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Conductivity of a Semiconductor

 n and p are concentrations of electrons and holes in a

semiconductor crystal

 Electrons and holes have drift mobility, so overall conductivity of

the crystal can be given by:

 Drift Velocity and Net Force
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 = ene + eph

ve = drift velocity of the electrons, Fnet = net force, τ= mean 

scattering time, m*
e = effective mass of electron
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Resistivity vs. Doping
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Effective Mass
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(a) An external force Fext applied
to an electron in vacuum
results in an acceleration
avac = Fext / me

(b) An external force Fext applied to 

an electron in a crystal results in an 

acceleration

acryst = (Fext + Fint)/ me = Fext / me* 

The effective mass is a quantum mechanical quantity that behaves in the

same way as the inertial mass in classical mechanics

me = mass of an electron in free space m*
e = effective mass of electron



Gravity of the Earth
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https://read01.com/2KME5NQ.html#.Y47vbHZBxdg
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Statistical Mechanics

 If you want to know the number of charge carriers and

their temperature dependence, the question is: how many

energy levels (density of states, DOS) do we have and

what is the chance that they are populated independence of

the temperature.

 While studying large number of particles, we are

interested only in statistical behavior of the group as a

whole rather than in the behavior of individual one.

 There are three distribution laws determining the

distribution of particles among available energy states.
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Three Distribution Laws
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Gas molecular Electrons Phonons

classical quantum quantum

Boltzmann Fermions Bosons

Boltzmann-Maxwell Fermi-Dirac Bose-Einstein

w/o spin Half-integer spin

Pauli exclusion

Integer spin

distinguishable indistinguishable indistinguishable



 The Fermi-Dirac Function:

The probability that an energy level, E, is occupied by an

electron. (Value between 0 and 1)

 The Fermi-Dirac function at 0 K :

✓ At 0 K, when E<EF, the f(E)=1

✓ At 0 K, when E>EF, the f(E)=0

The Fermi-Dirac Function
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f(E) =
𝟏

𝟏 + 𝒆(𝑬−𝑬𝑭)/𝑲𝑻

f  (EF) = ½ at T > 0K

The Fermi-Dirac 

distribution function
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The Fermi-Dirac Function

 So Fermi Energy (Ef) is the energy level where the

probability of finding an electron is ½ .

10

E = Ef

◆At T>0K, there is non-zero

probability that some states above

Ef are occupied and some states

below are empty.

◆Some electrons jumping to higher

energy levels with increasing

thermal energy.



 Please find out the probability that an energy level 3kT

above Ef is occupied by an electron at T=300K.

 Most states at energies 3kT above EF are empty,

fF(E)=4.74%

 Thus the following approximation is valid:

Example
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f(E) =
𝟏

𝒆(𝑬−𝑬𝑭)/𝑲𝑻
Boltzmann Approximation



Boltzmann Distribution

 The Fermi-Dirac probability for E-Ef >3kT can be

approximated by Boltzmann distribution.
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F(E)

E



Density of States in 3D

 Density of States (DOS): the number of available

energy states per unit volume per unit energy in a

crystal.

 It is essential for deciding the carrier concentrations and

energy distribution of carrier within a semiconductor.
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(d) The product of g(E) and f (E) is the energy density of electrons 

(number of electrons per unit energy per unit volume). The 

area under nE(E) versus E is the electron concentration.

 


=
cE
g(E)f(E)dEn

(a) Energy band diagram

(b) Density of  states

(c) Fermi-Dirac  function 



Electron Concentration

 Electron Concentration in CB:

 Effective Density of States at CB Edge:
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 T=300K in Si

Nc=2.8x1019 cm-3

The equation is valid for both intrinsic & extrinsic semiconductors.



Hole Concentration

 Hole Concentration in VB:

 Effective Density of States at VB Edge
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 T=300K in Si

Nv=1.2x1019 cm-3

Nv = effective density of states at the VB edge, mh
* = effective mass of a hole in the 

VB, k = Boltzmann constant, T = temperature, h = Planck’s constant



Effective Density of States

 Nc & Nυ are determined by the parameters of

effective masses and temperature with power of 3/2.
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T=300K in Si, Nc=2.8x1019 cm-3; Nv=1.2x1019 cm-3



Example
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Mass Action Law
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The np product is a constant, ni
2, that depends on the material

properties Nc, Nv, Eg, and the temperature. If somehow n is increased

(e.g. by doping), p must decrease to keep np constant.

Mass action law applies

in thermal equilibrium

and

in the dark (no illumination)

ni = intrinsic concentration



Thermal Equilibrium

 No external forces such as voltages, electric fields,

magnetic fields, or temperature gradients are acting

on the semiconductor

 All properties of the semiconductor will be

independent of time at equilibrium

 Equilibrium is the starting point for developing the

physics of the semiconductor, and then explaining the

characteristics when deviations from equilibrium occur.
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Mass Action Law
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The Fermi Energy (Level) 

 At 0 K, all electron states below Fermi energy (EF ) are

filled, and all electron states above EF are vacant.

 In an intrinsic semiconductor, the Fermi level is located

close to the center of the band gap
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EFi = Fermi energy in the intrinsic semiconductor, Ev = valence band edge, Eg = Ec -

Ev is the bandgap energy, k = Boltzmann constant, T = temperature, Nc = effective 

density of states at the CB edge, Nv = effective density of states at the VB edge

The intrinsic Fermi level, EFi , is located near midgap.

Emidgap



Intrinsic Fermi-level Position

 Even in intrinsic semiconductor, Fermi level is not

exactly at center between the CB and VB.
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Properties of Si, Ge, and GaAs
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Position of Fermi Level
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(a) Intrinsic

(b) n-type semiconductor

(d) p-type semiconductor

Energy band diagrams for 

In all cases, np = ni
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Average Electron Energy in CB
28

= average energy of electrons in the CB, Ec = conduction band 

edge

kTEE c
2

3
CB

+=

(3/2)kT is also the average kinetic energy per atom in a

monatomic gas (kinetic molecular theory) in which the gas

atoms move around freely and randomly inside a container.

The electron in CB behaves as if it were “free” with a mean

kinetic energy that is (3/2)kT and an effective mass me*.

CB
E
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n-type Si
30

The fifth electron of As is left

orbiting the As site. The

energy required to release the

free fifth electron into the CB

is very small.

Energy band diagram for an n-type 

Si doped with 1 ppm As. There are 

donor energy levels (Ed) just below 

Ec around As+ sites.



p-type Si

 Energy band diagram for a p-type Si doped with 1 ppm B.

 There are acceptor energy levels Ea just above Ev around B- sites.

These acceptor levels accept electrons from the VB and therefore

create holes in the VB.
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Ionization Energy
32
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(a) Below Ts, the electron concentration is controlled by the ionization of the donors.

(b) Between Ts and Ti, the electron concentration is equal to the concentration of

donors since they would all have ionized.

(c) At high temperatures, thermally generated electrons from the VB exceed the

number of electrons from ionized donors and the semiconductor behaves as if

intrinsic.
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The temperature dependence of the electron

concentration in an n-type semiconductor.
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Intrinsic Carrier Concentration

35

The temperature and bandgap

dependence of the intrinsic

concentration.



Charge Neutrality

 In thermal equilibrium, the semiconductor crystal is

electrically neutral.

 The charge-neutrality condition is used to determine the

thermal equilibrium electron and hole concentration as a

function of impurity doping concentration.

 Compensated semiconductor:

✓A semiconductor contains both donor and acceptor

impurity atoms in the same region.

✓N-type compensated semiconductor ( Nd>Na)

✓P-type compensated semiconductor (Na>Nd)

✓Completely compensated semiconductor (Na=Nd)
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Compensation Doping
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• P-type semiconductor doped with Na acceptors can be converted to n-type by simply 

having more Nd than Na. The effect of donors compensates for the effect of acceptors 

and vice versa.

• The e- concentration is then given by Nd – Na when Na is larger than ni.

• When both acceptors and donors are present, e- will recombine with holes, so 

the mass action law is obeyed.



n-type Conductivity
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 = electrical conductivity

e = electronic charge

Nd = donor atom concentration in the crystal

e = electron drift mobility, ni = intrinsic concentration,

h = hole drift mobility
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Degenerate and Nondegenerate

Nondegenerate semiconductor:

 If the doping is low, the impurity atoms are spread far

enough apart so that there is no interaction between

donor electrons (or acceptor holes), the impurities

introduced discrete, noninteracting energy states.
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Degenerate and Nondegenerate

Degenerate semiconductor:

 If the doping is high, donor electrons interact with each other. The

single discrete donor energy will split into a band.

 The band may overlap the conduction band

 If the concentration exceeds effective density of states (Nc), EF lies

within the CB for n-type semiconductor.

40

Fermi level in the CB: 

Metallic conduction
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T=300K in Si

Nc=2.8x1019 cm-3



Degenerate Semiconductors
41

(a) Degenerate n-type semiconductor. Large number of

donors form a band that overlaps the CB.

(b) Degenerate p-type semiconductor.

Excessively doped to 1019 – 1020 cm-3

T=300K in Si

Nc=2.8x1019 cm-3



Band Gap Narrowing

 If the dopant concentration is a significant fraction of

the silicon atomic density, the energy-band structure

is perturbed→ the band gap is reduced by EG :

N = 1018 cm-3: EG = 35 meV

N = 1019 cm-3: EG = 75 meV

T
NEG

300
105.3 3/18−

R. J. Van Overstraeten and R. P. Mertens, 

Solid State Electronics vol. 30, 1987
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Example 5.4
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Example 5.5
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Extending Energy Band Theory to 3D

 The E-k diagram is symmetric

in k so that there is no new

information in the negative

axis.

 It is practice to plot E-k with

[100] direction along +k axis,

and [111] direction along –k

axis.
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E-k Diagrams of Si and GaAs

 Effective mass can be different along 3 different k-

vectors. Therefore, we consider average effective mass.

50
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Direct & Indirect Bandgap
51

 Direct bandgap: minimum CB energy and maximum VB energy

occur at same k value.

 Indirect bandgap: the minimum CB is not at k=0 so that the

transitions for electron between CB & VB includes an interaction with

the crystal. Then, crystal momentum is conserved.

 Direct bandgap semiconductors are used for making optical devices.

Direct Eg

Transition

Ex. GaAs

Indirect Eg

Transition

Ex. Si



Direct & Indirect Bandgap

 The direct and indirect band gap behavior is reflected in

absorption coefficients in solar cell.
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❑ High absorption probability

❑ Thinner material is required

❑ Low absorption probability

❑ Thicker material is required

Ev

Momentum, k

Ec

Indirect Bandgap

phonon
photon

Energy, E

Ev

Energy

Ec

Direct Bandgap

photon

Momentum
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absorption without absorption



Direct Recombination
54

Direct recombination in GaAs and InSb

Wavevector kcb = kvb so that momentum conservation is satisfied.

𝑬 = 𝒉𝝂 = 𝒉
𝒄

𝝀

h: Planck constant (6.626 ×10−34 J.s = 4.13×10−15 eV.s) 

c is the speed of  light in vacuum (3 x 1014 m/s) 

λ is the photon's wavelength

𝑬(𝒆𝑽) =
𝟏. 𝟐𝟑𝟗𝟖

𝝀 (𝝁𝒎)



Wavelength of the Light
55

https://zh-tw.sengate.com/show/lesson-1_what-is-infrared-1627605447.htm

GaN Eg: 3.4 eV

GaAs Eg: 1.42 eV



Indirect Recombination

 (a) Recombination in Si via a recombination center which has a

localized energy level at Er near the middle of Eg.

 (b) Trapping and detrapping of electrons by trapping centers. A

trapping center has a localized energy level near Ec.

56
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Indirect Recombination

 In real semiconductors, there are some crystal defects

and these defects create discrete electronic energy states

within the forbidden energy band.

 Recombination through the defect (trap) states is called

indirect recombination.

 Shockley-Read-Hall recombination:

Assumes that a single trap center exists at an energy Et

within the bandgap.
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Low-level Injection

 Injection：

A process of introducing excess carriers in the

semiconductor.

 Low-level photoinjection into an n-type semiconductor

in which nn < nn0

 𝑛𝑛 = 𝑛𝑛0 + ∆𝑛𝑛
 𝑝𝑛 = 𝑝𝑛0 + ∆𝑝𝑛
 ∆𝑛𝑛=∆𝑝𝑛 (e--h+ pair)
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Low-level Injection

 Low-level injection in an n-type semiconductor does not

significantly affect nn but drastically affects the minority carrier

concentration pn.

60

∆𝑛𝑛 =0.1 𝑛𝑛0=0.5 x1016 cm-3

∆𝑝𝑛 = ∆𝑛𝑛 =0.5 x1016 cm-3



61

Illumination of an n-type semiconductor results in excess electron and

hole concentrations.

After the illumination, the recombination process restores

equilibrium; the excess electrons and holes simply recombine.

Light is switched on 

(B), then off again (C)



Excess Minority Carrier Concentration

62

pn = excess hole (minority carrier) concentration in n-type

Gph = rate of photogeneration

h = minority carrier lifetime (mean recombination time)

dpn

dt
= Gph −

pn

h

∆𝑝𝑛(𝑡
′)=∆𝑝𝑛 0 𝑒

−(
𝑡′

𝜏ℎ
)

Rate of increase in 

excess h+

Rate of 

photogeneration

Rate of recombination  

of excess h+
= –
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 Illumination is switched on at time t = 0 and then off at t= toff.

 The excess minority carrier concentration pn(t) rises 

exponentially to its steady-state value with a time constant h. 

From toff, the excess minority carrier concentration decays 

exponentially to its equilibrium value.
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Wafer Electrical Testing

Photo courtesy of Advanced Micro Devices
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Micromanipulator Prober
(Parametric Testing)
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