. 6]). Although there is no

definite choice of optimal RBF radius, taking ∼ 5h as a starting RBF radius

is recommended, subject to further adjustments (see [94]).

Figure 5.2: RBF interpolation in two cases: (left) small radius, also called bed-of-nails
interpolant and (right) large radius. Image taken from [98].

RBFs can also be very useful for remeshing a function whose values are known

at scattered points in a domain. Indeed, if we know the RBF weights of such a

function (Λ in (5.2.3)), we can represent a function at a grid (regular or not).

One must find the distance between the grid nodes, denoted by {xi
Grid}NG

i=1, and

the advected particles and multiply the interpolation matrix with the weight
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vector Λ. Mathematically,
σ
(

∥x1
Grid−x1∥

r

)
σ
(

∥x1
Grid−x2∥

r

)
. . . σ

(
∥x1

Grid−xN∥
r

)
σ
(

∥x2
Grid−x1∥

r

)
σ
(

∥x2
Grid−x2∥

r

)
. . . σ

(
∥x2

Grid−xN∥
r

)
...

...
. . .

...

σ
(

∥xNG
Grid−x1∥

r

)
σ
(

∥xNG
Grid−x2∥

r

)
. . . σ

(
∥xNG

Grid−xN∥
r

)




λ∗
1

λ∗
2

...

λ∗
N

 =


u1

u2

...

uNG

 ,
(5.2.7)

where NG denotes the number of nodes at the underlying regular grid.

5.2.3 Lagrangian methods and characteristic curves

Lagrangian methods refer to a family of numerical methods for solving PDEs

that consider the solution field as a family of particles evolved through time

in an invariant domain of the ODE, which corresponds to the spatial domain

of the PDE [99]. The equations that govern the evolution of each particle are

known as characteristic equations, and their solutions are called characteristic

curves [47, Sec. 3.2]. Lagrangian methods focus on each particle’s position

and its value rather than the information that a given position in space may

give of the solution, which is the nature of so-called Eulerian methods [100,

101]. We now list some pros of the characteristic equation approach:

• Particle methods do not add artificial numerical dissipation (see [57, 102,

103]).

• They are easily parallelizable, computationally speaking.

• Contrarily to grid-based methods such as Finite Differences, Finite Vol-

umes, and Finite Elements, particle methods do not have a grid-size-

forced CFL time step limit. This allows performing simulations with a

lower number of time-steps, thus reducing the time needed for simula-

tion and the computational burden. Instead, the time step limitation is

determined by the accuracy of the numerical integrator used to obtain

the characteristic curves and the interpolation scheme used to re-mesh

particles onto the underlying grid. For example, for RBF interpolation,

the limitation is set by the property that the basis functions should over-

lap (see [89, 104]). For example, if the dynamics are very complex or
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separate particles rapidly, we will have to re-interpolate more frequently,

thus limiting the time step used for the numerical integrator.

• The spatial dimension does not explicitly determine the computational

complexity of the particle approach; instead, it is given by the number of

particles and the re-interpolation step, (although the interpolation step

does depend on the phase space dimension, there are efficient interpola-

tion schemes, such as RBFs).

Now, let us detail what was first exposed in Chapter 2 about the character-

istic curves and characteristic equations. Mathematically, if we denote the

characteristic curve at time t, starting at (t0, x
0) by Φ(t) := Φ(t ; t0, x

0), then

Lagrangian methods study the dynamic behavior of ρt(Φ(t)). If we take the

time derivative of the composed function, the chain rule gives

d

dt
ρt(Φ(t)) = ∂tρt(Φ(t)) +∇xρt(Φ(t)) ·

dΦ

dt
(t) = L(t,x, ρt, . . .), (5.2.8)

where the terms dΦ
dt
(t) and L will vary depending on the specific problem.

Some well-known examples are the Boltzmann, Navier-Stokes equations and

other general conservation laws. Equation (5.2.8) shows that the Lagrangian

approach transforms a PDE into a family of systems of ODEs. Comparing

the Liouville equation (2.2.3), and (5.2.8), we can identify the corresponding

terms, yielding the following system of characteristic equations:

d

dt
ϕ1(t) = (v1)t(Φ(t)), ϕ1(0) = x0

1,

...
d

dt
ϕd(t) = (vd)t(Φ(t)), ϕd(0) = x0

d,

d

dt
ρt(Φ(t)) = −ρt(Φ(t))∇x · vt(Φ(t)), ρ0(Φ(0)) = f0(Φ

0),

(5.2.9)

where x0 = (x0
1, . . . , x

0
d) is a point in D, which represents the initial position

of the particle to be simulated and vt = ((v1)t, . . . , (vd)t) is the vector field

from (2.2.3). Accordingly, the first d equations define the time evolution of
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the particle, whereas the last equation in (5.2.9) defines the evolution of the

PDF value of the considered particle.

This system of ODEs is easily solvable by numerical methods such as the well-

known 4th order Runge Kutta integrator [105]. However, note that we can

solve the last equation exactly:

ρt(Φ(t ; t0, x
0)) = ρ0(x

0) exp

(
−
∫ t

t0

∇x · vs(Φ(s;x
0))ds

)
. (5.2.10)

And in terms of the inverse flow function Ψ1 we may rewrite (5.2.10) as

ρt(x) = ρ0(Ψ(t ;x)) exp

(
−
∫ t

t0

∇x · vs(Φ(s ; Ψ(t ;x)))ds

)
. (5.2.11)

The Liouville Equation (2.2.3) is a quasi-linear PDE, which means that the

superposition principle applies: if every element of a family of functions ap-

proximates the Liouville equation, then any finite linear combination of these

functions will also approximate the equation. Let us consider a set of N par-

ticles {xk}Nk=1, also r > 0, and let us represent the PDF we search for in the

following way:

ρt(x) ≃
N∑

k=1

λk
t σ

(
∥x− Φ(t;xk)∥

r

)
︸ ︷︷ ︸

ζk
t (x)

=: sNt (x). (5.2.12)

Clearly, the ζkt functions do not satisfy the Liouville equation in general (in

fact, only when ∇x · vt is constant). From (5.2.10), we have that ζkt satisfies

1Recall from Chapter 2 that this a differentiable function such that: Ψ(t0) = Φ(t) = x and
Ψ(t) = x0, with Ψ(s ; x) = Φ(t− s+ t0 ; t0,x0), where Φ(t) is the forward flow of the system.
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the Liouville equation along the characteristics Φ(t;xk) if and only if

λk
t

=const.︷ ︸︸ ︷
σ

(
∥Φ(t;xk)− Φ(t;xk)∥

r

)
=λk

0

=const.︷ ︸︸ ︷
σ

(
∥xk − xk∥

r

)
×

exp

(
−
∫ t

0

∇x · vs(Φ(s;x
k))ds

)
⇐⇒

λk
t =λk

0 exp

(
−
∫ t

0

∇x · vs(Φ(s;x
k))ds

)
.

Therefore, defining each λk
t in this way allows us to track the evolution of ρt

using the values of ζkt (Φ(t;x
k)), as will be detailed in Section 5.3. Some notes

about the accuracy of this method will be given in Remark 5.2.1.

By trivial evaluation and substitutions using the information from Eq. (5.2.11),

and Eq. (5.2.12) for t = 0 (RBF interpolation of the initial condition), we can

get a pointwise error function between the exact solution and the RBF approx-

imation ignoring integrator error for both Φ and Ψ. This is also reasonable

because we do not consider the implementation of Ψ in our numerical method.

Therefore, this function allows for qualitative information about the method’s

behavior. Consider z ∈ D, then
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|ρt(z)− sNt (z)| ≤

exp

{
−
∫ t

0

∇x · vs(Φ(s; Ψ(t; z)))ds

}
×∣∣∣∣∣∣ρ0(Ψ(t; z))−

∑
x∈{xk}N

k=1

λx
0σ

(
∥Ψ(t; z)− x∥

r

)∣∣∣∣∣∣ (5.2.13)

+ exp

{
−
∫ t

0

∇x · vs(Φ(s; Ψ(t; z)))ds

}
×∑

x∈{xk}N
k=1

|λx
0 |
∣∣∣∣σ(∥Ψ(t; z)− x∥

r

)
− σ

(
∥z− Φ(t;x)∥

r

)∣∣∣∣ (5.2.14)

+
∑

x∈{xk}N
k=1

|λx
0 |σ

(
∥z− Φ(t;x)∥

r

)
×

∣∣∣∣exp{− ∫ t

0

∇x · vs(Φ(s;x))ds

}
− exp

{
−
∫ t

0

∇x · vs(Φ(s; Ψ(t, z)))ds

}∣∣∣∣ .
(5.2.15)

This error function shows three error sources in the RBF approach. The first

one, Eq. (5.2.13), accounts for the interpolation error at the initial condition;

that is, the error introduced by Eq. (5.2.12) at t = 0, which we use for forward-

in-time advection. The second part, seen in Eq. (5.2.14) accounts for particle

displacement rate between 0 and t, which affects the RBF particle coverage.

Finally, the third error, in Eq. (5.2.15), shows the dependency on the diver-

gence of the system, ∇x·vt. Because of the complexity of the error function, we

can only analyze simple, specific cases such as ∇x ·vt = K, ∀t ≥ t0 everywhere

in D for some constant K. If K = 0, both Eq. (5.2.14) and Eq. (5.2.15) disap-

pear. In this case, the interpolation procedure is the only error source. Also,

if K ̸= 0, only the last term Eq. (5.2.15) disappears since particle distances

will vary with constant rate in space and time.

Solving a system of ODEs is (usually) computationally faster than solving

full PDEs. However, to use the characteristic equation approach, we must

decide what initial points {xj}j, with their corresponding values {ρt0(xj)}j,
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Chapter 5. A GPU-accelerated Lagrangian particle method for solving the Liouville equation

will evolve. The AMR procedure determines this part: From the initial PDF

ρt0 , the AMR determines the most relevant points in the PDF domain and

their respective values. These points are now considered particles that will

evolve over a certain time according to the system of characteristic equations.

Now, to approximate the evolution of ρt we will consider the value at the

center of each ζjt ; that is, ζjt (Φ(t;x
j)) = λj

t . Finally, we reinitialize the PDF

ρt following Eq. (5.2.7), although we will give a note on that later.

Remark 5.2.1. Knowledge about how the numerical integrator’s time step

affects the RBF particle coverage (as seen in Figure 5.2) is crucial for a correct

simulation. The evolution of the initial PDF could become useless if particles

become too separated or too close to each other.

Consider particles xi
0, x

j
0 with the initial distance between them r0 = ∥xi

0−xj
0∥.

Let us compute some bounds of the separation between them as a function

of time. At time t, we denote the squared distance between them as αt =∥∥∥xi
t − xj

t

∥∥∥2, where xk
t := Φ(t; t0,x

k). Since we assume that both particles are

under the effect of the same vector field, the time derivative of αt gives:

∂tαt = 2
〈
vt(x

i
t)− vt(x

j
t),x

i
t − xj

t

〉
⇒ −2K(vt)αt ≤ ∂tαt ≤ 2K(vt)αt,

(5.2.16)

where K(vt) := supD×[0,t] ∥Dt∥2, and Dt is the Jacobian matrix of the vector

field vt. Assuming K(vt) < ∞ for all t and using Gronwall’s inequality, we

obtain:

r20 exp (−2K(vt)t) ≤ αt ≤ r20 exp (2K(vt)t). (5.2.17)

Now, (5.2.17) gives bounds on the squared distance. If we want our particles

to have a bounded separation rmin < r0 < rmax, solving for t we will give us
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bounds on the time step length to do so:

αt ≤ r20 exp (2K(vt)t) < r2max −→

0 ≤ t1 <
1

2K(vt)
log

(
r2max

r20

)
=

1

K(vt)
log

(
rmax

r0

)
. (5.2.18)

αt ≥ r20 exp (−2K(vt)t) > r2min −→

0 ≤ t2 < − 1

2K(vt)
log

(
r2min

r20

)
= − 1

K(vt)
log

(
rmin

r0

)
. (5.2.19)

Finally, we choose the maximum time step as min{t1, t2}. The next section

will explain how this idea can be used for a better simulation (see also [89]).

We will give more details about the choice of the time step in Section 5.4

devoted to examples.

This section was explained assuming a deterministic vector field because the

case of the random vector field amounts to solving the case of the deterministic

vector field for several parameter realizations as shown in Equation (2.2.9).

Indeed, recall that in Chapter 2, we showed that when we consider a vector field

subject to random parameters, we have to solve a family of Liouville equations

that return the conditional PDF of X(t, ω), subject to the deterministic vector

field vt(x ; a), for a set of realizations a of the parameter random vector A.

Therefore, to obtain the PDF of X(t) independently of the realizations of A,

we used the law of total probability:

ρt(x) =

∫
Rm

ρt(x |a)fA(a)da = EA[ρt(x |A)]. (5.2.20)

For the computational approximation of this expectation operator, we consider

the following approach:

ρt(x) = EA[ρt(x |A)] ≃
∑NA

i=1 ρt(x |ai)fA(a
i)∑NA

i=1 fA(a
i)

, (5.2.21)
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where the approximation is obtained by considering the following discretiza-

tion of the parameter vector’s joint PDF:

fA ≃
NA∑
i=1

fA(a
i)∑NA

k=1 fA(a
k)
δai ,

where δai is the Dirac delta measure centered at ai.

5.3 Complete scheme and computational approach

This section will show how all the concepts and techniques seen in Section

5.2 will be used to compute the time evolution of the PDF of the solution to

a system of RDEs. We will see how we have extended these concepts to the

complete case (random vector field) and exploited GPUs’ parallelism to tackle

the complete problem. Fig. 5.3 shows the full procedure in a single iteration

of the numerical method. We will explain each step in full detail.

As stated in the abstract and introduction sections, our numerical approach

benefits from massively parallel computational architectures. SIMT (Single

Instruction, Multiple Thread) is a computational model that allows for paral-

lel execution of the same instructions across multiple threads. Modern GPUs

commonly use it to handle highly parallel workloads efficiently, such as matrix

multiplication or particle simulations [106]. Fig. 5.4 shows a diagram com-

paring the architecture of a GPU and a CPU. Although a detailed analysis

between them is far more complicated than depicted in Fig. 5.3, we can see

that GPUs possess massive parallel computing capabilities.

GPU memory is distributed in several levels and types. In this implemen-

tation, we have used two: global memory and registers. On the one hand,

global memory is where we store the information that any of the GPU threads

can access (GPU DRAM in Fig. 5.4). This memory is moderately large (sev-

eral GBs in modern GPUs) but has a high access latency; that is, reading

values from global memory takes a noticeable amount of time. On the other

hand, registers are thread-private variables that have a very low access latency.
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Optimal weights

Optimal weights
Sample 1

Optimal weights
Sample 2

Optimal weights
Sample N

Relevant particles

AMR RBF
Interpolation

Initial PDF at grid

CPU to GPU

Parameter samples

ODE integrate
+ Remesh

ODE integrate
+ Remesh

ODE integrate
+ Remesh

Final PDF at grid

GPU

Update
Bounding

Box

GPU to CPU

New iteration

Storage vector Accumulate every iteration

Figure 5.3: Flow chart for each iteration in the numerical method for the Liouville equation.
The flow starts in Initial PDF at grid (bottom left), and ends at Final PDF at grid.
Although Parameter samples appears as initialized in the GPU, it is actually created in the
CPU and transferred to the GPU before the simulation’s beginning. Also, Storage vector

is separated from the main flow because this step is done concurrently (while the simulation
is running).
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However, this type of memory can only be accessed by the thread perform-

ing the computation, and the total capacity of registers is usually quite low

(Purple rectangles/L1 Cache in Fig. 5.4). In short, to achieve efficient im-

plementation, we must minimize access to the global memory and maximize

intra-thread operations using registers.

Figure 5.4: Comparison of the architecture of a CPU and a GPU. The cores (single green
rectangles) are responsible for computations, and each core can make computations in par-
allel. Modern GPUs have thousands (or even tens of thousands) of cores. The DRAM in
the GPU is also called VRAM (Video RAM) to make a distinction with the CPU DRAM.
Image taken from [107].

5.3.1 Adaptive mesh refinement: finding the relevant particles

As explained in Subsection 5.2.3, the main building stone of our computa-

tional procedure is the system of characteristic equations associated with the

Liouville equation. Specifically, we have seen that we can obtain the solution

by solving this ODE system for many points in phase space. Now, the choice

of the specific particles for which we will solve this system will be chosen by

the AMR procedure.

We only use wavelet compression to find the areas with higher gradients; no

reconstruction is considered. Therefore, we have used the simplest of wavelets:

86



5.3 Complete scheme and computational approach

the Haar wavelet defined as follows:

g(x) :=


1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x < 1,

0, otherwise.

(5.3.1)

This wavelet is not commonly used because there are entire families of wavelets

(Daubechies, for example) of a higher order that allows for much better com-

pression and decompression of signals (see [85, Sec.42.3] for a detailed discus-

sion). However, we are not interested in obtaining the optimal compression

of the signal, but in finding grid nodes where there is a considerable gradient

of the PDF surface; therefore, we can use this very fast wavelet transform

together with the translation and dilation equation (5.2.1). The idea that this

wavelet is enough for our purposes has been checked heuristically on several

examples in multiple dimensions.

Although computing the discrete wavelet transform with the Haar wavelet is

fast, the procedure does not scale well with dimensionality. In fact, the number

of computations is O(Nd
Mesh), where NMesh is the number of mesh nodes per

dimension at the finest level2. Regarding memory usage, this method requires

two Nd
Mesh-size arrays: one for storing the mesh indices and the other for

storing the decision variable (whether the node is considered relevant or not).

In an attempt to dampen the computational burden, at each iteration, we store

the bounding box of the advected particles, which is a fair approximation of

the support region of the PDF. Then, we compute the wavelet transform in

this smaller domain at the next iteration. Afterward, we divide the bounding

box into blocks with 2d points per block. We assign each block to a GPU

thread to compute a d-dimensional tensor wavelet transform (see Fig. 5.5).

After computing the wavelet transform, each thread will pass over each of the

assigned grid nodes of its block and will activate each detail-associated node

with a value greater than the prescribed threshold (see Fig. 5.1). This is

done recursively, from the finest discretization level up to the coarsest level,

2Actually, one may obtain the exact number of computations: 2d(L−L0−1)−1

2d(L−L0−1)(2d−1)
Nd

Mesh, where L

is the finest level, and L0 is the coarsest level.
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as shown in Section 5.2.1. Finally, we collect the most relevant points for the

particle’s advection, denoted by GA. In most practical applications for AMR,

we take ε ∈ [10−5, 5 · 10−3].

To collect the most relevant nodes, we do two operations. The first one consists

in counting the number of relevant nodes. Since they are stored as binary

integers (1 or 0), summing the elements of the decision array gives #GA. This is

done via a parallel reduce operation whose time complexity is O(N/NThreads+

log(NThreads)), where N is the number of elements, and NThreads is the number

of threads in which we parallelize the computation. The second part is sorting

the nodes by setting the selected nodes’ indices first. This part has a time

complexity of O(N). Finally, we keep the first #GA elements of the index

array.

6 7 8

3 4 5

0 1 2

0

2

8

Wavelet transf.

Wavelet transf.

Wavelet transf.

Threshold check 0

Threshold check

Threshold check

2

8

GPU to GPU

GPU

Relevant
nodes

Figure 5.5: This flowchart shows the AMR procedure in a 2-dimensional, 16-node mesh
for a 1-level refinement. Bigger nodes are the approximation nodes; smaller ones are the
detail nodes. Circled nodes are the relevant ones. For more levels, we do the procedure in
the GPU for all desired levels, and then we collect the relevant nodes in GPU memory.

5.3.2 Interpolation: finding the weight of each particle

Now, once we have built the set of relevant nodes GA from the AMR procedure,

we want to initialize the RBF weights to evolve them according to what is

shown in the Subsection 5.2.3. This part is fairly straightforward: we have

the relevant points {xi}NP

i=1 = GA and the PDF values at those points {ρit =
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ρt(x
t)}NP

i=1. We have to find Λt = (λ1
t , . . . , λ

NP
t ) such that


σ(x1)

σ(x2)
...

σ(xNP )

Λ =


σ
(

∥x1−x1∥
r

)
σ
(

∥x1−x2∥
r

)
. . . σ

(
∥x1−xN∥

r

)
σ
(

∥x2−x1∥
r

)
σ
(

∥x2−x2∥
r

)
. . . σ

(
∥x2−xN∥

r

)
...

...
. . .

...

σ
(

∥xN−x1∥
r

)
σ
(

∥xN−x2∥
r

)
. . . σ

(
∥xN−xN∥

r

)


︸ ︷︷ ︸

=:Aσ


λ1
t

λ2
t

...

λNP
t

 =


ρ1t
ρ2t
...

ρNP
t

 .

On the computational side, this part consists of two steps. The first one

consists of performing fixed-radius nearest neighbors to find particle-to-particle

distances. The second one consists of iteratively solving the linear system.

Both procedures can be very time and resource-intensive if not done properly.

To do so, we assign a particle to each GPU thread, which then checks the

distance between that particle and all the other particles. This algorithm has

a very bad asymptotic limit of O(N2
P/NThreads); however, since no trees or new

arrays are involved, this algorithm is the fastest and the most memory-efficient

in all tested cases.

As for memory usage, at this step we create two NP · NMax.Neighbors-sized ar-

rays, one for storing the indices of the nearby particles and one for storing the

particle-to-particle distances. NMax.Neighbors is the maximum number of neigh-

bors each particle can have, which is trivially given by the radius of the RBF

kernel chosen: NMax.Neighbors = (2[RRBF/h] + 1)d, where h is the discretization

length (assumed equal in all dimensions).

Finally, regarding the system solution, we mentioned in Subsection 5.2.2 that

the interpolation matrix is sparse, symmetric, and positive definite. Therefore,

we can use the conjugate gradient method with COO-style indexing. This

indexing method is directly obtained from the neighbor search procedure, thus

resulting in a very fast step.
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5.3.3 Particle advection: evolving the relevant particles

Let us recall that when the vector field vt depends on some random parameter

A(ω), the joint PDF of the solution is given by the law of total probability, as

seen in Equation (2.2.9). Writing this integral as an expectation shows that

we can solve the Liouville equation repeatedly for several realizations of the

vector field’s parameters and then compute its expectation according to the

parameters’ random vector joint PDF. Although this may sound straightfor-

ward, a naive implementation could leave many GPU threads idle, wasting

significant computational resources and making the simulation much slower.

Going deeper into the previous paragraph, we have to integrate the character-

istics of the same particles for every realization of a set of samples from the

vector field’s parameters. To do so, we can concatenate the particles assigned

for each vector field parameters’ realization and evolve all of them at once,

using the full massive parallelization capability of GPUs. That is, we consider

the a finite number of realizations {ai}NA

i=1 of the random parameter vector A3,

then the array of particles to be advected is:

{zi}NANP

i=1 = {
NANP︷ ︸︸ ︷

x1, . . . ,xNP︸ ︷︷ ︸
NP

,x1, . . . ,xNP , . . . ,x1, . . . ,xNP }, {xj}NP

j=1 = GA.

The first NP points, {zi}NP

i=1, will be evolved/updated using the vector field

with the realization a1; the next NP points, {zi}2NP

i=NP+1 will be evolved using

a2 and so on. This step requires solving (numerically) the system of char-

acteristic equations (5.2.9), whose updated values we define by {qi}NANP

i=1 :=

{Φ(∆t; zi)}NANP

i=1 . The time complexity of this step is O(NP/NThreads), where

NP is the number of particles to advect. The error bound depends on the

specific numerical integrator used. Regarding memory usage, no new arrays

are created because the particle advections are done in-place.

3In the examples used in this chapter, we consider {ai}NA
i=1 = {ai1}

NA1
i=1 ⊗ {ai2}

NA2
i=1 ⊗ · · · ⊗

{aiM}
NAM
i=1 , where NA = NA1

NA2
· · ·NAM

, and each {aik}
NAk
i=1 is an equidistant partition of the

domain of Ak.
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Depending on the nature of the problem at hand, different families of nu-

merical integrators can be used for obtaining {qk}NPNA

k=1 , each one shining in

specific applications. For example, there are general numerical methods such

as Runge–Kutta methods (e.g., the Runge–Kutta [105] method of order 4 used

for numerical experiments in this work) that allow obtaining fairly good ap-

proximations for generic systems; numerical integrators that are designed for

stiff ODEs where explicit Runge–Kutta methods may fail; symplectic integra-

tors for Hamiltonian systems, known as symplectic integrators, that preserve

physical constants such as mechanical energy (see, e.g. [108–110]), etc.

In order to obtain the updated RBF weights {λj
∆t}NPNA

j=1 , we use the simple

Simpson’s rule. To get the midpoint value, we use Hermite interpolation.

Our approach uses only one memory transfer from RAM to VRAM (see Fig.

5.4), optimizing the available GPU memory bandwidth. Furthermore, the

CUDA kernel written for this purpose only uploads a grid node and its corre-

sponding PDF value from global memory. All other auxiliary variables for the

numerical integrator particle update are thread-private registers, allowing fast

read/write operations. Finally, the particle position and value are rewritten

in the global memory. This approach allows each thread to update its posi-

tion in its reserved memory location, eliminating any possible race condition

between threads (two threads trying to access the same memory address) and

the need to use shared memory or repeated access to higher-latency global

memory [106].

5.3.4 Reinitialization: projecting particles onto the grid

After the evolution of the AMR-chosen particles has been completed, we re-

interpolate the particles back onto the starting grid. As discussed earlier, this

consists of a simple sparse matrix-vector multiplication. Let {yk}NG

k=1 be the
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grid nodes. Then, the updated PDF at each node will finally be given by:

ρ∆t(yk) = EA[ρ∆t(yk |A)] ≃ 1∑NA

i=1 fA(a
i)

(
NA∑
i=1

fA(a
i)ρ∆t(yk |ai)

)

≃
NA∑
i=1

fA(a
i)∑NA

l=1 fA(a
l)︸ ︷︷ ︸

:=wi

(
NP∑
j=1

σ

(∥yk − qj+NP (i−1)∥
r

)
λ
j+NP (i−1)
∆t

)
.

(5.3.2)

Joining the computation for all the grid nodes, we have the following proce-

dure: 
ρ∆t(y1)

ρ∆t(y2)
...

ρ∆t(yNG
)

 =


σ(y1)

σ(y2)
...

σ(yNG
)




(λj
∆t)

NP

j=1w1

(λj+NP

∆t )2NP

j=NP
w2

...

(λ
j+NP (NA−1)
∆t )NP

j=1wNA

 .

Observe that this part also includes a point search: we have to either find

all the grid nodes within r distance from each advected particle or find all

the advected particles within the same distance r from a fixed grid node.

Following the latter idea, as in the point search at the interpolation step,

would be a mistake because now we will have many more particles, and an

exhaustive search approach would take too much time. However, following the

first idea gives an easy way to find the nearest grid nodes with respect to a

given advected particle.

Indeed, we know the finest grid discretization length h and the bottom corners

of our computational domain. Therefore, for each particle qj ∈ {qk}NP NA

k=1 , we

can find the index of the nearest grid node just by dividing each dimensional

component of vi with h and then summing each index accordingly. Once we

have its nearest grid node, we can easily know all the grid nodes within R

distance from the particle vi without having to do any kind of point search,

resulting in a very fast procedure.
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Regarding the computational aspects, we assign each qj ∈ {qk}NP NA

k=1 to a

GPU thread. We only call qj and the relative weight wi ∈ {wk}NA

k=1 from

global memory. We then divide the components, add them correspondingly

to find the nearest grid node’s index, and write the relative chapter of qj to

the corresponding grid node as in (5.3.2). This multiplication is relatively

lightweight, computationally speaking. As a downside to this approach, we

have to introduce the chapter of each particle to each node’s memory address

via atomic functions; that is, maybe there is more than one thread trying to

write a value at a certain grid node, but this can only be done by serializing

the memory access which will degrade the performance of the GPU kernel.

However, we have seen experimentally that this does not happen so often;

therefore, the performance is not degraded as much as it might look.

With regard to time complexity, it is O(NP (2[RRBF/h] + 1)d/NThreads), where

[·] is the rounding function and RRBF is the radius of the chosen RBFs. How-

ever, note that the atomic-adding step could slightly degrade performance.

Regarding memory usage, no new arrays are created because the results are

written back onto the original array containing the values of the PDF on the

fine grid.

5.4 Numerical examples

This section is devoted to showcasing the performance of the numerical method

with respect to RDE versions of several relevant mathematical models appear-

ing in physics and epidemiology:

• The simple harmonic oscillator, a 2D linear model whose PDF can be

obtained exactly. So, it is presented as a test example;

• The Van der Pol oscillator, a 2D model from physics with nonlinearity;

• The Mathieu equation, a similar 2D nonlinear model from physics ex-

hibiting parametric resonance phenomena;

• The SIR model, a 3D nonlinear model from epidemiology.
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In the numerical experiments, we contrast the results of the proposed Liouville

equation solver with Monte Carlo simulations. For these problems, we use

different types of integrators to demonstrate that the algorithm is integrator-

agnostic. However, we do not aim to compare different types of numerical

integrators for a specific problem because —when considering the solution per

trajectory— the relation between the classes of integrators is well-researched

[109, 110]. Nonetheless, to limit the scope of this work, we use ODE integrators

that are CUDA-friendly, that is, methods which do not require nonlinear

solvers.

Also, regarding the specific choice of RBF used, we use the Wendland function

ϕ3,1(r) = max(1 − r, 0)4(4r + 1) ∈ C2([0, 1]) in all cases. This function is the

first smooth CS-RBF for dimensions 2 and 3 (see [94, Tab. 3.2]). Since each

problem has different dynamics, we do not want to force any extra smoothness.

Also, if the RBF centers become too close to each other in a given system, the

using a smoother RBF could negatively impact the matrix condition number

(see Equation (5.2.5)).

All computations were performed in a desktop PC with 40GB of DDR4 RAM,

an i9-10900K CPU and an RTX4000 (8GB) GPU. The source code is written

in C++ and CUDA and is freely available for download ([111, Version 4.0.0]).

The compiler used is NVCC 12.2 for the CUDA code. In all cases, the op-

erating system is Windows 10 Pro; however, it can also be built and run on

Linux. Monte Carlo simulations are carried out using Julia 1.10.3 with the

OrdinaryDiffEq.jl 6.78.0 [112], and the density plots are obtained using the

kernel smoothing functions of StatsPlots.jl 0.15.7.

5.4.1 Harmonic oscillator: error analysis

Oscillator models are fundamental in science and engineering, representing

various periodic motions in natural and artificial systems. The simple har-

monic oscillator, characterized by constant amplitude and frequency, serves as

the foundational model for such analyses. Though dynamically simple, it is

of interest for its closed-form solution to the Liouville equation (denoted by
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ρREF
t ), providing a benchmark for comparing the joint PDFs computed by our

Liouville solver (denoted by ρt).

We consider the following form of the harmonic oscillator with random initial

conditions but deterministic frequency [12]:

Ẍ(t, ω) = −ν2X(t), X(0, ·) = X0 ∈ L2(Ω,P), Ẋ(0, ·) = Ẋ0 ∈ L2(Ω,P),
(5.4.1)

where ν is known as the angular frequency of the system, which we consider

to be a deterministic value, and the initial conditions for position and velocity

(X0, Ẋ0, respectively) are random variables with finite variance.

The related Liouville IBVP is the following:

∂tρt(x1, x2) + x2∂x1
ρt(x)− ν2x1 ∂x2

ρt(x) = 0, (t, x1, x2) ∈ (t0, tF )×D,
(5.4.2)

ρ0(x1, x2) = f0(x1, x2), (x1, x2) ∈ D, (5.4.3)

ρtvt · n(x1, x2) = 0, (t, x1, x2) ∈ [t0, tF ]× ∂D, (5.4.4)

where D (computational domain) and tF (final time) are defined in Table 5.1b.

Its exact solution is:

ρREF
t (x1, x2) = f0

(
cos(νt)x1 −

1

ν
sin(νt)x2, ν sin(νt)x1 + cos(νt)x2

)
.

Our analysis focuses on two key parameters: the RBF radius and ∆tReinit,

with corresponding plots provided for each (see Figs. 5.6a,5.6b). We plot the

quadratic error of the computed joint PDFs, ρtF , in the integration domain

with discretization step h at the end of the integration time interval, that is,

Error :=
∑
i, j

(
ρREF
tF

(x0 + ih, y0 + jh)− ρtF(x0 + ih, y0 + jh)
)2
. (5.4.5)

For the first test, we consider the RBF radius factor r/h between 0.5 and 16,

while ∆tReinit is set to the minimal value of ∆t (that is, the reinitialization

happens at every integration time step). For the second experiment, we fix the

95



Chapter 5. A GPU-accelerated Lagrangian particle method for solving the Liouville equation

best radius to discretization factor, r/h = 15, obtained on the previous step,

and increase ∆tReinit as powers of 2 (see parameters in Tables 5.1a and 5.1b).

On the one hand, Figure 5.6a shows the error curve for varying RBF radius,

and we can clearly see a super-linear shape curve, which indicates anO((r/h)q)

asymptotic error curve, with q > 1. In fact, according to theory, the inter-

polation error is O((r/h)
3
2 ) for the chosen RBF kernel, and this agrees with

the error function Eqs. (5.2.13) to (5.2.15): since the divergence function of

Eq. (5.4.2) is 0 everywhere, the only error source will be the interpolation pro-

cedure. Fig. 5.6c shows the exact solution to the Liouville boundary-IVP in

Eqs. (5.4.2) to (5.4.4), while Figs. 5.6d to 5.6f shows the joint PDFs computed

by our Liouville solver at the final time tF = 4.

On the other hand, Fig. 5.6b shows something that may appear counter-

intuitive: a larger reinitialization timestep results in lower error. This is not

true in general (see Theorem 5.2.1), but in cases with zero divergence, such as

our simple harmonic oscillator, where error only stems from the interpolation

step, a larger reinitialization timestep means that less error will be accumu-

lated because we will reinitialize less often.

As discussed previously via Eqs. (5.2.5) and (5.2.6), we expect both curves

to be U-shaped: in the case of the error from the r/h choice, it is expected

to decrease as the factor grows; but as discussed in Section 5.2.2, a very

large radius will involve more particle chapters at interpolation, which will

result in matrix condition deterioration. Also, regarding the error from the

∆tReinit. choice, particle distances will vary when the system has a non-zero

divergence, and the RBF coverage (thus, the PDF value approximation) will

also deteriorate.
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(a) Dependence of the quadratic error in the
joint PDFs vs. the RBF radius for the har-
monic oscillator.

(b) Dependence of the quadratic error in the
joint PDFs vs. the ∆tReinit (the RBF radius
r/h = 15) for the harmonic oscillator.

(c) Reference joint PDFs of the harmonic os-
cillator.

(d) joint PDFs of the harmonic oscillator for
r/h = 1.

(e) joint PDFs of the harmonic oscillator for
r/h = 2.5.

(f) joint PDFs of the harmonic oscillator for
r/h = 5.

Figure 5.6: Comparison of the joint PDFs of the solutions to the harmonic oscillator by
the Liouville method with different parameters. Here, tf = 4 as defined in Table 5.1b.
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Par. Distr. Mean Var.

X0 N 1.00 0.30

Ẋ0 N −1.00 0.30

a Random parameters’ statistical infor-
mation. All parameters are pairwise in-
dependent. Initial conditions are trun-
cated in the corresponding problem do-
main (see right table).

Input Descr.

∆t 2 · 10−3

∆tReinit 2k, k = 1, . . . , 7
Time span [0, 4]
Domain [−8, 8]× [−8, 8]
Points 29 × 29

AMR threshold 1 · 10−5

RBF radius 0.5h–15h

b List of the input parameters of the
algorithm.

Table 5.1: Parameters of the random harmonic oscillator.

5.4.2 Van der Pol oscillator

The Van der Pol system holds importance in various fields due to its ability to

simulate real-world behaviors like oscillations and irregular patterns. When

varying the system parameter, µ, the Van der Pol oscillator shifts from or-

derly periodic oscillations to chaotic dynamics via a period-doubling route.

This intricate behavior stems from the interaction between nonlinearity and

damping, giving rise to complex patterns with implications in diverse domains

like electronics, physics, and biology.

We consider the following form for the randomized Van der Pol oscillator:

Ẍ(t, ω)− µ(ω)
(
1−X2(t, ω)

)
Ẋ(t) + 5X(t, ω) = 0, t ≥ 0, (5.4.6)

X(0, ω) = X0(ω) ∈ L2 ∩ L∞(Ω,P),

Ẋ(0, ω) = Ẋ0(ω) ∈ L2 ∩ L∞(Ω,P).

To launch the simulations, we set the simulation parameters specified in Ta-

ble 5.2a. Using these we have seen (numerically) that the PDF total mass is

always concentrated inside D = [−5.5, 5.5]× [−5.5, 5.5]. To compute the range

of possible timesteps, we compute the Jacobian matrix for the Van der Pol
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oscillator Eq. (5.4.6):

Dt(x1, x2) =

[
0 1

−5− 2µx1x2 µ(1− x2
1)

]
⇒ sup

D×supp{µ(ω)}
∥Dt∥2 ≃ 197.11040.

(5.4.7)

The comparison shown in the set of figures shown below (Figs. 5.7 and 5.8)

were computed with an RBF radius of 7.49h, where h denotes the discretiza-

tion length of the domain. Using the results of Remark 5.2.1, we obtain the

maximal reinitialization timestep of ∆tReinit = 0.0102, which corresponds to

∼ 5 integration steps using ∆t as defined in Table 5.2b.

Figure 5.7 shows the joint PDF obtained via the Liouville equation with the

proposed solver and Montecarlo simulations with spatial binning. It can be

seen that the Liouville solver provides a smooth evolution of the joint PDF

and, contrarily to the MC simulations, it maintains a proper form without

the severe particle distortion that affects the joint PDF’s structure in phase

space (compare Figs. 5.7e and 5.7f). This may result from MC being very

sensitive to nonlinear phenomena when choosing a low-to-moderate number

of particles. Particles are scattered easily throughout the phase space, where

the Liouville equation solver can preserve the location of the most relevant

particles due to the particle reinitialization at the underlying mesh and AMR.

We may conclude that more particles must be chosen for a better, comparable,

MC-based simulation.

Also, Fig. 5.8 shows the computed marginals from the Liouville equation and

the MC simulations. We can see that the Liouville-based marginal PDFs

achieve higher values than their MC counterparts, at least in the position

component (compare Figs. 5.8a and 5.8b or Figs. 5.8c and 5.8d). This is

the same as discussed in the previous paragraph: MC is very sensitive to

nonlinear phenomena when choosing a low-to-moderate number of particles.

However, there is a smaller difference than with the joint PDFs since we are
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L: Van der Pol JPDF at t = 1
4 tf
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Figure 5.7: Comparison of the joint PDFs of the solution to the Van der Pol oscillator by
the Liouville method (left) and the Monte Carlo simulation with m = 214 samples (right).
Here, tf = 4 as defined in Table 5.2b.
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L: Van der Pol per-component PDFs at t = 1
4 tf
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Figure 5.8: Comparison of the PDFs of the components of the solution to the random
Van der Pol oscillator by the Liouville method (left) and the Monte Carlo simulation with
m = 214 samples (right). Here, tf = 4 as defined in Table 5.2b.
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Par. Distr. Mean Var.

X0 N 1.00 0.30

Ẋ0 N −1.00 0.30

µ N 1.00 0.30

a Random parameters’ statistical infor-
mation. All parameters are pairwise in-
dependent. Initial conditions are trun-
cated in the corresponding problem do-
main (see right table). We consider 64
samples for µ.

Input Descr.

∆t 2 · 10−3

∆tReinit 0.01
Time span [0, 4]
Domain [−8, 8]× [−8, 8]
Points 29 × 29

AMR threshold 1 · 10−5

RBF radius 1 · 10−5

b List of the input parameters of the
algorithm.

Table 5.2: Parameters of the random Van der Pol oscillator.

accumulating particles in the marginal components; therefore, the sensitivity

to particles is slightly dampened.
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5.4.3 Mathieu equation

Let us consider the Mathieu equation, in a sense similar to the Van der Pol

model:

Ẍ(t, ω) + (a(ω)− 2q cos (2t))X(t, ω) = 0. (5.4.8)

The Mathieu equation is characterized by periodic coefficients and it describes

parametric resonance, where perturbations can lead to large oscillations. This

model and similar ones find applications to periodically variable systems and

their control [113–115] in areas such as mechanical vibrations, electromagnetic

waves, and quantum mechanics, as it helps in understanding the stability and

behavior of systems with periodic parameters. An interesting question is how

does the Mathieu equation behave if some of its parameters are considered

random variables. If one strives to define the regions of stability numeri-

cally, it is beneficial to use geometric integrators [109, 116]. Table 5.3b shows

the statistical information for the system’s and simulation’s parameters. For

this problem, we use the geometric Runge–Kutta–Munthe-Kaas Euler method

[117] instead of the classical RK method Xn+1 = exp (hA(tn, Xn))Xn
4.

Figure 5.9 shows similar features to the Van der Pol case. The Liouville

equation solver can smoothly track the PDF evolution, while the MC samples

are scattered throughout the phase space. However, the situation is better

than in the Van der Pol case. This is also seen in the marginal PDFs in

Fig. 5.10; the corresponding marginals are always very alike.

The situation is completely different in the unstable case, which shows one of

the limitations of the current implementation of the Liouville equation solver.

As the system evolution domain is set beforehand, the chosen window in the

phase space cannot correctly track the system’s resonant exploding growth

(case qresonant = −8) with the variance reaching the order of 103.

However, our solver forces the total density preservation inside the window,

while in the resonant case, most of the density’s mass should eventually escape

the window. Nonetheless, this is not a fundamental limitation of the method

4For simplicity of implementation in CUDA and due to the low impact of the integrator’s order
in the resulting simulation, we have used a Taylor series approximation of the matrix exponential.
However, it is favorable to use diagonal Padé approximants.
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and can be alleviated by moving (and expanding, if necessary) the window

alongside the system trajectories, that is one of the points of the future re-

search.

Par. Distr. Mean Var.

X0 N 0.00 0.09

Ẋ0 N −1.00 0.09

a N 3.00 0.09

qstable D −1.00 —

qresonant D −8.00 —

a Random parameters’ statistical infor-
mation. All parameters are pairwise in-
dependent. Initial conditions are trun-
cated in the corresponding problem do-
main (see right table). We consider 64
samples for random parameter a.

Input Descr.

∆t π/500(∼ 0.0063)
∆tReinit π/250
Time span [0, 2π]
Domain [−8, 8]× [−8, 8]
Points 29 × 29

AMR threshold 1 · 10−6

b List of the input parameters of the
algorithm.

Table 5.3: Parameters of the random Mathieu equation.

5.4.4 Susceptible-Infected-Recovered epidemiological model

The SIR model plays a crucial role in epidemiology, providing a framework

to understand and predict the spread of infectious diseases within a popula-

tion. Its simplicity allows for exploring various scenarios related to disease

transmission, recovery rates, and vaccination strategies. The model helps es-

timate the potential impact of interventions and public health measures by

categorizing individuals into susceptible, infectious, or recovered groups. Its

application extends beyond infectious diseases, serving as a foundational tool

for analyzing diverse phenomena in network dynamics, behavioral sciences,

and risk assessment, offering valuable insights to guide health policies and

interventions.

We consider a randomized SIR model with vital dynamics (birth and death) for

the three-dimensional case. The SIR model is a well-known compartmental

model in epidemiology. It is a nonlinear model that admits a closed solu-
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tion only under certain circumstances. Particularly, we consider the following

model:

S′(t, ω) = ∆(ω)− µ(ω)S(t, ω)− β(ω)S(t, ω)I(t, ω), S(t0, ω) = S0(ω),

(5.4.9)

I ′(t, ω) = β(ω)S(t, ω)I(t, ω)−
(
γ(µ) + µ(ω)

)
I(t, ω), I(t0, ω) = I0(ω),

(5.4.10)

R′(t, ω) = γ(ω)I(t, ω)− µ(ω)R(t, ω), R(t0, ω) = R0(ω),

(5.4.11)

where S, I and R denote the susceptible, infected, and recovered popula-

tions, respectively, ∆, µ denote the birth and death rates; and β, γ denote the

susceptible–infected and infected–recovered transfer rates, respectively. We

assume all parameters and the initial condition vector (S0, I0, R0) are inde-

pendent random variables.

With the SIR model definition Eqs. (5.4.9) and (5.4.11) and the distribution

information from Table 5.4a, we may compute the maximum time step via the

relations in Eqs. (5.2.18) and (5.2.19):

sup{∥Dt∥2 : t ≥ t0, (S, I,Λ, µ, β, γ) ∈ D̃} ≃ 0.77703,

where D̃ denotes the joint positively invariant domain for all the random vari-

ables in the SIR model. Considering a RBF support radius of 6.49h, we get

the following time step bounds:

0 ≤ ∆tmax ≤ 1

0.77703
log (6) ⇒ ∆tmax ≃ 2.31, (5.4.12)

0 ≤ ∆tmin ≤ − 1

0.77703
log

(
1

6

)
⇒ ∆tmin ≃ 2.31, (5.4.13)

which means that ∆tReinit ≤ 2.31, which is considerably larger than the pre-

vious examples.

Figures 5.11 show the difference between the marginal PDFs computed via

MC and the Liouville equation solver. Once again, we can see that the MC
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simulation tends to separate particles more giving higher-variance PDFs, al-

though the expected values and general structure of the PDF are very similar.

We expect that a much higher number of samples would be needed to lead

similar results.

Also, Figures 5.12 show the 95% prediction surface of the PDF given by the

Liouville equation solver and the MC version of the prediction surface for

several time instants 5. Once again, the Liouville equation solver improves

the MC simulations giving a smooth surface, as expected by the nature of the

random SIR model and showing the superiority of the Liouville equation in

this kind of problems. The entire simulation in the [0, 30] timespan has been

computed in ∼ 4 minutes.

Par. Distr. Mean Var.

S0 N 0.7500 0.0001

I0 N 0.1500 0.0001

R0 N 0.1000 0.0001

∆ D 0.0250 —

µ D 0.0250 —

β N 0.3000 0.0001

γ Ga 0.2000 0.0001

a Random parameters’ statistical infor-
mation for the SIR model. The ini-
tial condition components do not have
a prescribed number of random samples
as the AMR procedure defines them.
All parameters are pairwise indepen-
dent. For the random parameters, we
consider the cartesian product of 8 sam-
ples for β and 8 samples for γ.

Input Descr.

∆t 0.5
∆tReinit 1.0
Time span [0, 30]
Domain [0, 1]× [0, 1]× [0, 1]
Points 28 × 28 × 28

AMR threshold 1 · 10−3

b List of the input parameters of the
algorithm.

Table 5.4: List of parameters for the random SIR model.

5Further details about the prediction region finder can be found in [118]
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5.5 Conclusion

This chapter introduces and analyzes a novel numerical approach for efficiently

solving the Liouville equation in the context of RDEs using General-Purpose

Graphics Processing Units (GPGPUs). Our methodology integrates wavelet

compression-based adaptive mesh refinement, Lagrangian particle methods,

and radial basis function approximation to develop a versatile, accurate and

computationally efficient numerical algorithm.

We validated the performance of our approach through several mathematical

models, including the van der Pol oscillator, Mathieu equation, and SIR model.

These examples demonstrate the method’s applicability to various problems

and its compatibility with various numerical integrators for the underlying

systems. Not to be overlooked are the illustration of the limitation of the

method in its current implementation. Future research directions include:

• Investigating the interconnection of the method’s parameters to enable

their automatic adjustment for specific problems.

• Developing a moving and adaptive window for domain integration rep-

resentation.

• Implementing an inverse refining algorithm that begins with coarse ap-

proximations and progressively refines them.

• Finding an appropriate approach for higher dimensional systems (d ≥ 5).

Our findings suggest that the numerical method described in the present chap-

ter holds significant potential for quantifying forward uncertainty in random

differential equations via probability density evolution, greatly improving on

the information obtained by simply performing Montecarlo simulations.

Publications

The results presented in this thesis chapter have been published in [119]. In

regard to this chapter, the PhD candidate has contributed by working on
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its complete development with more emphasis on the theoretical results and

preparing the visualization of the numerical examples.

Also, some results of this chapter have been presented at two conferences. The

first one is the SIAM UQ24: SIAM Conference in Uncertainty Quantification,

held in Trieste (Italy) from 27th February-1st March, 2024. The talk was ti-

tled Forward Uncertainty Evolution of General Random Differential Equation

Systems. The second congress is the International Conference in Mathemati-

cal Analysis and Applications in Science and Engineering (ICMA2SC’22), held

in Porto (Portugal), from 27-29th 2022. The talk was titled Probability Den-

sity Evolution and its Applications in Random Differential Equations, and was

published in the conference proceedings with ISBN 978-989-53496-3-0.
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Figure 5.9: Comparison of the joint PDFs of the solution to the Mathieu equation (stable
case with q = −1) by the Liouville method (left) and the Monte Carlo simulation with
m = 214 samples (right). Here, tf = 2π as defined in Table 5.3b.
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L: Mathieu (q = !1) per-component PDFs at t = 1
4 tf
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L: Mathieu (q = !1) per-component PDFs at t = tf
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Figure 5.10: Comparison of the PDFs of the components of the solution to the Mathieu
equation (stable case q = −1) by the Liouville method (left) and the Monte Carlo simulation
with m = 214 samples (right). Here, tf = 2π as defined in Table 5.3b.
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Figure 5.11: Comparison of the marginal PDFs of the components of the solution to the
SIR system by the Liouville method (left) and the Monte Carlo simulation with m = 216

samples (right). Here, tf = 30 as defined in Table 5.4b.
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Figure 5.12: Prediction ellipsoid for the SIR system solution by the Liouville method (left)
and the phase space by the Monte Carlo simulation with m = 216 samples (right). Here,
tf = 4 as defined in Table 5.4b.
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Chapter 6

Generalized logistic equation

Based on existing literature about the random logistic and Gompertz models,

this chapter aims to extend the investigations to the generalized logistic dif-

ferential equation in the random setting. First, this is done by rigorously

constructing its solution in two ways: the sample-path approach and the mean-

square calculus. Secondly, the probability density function at each time instant

is derived in two ways: by applying the random variable transformation tech-

nique and solving the associated Liouville equation. We also prove that the

stochastic solution and its density function converge under specific conditions

to the corresponding solution and density function of the logistic and Gom-

pertz models, respectively. The investigation finishes by showing some exam-

ples where some computational techniques described in the previous chapter

are combined to construct reliable approximations of the probability density of

the stochastic solution. In particular, we show how our findings can be applied

to a real-world problem.
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The logistic differential equation has been generalized in different senses to

better model the dynamics of real-world phenomena where it has been ap-

plied. This generalization has included its reformulation in terms of fractional

derivatives, the substitution of the contagion rate term by a power-law func-

tion, etc. [120–122]. In this chapter, we deal with the following generalization

of the logistic differential equation

Y ′(t) = AY (t)

(
1−

(
Y (t)

K

)B
)
, t ≥ t0, Y (t0) = Y0. (6.0.1)

As usual, t is interpreted as the time. The parameter A is the growth rate, K

is the carrying capacity, and B is a power that controls how fast the limiting

number K is approached.

When B = 1, the classical logistic differential equation is obtained. And when

B tends to 0, the Gompertz equation is given. Indeed, given A,B > 0, we put

Â = AB, and then (7.2.10) can be written as

Y ′(t) =
Â

B
Y (t)

(
1−

(
Y (t)

K

)B
)
. (6.0.2)

Now, let us calculate the limit as B → 0+ of the following term that defines

the right-hand side of the above equation:

lim
B→0+

(
1−

(
Y (t)

K

)B)
B

= lim
B→0+

−
(
Y (t)

K

)B

ln

(
Y (t)

K

)
= − ln

(
Y (t)

K

)
= ln

(
K

Y (t)

)
.

As a consequence, as B → 0+, the differential equation (7.2.10) can be ex-

pressed as

Y ′(t) = ÂY (t) ln

(
K

Y (t)

)
,

which corresponds to the Gompertz model [123, 124].

The incorporation of the power B allows for more flexible S-shaped curves to

model growth phenomena over time. Examples of application include tumor
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growth [125–128] and diseases such as SARS [129, 130], dengue fever [131],

influenza H1N1 [132], Zika [133], Ebola [134], and COVID-19 [135–138].

We investigate the random counterpart of (7.2.10) in order to extend the pre-

vious literature on the logistic random differential equation [44, 73] and the

Gompertz random differential equation [26]. It is assumed that B > 0, K > 0,

Y0 ∈ [0,K] (almost surely), and A are random variables on a common underly-

ing and complete probability space (Ω,F ,P). Due to uncertainty propagation,

the solution Y (t) is a differentiable stochastic process. The randomness of the

parameters arises from the uncertainty inherent to the problem that, in prin-

ciple, cannot be reduced by additional knowledge [2].

The organization of the remaining part of the chapter is as follows: In Sec-

tion 6.1, the sample-path and mean-square solution to (7.2.10) is rigorously

found. In Section 6.2, the PDF of the solution is obtained in two ways: by the

RVT technique and by solving Liouville’s PDE. In Section 6.3, the behavior of

the solution, when the power tends to 1 or 0, is examined (through the mean-

square convergence and via the convergence of the densities) to replicate the

deterministic counterpart. In Section 6.4, we illustrate our main findings with

two examples that include a real-world application. Finally, in Section 6.5,

the main conclusions are drawn.

6.1 Stochastic solution

In this section, we investigate the existence and uniqueness of a stochastic

solution to the generalized logistic random differential equation model (7.2.10).

Two notions of solution are treated: sample-path solution and mean-square

solution.
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6.1.1 Sample-path solution

By definition, Y (t) is a sample-path solution to (7.2.10) if Y is a stochastic pro-

cess and its trajectories solve (7.2.10) on [t0,∞) in a deterministic sense [139,

Chapter 3], [12, Appendix I]. The construction of the sample-path solution

is usually straightforward; one merely solves the deterministic problem and

checks that the conditions for being a sample-path solution (measurability

and common time domain for the trajectories) are satisfied.

In the present case, model (7.2.10) corresponds to a Bernoulli differential equa-

tion. After the standard change of variables X = Y −B, a linear differential

equation is derived for X. At the end, the solution to (7.2.10) becomes

Y (t) =
K[

1 +

(
−1 +

(
K
Y0

)B)
e−AB(t−t0)

]1/B . (6.1.1)

When 0 ≤ Y0 ≤ K almost surely Y (t), which is defined by (6.1.1), is the

sample-path solution and it lies within [0,K] almost surely, for every t ≥ t0.

6.1.2 Mean-square solution

By definition, Y (t) is a mean-square solution to (7.2.10) when the derivative

in (7.2.10) (and in general any limit) is considered in the metric of the Lebesgue

space L2(Ω,P) [139, chapter 4], [12, 140]. Mean-square convergence is of great

interest because convergence in this setting implies convergence of the two

most sought moments of a stochastic process: the mean and the variance [12].

Let us see that the sample-path solution defined by (6.1.1) is also the mean-

square solution on [t0,∞), whenever ∥A∥∞ <∞, B > 0 almost surely, ∥B∥∞ <

∞, 0 ≤ Y0 ≤ K almost surely, and 0 < κ0 ≤ K ≤ κ1 <∞ almost surely, where

κ0 and κ1 are constant.

Let

F (Y, ω) = A(ω)Y

(
1−

(
Y

K(ω)

)B(ω)
)
, Y ∈ [0,K(ω)], ω ∈ Ω.
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6.2 Two methods for computing the PDF of the solution stochastic process

Fix an ω ∈ Ω. By the triangular inequality and the mean value theorem, it

is easy to see that F (·, ω) is Lipschitz on [0,K(ω)], with Lipschitz constant

∥A∥∞(1 + κ1∥B∥∞/κ0):

|F (Y1, ω)− F (Y2, ω)| =
∣∣∣∣∣A(ω)Y1

(
1−

(
Y1

K(ω)

)B(ω)
)
−

A(ω)Y2

(
1−

(
Y2

K(ω)

)B(ω)
)∣∣∣∣∣

≤ |A(ω)||Y1 − Y2|
(
1− Y1

K(ω)

)B(ω)

+|A(ω)|Y2

∣∣∣∣∣
(
1− Y1

K(ω)

)B(ω)

−
(
1− Y2

K(ω)

)B(ω)
∣∣∣∣∣

≤ ∥A∥∞|Y1 − Y2|+ ∥A∥∞|Y2|
∥B∥∞
κ0

|Y1 − Y2|

≤ ∥A∥∞
(
1 +

κ1∥B∥∞
κ0

)
|Y1 − Y2|.

By Tietze extension theorem [141, Th. 1], F (·, ω) can be extended to a Lip-

schitz map F̃ (·, ω) : R → R with Lipschitz constant ∥A∥∞(1 + κ1∥B∥∞/κ0).

Consider Y ′(t) = F̃ (Y (t)). By [139, Th. 4.3], [12, Th. 5.1.2], the Lipschitz con-

dition on the whole R implies that the problem Y ′(t) = F̃ (Y (t)), Y (t0) = Y0,

possesses a unique mean-square solution on [t0,∞). Any mean-square solu-

tion is equivalent to the sample-path solution [142, Th. 3(a)], which is (6.1.1)

precisely. Then (6.1.1) is the mean-square solution. This completes the proof.

6.2 Two methods for computing the PDF of the solution

stochastic process

In this section, we compute the PDF of Y (t), denoted as fY (t)(y). Two com-

plementary techniques are employed: the application of the RVT method and

the resolution of Liouville’s PDE. The former requires the computation of a

Jacobian, while the latter needs the resolution of the Liouville equation.
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6.2.1 First method: RVT technique

Let (Y0,K,A,B) be an absolutely continuous random vector with a certain

joint probability distribution, f(Y0,K,A,B). Fix t ≥ t0. To apply the technique,

we need a transformation that relates the inputs, (Y0,K,A,B), to the output,

Y (t). The transformation mapping is the following:

v(Y0,K,A,B) =

 K[
1 +

(
−1 +

(
K
Y0

)B)
e−AB(t−t0)

]1/B ,K,A,B
 ,

where the auxiliary components K, A and B have been conveniently chosen.

The inverse mapping is computed easily:

h(Y,K,A,B) =

 K[
1 +

(
−1 +

(
K
Y

)B)
eAB(t−t0)

]1/B ,K,A,B
 .

The Jacobian of h is the determinant of the matrix of first partial derivatives

of h:

Jh(Y,K,A,B) =
∂Y0

∂Y
=

K1+BeAB(t−t0)

Y B+1
[
1 +

(
−1 +

(
K
Y

)B)
eAB(t−t0)

]1/B+1
> 0.

Such positivity holds because 0 < Y < K and B > 0 almost surely. By the

RVT formula [34], [78, Th. 2.1.5], and after marginalizing with respect to K,

A and B, the PDF of Y (t) is obtained in a semi-implicit manner through a

triple integral:

fY (t)(y) =

∫
D(K,A,B)

f(Y0,K,A,B)

 K[
1 +

(
−1 +

(
K
Y

)B)
eAB(t−t0)

]1/B ,K,A,B
×

K1+BeAB(t−t0)

Y B+1
[
1 +

(
−1 +

(
K
Y

)B)
eAB(t−t0)

]1/B+1
dK dAdB. (6.2.1)
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6.2 Two methods for computing the PDF of the solution stochastic process

Here D(K,A,B) denotes the support of (K,A,B).

The PDF (6.2.1) is the general formula. Sometimes, it may be simplified.

First, if Y0, K, A and B are independent random variables, then the joint

PDF f(Y0,K,A,B) factorizes:

f(Y0,K,A,B) = fY0
× fK × fA × fB.

In consequence, the PDF of the solution can be expressed via an expectation

fY (t)(y) =EK,A,B

fY0

 K[
1 +

(
−1 +

(
K
y

)B)
eAB(t−t0)

]1/B
×

K1+BeAB(t−t0)

yB+1

[
1 +

(
−1 +

(
K
y

)B)
eAB(t−t0)

]1/B+1

 .
Note that this is a parametric approximation of the PDF because it is obtained

as an expectation of a transformation of the input random variables (A, B, K).

This PDF representation is beneficial since Monte Carlo simulation can be

easily applied by sampling the involved random variables and then computing

the expectation that approximates the PDF [143].

Secondly, if an input random variable (Y0, K, A or B) is discrete, rather than

absolutely continuous, its PDF may be viewed in a generalized sense. For

example, if K is discrete, then

fK(k) =
∑
i

kiδ0(k − ki),

where ki > 0 are the mass points of the discrete random variable K and δ0 is

the Dirac delta function (everywhere zero but with infinite value at the origin

and integral equal to 1). The integral over DK would become a sum over the

points {ki}i.
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6.2.2 Second method: Liouville’s PDE

Let us denote model (7.2.10) as

Y ′(t) = v(Y (t),K,A,B),

where

v(Y,K,A,B) = AY

(
1−

(
Y

K

)B
)
. (6.2.2)

The Liouville equation for Y (t) independently from the system’s parameters

can be obtained by applying Equations (2.2.7) and (2.2.9). In this case, the

explicit solution to the Liouville’s equation is [12, Chapter 6]

f(t, y) = E(K,A,B)

[
f(Y0,K,A,B)(Y0,K,A,B)exp

(
−
∫ t

t0

∂v

∂y
(Y (τ),K,A,B) dτ

)]
,

(6.2.3)

where Y (t) = h(Y0,K,A,B, t) is the input-output relation and

Y0 = h−1(Y,K,A,B, t) =
K[

1 +
(
−1 +

(
K
Y

)B)
eAB(t−t0)

]1/B
is the inverse relation, in terms of the initial condition. The partial derivative

of g with respect to Y is

∂v

∂Y
= A

(
1−

(
Y

K

)B
)
− AB

KB
Y B.

An important term in the solution of Liouville’s PDE is

exp

(
−
∫ t

t0

∂v

∂Y
(Y (τ),K,A,B) dτ

)
=

e−A(t−t0)

(
KB + (−1 + eAB(t−t0))Y B

0

)(1+B)/B

K1+B
.
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Then the Jacobian of the RVT formula is retrieved as

exp

(
−
∫ t

t0

∂v

∂Y
(Y (τ),K,A,B) dτ

)∣∣∣∣
Y0=h−1(y,K,A,B,t)

=

K1+BeAB(t−t0)

Y B+1
[
1 +

(
−1 +

(
K
Y

)B)
eAB(t−t0)

]1/B+1
.

Thus, the PDF obtained via the Liouville equation as Equation (6.2.3) is equal

to the PDF (6.2.1) after computing the expectation in the system’s parameters

E(K,A,B)[·].

6.3 Convergence when the power tends to 1 or 0

By the deterministic theory, it is known that the classical logistic and Gom-

pertz differential equations are retrieved when B = 1 and B → 0, respectively.

The aim of the present section is to extend those results to the random sce-

nario. Different convergence measures for Y (t) are used: mean-square conver-

gence and convergence of densities.

6.3.1 Mean-square convergence

We investigate the mean-square convergence of Y (t). Two cases are distin-

guished, according to the probabilistic convergence of B:

• Case B → 1 or B → 0 almost surely. By the deterministic theory, it is

known that Y (t) converges to the logistic curve or the Gompertz curve

almost surely when B → 1 or B → 0 almost surely, respectively. It is also

known that 0 ≤ Y (t) ≤ K ∈ L1(Ω,dP), and analogously for the logistic

and the Gompertz curves. By the dominated convergence theorem [144,

result 11.32, p. 321], the almost sure convergence of Y (t) translates into

mean-square convergence. In conclusion, Y (t) converges to the logistic

curve or the Gompertz curve in the mean-square sense when B → 1 or

B → 0 almost surely.
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• Case B → 1 or B → 0 in the mean-square sense. Pick any sequence

{Bn} → 1 or {Bn} → 0 in the mean-square sense. There exists a subse-

quence such that {Bnl
} → 1 or {Bnl

} → 0 almost surely. By the previous

item, the corresponding {Ynl
(t)} converges in mean-square to the logistic

curve or to the Gompertz curve, respectively. At the end, this implies

that Y (t) converges to the logistic curve or the Gompertz curve in the

mean-square sense when B → 1 or B → 0 in mean-square.

6.3.2 Convergence of densities

We prove that, if B → 1 or B → 0 almost surely, then fY (t)(y) converges

to the PDF of the logistic curve or the PDF of the Gompertz curve almost

everywhere, respectively. Almost everywhere convergence of densities is a

strong mode of convergence, as it implies convergence in L1(R, dy) by Scheffé’s

lemma [145, p. 55], [146].

For the proof, it is assumed that Y0 and (K,A,B) are independent, A > 0

almost surely (increasing trend), Y0 ≥ z > 0 almost surely (z constant),

∥B∥∞ < ∞, there exists C > 0 such that fY0
(y) ≤ min{C/y,C/y1+∥B∥∞} for

all y > 0, and E[eA∥B∥∞(t−t0)] < ∞ (finite moment-generating function of A).

Due to the independence, the PDF (6.2.1) is rewritten as

fY (t)(y) = E
[
fY0

(RB)(RB)
1+BeAB(t−t0)

1

yB+1

]
,

where

RB =
K[

1 +
(
−1 +

(
K
Y

)B)
eAB(t−t0)

]1/B
and the domain is y ≥ z. Now,

0 ≤ fY0
(RB)(RB)

1+BeAB(t−t0)
1

yB+1
≤ CeA∥B∥∞(t−t0) min

{
1

z
,

1

z1+∥B∥∞

}
,

where such upper bound is a constant that, in consequence, belongs to L1(Ω,dP).
The dominated convergence theorem [144, result 11.32, p. 321] allows for in-

terchanging the limit on B and the expectation.
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6.4 Numerical examples and real data

In this section, the previous theoretical findings will be applied to analyze the

dynamics of the solution stochastic process to the random generalized logistic

model (7.2.10), through its PDF and main moments (mean and variance). This

analysis is first performed via two numerical examples, and afterward using

real-world data. As several numerical challenges may appear when solving

model (7.2.10), we shall also recall a number of deterministic and probabilistic

tools that will be used in the examples.

Subsection 6.4.1 gives a brief summary of the numerical scheme used, previ-

ously described in Chapter 5, used to solve the Liouville equation. Afterward,

in Subsections 6.4.2 and 6.4.3, a brief presentation of a metaheuristic opti-

mization algorithm (Particle Swarm Optimization algorithm) and a method

to construct reliable PDFs from sampled information (Principle of Maximum

Entropy) will be given, respectively. Finally, in Subsections 6.4.4 and 6.4.5,

an application of the numerical procedures to some numerical examples and

a full study of a real-world case of microbial growth data will be discussed,

respectively.

6.4.1 Solving the Liouville equation numerically

We analyze the numerical evolution of the PDF as the solution to the Liouville

equation through its characteristic curves (see Equations (2.2.4) to (2.2.6)) [47,

Sec. 3.2]. We have used the Runge-Kutta 4 (RK4) integrator to approximate

the characteristic curves, and the Simpson rule for the computation of the

integral in (2.2.6) [105]. Each specific example 6.4.4 and 6.4.5 will include the

particular time step used in the respective example.

Also, in order to accelerate computations, we have used AMR as described in

Chapter 5. Finally, instead of the RBF interpolation, we used linear interpo-

lation because of its simplicity and availability in 1D models.
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6.4.2 PSO algorithm

The Particle Swarm Optimization (PSO) algorithm is an optimization algo-

rithm widely used in cases where the parameters to be optimized are not in a

discrete set. In short, it generates a number of particles (combinations of pos-

sible optimal values) where a certain fitness function (FF) is evaluated. Taking

into account the values of the FFs at those points, the particles are updated

by imitating the behavior of birds when searching for food [147]. We will take

advantage of this optimization technique to search for the best estimates for

model parameters in the subsequent examples.

6.4.3 PME

There are various ways of assigning distributions to random variables or vec-

tors. One of them is the so-called Principle of Maximum Entropy (PME [62]

or MaxEnt [148]). This data-driven method seeks to obtain a PDF that cap-

tures the maximum uncertainty (which is measured by the so-called Shannon

Entropy functional) from the available sampled information (usually described

via the moments such as the mean, variance, etc.) about the random variable

[61]. In this chapter we will only use the mean and variance, since adding

more moments does not change the resulting PDF noticeably in this case. In

Subsection 5.6, this method is applied to assign a PDF to a set of real data.

Mathematically speaking, we want to compute the following:

fsample = argmax

{∫
D
f(y) log(f(y))dy | f ∈ L1(D), f ≥ 0

}
,

subject to the following constraints∫
D f(y)dy = 1,∫

D y f(y)dy = µsample,∫
D y

2 f(y)dy = σ2
sample + µ2

sample.
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Here D denotes the domain of the random variable Y . Using the Lagrange

multiplier method, it can be shown that the PDF has the following form [65]

fsample(y) = exp{−1− λ0 − λ1 y − λ2 y
2},

where λ0, λ1 and λ2 are the Lagrange multipliers. These values are determined

by solving the system defined by the constraints, which usually requires nu-

merical methods since it is often nonlinear in λ0, λ1 and λ2.

6.4.4 Numerical Example

In this section, we will take advantage of the mathematical tools summa-

rized in Subsections 6.4.1–6.4.3 to compute and visualize the dynamical be-

havior of the PDF of the solution stochastic process for the generalized logistic

model (7.2.10). We will assume that t0 = 0 and that t is measured in hours.

First, two numerical examples will be shown in order to introduce a brief idea

about how the numerical solution performs. Then we will solve an inverse

problem with real-world data. All computations in the following sections have

been performed in an AMD Ryzen 5800H-based laptop computer with 16 GB

of RAM.

Deterministic coefficients

Only the initial condition is assumed a random variable which follows a sym-

metric triangular distribution with parameters 1.1, 1.3, whose mode is located

at 1.2. It can be seen in Figure 6.1. The rest of model parameters, A, B

and K, are assumed deterministic. We have considered two scenarios, Case

1 and Case 2, where only the value of B differs (see Table 6.1). In this way,

we can better observe the role that parameter B plays in the model (this can

repeated for the rest of model parameters). It is important to note, however,

that the support of the PDF must be contained inside the interval [0,K] in all

times; that is, supp{f([0,+∞), ·)} ⊂ [0,K]. This is due to the nature of the

model, which assumes that K is the carrying capacity, or asymptotic equilib-

rium state. We have chosen our initial high resolution grid to consist of 4096
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points. Figures 6.2 and 6.3 show the time evolution of the PDF in Cases 1 and

2, respectively, along with the expectation and standard deviation functions.

The whole computation took about 0.6 seconds.
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Figure 6.1: Triangular distribution PDF used as initial condition for both numerical ex-
amples in Section 6.4.4.

Case 1 Case 2
Parameter A1 B1 K1 A2 B2 K2

Value 0.33 1 5 0.33 2.5 5

Table 6.1: Parameter values used in Case 1 (A1, B1,K1) and Case 2 (A2, B2,K2), respec-
tively. Numerical Example.

Note that there are some similarities between both simulations. In particular,

we can see that both simulations converge to a stationary value (the carrying

capacity, K = 5) and their standard deviations decay to zero as this happens.

This is to be expected because of the fact that the mean-square solution of

the random IVP is also a pathwise solution of the random IVP. The carrying

capacity is a globally asymptotically stable state of both the logistic and the

generalized logistic equations. This means that, independently of the initial
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Figure 6.2: Top four panels: PDF of the solution stochastic process to the generalized
logistic equation model (7.2.10) at different time instants (in hours). Bottom panel: Mean
(blue, left axis) and standard deviation (orange, right axis) of the solution stochastic process.
Case 1 (Numerical Example). Maximum absolute error in the PDF total mass: ∼ 5.3 · 10−4.
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Figure 6.3: Top four panels: PDF of the solution stochastic process to the generalized
logistic equation model (7.2.10) at different time instants (in hours). Bottom panel: Mean
(blue, left axis) and standard deviation (orange, right axis) of the solution stochastic process.
Case 2 (Numerical Example). Maximum absolute error in the PDF total mass: ∼ 6.1 · 10−3.
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value and the values for A > 0 and B > 0, all paths corresponding to the

realizations of both the initial condition and the coefficients will approximate

the carrying capacity value as time goes on. It is also noteworthy that the

integral of the PDF, in the whole domain, is very close 1 at every timestep.

This property of the PDF has been used to check the numerical approximations

of the PDF when solving the Liouville’s PDE are reliable at every timestep.

There also are some differences between both scenarios. In Case 1, it can

be seen how standard deviation has a smooth growth and posterior decay to

zero. Also, the mean curve shows a very gentle logistic-type curve, as it was

expected due to the theoretical development in previous sections. However,

Case 2, where the deceleration parameter is increased to 2.5, shows a sharper

growth and decay of the standard deviation. Correspondingly, the mean curve

stabilizes much faster than in Case 1.

6.4.5 Real-world Example

In this subsection, we are going to apply the theoretical and numerical concepts

and findings discussed in previous sections to a real data set regarding the

growth of a biological culture studied at [66]. Measurements were obtained

by specialized fluorescent imaging techniques whose measurement units are

known as Optical Density (OD). The means of the measurements at each

measured time can be seen in Table 6.2. All details about the biological and

experimental procedures can be found at [66].

By applying the PME technique to the data regarding the set of measurements

at time t0 = 0, we assign an initial PDF with the form described in Section

6.4.3. Particularly, we remind that the PDF has the form

f0(y) = exp{−1− λ0 − λ1 y − λ2 y
2}, (6.4.1)

where the λi are the ones defined in Table 6.3. In Figure 6.4, we have plotted

this PDF. It has been calculated by the wavelet compression-based adapted
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Time (h.) Mean (OD)
0.000 0.286
0.233 0.308
0.465 0.331
0.698 0.354
1.001 0.383
1.234 0.403
1.466 0.416
1.839 0.437
2.072 0.450
2.304 0.464
2.537 0.476
2.849 0.486
3.081 0.500
3.315 0.514

Time (h.) Mean (OD)
3.547 0.527
3.828 0.547
4.061 0.558
4.294 0.569
4.527 0.581
4.759 0.590
4.992 0.597
5.275 0.608
5.508 0.612
5.740 0.616
6.039 0.616
6.271 0.617
6.503 0.617
6.803 0.619

Table 6.2: Time at which measurements are taken with the mean of the measurements. 28
measurements were taken at each time. The variance was only computed in the first time,
in order to use the PME. Measurements were obtained by specialized fluorescent imaging
techniques whose measurement units are known as Optical Density (OD). More details about
the data and how it was collected in [66]. Real-world Example.

λ0 λ1 λ2

443.84321 -3132.90787 5470.16958

Table 6.3: Lagrange’s multipliers obtained in the PME method (see Subsection 6.4.3 for
further details about the computation of the Lagrange’s multipliers). Real-world Example.
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mesh. It can clearly be seen where there is a higher concentration of points.

These points are obtained exactly where the function has a larger gradient.
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Figure 6.4: PDF at t0 = 0 used as the initial condition for the Liouville’s PDE (see
expression 6.4.1 and Table 6.3). Initial high resolution grid of 4096 points. Adapted grid
with 330 points. Real-world Example.

Deterministic coefficients

First, the deterministic parameter values are determined in order to have a

first, expected representation of the sample data. Since the PDE computation

time is relatively fast, we can use the PSO algorithm directly from the PDE

itself. The computational procedure used for this purpose consists of the

following steps, and it is shown in the flowchart depicted in Figure 6.5:

1. Extract growth data from the data set, Yi, at each time measurement ti.

At this point we have a collection of 24 measurements per time instant,

with a total of 28 measurements; that is, we have {(ti,Yi)}28i=1, where

Yi = (Y 1
i , . . . , Y

24
i ).

2. Compute the initial density, f0, in its adapted grid G0, using the PME.

Also, compute the mean of the measurement vectors, Y i =
1
24

∑24
j=1 Y

j
i
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Chapter 6. Generalized logistic equation

at each time instant ti, i = 1, . . . , 28. At this point, we have the initial

PDF, f0(G0), and the curve of the sample means {(ti, Y i)}28i=1.

3. We now enter the PSO algorithm (see Subsection 6.4.2). In the present

work, we have used 60 particles and a maximum of 100 iterations. The

parameter values used for the evaluation of the error function may be

computed in two different ways depending on whether it is the first iter-

ation or not.

• In the first case, 60 points are generated at random positions in the

parameter space; that is, {(Al, Bl,Kl)}60l=1.

• In the latter case, the same number of points are generated follow-

ing a very specific set of rules [147], returning the updated set of

parameter values {(A′
l, B

′
l,K

′
l)}60l=1.

4. After the set of parameter values has been defined (let it be at the first

iteration or after an update), we compute the numerical solution of the

PDF at each of the time instants {ti}28i=1 using the Lagrangian approach

(see Subsection 6.4.1). At this point we have a family of PDFs and

their corresponding adapted grids; that is, {f(Gi, ti |A,B,K)}28i=1 for each

tuple of parameter values (A,B,K) ∈ {(Al, Bl,Kl)}60l=1. Note that we

have dropped the conditional PDF notation in the following steps for the

sake of simplicity.

5. For each of the PDFs defined as in the previous step, we compute their

respective expectations, denoted by {f(Gi, ti)}28i=1, and compute its ab-

solute error respect to the sample mean Y i at each time instant ti. We

then compute the sum of these absolute errors; that is

Error =
28∑
i=1

|f(Gi, ti)− Y i|.

6. Now, if the following absolute error

Error =
28∑
i=1

|f(Gi, ti)− Y i|

varies below a given threshold, among all generated (A,B,K), which the

authors have chosen as 10−9, we keep the tuple of parameter values with
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6.4 Numerical examples and real data

the best fitness function value, (A∗, B∗,K∗). If not, we update the set of

parameter values and we start at point (3) of the present description.

The optimal values obtained as the PSO procedure output, as defined in Figure

6.5, can be found in Table 6.4. Figure 6.6 shows the numerically computed

PDF using the optimal values collected in Table 6.4. 60 particles were used

in order to compute an optimum and the PSO ended after 100 iterations with

an error tolerance of 10−9. It is worth noting that the whole optimization

procedure takes about 9 minutes to compute in an AMD Ryzen 7 5800H,

whereas the simulation itself takes around 0.4 seconds to carry out calculations.

Both cases were simulated with a ∆t = 0.005 time step in the Lagrangian

method. We refer to Figure 6.6 for more information.

Note that the objective function to be minimized by the PSO is not necessarily

convex, so no global minimum is assured. Therefore, the parameter tuple given

by the PSO algorithm may not be the global minimum of the error function

defined in step 6 of the procedure explanation. However, as seen in Figures

6.6-6.8, they provide a parameter vector that allows approaching the real data

with reasonable accuracy. In Figure 6.7 we have plotted the average or sample

mean of the sample data together with the mean and a confidence interval

constructed as mean plus/minus 3 standard deviations both obtained from

repeatedly solving the Liouville’s PDE sampling the initial condition from its

PDF, f0(y). We can observe that this confidence interval captures most of

the uncertainty at every time instant and, when computing the integral in

the corresponding intervals, we obtain values of approximately 0.9, so we are

representing a confidence interval of 90%.

Finally, in Figure 6.8, absolute and relative errors between the mean com-

puted from sampled data and the Liouville’s PDF are shown. Notice that

graphical representations shown in Figures 6.7 and 6.8 are in full agreement.

It is interesting to see the oscillation of the error functions in Figure 6.8 which

shows that, for this particular data set, we have an appropriate fit given by

the generalized logistic model. We have obtained a parameter vector that al-

lows us to represent the expected behavior of the biological population under

study. Non-oscillatory error functions would be given by a fit that is always
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above (over-predicting), or below (under-predicting), the mean curve. This

would mean that the generalized logistic model is incapable of representing

the dynamics of this data set appropriately. Moreover, as the biological cul-

ture approaches its steady state, we will have a lower variability and, in theory,

the amplitude will eventually decrease and stabilize.

A∗ B∗ K∗

0.4911 1.5212 0.635

Table 6.4: Optimal model parameters. Real-world Example with deterministic parameters.

Random coefficients

In order to perform realistic simulations taking into account the uncertainty

in model parameters, probability distributions are assigned in such a way that

the expectation of these distributions match their corresponding deterministic

optimal values collected in Table 6.4. In our subsequent calculations, this will

be assumed for model parameters A and B, that is,

A∗ =

∫
Ω

A(ω) dP(ω), B∗ =

∫
Ω

B(ω) dP(ω),

whileK = K∗ = 0.635 will be taken as the deterministic optimal value (see Ta-

ble 6.4) since from its own biological interpretation its variability is negligible

with respect to the one of A and B.

Probability distributions for A and B have been assigned following particular

biological reasons. They are assigned a priori in such a way that the support of

their corresponding PDFs makes sense in this biological problem; for example

A > 0 and B > 0. Particularly, we have chosen A ∼ Exp(1/A∗) and B ∼
Unif(B∗(1 − 0.15), B∗(1 + 0.15)); that is, an Exponential distribution whose

expectation is A∗ (recall that the mean of an exponential distribution is the
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Sample Data: {ti,Yi}28i=1

Initial PDF: f0(G0) and
Mean Curve: {(ti, Y i)}28i=1

1st PSO
iteration?

Random tuples:
{(Al, Bl,Kl)}60l=1

Update tuples:
{(A′

l, B
′
l,K

′
l)}60l=1

Num. compute PDF
{f(Gi, ti)}28i=1 for ev-

ery (A,B,K) randomly
generated/updated

Error =
∑28

i=1 |f(Gi, ti) − Y i|

Finishing
conditions

met?

Optimized parameters: (A∗, B∗,K∗)

Yes No

No

Yes

Figure 6.5: Flowchart describing the entire PSO-based optimization procedure for deter-
ministic parameters. Real-world Example with deterministic parameters.
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Figure 6.6: Time evolution of the PDF with model parameters given in Table 6.4. Real-
world Example with deterministic parameters. Maximum absolute error in the PDF total
mass: ∼ 6.7 · 10−4.
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Figure 6.7: Mean of the PDF obtained by solving the Liouville PDE along with a confi-
dence interval centered at the mean with a 3 standard deviation radius. Starry points denote
the sample mean at each of the time instants. Real-world Example with deterministic pa-
rameters.
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Figure 6.8: Absolute error (left axis, blue curve) and relative error (right axis, orange
curve) of the mean of the PDF computed by the Liouville PDE with respect to the sample
data. Real-world Example with deterministic parameters.
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inverse of its parameter) and a Uniform distribution centered at B∗ with a

15% support radius interval, respectively.

Now, simulations of the full 28 time values of Table 6.2, that is, up to time

6.803 hours, are computed. Figure 6.9 shows the simulated PDFs at several

time instants. Full simulation with random coefficients and a 4096-point base

grid was performed in just over 37 minutes, with a timestep of ∆t = 0.005.

As previously indicated, note that we have assumed the carrying capacity

to be a constant, K = K∗ = 0.635. Also note in Figures 6.10 and 6.11

that the optimization procedure returned a set of parameters that allows a

very good description of the sample data with the distributions chosen for A

and B. As in the case of the deterministic coefficients, we can observe an

oscillation of the error functions which again is a sign of a coherent fit to the

mean data curve. Notice that there is a slight difference in the amplitude of

the oscillations. This difference is natural and it is because of the nature of

both problems. The case of deterministic coefficients consists in obtaining the

PDF of a stochastic process depending on a single random variable, that is,

the initial condition. The second case, which is represented in Figures 6.10

and 6.11, consists in obtaining the PDF of a stochastic process where 3 of

its parameters are random variables. Moreover, the relationship between the

solution stochastic process and its parameters is nonlinear. This is reflected

in the evolution of its PDF as it can be seen when comparing Figures 6.7 and

6.8 with 6.10 and 6.11.

6.5 Conclusion

With the aim of extending recent studies performed for the logistic random

differential equation and the Gompertz random differential equation, in this

chapter we have investigated the generalized logistic random differential equa-

tion. This equation includes a power term into the classical logistic model,

to better control how fast the limiting capacity is approached. We have as-
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Figure 6.9: Time evolution of the PDF. Real-world Example with random parameters.
Maximum absolute error in PDF mass: ∼ 4.8 · 10−5.
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Figure 6.10: Mean of the PDF obtained by solving the Liouville PDE along with a confi-
dence interval centered at the mean with a 3 standard deviation radius. Starry points denote
the sample mean at each time instant. Real-world Example with random parameters.

0 1 2 3 4 5 6 7

Time (hours)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
bs

ol
ut

e 
er

ro
r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
R

el
at

iv
e 

er
ro

r

Figure 6.11: Absolute error (left axis, blue curve) and relative error (right axis, orange
curve) of the mean of the PDF computed by the Liouville PDE with respect to the sample
data. Real-world Example with random parameters.
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6.5 Conclusion

sumed that the parameters are random variables. Then, we have obtained the

sample-path and mean-square solution rigorously, and we have computed its

Probability Density Function by applying the Random Variable Transforma-

tion technique and the Liouville’s equation. We have analyzed how the model

reduces to the classical logistic equation and the Gompertz equation when the

power tends to 1 and 0 in a probabilistic sense.

Furthermore, we have made use of a type of numerical methods specially suited

for the computation of the solution of partial differential equations such as Li-

ouville’s equation, where convection is the main dynamical behavior of the

solution. It has first been applied to a case with deterministic coefficients

and it has been extended to the scenario where coefficients are given by ran-

dom variables. Afterwards, an optimization procedure based on the Particle

Swarm Optimization algorithm has been implemented. Its objective has been

to obtain the deterministic coefficient values which allow describing the mean

behavior of the biological culture growth data set.

Publications

The results presented in this thesis chapter have been published in [149]. In

regard to this chapter, the PhD candidate has contributed by working on

its complete development with more emphasis on the theoretical results and

preparing the visualization of the numerical examples.

Some results of this chapter have also been presented at the Mathematical

Modeling in Engineering and Human Behavior in Valencia (Spain) from June

14-16th, 2021. The talk, titled Density-based uncertainty quantification in a

generalized Logistic-type model, was published in the conference proceedings

with ISBN: 978-84-09-36287-5. A similar work, using the techniques and ap-

proach seen in this chapter was presented at the GECCO conference in Boston

(USA) and was published as a conference paper [150].
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Chapter 7

Random systems with

impulses

This chapter aims at studying a general class of random differential equa-

tions with Dirac-delta impulse terms at a finite number of time instants via

its probability density function. We consider the case of additive impulses

and multiplicative impulses. We combine the Liouville equation and the ran-

dom variable transformation method to conduct our study. Finally, all our

theoretical findings are illustrated on two stochastic models, widely used in

mathematical modeling, for which numerical simulations are carried out using

the computational approach described in Chapter 5.
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Chapter 7. Random systems with impulses

Most natural phenomena can be mathematically described as a function evolv-

ing smoothly with respect to time, solving a differential equation. The models

studied previously in Chapters 3, 4 and 6 are good examples of such smoothly-

evolving systems. However, there are cases where the system suddenly changes

its state. For example, one may be interested in the dynamical response of a

spring-damper system on a train when advancing from one set of rails to the

next. The system could be destroyed if the oscillations are near its resonant

frequencies. Analyzing these dynamics requires special mathematical tools;

we must consider differential equations with impulses.

This chapter is organized as follows. Section 7.1 is divided into two parts;

in Subsection 7.1.1, we rigorously build pathwise solutions of two kinds of

RDEs with impulses: systems with additive impulses and systems with state-

dependent impulses. Then, in Subsection 7.1.2, we apply the Liouville equa-

tion to obtain the corresponding 1-PDF of the solution of the abovementioned

two classes of RDEs. We will place particular emphasis on determining the

1-PDF behavior at the interface of the discontinuities due to the application

of the impulses. We will do so without any knowledge of the explicit form of

the field function of the corresponding RDE. This results in the application

of the Liouville equation approach to general RDEs. To illustrate this latter

fact, in Section 7.2, we apply the theoretical findings to devise a computa-

tional procedure for some relevant linear and nonlinear models widely used in

biology, medicine, and engineering. Conclusions are drawn in Section 7.3.

Note that in all cases t0 ≥ 0 denotes the initial time of the system, X0(ω) =

(X0
1 (ω), . . . , X

0
d(ω)) ∈ Ld

2(Ω,P), A(ω) := (A1(ω), . . . , Am(ω)) ∈ Lm
2 (Ω,P) and

{Γk(ω) = (Γk
1(ω), . . . ,Γ

k
d(ω))}Nk=1 ⊂ Ld

2(Ω,P) are assumed to be real-valued

pairwise independent absolutely continuous random vectors. The δ(t − tk)

stands for the Dirac delta function [85] acting at the prefixed time instants

t = tk, k = 1, . . . , N and v is the (vector) field function satisfying the same

conditions stated in Equation (2.1.8). For simplification, the ω-dependence

notation will be omitted when convenient.
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7.1 Theory

This section will deal with the theoretical probabilistic analysis of the following

class of impulsive random IVPs:
dX

dt
(t, ω) = v(X(t, ω), t,A(ω))−

N∑
k=1

Γk(ω)δ(t− tk), t > t0,

X(t0, ω) = X0(ω),

(7.1.1)

and
dX

dt
(t, ω) = v(X(t, ω), t,A(ω))−

N∑
k=1

Γk(ω)⊙X(t, ω)δ(t− tk), t > t0,

X(t0, ω) = X0(ω),

(7.1.2)

where ⊙ is the Hadamard product applied to vectors Γk and X(t, ω), both

defined in Rd1.

Observe that we set the impulse terms with the negative sign because, in

most practical cases, one is often interested in the instantaneous change of the

system’s state in a way opposite to its natural dynamics.

The existence and uniqueness properties of solutions to the random IVPs

defined by Equations (7.1.1) and (7.1.2) have some dependence on the re-

alizations of the parameter random vector A(ω), ω ∈ Ω (see [12, Appendix

I]). One can guarantee the existence and uniqueness of solutions between the

impulses t = tk generated by the Dirac delta function δ(t − tk) in the sam-

ple/pathwise sense by imposing classical regularity assumptions on the regu-

larity of v(·, t,A(ω)). Let us recall the ones considered in Equation (7.1.1):

we can assume that the event Ω̃ = E1 ∩ E2, where

E1 = {ω ∈ Ω : v(·, t,A(ω)) is Lipschitz in R uniformly in t},
E2 = {ω ∈ Ω : v(x, ·,A(ω)) is continuous in [t0,∞) for all x ∈ R},

1The Hadamard product between two matrices A, B ∈ RM×N is defined as the element-wise
product; that is, a matrix C ∈ RM×N such that Cij = AijBij .
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has probability 1, i.e., P[Ω̃] = 1. One can then guarantee the existence of

a global solution between the impulses sequence {tk}Nk=1. In particular, this

behavior implies the following conditions (see Figure 7.1):

1. Continuous differentiability in (tk−1, tk), k = 1, . . . , N .

2. Existence and finiteness of X(t+k ) := limt→t+k
X(t) for all k = 0, . . . , N

and X(t−k ) := limt→t−k
X(t) for k = 1, . . . , N .

3. Uniqueness of the solution in (tk−1, tk) given X(t+k−1), X(t−k ) or some

X(t∗), with t∗ ∈ (tk−1, tk), for k = 1, . . . , N .

In summarizing, a priori, we can not guarantee the existence or uniqueness

of a solution to the random IVPs defined by Equations (7.1.1) and (7.1.2).

However, as shown in the following section, classical regularity assumptions

are sufficient to ascertain each sample trajectory’s global existence.

X(t−)

X(t+)

Figure 7.1: Path solution to (7.1.1) in a neighborhood of an impulse time. Conditions
(1)-(3) are clearly reflected in this example.
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7.1.1 Pathwise (weak) solution

We will first build a pathwise solution for the random IVP (7.1.1) considering

the previous paragraphs’ comments. The proof for (7.1.2) is very similar to

this one, but there are some details that we will point out later.

Additive impulse

Let us fix ω ∈ Ω̃ and compute the deterministic Laplace transform [151] to

the corresponding IVP (7.1.1)2. Denoting λ(s) = L[X(·, ω)](s), X0 = X0(ω),

a = A(ω) and, momentarily dropping the ω notation, we obtain

sλ(s)−X0 = L[v(X(·), ·,a)](s)−
N∑

k=1

Γke−stk .

Solving for λ(s):

λ(s) =
1

s
X0 +

1

s
L[v(X(·), ·,a)](s)−

N∑
k=1

Γk e
−stk

s
. (7.1.3)

Computing the inverse Laplace transform of (7.1.3) gives

X(t) = X0 +

∫ t

t0

v(X(s), s,a)ds−
N∑

k=1

ΓkH(t− tk), (7.1.4)

where H(·) is the Heaviside function, defined as

H(u) =

1 u ≥ 0,

0 u < 0.
(7.1.5)

Notice that expression (7.1.4) is the integral form of Equation (7.1.1), where

δ(·) acts as a measure [153]. Substituting t = t1 and taking into account

2See [152] for a useful table on Laplace transforms, some of which have been used in the present
discussion.
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(7.1.5), yields

X(t1) = X0 +

∫ t1

t0

v(X(s), s,a)ds− Γ1 = lim
t→t−1

X(t)− Γ1 := X(t−1 )− Γ1.

Now, let us see what happens after the impulse. From (7.1.4) and the previous

relation for X(t1), we can compute the jump induced in the paths by the

impulse term

X(t+1 )−X(t−1 ) =

∫ t+1

t−1

v(X(s), s,a)ds− Γ1.

The integral term in the previous equation is the 0 vector:∥∥∥∥∥
∫ t+1

t−1

v(X(s), s,a)ds

∥∥∥∥∥ ≤ lim
ε→0

(∫ t1

t1−ε

∥v(X(s), s,a)∥ds+
∫ t1+ε

t1

∥v(X(s), s,a)∥ds
)

≤ lim
ε→0

(
sup

t∈[t1−ε,t1)

∥v(X(t), t,a)∥ε+ sup
t∈(t1,t1+ε]

∥v(X(t), t,a)∥ε
)

=0,

because both supremum terms are finite due to the regular behavior of the

solution between the impulse times. Summarizing, we have the following re-

lations:

X(t+1 )−X(t−1 ) = −Γ1 ⇐⇒ X(t+1 ) = X(t1) = X(t−1 )− Γ1. (7.1.6)

The general solution (7.1.4) is right-continuous at the first impulse. Recovering

the ω-notation, the previous identity is stated as

X(t1, ω) = X(t+1 , ω) = X(t−1 , ω)− Γ1(ω), (7.1.7)

which shows that, for every sample ω ∈ Ω̃, the paths are right-continuous at

t = t1. We can proceed similarly for the following impulse times. For example,
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for all t ∈ [t1, t2], the solution process is given by

X(t) = X0 +

∫ t

t0

v(X(s), s,a)ds− Γ1H(t− t1)− Γ2H(t− t2). (7.1.8)

Now, by using (7.1.4), we see that, at time t = t2, (7.1.8) can be written as:

X(t2) = X(t1) +

∫ t2

t1

v(X(s), s,a)ds− Γ2,

which yields

X(t2) = X(t1) +

∫ t2

t1

v(X(s), s,a)ds− Γ2 = lim
t→t−2

X(t)− Γ2 := X(t−2 )− Γ2.

Following the same reasoning we used to obtain relation (7.1.6), the value after

the impulse will be

X(t+2 )−X(t−2 ) = −Γ2 = ⇐⇒ X(t+2 ) = X(t−2 )− Γ2.

The steps followed for analyzing the first and second impulse times can be

easily generalized for any finite number of impulse times. Particularly, at a

given impulse time tk, and recovering the ω-notation one gets

X(t+k , ω) = X(tk, ω) = X(t−k , ω)− Γk(ω), (7.1.9)

for all k = 1, . . . , N .

Summarizing, we have constructed a right-continuous pathwise solution of the

random IVP (7.1.1), given by

X(t, ω) = X0(ω) +

∫ t

t0

v(X(s, ω), s,A(ω))ds−
N∑

k=1

Γk(ω)H(t− tk), t ≥ t0,

(7.1.10)

X(t+k , ω) = X(tk, ω) = X(t−k , ω)− Γk(ω), k = 1, . . . , N, ω ∈ Ω̃. (7.1.11)
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Multiplicative case

In this case, we will see the proof in the scalar equation case, although the

same properties occur in higher-dimensional systems because of the behavior

of the Hadamard product. That is, we will build a solution for the following

scalar random IVP:
dX

dt
(t, ω) = v(X(t, ω), t,A(ω))−

N∑
k=1

Γk(ω)δ(t− tk)X(t, ω), t > t0,

X(t0, ω) = X0(ω).

(7.1.12)

Once again, fixing ω ∈ Ω̃ and using the Laplace transform used to obtain

Equation (7.1.4), one gets

X(t) = X0 +

∫ t

t0

v(X(s), s,a)ds−
N∑

k=1

ΓkX(tk)H(t− tk), (7.1.13)

where X0 = X0(ω) and a = A(ω).

Now, the equivalent of (7.1.9) for this case would be:

X(t1) =
X0 +

∫ t1
t0
v(X(s), s,a)ds

1 + Γ1
=

limt→t−1
X(t)

1 + Γ1
:=

X(t−1 )

1 + Γ1
.

Let us emphasize the interesting transformations given by the previous equa-

tion. We have the following transformations:

1. The transformation will be well-defined (and invertible) if Γ1(ω) ̸= −1.

2. If Γ1(ω) = 0, the identity transformation applies; that is, X(t1, ω) =

X(t−1 , ω).

3. If Γ1(ω) ∈ (0,∞), we will have X(t1, ω) < X(t−1 , ω).

4. If Γ1(ω) ∈ (−1, 0), we will have X(t1, ω) > X(t−1 , ω).

5. If Γ1(ω) ∈ (−2,−1), we will have X(t1, ω) < −X(t−1 , ω).

6. If Γ1(ω) ∈ (−∞,−2), we will have X(t1, ω) > −X(t−1 , ω).
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Note that the first condition in the previous list occurs almost surely (i.e.,

with unit probability) when Γ1 is an absolutely continuous random variable.

Using the same reasoning as in Equation (7.1.7), and recovering the ω-notation,

we arrive at the following relation between the states of the system at the first

impulse time:

X(t+1 , ω) = X(t1, ω) =
X(t−1 , ω)

1 + Γ1(ω)
. (7.1.14)

Following the same procedure as in the additive impulse case, we finally obtain:

X(t+k , ω) = X(tk, ω) =
X(tk, ω)

1 + Γk(ω)
, k = 1, . . . , N. (7.1.15)

We can easily generalize this to the general multidimensional system case

because what we have shown will happen for each dimensional component of

the solution. Thus, we have built a general solution to the random IVP given

by Equation (7.1.2), which is:

X(t, ω) = X0(ω) +

∫ t

t0

v(X(s, ω), s,A(ω))ds

−
N∑

k=1

Γk(ω)⊙X(tk, ω)H(t− tk), t ≥ t0, (7.1.16)

X(t+k , ω) = X(tk, ω) =

(
Xj(tk, ω)

1 + Γk
j (ω)

)d

j=1

. (7.1.17)

7.1.2 Probability Density Function evolution

Let us recall the Liouville theorem from Theorem 2.2.3: we can assure the

global-in-time existence of a solution to the Liouville equation when the field

function v(·, t) is Lipschitz continuous, uniformly in t. However, the fields un-

der consideration, v(x, t)−
∑N

k=1 Γ
kδ(t−tk) and v(x, t)−

∑N
k=1 Γ

k⊙x δ(t−tk),
do not verify the hypotheses at the impulse times {tk}Nk=1. In this section, we

aim at obtaining a condition such as the jump conditions gathered in Equa-

tions (7.1.11) and (7.1.17) for the PDF. This will allow the computation of the
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evolution of f0, accurately capturing the discontinuities at the impulse times.

In the following subsections, we consider D ⊂ Rd such that no trajectories of

the system ever exit the domain; that is, we consider D such that:

P
[
{ω ∈ Ω̃ : X(t, ω) ∈ D}

]
= 1 ⇐⇒

∫
D
f(x, t)dx = 1,

for all t ≥ t0. Here f is the PDF of X(t, ·).

PDF transformation at the impulse times

Let us return to the set of conditions gathered in Equations (7.1.11) and (7.1.17).

Note that these are equalities between random variables where the density of

X(t−k , ·) can be known: its density verifies the Liouville equation from the pre-

vious impulse time up to t−k . To get the PDF at the impulse time, and thus

the PDF for future evolution, we can use the RVT stated in Theorem 2.2.2.

As in the case of the pathwise solution analysis, let us consider the first trans-

formation in detail and then we will write the result for the general case. Let

f(·, t1) be the PDF of the stochastic process solution at a given impulse time

t1; that is, the PDF of X(t1, ·) (which is unknown). Let f(·, t−1 ) be the PDF

before the jump; that is, the PDF of X(t−1 , ·) (which is known because it ver-

ifies the Liouville equation in (t0, t1)). With this in mind, let us now consider

each case.

Additive impulse

Recalling the jump conditions given in Equation (7.1.9), we have:

X(t1, ω) + Γ1(ω) = X(t−1 , ω) ⇐⇒
∣∣∣∣∂X(t−1 , ω)

∂X(t1, ω)

∣∣∣∣ = 1.

Denoting the joint PDFs of X(t, ·) and Γ1 by f(X(t),Γ1), for t ∈ {t−1 , t1}, the
application of the RVT theorem leads to

f(X(t1),Γ1)(x,γ
1, t1) = f(X(t−1 ),Γ1)

(
x+ γ1,γ1, t−1

)
· 1 = f

(
x+ γ1, t−1

)
fΓ1(γ1),
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where x ∈ D and γ1 = (γ1
1 , . . . , γ

1
d) is an arbitrary sample of Γ1. The den-

sity factorization is justified because X(t−1 , ·) is independent from Γ1, which

only appears at the impulse time. Finally, to obtain the PDF of X(t1, ·), we
marginalize respect to Γ1

f(x, t1) =

∫
D(Γ1)

f
(
x+ γ, t−1

)
fΓ1(γ)dγ = EΓ1 [f

(
x+ Γ1, t−1

)
], (7.1.18)

for all x, which shows that, at the jump, there is a translation of the PDF for

every realization of γ1. The average of these translations gives the PDF of

X(t1, ·). Note that, in (7.1.18), D(Γ1) denotes the domain of random vector

Γ1(ω).

Now, the Liouville equation describes the evolution of the PDF (7.1.18) until

the following impulse time t2. Clearly, at any other impulse time, we will have

the same case as for t1:

f(x, tk) = EΓk
[f
(
x+ Γk, t

−
k

)
], ∀x ∈ D, k = 1, . . . , N. (7.1.19)

Multiplicative impulse

In this case, since the state of the system is affected both by the impulse and

the system’s state before the impulse, as seen in Equation (7.1.15), we get a

more interesting effect (see Figure 7.2):

X(t1, ω)⊙(1+ Γ1(ω)) = X(t−1 , ω) =⇒
∣∣∣∣∂X(t−1 , ω)

∂X(t1, ω)

∣∣∣∣ = d∏
j=1

|1+Γ1
j(ω)|, (7.1.20)
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where 1 = (1, . . . , 1) ∈ Rd. Denoting the joint PDFs of X(t, ·) and Γ1 by

f(X(t),Γ1), for t ∈ {t−1 , t1}, the application of the RVT theorem leads to

f(X(t1),Γ1)(x,γ
1, t1) = f(X(t−1 ),Γ1)

(
x⊙ (1+ γ1),γ1, t−1

) d∏
j=1

|1 + γ1
j (ω)|

= f
(
x⊙ (1+ γ1), t−1

)
fΓ1(γ1)

d∏
j=1

|1 + γ1
j (ω)|,

because X(t−1 , ·) is independent from Γ1, which only appears at the impulse

time. Finally, to obtain the PDF of X(t1, ·), we have to marginalize respect

to Γ1:

f(x, t1) =

∫
D(Γ1)

f
(
x⊙ (1+ γ), t−1

) d∏
j=1

|1 + γj|fΓ1(γ)dγ (7.1.21)

= EΓ1

[
f
(
x⊙ (1+ Γ1), t−1

) d∏
j=1

|1 + Γ1
j |
]
,

for all x, which shows that, at the jump, there is a rescaling of f(·, t−1 ), both
in its argument and value, for every realization of Γ1 (see Figure 7.2).

The average of these transformations gives the PDF of X(t1, ·). Note that, in

(7.1.21), D(Γ1) denotes the domain of random variable Γ1.

Now, the Liouville equation describes the evolution of the PDF (7.1.21) until

the following impulse time t2. Clearly, at any other impulse time, we will have

the same case as for t1:

f(x, tk) = EΓk

[
f
(
x⊙ (1+ Γk), t−k

) d∏
j=1

|1 + Γk
j |
]
, k = 1, . . . , N. (7.1.22)
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f(·, t−)

f(·, t)

Figure 7.2: PDF transformation at the impulse times for the multiplicative case. An
illustrative example concerning the case of a Γ > 0 sample. In the additive impulse case, we
only have a translation of the PDF (same height), however, in the multiplicative case, we
also have rescaling.

Full evolution simulation

Summarizing, the PDF evolution of the random IVPs given by Equations (7.1.1)

and (7.1.2) can be split into the following steps:

1. Define f0, the PDF of the random initial condition X0.

2. Compute its evolution for several realizations of the random parameter

vector A via the Liouville equation, using Equations (2.2.7) and (2.2.9),

until the first impulse time t1. We now have a family of PDFs at time t1
before the impulse, which we denote by {f(·, t−1 |a)}a∈A(Ω).

3. Compute the approximation to the expected PDF with respect to the

random parameter distribution, which we denote by f(·, t−1 ).
4. Transform f(·, t−1 ) via Equations (7.1.9) and (7.1.15), obtaining the PDF

f(·, t1).
5. Repeat Steps 1-4, but with f0(·) = f(·, t1) until the following impulse

time t2.

6. Repeat Steps (1)-(5) until the last impulse time, tN .
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7. Evolve f(·, tN) until wanted.

7.2 Examples

This section is aimed at showing the applicability of the theoretical findings

stated in the previous sections to some relevant random mathematical models

where jumps are a key feature in the mathematical formulation. We will show

three examples:

1. A scalar linear RDE with additive impulse.

2. An additive impulse nonlinear oscillator system based on the Duffing

oscillator.

3. A multiplicative generalized logistic equation applicable to biomedical

problems.

In this section, we use the computational approach described in Chapter 5:

In all cases, we use wavelet-compression based AMR and the interpolation-

remeshing step is done using RBFs. Details about the specific parameters

chosen will be detailed in each example’s subsection.

7.2.1 Scalar linear RDE

Linear ODEs are the simplest and among the most successful types of ODEs.

This kind of ODEs verifies many properties, making them relatively easy

to work with. Although most natural phenomena are modeled by nonlin-

ear ODEs, there are some cases where one can consider the linearization of

the ODE; that is, a linear ODE whose dynamic properties are the same as

the original nonlinear ODE in a neighborhood of some time where the lin-

earization is done. For example, when studying growth processes in biology

or medicine, a linear model can be used to predict the growth at the initial

stages, despite the fact that nonlinear behavior appears after some time and

ends up governing the growth process asymptotically. A typical example is

the logistic model, which is nonlinear but behaves like the Malthusian model,

which is linear, at the initial times.
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We consider the following impulsive random IVP:

Ẋ(t, ω) = A(ω)X(t, ω) +B(ω)− Γ
N∑
i=1

δ(t− Ti), t > 0, (7.2.1)

X(0, ω) = X0(ω), (7.2.2)

where ω ∈ Ω and X0, B and A ̸= 0 a.s. are finite-variance random variables

with preassigned PDFs denoted by f0, fB and fA, respectively. Also, Γ ̸= 0

a.s. is a random variable with a known PDF, fΓ. For the sake of simplicity,

we assume that X0, A, B, and Γ are mutually independent.

Obtaining the pathwise flow is a relatively easy task. Let us fix ω ∈ Ω and

denote x0 = X0(ω), a = A(ω), b = B(ω), γ = Γ(ω). Using the well-known

solution expression of linear ODEs, for t ∈ [Tk, Tk+1), we get

ϕ(t;x0, a, b) = eat
(
x0 +

b

a
− γ

k∑
i=1

e−aTiH(t− Ti)

)
− b

a
,

which can be easily proven to be a solution of the random IVP (7.2.1)-(7.2.2)

(classical between impulse times and weak globally). Analogously, solving the

previous equation for x0, the inverse flow has the following expression:

ψ(t;x, a, b) = e−at

(
x+

b

a
+ γ

k∑
i=1

ea(t−Ti)H(t− Ti)

)
− b

a
. (7.2.3)

The Liouville equation for this case is then easily obtained

∂tf(x, t | a, b) + (ax+ b)∂xf(x, t | a, b) = −af(x, t | a, b),

and its solution, conditioned to every pair of realizations (a, b), is given by

f(x, t | a, b) = f0(ψ(t;x, a, b))e
−at, (7.2.4)

where ψ is defined in (7.2.3).
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To obtain the final 1-PDF, we have to compute the conditional expectation of

(7.2.4) with respect to A and B as shown in expression (2.2.9):

f(x, t) = EA,B[f(x, t |A,B)] =

∫
D(B)

∫
D(A)

f0(ψ(t;x, a, b))e
−atfA(a)fB(b)dadb,

(7.2.5)

where D(A) and D(B) denote the domains of the random variables A and B,

respectively.

Table 7.1 shows the chosen distributions, mean, and standard deviation (Std

for short) of the parameter random variables. Note that these distributions

have been selected just to illustrate the versatility of the Liouville equation

method. Indeed, any other combination of probability distributions could

have been chosen for the same purpose. We have considered 3 impulse times,

at instants T1 = 15, T2 = 25 and T3 = 35, with the same impulse strength

distribution Γ.

Variable Distribution Mean Std
X0 Normal 0.17 0.015
A Gamma 0.03 0.02
B Uniform 0.04 0.02
Γ Uniform 0.5 0.02

Table 7.1: Statistical information about the random model parameters in the linear impul-
sive random IVP (7.2.1)–(7.2.2).

Figure 7.3 shows the evolution of the mean function and the 95% confidence

interval. We can see the characteristic exponential growth of the linear ODE

(7.2.1) and the sharp decreases of the solution at the impulse times. We can

also observe that the confidence interval size remains almost the same before

and after the impulse, as expected from (7.1.19). This implies that there is

almost no difference in the uncertainty of the system before and after a given

impulse. Figure 7.4 shows the PDF at several time instants together with

the information from Figure 7.3. This figure clearly shows the effect of the

exponential growth determined by the linear ODE; indeed, as time goes on,

each “slice” of the PDF becomes lower and wider (platykurtic) until it becomes

a small lump when compared with the initial PDF where is leptokurtic. At
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Figure 7.3: Mean function (red solid curve) of the solution process and the boundaries of
the 95% probabilistic interval (black dashed curves). Linear impulsive random IVP (7.2.1)–
(7.2.2) with random model parameters listed in Table 7.1.

t = 15, there is a sharp translation of the PDF, which is the effect of a Dirac

impulse term. This fact can be further seen in Figure 7.5, which shows the

transformations of the PDFs at each impulse time. Notice there is a translation

of the PDF and a slight rescaling of the PDF, as expected by relation (7.1.19).

For the simulation shown in Figures 7.3-7.4, we have used a 0.25 time-step,

with re-interpolation every 4 time-steps. The grid is formed by 1024 equis-

paced nodes. It was computed using 150 samples (15 for parameter A and

10 for parameter B). Jumps were resolved using 30 samples for Γ (other

combinations of samples can also be used).
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Figure 7.4: Waterfall plot of the evolution of the PDF (blue slices) with the mean function
(red solid curve) and the probabilistic intervals (black dashed curves) in the time interval
[0, 25]. Linear impulsive random IVP (7.2.1)–(7.2.2) with random model parameters listed
in Table 7.1.
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Figure 7.5: PDFs before and after each of the 3 impulse times: T1 = 15, T2 = 25 and
T3 = 35. Linear impulsive random IVP (7.2.1)–(7.2.2) with random model parameters listed
in Table 7.1.

7.2.2 Random Duffing oscillator

Nonlinear oscillators have been thoroughly studied due to their rich dynam-

ical behavior and ability to model a wide variety of natural and engineering

phenomena. For example, Hooke’s law states that there is a linear relation-

ship between the deformation and the force exerted by a spring. However,

when the deformation becomes large enough, the response becomes nonlinear.

Also, elastic pendulums, mechanical isolators, beams with non-linear stiffness,

cable vibrations, and some electrical circuits can be modeled via the nonlinear

oscillator equation known as the Duffing equation [154–156].
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We here consider the following impulse-forced Duffing equation

Ẍ(t, ω) + 2Ξ(ω)Ẋ(t) +X(t, ω) + Λ(ω)X(t, ω)3 =
N∑
i=1

Γi(ω)δ(t− Ti), t > 0,

(7.2.6)

X(0, ω) = X0(ω), Ẋ(0, ω) = Ẋ0(ω), (7.2.7)

where the model parameters Ξ > 0 and Λ > 0, as well as the initial conditions

X0 and Ẋ0, are assumed to be mutually independent finite-variance random

variables with pre-assigned PDFs fΞ, fΛ, fX0
and fẊ0

, respectively. Also, the

random variables {Γi}Ni=1 are assumed to be mutually independent with known

PDFs, denoted by fΓi
, i = 1, . . . , N .

Contrarily to the previous example, the Duffing model does not have an “easily

manageable” closed-form solution, and furthermore, the cases where such a

solution expression exists are rare [157]. Therefore, this case will be treated

numerically. In this context, combining the RVT method and the Liouville

equation is particularly useful rather than only applying the RVT method.

First, let us transform the Duffing equation into a first-order two-dimensional

ODE. Consider the vector Y(t, ω) = [Y1, Y2]
T := [X(t, ω), Ẋ(t, ω)]T, t ≥ 0,

whose components represent position and velocity, respectively. Now, drop-

ping the ω-notation, the Duffing equation can be written as

Ẏ(t) =

[
Y2(t)

−2ΞY2(t)− Y1(t)− ΛY1(t)
3 +

∑N
i=1 Γiδ(t− Ti)

]
, Y(0) =

[
X0

Ẋ0

]

where Ẏ can be rewritten as

Ẏ(t) =

g(Y(t),t,Ξ,Λ)︷ ︸︸ ︷[
Y2(t)

−2ΞY2(t)− Y1(t)− ΛY1(t)
3

]
+

N∑
i=1

δ(t− Ti)

Γi︷ ︸︸ ︷[
0

Γi

]
.

As we will simulate the initial PDF evolution numerically, we have to build the

Liouville equation to be solved between the impulse times and then translate
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the PDF as shown in (7.1.19). Let us fix ω ∈ Ω and consider the pair of

arbitrary realizations ξ = Ξ(ω) and λ = Λ(ω). Indeed, the vector field and

divergence terms for the Liouville equation are

g(y1, y2, t, ξ, λ) = (y2,−2ξy2 − y1 − λy31), ∇y · g(y1, y2, t, ξ, λ) = −2ξ,

respectively. Therefore, the Liouville equation related to the random IVP

(7.2.1)-(7.2.2) between the impulse times is

∂tf(y, t | ξ, λ)+
y2∂y1

f(y, t | ξ, λ)− (2ξy2 + y1 + λy31)∂y2
f(y, t | ξ, λ) = 2ξf(y, t | ξ, λ), (7.2.8)

f(y, 0 | ξ, λ) = f0(y) := fX0
(y1)fẊ0

(y2). (7.2.9)

To solve this PDE, we will use the Lagrangian particle and AMR techniques

described in Subsections 5.2.3 and 5.2.1, respectively. Finally, all that would

be left is to compute the PDF marginalizing the model parameters Ξ and Λ

using expression (2.2.9) with the identification A = (Ξ,Λ).

Variable Mean Var.
X0 1.75 0.025

Ẋ0 0 0.025
Ξ 0.2 0.02
Λ 3 0.3
Γ1 2.5 0.02
Γ2 1 0.02
Γ3 1.2 0.02

Table 7.2: Statistical information about the random model parameters in the Duffing
equation. In all the cases, random variables are assumed to be independent and have Normal
distributions with the specified values for the mean and the variance. Due to their physical
meaning, the random variables Ξ and Λ are truncated to positive values. Random Duffing
oscillator 7.2.6–7.2.7.

To carry out the computations, we have assumed the probability distributions

listed in Table 7.2 for each random variable. Note that we have considered

3 impulse terms, which have been chosen at the following time values: T1 =

0.6, T2 = 1.2, and T3 = 2.4. Furthermore, in Figures 7.6–7.12, we show the
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evolution of the initial PDF for the corresponding parameter distributions

before and at the corresponding impulse times.

These simulations show the fascinating dynamics induced by the Duffing oscil-

lator. The complete sequence of Figures 7.6–7.12 (left figures) show the initial

joint PDF for the position and velocity (that is shown in Figure 7.6 (left)) be-

gins to decay in a counter-clockwise spiral-like fashion toward the origin, which

is its trivial equilibrium point. As it is shown in the right panel in Figures

7.6, 7.8, 7.10 and 7.12, the AMR technique selects relatively few points as the

particles that will be evolved using the corresponding characteristic equations

(5.2.9). These points carry the most information about the values of the PDF

in the underlying 512× 512-point grid.

Figure 7.7 shows the joint PDF of position and velocity before the first impulse

time T1 = 0.6 (left figure) and its transformation after applying the impulse

(left figure). We can see that the transformation (all of them) consists of

a translation and a subtle rescaling due to the distribution of the impulse

random variable Γ1. If the impulse were deterministic, the transformation

would consist of a translation only (compare with Equation (7.1.19)).

As explained in Section 7.1.2, the simulation continues by performing the

AMR of the transformed PDF and smoothly evolving the PDF until the next

impulse time. As it can be seen in Figure 7.8, the PDF starts to lose its

ellipse-like shape because the points that are further away from the origin

carry more velocity than those where the PDF is concentrated. This fact is

clearly observable when we arrive at the next impulse time, T = 1.2 (Figure

7.9). Now, the aforementioned rescaling property is visible on the plot. There

is a greater difference between the PDF before and after the impulse time than

in the first impulse (compare Figures 7.7 and 7.9).

Once again, the AMR is performed, and the PDF evolves from its new state

according to the Duffing oscillator dynamics. Figure 7.10 shows the interesting

form that the PDF is attaining. Finally, the last impulse transformation at

time T = 2.4 is shown in Figure 7.11, and Figure 7.12 shows the peculiar

form of the PDF at time t = 2.6. Figure 7.13 shows the marginal PDF of

position at time t = 2.6, assuming a fixed value for velocity 0.6 (compare
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with Figure 7.12) whereas Figure 7.14 shows the marginal PDF of velocity at

time t = 2, assuming that position is in the interval [0.4, 0.6]. As mentioned

in the introduction, by knowing the joint PDF of a stochastic process, we

can understand its behavior at every time instant. The figures shown in this

example are a clear example where knowing the joint and marginal PDFs

gives key statistical information that would not be attainable by computing

only the mean and variance of the stochastic process, as is usually done in the

literature.

As a final note regarding the interpolation procedure used in this particu-

lar case, we have used compactly-supported RBF interpolation based on the

Wendland C2 kernels [94]. Although there may be faster methods for interpo-

lating scattered points in 2D, RBF-based interpolation allows for a stable, eas-

ily implementable, and general interpolation approach, independently of the

dimensionality of the RDE system. Also, the time step used for the numerical

solution via the Runge-Kutta integrator is 0.05, and we have re-interpolated

the particles every 2 steps, according to the theory in Chapter 5. In this case,

we used 98 samples (7 for Ξ and 14 for Λ, although other combinations can

be used). Jumps were resolved using 20 samples each.

7.2.3 Generalized logistic equation

In [158, 159], similar problems have been studied in the setting of the logistic

equation, a classical and widely used mathematical model that appears in

several areas of science. In this chapter, we are going to deal with the impulse-
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Figure 7.6: Left: Level curves of the initial PDF f0 (view color-bar) of the Duffing equation
model, and the 95% confidence region (curve in red). Right: Scatter view of the grid points
that will be used to compute the evolution of the PDF. We obtain a 99.43% compression with
respect to the underlying fine grid. Random Duffing oscillator (7.2.6)–(7.2.7) with random
model parameters listed in Table 7.2.
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After impulse: 0.6
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Figure 7.7: Left: PDF approaching the first impulse time from the left; that is, f(·, 0.6−).
Right: PDF at the transformation; that is, f(·, 0.6) = f(·, 0.6+). Random Duffing oscillator
(7.2.6)–(7.2.7) with random model parameters listed in Table 7.2.
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Current time: 0.9

-6 -4 -2 0 2 4 6
Velocity

-6

-4

-2

0

2

4

6

P
os

iti
on

0.5

1

1.5

2

2.5

0 100 200 300 400 500
Relevant points = 3980

0

50

100

150

200

250

300

350

400

450

500

Figure 7.8: Left: Level curves of the PDF at time t = 0.9 (view color-bar) and the 95%
confidence region (curve in red). Right: Scatter view of the relevant grid points for the
computation of the evolution of the PDF. We obtain a 98.79% compression with respect
to the underlying fine grid. Random Duffing oscillator (7.2.6)–(7.2.7) with random model
parameters listed in Table 7.2.
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After impulse: 1.2
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Figure 7.9: Left: PDF approaching the second impulse time from the left; that is, f(·, 1.2−).
Right: PDF at the transformation; that is, f(·, 1.2) = f(·, 1.2+). Random Duffing oscillator
(7.2.6)–(7.2.7) with random model parameters listed in Table 7.2.
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Figure 7.10: Left: Level curves of the PDF at time t = 2 (view color-bar) and the 95%
confidence region (curve in red). Right: Scatter view of the relevant grid points for the
computation of the evolution of the PDF. We obtain a 98.72% compression with respect
to the underlying fine grid. Random Duffing oscillator (7.2.6)–(7.2.7) with random model
parameters listed in Table 7.2.
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After impulse: 2.4
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Figure 7.11: Left: PDF approaching the third impulse time from the left; that is, f(·, 2.4−).
Right: PDF at the transformation; that is, f(·, 2.4) = f(·, 2.4+). Random Duffing oscillator
(7.2.6)–(7.2.7) with random model parameters listed in Table 7.2.
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Current time: 2.6
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Figure 7.12: Left: Level curves of the PDF at time 2.6 (view color-bar) and the 95%
confidence region (curve in red). Right: Scatter view of the relevant grid points for the
computation of the evolution of the PDF. We obtain a 98.48% compression with respect
to the underlying fine grid. Random Duffing oscillator (7.2.6)–(7.2.7) with random model
parameters listed in Table 7.2.

harvest generalized logistic model with a finite number of captures, say N ,

X ′(t, ω) = α(t) r(ω)X(t, ω)

(
1−

(
X(t, ω)

K(ω)

)ν(ω)
)
−

N∑
n=1

Γn(ω)δ(t− tn)X(t, ω),

(7.2.10)

X(t0, ω) = X0(ω),

where t ≥ t0 and ω ∈ Ω̃. As usual, t is interpreted as the time, the parameter

r is the growth (r > 0) or decay (r < 0) rate, and K is the carrying capac-

ity. The differential equation is generalized by adding two terms: a positive,

monotonically growing function α(·) and a constant positive term ν. The first

term, α(·), allows controlling the so-called lag phase, which is the growth phase

in which the population under study has not yet achieved fully exponential
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Figure 7.13: Marginal PDF of position at time t = 2.6, that is, X(2.6), subject to Ẋ(2.6) =
0.6. Random Duffing oscillator (7.2.6)–(7.2.7) with random model parameters listed in Table
7.2.

growth. In particular, we have chosen [66]:

α(t) :=
q(ω)

q(ω) + e−m(ω) t
, q,m > 0 a.s.

The latter, ν, is a power that controls how fast the carrying capacity K is

approached and is known as deceleration term. When ν = 1, the classical

logistic differential equation is obtained. And when ν tends to 0, the Gompertz

equation is given. The incorporation of both the function α(·) and the power

ν allows for more flexible S-shaped curves to model growth phenomena over

time.

The field function of the generalized logistic equation under study (7.2.10)

verifies all the conditions of Theorem 2.2.3, where the set D in Theorem 2.2.3

for the generalized logistic model (7.2.10) is going to be D = [0, ||K||L∞ ],

with ||K||L∞ = sup{K(ω) : ω ∈ Ω̃}. Furthermore, it is smooth in space and

time variables, so the use of the Liouville equation as in (2.2.3) is available.
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Figure 7.14: Marginal PDF of velocity at time t = 2, that is, Ẋ(2), subject to X(2.6) ∈
[0.4, 0.6]. Random Duffing oscillator (7.2.6)–(7.2.7) with random model parameters listed in
Table 7.2.

Therefore, its corresponding Liouville equation between impulse times is:

∂tf(x, t |a)+α(t) rx
(
1−

( x
K

)ν)
∂xf(x, t |a)

= −f(x, t |a)α(t) r
(
1− (1 + ν)

( x
K

)ν)
.

We remind the computation of the marginal PDF with respect toA as in equa-

tion (2.2.9). Using this final PDF, we will compute the statistical information

given by the mean E[X(t, ω)], and the variance V[X(t, ω)] = E[(X(t, ω))2] −
(E[X(t, ω)])2 at a certain prefixed time instant, say t.
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Application to tumor removal

There are many ways of treating cancer, such as radiotherapy, chemotherapy,

and in some cases, direct retrieval of a fraction of the tumor mass. The first

two treatments have a prolonged effect of tumor destruction, whereas the

latter intervention can be modeled via a delta-type impulse function because

of the sudden extraction of the tumor mass with respect to the total treatment.

Regarding un-altered tumor growth, it is well known that Malthus-type models

of exponential growth only work when studying initial growth stages. Just as

an illustrative example of the application of Equation (7.2.10) to model this

kind of medical problem, we choose the parameter vectors as follows:

• The initial tumor size X0 ∼ N|(0,1)(0.15, 0.01), where N|(0,1) is a normal

distribution truncated on the interval (0, 1).

• Variables q and m will be given the same deterministic values as in the

previous example: q = 1 and m = 4.

• We consider r ∼ N|(0,1)(0.15, 0.0075), ν ∼ Unif(1, 1.25) andK ∼ Unif(0.9, 1).

• We are going to consider 5 removals with equally distributed intensity

given by Γ1 = . . . = Γ5 = Γ ∼ N|R+(2, 0.01), at times TTumor = {t1 =

15, t2 = 25, t3 = 35, t4 = 45, t5 = 55}.

In Figure 7.15, we have plotted the mean and 95%-confidence intervals ac-

cording to the prefixed parameters and removal times. It can be seen how,

after each removal, the tumor size starts growing according to the un-removed

size of the tumor. Interestingly, the confidence interval amplitude before each

removal is higher than the uncertainty after the removal. Indeed, since all

removals are distributed as Γ ∼ N|R+(2, 0.01), it can be easily seen that each

removal takes away half of the tumor (in average), thus reducing the uncer-

tainty after each removal time. Contrary to the previous example, this case

allows having a long-time prediction with a reduced level of uncertainty while

still considering random impulses. This can be further seen in Figure 7.17,

where the PDF given as the solution of the Liouville equation in this particular

problem setting is shown in every simulated time in TTumor.
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Figure 7.15: Time evolution of the mean tumor size and a 95% confidence interval with
several extractions.
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Figure 7.16: Time evolution of the 95% confidence interval amplitude and the standard
deviation of the tumor growth with extractions.
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Figure 7.17: Full view of the PDF evolution simulations of the tumor growth problem
7.2.3 at the corresponding time values in TTumor, together with the mean (red) and 95%
confidence intervals (dashed, black). Compare with Figure 7.15.

7.3 Conclusions and future work

In this chapter, we have rigorously obtained a pathwise solution to a general

random differential equation with a finite number of random-intensity impul-

sive terms, with the usual assumptions on the regularity of the field function.

Furthermore, we have determined the evolution of the first probability density

function of the solution stochastic process by combining the Liouville equa-

tion and the Random Variable Transformation technique. After some brief

comments on the numerical approach for the simulation of the probability

density function evolution, we have applied our general theoretical findings to

several mathematical models. Indeed, two of these examples emerge from the

generalized logistic model with natural decay and growth, respectively, being

both altered by additive and multiplicative impulsive terms acting contrarily

to their respective natural dynamics. The other example is based on a ran-

domization of the Duffing oscillator, whose external input is defined via a train

of random additive impulses. This has been done to showcase the wide range

of applicability of the theoretical findings obtained throughout this chapter.

174



7.3 Conclusions and future work

Publications

The results presented in this thesis chapter have been published in [118, 160].

Regarding this chapter, the PhD candidate has contributed by working on

its complete development with more emphasis on the theoretical results and

preparing the visualization of the numerical examples.

Also, some results of this chapter have been presented at two international

conferences. The first one is the 2022 Mathematical Modeling in Engineering

and Human Behavior (MMEHB-22), held in Valencia (Spain) from 14-16th

of July, 2022. The talk, titled Probabilistic analysis of scalar random differ-

ential equations with state-dependent impulsive terms via probability density

functions was published in the conference proceedings, with ISBN: 978-84-

09-47037-2. The second congress was the Uncertainties 2023 conference, held

in Fortaleza (Brazil) from July 30th-August 4th, 2023. The talk was titled

Uncertainty Quantification in Impulsive Random Differential Equations.
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Conclusions and future work

In this thesis, we have tackled the problem of estimating the PDF and the re-

lated probabilistic information from a stochastic process verifying some RDE

system in the pathwise or mean square sense. We have discussed several

methods throughout the dissertation, but we have emphasized the usage of the

RVT Theorem and the Liouville equation. Indeed, several computational tech-

niques were combined to obtain a procedure to quantify uncertainty evolution

in mathematical models given by RDE systems under general assumptions.

We now give a brief reminder on the main keys from each chapter.

Chapter 3 studies, from a probabilistic standpoint, the fully randomized Gom-

pertz model. This important model plays a key role in describing the dynam-

ics of biological and biophysical parts of complex systems, which often involve

uncertainties. The study has been conducted under very general hypotheses

regarding the probability distributions of model parameters, which confers a

wide range of applicability to our theoretical findings. The numerical experi-

ments and modeling carried out in our examples show very good results.
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This chapter shows the valuable information that can be gained from hav-

ing a closed-form solution for the mathematical model under study, where

both the Liouville equation and the RVT theorem can be directly applied. It

also discusses the great improvement in considering random models instead of

deterministic models when dealing with real-world data.

Chapter 4 defines a procedure to quantify uncertainty in a random biological

system. Specifically, we have used the Liouville equation, whose solution at

every instant was obtained using a finite volume numerical scheme. Using

real data from experiments performed in the literature and the Principle of

Maximum Entropy, we assigned a reliable probability density to the initial

condition of the dynamical system. We successfully optimized two key model

parameters, representing the growth rates of both strains of bacteria so that

the mean of the solution stochastic process is as close as possible to the real

sample mean. The optimal values were obtained using the Particle Swarm

Optimization algorithm.

This chapter highlights the main advantage of the Liouville equation over the

RVT theorem: the availability of numerical methods from deterministic PDEs

to estimate the PDF without having a closed-form solution for the underlying

stochastic process. However, it also highlights two issues that are addressed

in the following chapter: 1) Not any numerical approach is valid for the kind

of problem defined by the Liouville equation: we must choose one designed

for advection-dominated problems; 2) we must use advanced computational

techniques to define a numerical method that can compute the PDF efficiently

and in a reasonable amount of time.

Chapter 5 introduces and analyzes a novel numerical approach for efficiently

solving the Liouville equation in the context of RDEs using General-Purpose

Graphics Processing Units (GPGPUs). Our methodology integrates wavelet

compression-based adaptive mesh refinement, Lagrangian particle methods,

and radial basis function approximation to develop a versatile, accurate, and

computationally efficient numerical algorithm. We validated the performance

of our approach through several mathematical models, including the van der

Pol oscillator, Mathieu equation, and SIR model. These examples demonstrate

178



the method’s applicability to various problems and its compatibility with var-

ious numerical integrators for the underlying systems. Not to be overlooked

is the illustration of the method’s limitations in its current implementation.

Our findings suggest that the numerical method described in the chapter holds

significant potential for quantifying forward uncertainty in random differential

equations via probability density evolution, greatly improving the information

obtained by simply performing Montecarlo simulations. However, more re-

search must be done to determine the effect of the several parameters that

define the computational on the quality of the simulation.

Chapter 6 investigates the generalized logistic random differential equation.

This equation includes a power term in the classical logistic model to better

control how fast the limiting capacity is approached. We have assumed that

the parameters are random variables. Then, we rigorously obtained the sample

path and mean-square solution and computed its Probability Density Function

by applying the Random Variable Transformation technique and Liouville’s

equation. We have analyzed how the model reduces to the classical logistic

equation and the Gompertz equation when the power tends to 1 and 0 in a

probabilistic sense.

We applied the numerical method defined in Chapter 5 to a case with deter-

ministic coefficients, and then it was extended to the scenario where coeffi-

cients are given by random variables. Afterward, an optimization procedure

was implemented based on the Particle Swarm Optimization algorithm. Its

objective has been to obtain the deterministic coefficient values that describe

the mean behavior of the biological culture growth data set. This chapter

points out that a wise combination of our Liouville solver with state-of-the-art

optimization techniques can provide a valuable tool for inverse uncertainty

quantification and posterior prediction information in real-world scenarios.

Finally, in Chapter 7 we have rigorously obtained a pathwise solution to a

general random differential equation with a finite number of random-intensity

impulsive terms, with the usual assumptions on the regularity of the field func-

tion. Furthermore, we have determined the evolution of the first probability
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density function of the solution stochastic process by combining the Liouville

equation and the Random Variable Transformation theorem.

This chapter provides novel results in the vibrant area of Dirac-forced additive

and impulsive RDE systems. Specifically, using the pathwise Laplace trans-

form, we can use both the Liouville equation and the RVT theorem in the

same framework to determine the PDF evolution at all times, including the

impulse instant. Once again, it shows the versatility of these methods and the

numerical techniques considered in the thesis.

Regarding future work, we believe that the numerical approach for solving

the Liouville equation can still be improved in accuracy and computational

efficiency. We are currently researching the interplay of the solver’s parame-

ters, which are very intricate. There is also the possibility of using a neural

network-based approach to improve and automate the solution-finding pro-

cess and computing the PDF evolution in higher dimensions while minimizing

memory usage. In relation to the applications, a significant challenge lies in

assigning appropriate probability distributions to the model parameters. This

ensures that the response of the differential equation accurately reflects the

uncertainty inherent in the physical phenomena being studied. While this is-

sue has not been directly addressed in this thesis, it may influence the methods

developed in this dissertation when applied to real-world scenarios

We are also aware of the interesting challenges of random boundary value

problems, where we already have some theoretical results and expect numerical

results soon. Finally, random delay equations and fractional RDEs are also

under the radar. In these cases, all we need to do is find the corresponding

Liouville equation, the corresponding characteristic equations and modify the

numerical method appropriately.
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Appendix A

Relating the Liouville

equation with RDEs

In this appendix, we include several proofs regarding the relationship between

the PDF of an RDE system and the Liouville equation. In all cases, we

consider the general RDE from Chapter 2, given by the following initial value

problem: 
dX

dt
(t) = v(X(t), t), t > t0,

X(t0) = X0 ∈ L2
d(Ω,Rd),

(A.0.1)

and X(t) = X(t, ω), t ≥ t0, ω ∈ Ω is the stochastic process that verifies the

equation. Since we will consider three different approaches, we will specify the

specific sense in which X(t) verifies the RDE.
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Appendix A. Relating the Liouville equation with RDEs

A.0.1 Classical theorem proof

In the context of dynamical systems, the Liouville-Gibbs theorem states that

the PDF, f(t,x), of the solution stochastic process, X(t), of IVP (2.1.7) is an

invariant of motion, i.e., the integral

J (t) =

∫
Dt

f(t,x) dx (A.0.2)

is independent of t for any domain Dt ⊂ Rd (defined in terms of t), i.e.,

dJ (t)

dt
= 0. (A.0.3)

In this case, we assume that X(t) verifies Equation (A.0.1) in the pathwise

sense. Let us consider

J (t+ h) =

∫
Dt+h

f(t+ h,y) dy. (A.0.4)

Using the theorem of change of variables for integrals, expression (A.0.4) can

be written on the domain Dt as

J (t+ h) =

∫
Dt

f(t+ h,y)

∣∣∣∣∂y∂x
∣∣∣∣ dx (A.0.5)

Let us now calculate the two factors, f(t + h,y) and the jacobian

∣∣∣∣∂y∂x
∣∣∣∣, ap-

pearing in the previous integral. For the former, let us observe using Taylor’s

expansion of order 2 that

f(t+ h,y) = f(t,x) + h

(
∂x1

f
dx1

dt
+ . . .+ ∂xd

f
dxd

dt
+ ∂tf

)
+O(h2)

= f + h (∂x1
fv1 + . . .+ ∂xd

fvd + ∂tf) +O(h2),

(A.0.6)

where in the last step we have used the shorter notation f = f(t,x) and that

x = (x1, . . . , xd) satisfies the differential equation in (A.0.1), so
dxi

dt
= vi,

vi = vi(t, x1, . . . , xd), 1 ≤ i ≤ d. To compute the jacobian, we apply again
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Taylor’s expansion of order 2 for each component,

yi = xi + h
dxi

dt
+O(h2) = xi + hvi +O(h2), 1 ≤ i ≤ d.

Then the jacobian
∂y

∂x
in (A.0.5) can be calculated as

∂y

∂x
= det


∂x1

y1 · · · ∂x1
yd

...
. . .

...

∂xd
y1 · · · ∂xd

yd


= det


1 + h∂x1

v1 +O(h2) · · · h∂x1
vd +O(h2)

...
. . .

...

h∂xd
v1 +O(h2) · · · 1 + h∂xd

vd +O(h2)


= 1 + h (∂x1

v1 + · · ·+ ∂xd
vd) +O(h2).

Therefore, using (A.0.6) and this last expression for the jacobian one gets

f(t+ h,y)
∂y

∂x
= [f + h (∂x1

fv1 + . . .+ ∂xd
fvd + ∂tf) +O(h2)]

· [1 + h (∂x1
v1 + · · ·+ ∂xd

vd) +O(h2)]

= f + h (∂x1
fv1 + . . .+ ∂xd

fvd + ∂tf

+ f∂x1
v1 + · · ·+ f∂xd

vd) .

Now, we use the rule for the derivative of a product ∂xi
(fvi) = vi∂xi

f+f∂xi
vi,

1 ≤ i ≤ d. Then, the last expression can be written as

f(t+ h,y)
∂y

∂x
= f(t,x) + h

(
∂tf +

n∑
i=1

∂xi
(fvi)

)
,

i.e.,

f(t+ h,y)
∂y

∂x
− f(t,x)

h
= ∂tf +

n∑
i=1

∂xi
(fvi), (A.0.7)

where, for convenience, we have recovered the notation f = f(t,x). Finally,

we subtract (A.0.2) from (A.0.4), then divide by h and take limits as h → 0,
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Appendix A. Relating the Liouville equation with RDEs

and use (A.0.7), one gets

0 =
dJ (t)

dt
= lim

h→0

J (t+ h)− J (t)

h
=

∫
Dt

f(t+ h,y)
∂y

∂x
− f(t,x)

h
dx

=

∫
Dt

(
∂tf +

n∑
i=1

∂xi
(fvi)

)
dx.

Therefore, if the PDF f = f(t,x) of the solution stochastic process of (A.0.1)

satisfies the following PDE

∂tf +
n∑

i=1

∂xi
(fvi) = ∂tf +∇x · [fv] = 0, (A.0.8)

then it is an invariant of motion of the dynamical system (A.0.1).

A.0.2 L2 case

In this case, we consider that X(t) verifies Equation (A.0.1) in the L2
d(Ω,P),

or mean square, sense. Let us fix t ∈ [t0,∞) and consider the definition of the

characteristic function of the random vector X(t) = (X1(t), . . . , Xd(t))
T,

Φ(t,u) = E
[
eiu

TX(t)
]
=

∫
Rd

eiu
Txf(t,x) dx = (2π)dF [f(t,x)](u), (A.0.9)

where u = (u1, . . . , ud)
T ∈ Rd and F [·] is the Fourier Transform operator.

Now, we differentiate expression (A.0.9) with respect to t and apply the com-

mutation between the mean square derivative and the expectation operator
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(see [12, Eq. 4.128]). This yields

∂tΦ(t,u) = ∂tE
[
ei

∑d
k=1 ukXk(t)

]
= E

[
∂t
(
ei

∑d
k=1 ukXk(t)

)]
(A.0.10)

= E

[
i

d∑
k=1

ukẊk(t)e
iuTX(t)

]
= i

d∑
k=1

ukE[Ẋk(t)e
iuTX(t)]

= i
d∑

k=1

ukE[vk(t,X(t))eiu
TX(t)] =

d∑
k=1

iuk

∫
Rn

eiu
Txvk(t,x)f(t,x) dx.

On the one hand, according to [85, Prop. 17.2.1] and (A.0.9), each addend in

the last sum can be expressed in terms of the Fourier transform,

iuk

∫
Rn

eiu
Txvk(t,x)f(t,x) dx = (2π)dF [−∂xk

(vk(t,x)f(t,x))] (u).

Then, using this latter representation together with the linearity of the Fourier

transform operator, expression (A.0.10) can be written as

∂tΦ(t,u) = (2π)dF
[
−

d∑
k=1

∂xk
(vk(t,x)f(t,x))

]
(u). (A.0.11)

On the other hand, if we directly differentiate (A.0.9) under the integral sign

with respect to t, one gets

∂tΦ(t,u) =

∫
Rn

eiu
Tx∂tf(t,x)dx = (2π)dF [∂tf(t,x)] (u). (A.0.12)

Finally, subtracting (A.0.11) and (A.0.12) and using the Fourier inversion

transform [85, Th. 18.1.1], one obtains the Liouville-Gibbs equation

∂tf(t,x) +
d∑

k=1

∂xk
(vk(t,x)f(t,x)) = 0. (A.0.13)
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Appendix A. Relating the Liouville equation with RDEs

A.0.3 Relating Stokes’ theorem/divergence theorem

The following motivation and concepts come from the area of fluid dynamics.

In this case, the RDE (A.0.1) describes the movement of a random particle

or molecule in a fluid that evolves according to the flow field v. Thus, we

consider that X(t) satisfies Equation (A.0.1) in the pathwise sense. We will

consider the physical intuition and the corresponding probabilistic concepts

at each step.

Let f = f(t,x) be the fluid density at time t, and position x. The quantity of

fluid at a region V is denoted by

F (t) =

∫
V

f(t,x)dx

for some region V ⊆ Rd. In probabilistic terms, the fluid density is the PDF

at time t, whereas the fluid quantity is the distribution function (see Theo-

rem 2.2.1).

Now, the density flow in V is defined as the net gain/loss of fluid in a region

V per unit time. Mathematically, this can be represented as:∫
∂V

f(t,x)v(t,x) · n(x)dx,

where (f v)(t,x) is referred to as the fluid flux. Thus a simple fluid conserva-

tion argument for the fluid quantity evolution gives the following relation:

dF

dt
(t) +

∫
∂V

f(t,x)v(t,x) · n(x)dx = η(t), (A.0.14)

where η(t) denotes the net rate at which F (t) is being generated inside V per

unit time. If η(t) > 0, then there is a source of fluid inside V . If η(t) < 0,

there is a sink inside V . The same idea applies to the probabilistic scenario.

Systems such as Equation (A.0.1) describe the evolution of a fluid that doesn’t

have any sinks or sources. Indeed, for any randomly chosen fluid particle

(any random sample of the initial condition), Equation (A.0.14) describes

a (possibly) smooth movement through the phase space; no generation or
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reduction of the quantity of fluid, both locally and globally. Therefore, η(t) = 0

at all times and Equation (A.0.14) now reads:

∂t

∫
V

f(t,x)dx+

∫
∂V

f(t,x)v(t,x) · n(x)dx = 0.

Using the divergence theorem, we have∫
V

(∂tf(t,x) +∇x · [f v](t,x)) dx = 0,

and since this was done for an arbitrary V , then the integrand must be zero

almost everywhere in Rd for the Lebesgue measure. Since we assume that the

PDF is smooth inside its domain, we get

∂tf(t,x) +∇x · [f v](t,x)dx = 0, x ∈ Rd, t > t0.
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Appendix B

Direct relation between the

Liouville equation solution

and the RVT theorem

In this brief appendix, we show that there is a direct relationship between

the jacobian matrix from Theorem 2.2.2, the RVT Theorem, and the Liouville

equation solution Equation (5.2.10).

As in the previous appendix, we assume that the vector field v verifies the

conditions considered in Chapter 2. Once again we considerX(t) the stochastic

process that verifies the general RDE in the pathwise sense.

We know that, for any random initial condition realization, x0 = X0(ω) for

some ω ∈ Ω, the solution path must have the following form:

X(t,x0) = x0 +

∫ t

0

v(s,X(s,x0))ds.
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Appendix B. Direct relation between the Liouville equation solution and the RVT theorem

Let us consider ∇xXi(t,x
0) for every i = 1, . . . , d. The simple application of

the chain rule and differentiating under the integral sign gives:

∇xXi(t,x
0) = ei +

∫ t

0

∇xvi(s,X(s,x0))DX(s,x0)ds, (B.0.1)

where D is the differential matrix (or jacobian matrix) of X; that is

DX(t,x0) =


∂x1

X1(t,x
0) · · · ∂xd

X1(t,x
0)

...
. . .

...

∂x1
Xd(t,x

0) · · · ∂xd
Xd(t,x

0)

 .

Now, by considering the time derivative of Equation (B.0.1), and considering

all components of ∇xXi we get the equation

d

dt
DX(t,x0) = Dv(t,X(t,x0))DX(t,x0).

Now, [161, Th, 18.4] states that the previous relation implies:

d

dt
det[DX](t,x0) = tr[Dv](t,X(t,x0))det[DX](t,x0). (B.0.2)

Writing JX = det[DX], and using tr[Dv] = ∇x · v, Equation (B.0.2) now

reads:
d

dt
JX(t,x0) = ∇x · v(t,X(t,x0))JX(t,x0).

The solution to this linear equation, using that JX(0,x0) = Idd, is

JX(t,x0) = exp

{∫ t

0

∇x · v(s,X(s,x0))ds

}
. (B.0.3)

Let us see some notes about the relation we just obtained. Equation (B.0.3)

says that, provided the appropriate conditions are verified on v (such as the

ones considered in 2), the transformation always exists and is invertible. Also,

the inverse matrix is precisely the one considered in the right-hand-side of the
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RVT Theorem 2.2.2 and is

JX(t,x0)−1 = exp

{
−
∫ t

0

∇x · v(s,X(s,x0))ds

}
,

which is precisely the multiplicative term found on the solution of the Liouville

equation in the characteristic curves (Equation (5.2.10)).
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10.3929/ethz-a-005565040.

[105] J.C. Butcher. Runge–Kutta Methods. Numerical Methods for Ordinary

Differential Equations. JohnWiley & Sons, Ltd, 2016. isbn: 9781119121534.

doi: 10.1002/9781119121534.ch3.

[106] S. Cook. CUDA Programming: A Developer’s Guide to Parallel Com-

puting with GPUs. 1st. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2012. isbn: 9780124159334.

[107] NVIDIA, P. Vingelmann, and F.H.P. Fitzek. CUDA Documentation,

release: 12.2. 2023. url: https://developer.nvidia.com/cuda-

toolkit.

[108] R.I. McLachlan and G.R.W. Quispel. “Geometric integrators for ODEs”.

In: Journal of Physics A: Mathematical and General 39.19 (2006),

p. 5251. issn: 0305-4470. doi: 10.1088/0305-4470/39/19/S01.

[109] S. Blanes and F. Casas. A concise introduction to geometric numerical

integration. Chapman & Hall/CRC Monographs and Research Notes

in Mathematics. Oakville, MO: Apple Academic Press, 2016. doi: 10.

1201/b21563.

[110] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration.

Berlin, Germany, 2006, pp. 805–882. doi: 10.4171/owr/2006/14.

[111] V.J. Bevia. N-Dimensional Liouville Solver [Computer Software]. https:

//doi.org/10.5281/zenodo.7673678 [Accessed: September 2023].

2023.

[112] C. Rackauckas and Q. Nie. “DifferentialEquations.jl – A Performant and

Feature-Rich Ecosystem for Solving Differential Equations in Julia”.

207

https://doi.org/10.3929/ethz-a-005565040
https://doi.org/10.1002/9781119121534.ch3
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1088/0305-4470/39/19/S01
https://doi.org/10.1201/b21563
https://doi.org/10.1201/b21563
https://doi.org/10.4171/owr/2006/14
https://doi.org/10.5281/zenodo.7673678
https://doi.org/10.5281/zenodo.7673678


Bibliography

In: The Journal of Open Research Software 5.1 (2017). Exported from

https://app.dimensions.ai on 2019/05/05. doi: 10.5334/jors.151.

[113] W. Paul. “Electromagnetic traps for charged and neutral particles”. In:

Reviews of Modern Physics 62.3 (1990), pp. 531–540. issn: 1539-0756.

doi: 10.1103/revmodphys.62.531.

[114] J. M. Sanz-Serna. “Stabilizing with a hammer”. In: Stochastics and

Dynamics 08.01 (2008), pp. 47–57. issn: 1793-6799. doi: 10.1142/

s0219493708002263.

[115] I. Kovacic, R. Rand, and S. Mohamed-Sah. “Mathieu’s Equation and

Its Generalizations: Overview of Stability Charts and Their Features”.

In: Applied Mechanics Reviews 70.2 (2018). issn: 2379-0407. doi: 10.

1115/1.4039144.

[116] P. Bader et al. “Symplectic integrators for the matrix Hill equation”. In:

Journal of Computational and Applied Mathematics 316 (2017), pp. 47–

59. issn: 0377-0427. doi: 10.1016/j.cam.2016.09.041.

[117] H. Munthe-Kaas. “Runge-Kutta methods on Lie groups”. In: BIT Nu-

merical Mathematics 38.1 (Mar. 1998), pp. 92–111. issn: 1572-9125.

doi: 10.1007/bf02510919.

[118] V.J. Bevia, J.C. Cortés, and R.J. Villanueva. “Forward uncertainty

quantification in random differential equation systems with delta-impulsive

terms: Theoretical study and applications”. In: Mathematical Meth-

ods in the Applied Sciences (2023), pp. 1–21. issn: 0170-4214. doi:

10.1002/mma.9226.

[119] V.J. Bevia et al. “A GPU-accelerated Lagrangian method for solving

the Liouville equation in random differential equation systems”. In:

Applied Numerical Mathematics (2024). issn: 0168-9274. doi: https:

//doi.org/10.1016/j.apnum.2024.09.021.

208

https://doi.org/10.5334/jors.151
https://doi.org/10.1103/revmodphys.62.531
https://doi.org/10.1142/s0219493708002263
https://doi.org/10.1142/s0219493708002263
https://doi.org/10.1115/1.4039144
https://doi.org/10.1115/1.4039144
https://doi.org/10.1016/j.cam.2016.09.041
https://doi.org/10.1007/bf02510919
https://doi.org/10.1002/mma.9226
https://doi.org/https://doi.org/10.1016/j.apnum.2024.09.021
https://doi.org/https://doi.org/10.1016/j.apnum.2024.09.021


Bibliography

[120] V. E. Tarasov. “Exact Solutions of Bernoulli and Logistic Fractional

Differential Equations with Power Law Coefficients”. In: Mathematics

8.12 (2020), p. 2231. doi: 10.3390/math8122231.

[121] I. Area and J. J. Nieto. “Power series solution of the fractional logistic

equation”. In: Physica A: Statistical Mechanics and its Applications

573 (2021), p. 125947. issn: 0378-4371. doi: 10.1016/j.physa.2021.

125947.

[122] G. Consolini and M. Materassi. “A stretched logistic equation for pan-

demic spreading”. In: Chaos, Solitons & Fractals 140 (2020), p. 110113.

issn: 0960-0779. doi: 10.1016/j.chaos.2020.110113.

[123] C. P. Winsor. “The Gompertz Curve as a Growth Curve”. In: Proceed-

ings of the National Academy of Sciences 18.1 (1932), pp. 1–8. doi:

10.1073/pnas.18.1.1.

[124] P. Koya and A. Goshu. “Generalized Mathematical Model for Biologi-

cal Growths”. In: Open Journal of Modelling and Simulation 1 (2013),

pp. 42–53. doi: 10.4236/ojmsi.2013.14008.

[125] M. Marusic et al. “Tumor growth in vivo and as multicellular spheroids

compared by mathematical models”. In: Bulletin of Mathematical Bi-

ology 56 (1994), pp. 617–631. doi: 10.1007/BF02460714.

[126] J. S. Spratt, J. S. Meyer, and J. A. Spratt. “Rates of growth of hu-

man neoplasms: Part II”. In: Journal of Surgical Oncology 61.1 (1996),

pp. 68–83. doi: 10.1002/1096- 9098(199601)61:1%3C68::aid-

jso2930610102%3E3.0.co;2-e.

[127] C.P. Birch. “A new generalized logistic sigmoid growth equation com-

pared with the Richards growth equation”. In: Annals of Botany 83.6

(1999), pp. 713–723. doi: 10.1006/anbo.1999.0877.

209

https://doi.org/10.3390/math8122231
https://doi.org/10.1016/j.physa.2021.125947
https://doi.org/10.1016/j.physa.2021.125947
https://doi.org/10.1016/j.chaos.2020.110113
https://doi.org/10.1073/pnas.18.1.1
https://doi.org/10.4236/ojmsi.2013.14008
https://doi.org/10.1007/BF02460714
https://doi.org/10.1002/1096-9098(199601)61:1%3C68::aid-jso2930610102%3E3.0.co;2-e
https://doi.org/10.1002/1096-9098(199601)61:1%3C68::aid-jso2930610102%3E3.0.co;2-e
https://doi.org/10.1006/anbo.1999.0877


Bibliography

[128] R. K. Sachs, L. R. Hlatky, and P. Hahnfeldt. “Simple ODE models of

tumor growth and anti-angiogenic or radiation treatment”. In: Mathe-

matical and Computer Modelling 33.12–13 (2001), pp. 1297–1305. doi:

10.1016/S0895-7177(00)00316-2.

[129] Y. H. Hsieh, J. Y. Lee, and H. L. Chang. “SARS epidemiology mod-

eling”. In: Emerging infectious diseases 10.6 (2004), p. 1165. doi: 10.

3201%2Feid1006.031023.

[130] Y.H. Hsieh. “Richards Model: A Simple Procedure for Real-time Pre-

diction of Outbreak Severity”. In: Modeling and Dynamics of Infec-

tious Diseases. World Scientific, 2009, pp. 216–236. doi: 10 . 1142 /

9789814261265_0009.

[131] Y. H. Hsieh and S. Ma. “Intervention measures, turning point, and

reproduction number for dengue, Singapore, 2005”. In: The American

Journal of Tropical Medicine and Hygiene 80.1 (2009), pp. 66–71. doi:

10.4269/ajtmh.2009.80.66.

[132] Y. H. Hsieh. “Pandemic influenza A (H1N1) during winter influenza

season in the southern hemisphere”. In: Influenza and Other Respi-

ratory Viruses 4.4 (2010), pp. 187–197. doi: 10.1111%2Fj.1750-

2659.2010.00147.x.

[133] G. Chowell et al. “Using phenomenological models to characterize trans-

missibility and forecast patterns and final burden of Zika epidemics”.

In: PLoS Currents 8 (2016). doi: 10.1371/currents.outbreaks.

f14b2217c902f453d9320a43a35b9583.

[134] B. Pell et al. “Using phenomenological models for forecasting the 2015

Ebola challenge”. In: Epidemics 22 (2018), pp. 62–70. doi: 10.1016/

j.epidem.2016.11.002.

210

https://doi.org/10.1016/S0895-7177(00)00316-2
https://doi.org/10.3201%2Feid1006.031023
https://doi.org/10.3201%2Feid1006.031023
https://doi.org/10.1142/9789814261265_0009
https://doi.org/10.1142/9789814261265_0009
https://doi.org/10.4269/ajtmh.2009.80.66
https://doi.org/10.1111%2Fj.1750-2659.2010.00147.x
https://doi.org/10.1111%2Fj.1750-2659.2010.00147.x
https://doi.org/10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583
https://doi.org/10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583
https://doi.org/10.1016/j.epidem.2016.11.002
https://doi.org/10.1016/j.epidem.2016.11.002


Bibliography

[135] E. Pelinovsky et al. “Logistic equation and COVID-19”. In: Chaos,

Solitons & Fractals 140 (2020), p. 110241. doi: 10.1016/j.chaos.

2020.110241.

[136] K. Wu et al. “Generalized logistic growth modeling of the COVID-19

outbreak: comparing the dynamics in the 29 provinces in China and in

the rest of the world”. In: Nonlinear dynamics 101.3 (2020), pp. 1561–

1581. doi: 10.1007/s11071-020-05862-6.

[137] E. Aviv-Sharon and A. Aharoni. “Generalized logistic growth modeling

of the COVID-19 pandemic in Asia”. In: Infectious Disease Modelling

5 (2020), pp. 502–509. doi: 10.1016/j.idm.2020.07.003.

[138] S. Y. Lee, B. Lei, and B. Mallick. “Estimation of COVID-19 spread

curves integrating global data and borrowing information”. In: PloS

One 15.7 (2020), e0236860. doi: 10.1371/journal.pone.0236860.

[139] T. Neckel and F. Rupp. Random Differential Equations in Scientific

Computing. Walter de Gruyter, 2013. isbn: 9788376560267.

[140] L. Villafuerte et al. “Random differential operational calculus: Theory

and applications”. In: Computers and Mathematics with Applications

59.1 (2010), pp. 115–125. doi: 10.1016/j.camwa.2009.08.061.

[141] E. J. McShane. “Extension of range of functions”. In: Bulletin of the

American Mathematical Society 40.12 (1934), pp. 837–842. url: https:

//www.ams.org/journals/bull/1934-40-12/S0002-9904-1934-

05978-0/.

[142] J.L. Strand. “Random ordinary differential equations”. In: Journal of

Differential Equations 7.3 (1970), pp. 538–553. doi: 10.1016/0022-

0396(70)90100-2.

211

https://doi.org/10.1016/j.chaos.2020.110241
https://doi.org/10.1016/j.chaos.2020.110241
https://doi.org/10.1007/s11071-020-05862-6
https://doi.org/10.1016/j.idm.2020.07.003
https://doi.org/10.1371/journal.pone.0236860
https://doi.org/10.1016/j.camwa.2009.08.061
https://www.ams.org/journals/bull/1934-40-12/S0002-9904-1934-05978-0/
https://www.ams.org/journals/bull/1934-40-12/S0002-9904-1934-05978-0/
https://www.ams.org/journals/bull/1934-40-12/S0002-9904-1934-05978-0/
https://doi.org/10.1016/0022-0396(70)90100-2
https://doi.org/10.1016/0022-0396(70)90100-2


Bibliography

[143] J. Calatayud and M. Jornet. “Extending the applicability of the RVT

technique for the randomized radioactive decay chain model”. In: Eur.

Phys. J. Plus 137.405 (2022). doi: 10.1140/epjp/s13360-022-02625-

7.

[144] W. Rudin. Principles of Mathematical Analysis. Third. International

Series in Pure & Applied Mathematics, 1976. isbn: 9780070542358.

[145] D. Williams. Probability with Martingales. New York: Cambridge Uni-

versity Press, 1991. isbn: 9780521406055.
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