Contents

Abstract	19
Resumen	21
Resum	23
Resumo	25
<u>1.</u> <u>Chapter 1 – Introduction</u>	29
<u>1.1 – Climate change and the IPCC reports</u>	31
<u>1.2 – CO₂ historical emissions and climate justice</u>	34
<u>1.3 – Measures to fight against climate change</u>	41
<u>1.4 – Strategies aimed at the reduction of CO₂ emission</u>	45
<u>1.5 – CO₂ methanation reaction</u>	50
<u> 1.5.1 – Thermodynamics</u>	50
<u>1.5.2 – Reaction conditions</u>	53
<u>1.5.3 – Catalysts for CO₂ methanation reaction</u>	56
<u> 1.5.4 – Support influence</u>	59
<u> 1.5.5 – Metallic loading influence</u>	63
<u>1.5.6– Promoter's addition influence</u>	64
<u> 1.5.7 – Reaction mechanism</u>	64
<u> 1.5.8 – Pilot plants and upgrade projects</u>	68
<u>1.5.9 – Biogas upgrade</u>	70
<u>1.6 – References</u>	74
2. <u>Chapter 2 – Objectives and structure of the thesis</u>	83
<u>2.1 – General Objective</u>	85
<u>2.2 – Secondary Objectives</u>	85
<u>2.2.1 – Catalytic stability</u>	85
<u>2.2.2 – Atom economy</u>	86
<u>2.2.3 – Energy efficiency</u>	86
<u>2.3 – Structure of the thesis</u>	87
3. <u>Chapter 3 – Methodology and Experimental Procedures</u>	91
<u>3.1 – Chemicals</u>	93
<u> 3.2 – Catalysts Preparation</u>	94
<u>3.2.1 – Catalysts supported on zeolites</u>	95
<u>3.2.2 – Catalysts supported on sepiolite</u>	97
<u>3.2.3 – Catalysts supported on oxides</u>	97
<u>3.3 – Characterization techniques</u>	99
<u>3.3.1 – X-ray diffraction (XRD)</u>	99

	<u>3.3.2 – N₂ adsorption-desorption technique</u>	101
	<u>3.3.3 – Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)</u>	105
	<u>3.3.4 – Elemental Analysis</u>	106
	<u>3.3.5 – Hydrogen Temperature Programmed Reduction (H₂-TPR)</u>	106
	<u>3.3.6 – H₂-Chemisorption</u>	107
	3.3.7 – Carbon Dioxide Temperature Programmed Desorption coupled with Mass	
	<u>Spectrometry (CO₂-TPD-MS)</u>	109
	3.3.8 – Fourier Transform Infrared (FT-IR) Spectroscopy	111
	<u>3.3.9 – Microscopy measurements</u>	113
	<u>3.3.10 – Catalytic tests</u>	115
	<u>3.3.11 – FT-IR Mechanistic studies</u>	124
<u>3</u>	.4 – References	127
<u>4.</u>	Chapter 4 – Zeolite-based catalysts	131
4	<u>.1 – Introduction</u>	133
<u>4</u>	<u>.2 – Experimental Results and Discussion</u>	139
	<u>4.2.1 – Support and catalysts characterization</u>	139
	<u>4.2.2 – Catalytic results and reaction mechanism</u>	167
	<u>4.2.3 – Effect of the delamination of the support</u>	172
	<u>4.2.4 – Effect of aluminum addition into the zeolite framework</u>	174
	<u>4.2.5 – Effect of nickel content on the catalytic performance</u>	175
4	<u>.3 – Conclusions</u>	178
4	<u>.4 – References</u>	179
<u>5.</u>	Chapter 5 – Oxide-based catalysts	187
<u>5</u>	<u>.1 – Introduction</u>	189
<u>5</u>	<u>.2 – Characterization results</u>	194
<u>5</u>	<u>.3 – CO₂ methanation catalytic tests</u>	213
	5.3.1 – Support effect: La ₂ O ₃ , Al ₂ O ₃ and LaAlO ₃	213
	5.3.2 – Ni loading and method of incorporation effect	216
<u>5</u>	<u>.4 – Conclusions</u>	222
<u>5</u>	<u>.5 – References</u>	223
<u>6.</u>	Chapter 6 – Sepiolite-based catalysts	231
<u>6</u>	.1 – Introduction	233
<u>6</u>	<u>.2 – Characterization results</u>	237
<u>6</u>	.3 – Catalytic and operando FT-IR characterization	253
	<u>6.3.1 – Operando FT-IR characterization</u>	253
	<u>6.3.2 – Effect of cerium content</u>	261
	<u>6.3.3 – Effect of nickel content</u>	263
6	.4 – Conclusions	265

<u>6.4 – Conclusions</u>	
<u>6.5 – References</u>	
<u>7.</u> <u>Chapter 7 – Application for catalytic technologies</u>	
7.1 - Introduction	
<u>7.2 – Influence of the Weight Speed Space Velocity (WHSV)</u>	
<u>7.2.1 – 15Ni/ITQ-6 (30)</u>	
<u>7.2.2 – 15Ni-LaAlO₃</u>	
<u>7.2.3 – 15Ni-10Ce-Sep</u>	
<u>7.3 – Stability tests with synthetic sweetened biogas feed</u>	
<u>7.3.1 – 15Ni//ITQ-6 (30)</u>	
<u>7.3.2 – 15Ni/LaAlO₃</u>	
<u>7.3.3 – 15Ni-10Ce-Sep</u>	
7.4 – Final considerations	
<u>7.5 – Conclusions</u>	
<u>7.6 – References</u>	
8. <u>Chapter 8 – General conclusions</u>	
9. Chapter 9 – Supplementary Information	
10. Curriculum Vitae	
11. Appendix	

List of Figures

Figure 1.1. Evolution of some of three of the GHGs (CO₂, CH₄, and N₂O) in the period between 1850 and 2019.

Figure 1.2. Surface temperature anomaly when compared to pre-industrial levels for ocean and land surface for the period comprised between 1880 and 2019.

Figure 1.3 Annual emissions of GHGs evolution between 1970 and 2010: F-gases (fluorinated gases), N₂O, CH₄, FOLU-CO₂ (CO₂ emitted from forestry and other land uses), and CO₂ emitted from fossil fuels combustion and industrial processes.

Figure 1.4. Global greenhouse gas emissions by sector in 2016 subdivided in four primary categories (Energy, Agriculture, Forest and Land Use, Industry, and Waste) and subcategories.

Figure 1.5. Total carbon dioxide emissions from 1751 to 2017, as of 2017. Figures are based on production-based emissions, which include the burning of fossil fuels and industrial processes.

Figure 1.6. Dependance of per capita consumption-based CO_2 emissions on the Gross Domestic Product (GDP) per capita, for different countries in 2017.

Figure 1.7. Projected impact of global temperature changes on per capita GDP values in different countries for the year 2100.

Figure 1.8. Depiction of geographic unequal share of responsibility for climatic alteration and projected inequality of health concerns among countries of Global North and South. CO_2 emissions are cumulatively considered for the 1850-2015 period.

Figure 1.9. Different global CO2 emissions scenarios and correspondent probabilistic likelihood of temperature increase relative to preindustrial levels by 2100.

Figure 1.10. Countries with established particular legal frameworks, policy documents, or explicit time-bound pledges to reach carbon neutrality by the target year.

Figure 1.11. Schematic representation of possible reactions that might be used to convert CO₂ using CCU technologies.

Figure .1.12. Gibbs free energy of formation for a series of C1 species compared to the CO_2 one for comparison standards.

Figure .1.13 (a) lnK and (b) $\Delta_r G^o$ values of the side reactions that might occur with CO₂ methanation activity.

Figure 1.14. Molar fraction of components in equilibrium in a chemical system designed for the CO_2 methanation reaction. Reactions conditions: $H_2/CO_2 = 4$; P = 1 atm.

Figure 1.15. Effect of the H_2/CO_2 ratio on (a) CO_2 conversion, X_{CO_2} , and (b) selectivity towards CH₄, S_{CH_4} , at different temperatures and pressures.

Figure 1.16. Effect of different stoichiometric ratios H2/CO₂ on the CO₂ methanation reaction: (a) CO₂ conversion, (b) CH₄ selectivity, (c) CH₄ yield, and (d) carbon yield.

Figure 1.17. Common metals used in catalysts for CO and CO₂ methanation and reactivity and selectivity order.

Figure 1.18. Schematic diagram showing possible products formed in CO_2 hydrogenation regarding the reaction pressure and metal used in the catalyst composition.

Figure 1.19. Dependence of the CO methanation reaction catalytic activity on the dissociative CO adsorption enthalpy for different transition metals.

Figure 1.20. Schematic representation of the factors that interfere with the performance of the CO_2 selective hydrogenation to methane.

Figure 1.21. Metallic particle size influence on the CO_2 methanation selectivity towards the products. Smaller particles generally present more selectivity towards CO formation, while larger ones to CH_4 formation.

Figure 1.22. Diagram depicting the reaction mechanistic pathways of CO₂ hydrogenation forming different products depending on the degree of hydrogenation. (*) refers to adsorbed surface species.

Figure 1.23. (a) Operando DRIFTS-IR spectra obtained for CO_2 hydrogenation catalytic system based on Ni-CeO₂-ZrO₂. CH₄ is formed by the associative mechanism with bicarbonates and carbonates as intermediates. (b) Transient experiments at 400 °C on the same systems analyzing CH₄ and CO formation when inlet composition was altered; and proposed mechanistic pathways for the formation of (c1) CH₄ and (c2) CO. Image adapted from Aldana et al. [89].

Figure 1.24. Projected costs of green H_2 and synthetic fuels (obtained from Power to Fuel – PtF) until 2050 compared to anticipated trends in grey H_2 , industrial natural gas prices, and crude oil rates (dashed lines).

Figure 1.25. Current situation features and prospects for implementation of methanization-based technologies.

Figure 1.26. Schematic representation on how biogas anaerobic digestion provides a strategy to reduce the emission of atmospheric carbon, as part of the defossilization efforts by providing an energy alternative to fossil fuels obtained from the decomposition of organic matter.

Figure 1.27. Schematic representation of the steps taken during upgrading biogas to remove impurities and possible utilization options for the purified biogas version.

Figure 1.28. Average annual investment in gas as an energy source in different scenarios until 2040.

Figure 2.1. Schematic depiction of the main aspects covered in each one of the chapters of the different classes of catalysts studied in this thesis.

Figure 3.1. Standard calcination step sequence for preparing the Ni-based catalysts used in this study.

Figure 3.2. Simplified representation on the synthetical route to obtain the FER or the ITQ-6, depending on whether the swelling step with cetyltrimethylammonium bromide (CTAB) is followed before the calcination step.

Figure 3.3. Representation of the different interference patterns that take place in X-ray diffraction: (a) destructive interference, when the leaving photons are out of phase, or (b) constructive interference when the leaving photons are in phase.

Figure 3.4. Classification of the six types of adsorption that might take place over a material according to the IUPAC guidelines.

Figure 3.5. Simplified scheme depicting the experimental setup for the analysis with the ICP-OES technique.

Figure 3.6. Schematic diagram of the experimental setup used for the CO₂-TPD-MS analyses carried out in this study.

Figure 3.7. Schematic representation of a generic mid-IR transmission spectrum showing typical absorption lines associated with vibrational modes of different chemical bonds.

Figure 3.8. Simplified depiction of the effects that take place by the interaction of an electron beam with matter.

Figure 3.9. Scheme of the catalytical unit used to perform the tests.

Figure 3.10. Schematic representation of the fixed-bed tubular reactor dimensions used for the catalytic tests.

Figure 3.11. Chromatograms obtained for the bypass analyses as detected by the (a) TCD and (b) FID. In the upper figure, a zoom-in of the highlighted region is depicted to show with more clarity the peak separation.

Figure 3.12. Chromatograms obtained for a typical analysis when a CO_2 hydrogenation catalytic test is carried out as detected by the (a) TCD and (b) FID. In the upper figure, a zoom-in of the highlighted region is depicted to show with more clarity the peak separation.

Figure 3.13. Nicolet 6700 FT-IR spectrometer used for the operando FT-IR measurements carried out in this work. The custom-made cell is located inside the spectrometer where the IR beam could orthogonally hit the catalyst's surface.

Figure 3.14. Photograph of the custom-made IR cell used in this study and schematic representation of the process used to obtain the operando FT-IR spectra. 15- μ m-thick wafers were prepared from the solid samples and positioned orthogonally to the beam pathway.

Figure 4.1. Representation of the structure of the ferrierite zeolite along the [001] and [010] directions. The opening of the 8-MR and the 10-MR channels are highlighted.

Figure 4.2. Artistic representation of delaminated ITQ-6, revealing the "molecular cups" formed after delamination of the ferrierite structure.

Figure 4.3. X-ray diffraction patterns for FER, ITQ-6, PREFER, and swollen PREFER with Si/Al molar ratios of (a) ∞ and (b) 30.

Figure 4.4. X-ray diffractograms of 5 wt. % Ni-based catalysts supported on FER and ITQ-6 zeolites between the range $2\theta = 5^{\circ}-70^{\circ}$ with Si/Al ratios of (a) infinite and (b) 30. The diffractograms of the bare supports are also depicted for comparison.

Figure 4.5. X-ray diffractograms of (a) reduced 5% wt. Ni-based catalysts supported on FER and ITQ-6 zeolites, and (b) higher Ni loading catalysts supported on ITQ-6 (30).

Figure 4.6. HAADF-STEM dark field images of the reduced catalysts: (a) 5Ni/FER (∞), (b) 5Ni/ITQ-6 (∞), (c) 5Ni/FER (30), and (d) 5Ni/ITQ-6 (30).

Figure 4.7. TEM images of the reduced 5% wt. Ni-based catalysts supported on aluminum-free supports: (a) 5Ni/FER (Si/Al = ∞) and (b) 5Ni/ITQ-6 (Si/Al = ∞).

Figure 4.8. TEM images of the reduced 5% wt. Ni-based catalysts supported of the aluminumcontaining catalysts: (a) 5Ni/FER (Si/Al = 30), and (b) 5Ni/ITQ-6 (Si/Al = 30).

Figure 4.9. (a), (b) HAADF-STEM dark field and (c) TEM bright-field images for the 5Ni/ITQ-6 (30).

Figure 4.10. (a) HAADF-STEM dark field and (b), (c) TEM bright-field images for the 5Ni/ITQ- $6 (\infty)$.

Figure 4.11. (a) HAADF-STEM dark field and (b) TEM bright-field images for the 5Ni/FER (30). Figure 4.12. (a) HAADF-STEM dark field and (b) TEM bright-field images for the 5Ni/FER (∞). Figure 4.13. Ni⁰ particle size distribution, normal fit, and average size for the 5 wt. % Ni-based catalysts: (a) 5Ni/FER (∞)_R, (b) 5Ni/ITQ-6 (∞)_R, (c) 5Ni/FER (30)_R and (d) 5Ni/ITQ-6 (30) R.

Figure 4.14. SEM images for the reduced version of (a) 5Ni/FER (∞), (b) 5Ni/ITQ-6 (∞), (c) 5Ni/FER (30), and (d) 5Ni/ITQ-6 (30).

Figure 4.15. Nitrogen adsorption-desorption isotherms of the 5 wt. % Ni-based catalysts supported on the (a) $Si/Al = \infty$ zeolites and the (a) Si/Al = 30 zeolites.

Figure 4.16. H₂-TPR profile of zeolite-based catalysts under H₂ flow over the range of temperatures between 200 °C and 700 °C.

Figure 4.17. H₂-TPR profile of higher Ni loading catalyst supported on ITQ-6 (Si/Al = 30) over the range of temperatures between 200 °C and 700 °C.).

Figure 4.18. Schematic representation of the different types of surface hydroxyl groups found in an Al-containing zeolite. The presence of aluminum is associated with an increase of -OH groups on the zeolite surface due to the formation of bridging hydroxyls, Si-(OH)-Al, and terminal hydroxyls, Al-OH.

Figure 4.19. FTIR spectra for the Ni-based catalysts and respective supports for the (a) Si/Al = 30 and the (b) $Si/Al = \infty$ materials. The spectra exhibit hydroxyl vibrations at different zeolitic positions: terminal Si-OH and Al-OH, centered around 3742 cm⁻¹ and 3640 cm⁻¹, respectively, and bridging Si-(OH)-Al, centered around 3598 cm⁻¹.

Figure 4.20. (a) CO₂ conversion and (b) selectivity towards CH₄ dependence on temperature for the catalysts based on FER and ITQ-6. Reaction conditions: 250 °C - 450 °C, Pressure: 1 atm, WHSV = $38,000 \text{ mL} (g_{cat} \text{ h})^{-1}$, H₂/CO₂ = 4.

Figure 4.21. CO conversion dependence on temperature for the catalysts based on FER and ITQ-6. Reaction conditions: 250 °C - 450 °C, Pressure: 1 atm, WHSV = 38,000 mL (g_{cat} h)⁻¹, H₂/CO = 3.

Figure 4.22. Arrhenius plot for (a) CO₂ methanation and (b) CO methanation. The apparent activation energy for the CO₂ methanation (E^*_{a,CO_2}) and CO methanation $(E^*_{a,CO})$ are obtained from the slope obtained from the data series.

Figure 4.23. Schematic representation of the possible chemical reactions for the CO_2 methanation reaction, either by the associative or dissociative mechanistic pathways.

Figure 4.24. Apparent activation energy for the CO₂ methanation reaction, E_{a,CO_2}^* (**■**) and the CO methanation reaction, $E_{a,CO}^*$, (**●**) dependence of the average Ni⁰ particle size.

Figure 4.25. Effect of nickel loading on CO₂ conversion (dashed lines) and selectivity towards CH₄ (solid lines) on different temperatures for the catalysts based on ITQ-6 (30). Pressure: 1 atm, $H_2/CO_2 = 4:1$, WHSV = 6,000 mL (g_{cat} h)⁻¹

Figure 5.1. (a) CO₂-TPD diagram for a series of Ni-Al₂O₃ catalysts and corresponding coordination modes of surface carbonate species. Image adapted from Ewald [29]. (b) Intermediate formate species formed in the Ni-La₂O₃ and Ni-La₂O₂CO₃ catalysts during CO₂ hydrogenation.

Figure 5.2. Structure of lanthanum aluminate, LaAlO₃, highlighting the 6-fold coordination around Al^{III} ions and 12-fold coordination around La^{III} ions.

Figure 5.3. XRD diffractograms of the different supports and equivalent 5% wt. Ni-based catalysts.

Figure 5.4. Magnification of specific ranges to highlight the presence of the peaks (\blacklozenge) associated with the presence of NiO at $2\theta = 37.40^\circ$ and 43.46° .

Figure 5.5. TEM images of: (a) LaAlO₃; (b) 5Ni/LaAlO₃_R; (c) 5Ni/LaAlO₃-ex_R; (d) 15Ni/LaAlO₃_R.

Figure 5.6.TEM/SEM images of the reduced catalysts with different Ni loading: 5Ni/LaAlO₃_R (a-TEM e-SEM), 10Ni/LaAlO₃_R (b-TEM e-SEM), and 15Ni/LaAlO₃_R (c-TEM f-SEM).

Figure 5.7. EDS-TEM results for the 15Ni/LaAlO₃_R and the response obtained for different elements: Al (cerulean); La (green), and Ni (purple).

Figure 5.8. (a) XRD diffractograms of the calcined LaAlO₃-based catalysts prepared by different methods and metallic content. (b) Magnification of the region between $2\theta = 30^{\circ}$ and 70° to highlight diffraction peaks related to the presence of the NiO phase.

Figure 5.9. (a) Comparison of the XRD diffractograms of the reduced version of the 5% wt. catalysts with the calcined ones for the different supports and zoom-in of the region between $2\theta = 30^{\circ}$ and 65° for the (b) $5Ni/Al_2O_3$ R and (c) $5Ni/La_2O_3$ R catalysts.

Figure 5.10. (a) XRD diffractograms of the reduced LaAlO₃-based catalysts. (b) Magnification of the region between $2\theta = 30^{\circ}$ and 70° to highlight the presence of diffraction peaks related to the presence of the Ni⁰ phase.

Figure 5.11. Size distribution for Ni⁰ particles obtained, normal fit and average size for (a) 5Ni/La₂O₃_R; (b) 5Ni/Al₂O₃_R, (c) 5NiLaAlO₃-ex_R, (d) 5Ni/LaAlO₃_R; (e) 10Ni/LaAlO₃_R, and (f) 15Ni/LaAlO₃_R.

Figure 5.12. H₂-TPR profiles for the catalysts (a) on different supports and (b) with different Ni contents.

Figure 5.13. CO₂-TPD-MS profiles for the (a) different supports and (b) different Ni content used for the preparation of catalysts.

Figure 5.14. (a) CO₂ conversion and (b) CH₄ selectivity values. Conditions of experiment: 1 atm, 250 °C-450 °C, WHSV = 42,000 mL (g_{cat} h)⁻¹, H₂/CO₂ molar ratio = 4:1.

Figure 5.15. Arrhenius plot for the series of Ni-based catalysts prepared over different supports for the 260-300 °C. Linear regression on each set of data points was used to calculate the apparent activation energy, E_a .

Figure 5.16. (a) Time-resolved transmission FT-IR mean ments for the 15Ni/LaAlO₃ catalyst during CO₂ exposition. (b) Zoom-in of the region between 1750 and 2075 cm⁻¹ showing the different Ni⁰-CO bonding modes and (c) example of deconvolution profile for the 10 min sample for the different Ni⁰-CO bonding modes.

Figure 5.17. (a) Time-resolved in-situ FT-IR measurements for the 15Ni/LaAlO₃ catalyst during H₂ exposition after the CO₂ exposition step and (b) evolution of normalized intensity for selected peaks.

Figure 5.18. Dependence of catalytic activity on the ratio between moderate basic sites concentration, B_{CO_2} , and available metallic surface area, S_{Ni} . The red curve is added for better visualization of the data points.

Figure 5.19. Correlation between Ni⁰ particle size and CH₄ formation turnover frequency number (TOF) for the different catalysts supported on LaAlO₃.

Figure 6.1. Schematic representation of the sepiolite structure, consisting of blocks formed by a Mg-containing octahedral layer, sandwiched between Si-containing tetrahedral layers. These blocks create channels or tunnels that are occupied by zeolitic water.

Figure 6.2. Hierarchical porous structure of sepiolite, in which macropores, mesopores and micropores can be detected.

Figure 6.3. XRD patterns of cerium-nickel-sepiolite catalysts, the support and the reference patterns of different phases that make up the catalyst.

Figure 6.4. XRD patterns of the higher Ni loading cerium-nickel-sepiolite catalysts, the support and the reference patters of different phases that make up the catalyst.

Figure 6.5. Structure of sepiolite and sepiolite dihydrate, the phase of the material that is stable at temperatures above 350 °C, due to the loss of the zeolitic H_2O molecules inside the channels. Gray molecules represent H_2O molecules.

Figure 6.6. TEM-SEM images of the catalysts after the reduction step: 5Ni-0Ce-Sep_R (a-TEM, b-SEM) and 5Ni-1Ce-Sep (c-TEM, d-SEM).

Figure 6.7. TEM-SEM images of the catalysts after the reduction step: 5Ni-10Ce-Sep_R (a-TEM, b-SEM) and 5Ni-30Ce-Sep (c-TEM, d-SEM).

Figure 6.8. (a) bright-field TEM image of the 5Ni-10Ce-Sep_R catalyst after the reduction step and (b) dark field STEM of the highlighted area. EDS mapping of different composing elements was also obtained.

Figure 6.9. Higher magnification TEM image of the catalysts after the reduction step: (a) 5Ni-0Ce-Sep_R; (b) 5Ni-1Ce-Sep_R; (c) 5Ni-10Ce-Sep_R; 5Ni-30Ce-Sep_R.

Figure 6.10. Structure of a partially truncated octahedron, observed for the Ni⁰ nanoparticles, highlighting some geometrical elements of interest. Image adapted from Rana et al. [49].

Figure 6.11. N₂ adsorption-desoprtion isotherms for the nickel-ceria-sepiolite calcined catalysts. **Figure 6.12.** H₂-TPR profiles between 50 °C and 900 °C for the series of nickel-ceria catalysts supported over sepiolite.

Figure 6.13. CO₂-TPD profiles for (a) calcined sepiolite, Sep_450C; (b) 5Ni-0Ce-Sep; (c) (b) 5Ni-1Ce-Sep; (d) 5Ni-10Ce-Sep; and (e) 5Ni-30Ce-Sep.

Figure 6.14. CO₂ conversion (filled symbols) and CH₄ selectivity (hollow symbols) for the nickel-cerium-sepiolite catalysts. Equilibrium data was calculated using the DWSIM simulator. Reaction conditions: 250 °C - 450 °C, 1 atm, WHSV = 38,000 mL (g_{CAT} ·h)⁻¹. H₂/CO₂ = 4.

Figure 6.15. Transmission infrared results over the different calcined catalysts before introducing any reactants into the transmission IR analysis chamber.

Figure 6.16. (a) Transmission FT-IR results for the transient experiments after alternate expositions to CO_2 and H_2 at 250 °C for 5Ni-0Ce-Sep. (b) Magnification of the carbonyl region between 2100 and 1800 cm⁻¹, showing the evolution of the Ni⁰-CO bands during the transient experiments.

Figure 6.17. Transmission FT-IR results for the transient experiments after alternate expositions to CO₂ and H₂ at 250 °C at different times for: (a) 5Ni-1Ce-Sep, (b) 5Ni-10Ce-Sep and (d) 5Ni-30Ce-Sep. (c) Zoom-in of the 1200-1600 cm⁻¹ region for the 5Ni-10Ce-Sep catalyst. Test conditions: T = 250 °C, 1 atm.

Figure 6.18. Time-resolved normalized intensity of infrared bands centered at: (a) 2848 cm⁻¹, formate, (b) 2031cm⁻¹, linear Ni⁰-CO; (c) 1909-1855 cm⁻¹, multibonded Ni⁰-CO, for t5Ni-10Ce-sep catalyst. Conditions: 250 °C, 1 atm, alternate expositions to CO₂ followed by H₂.

Figure 6.19. Depiction of the proposed catalytic cycle taking place in the 5Ni-10Ce-Sep catalyst for the H-assisted associative mechanism for the CO₂ methanation reaction via formate formation. **Figure 6.20.** Dependence of TOF on Ni⁰ particle size for 5% wt. Ni catalysts with different Ce loadings. The respective values of concentration of moderate basic site per unit of active metallic surface area, B_{CO_2}/S_{Ni} are also indicated.

Figure 6.21. Effect of Ni loading on (a) CO₂ conversion and (b) CH₄ selectivity on different temperatures for the 10% Ce sepiolite catalysts. Pressure: 1 atm, $H_2/CO_2 = 4:1$, WHSV = 38,000 mL ($g_{cat}\cdot h$)⁻¹.

Figure 7.1. CO_2 conversion values dependence on the WHSV and correspondent time of contact (τ) between the reactants and the active phase is specified for (a) 15Ni/ITQ-6 (30), (b) 15Ni/LaAlO₃ and (c) 15Ni-10Ce-Sep. Reaction conditions: 320 °C, 1 atm, H₂:CO₂ = 4.

Figure 7.2. Stability test results regarding CO₂ conversion (•) and CH₄ selectivity (•) values for the 15Ni/ITQ-6 (30) catalyst with emulated sweetened synthetic biogas sample. Reaction conditions: 1 atm, 320 °C, WHSV = 6,000 (g_{cat} h)⁻¹, CH₄: CO₂: H₂ = 3:2:8.

Figure 7.3. Comparison of the X-ray diffractograms of the 15Ni/ITQ-6 (30) catalyst after the reduction step and the stability test with a synthetic biogas sample.

Figure 7.4. Comparison of the TEM of the 15Ni/ITQ-6 (30) catalyst (a) after the reduction step and (b) after the stability test with a synthetic biogas sample.

Figure 7.5. Stability test results regarding CO₂ conversion (•) and CH₄ selectivity (•) for the 15Ni/LaAlO₃ catalyst with a sweetened synthetic biogas sample. Reaction conditions: 320 °C, 1 atm, WHSV = 10,000 mL ($g_{cat} \cdot h$)⁻¹. Reaction conditions: 1 atm, 320 °C, WHSV = 10,000 mL (g_{cat} · h)⁻¹, CH₄: CO₂: H₂ = 3:2:8.

Figure 7.6. Comparison of the X-ray diffractograms of the 15Ni/LaAlO₃ catalyst after the reduction step and the stability test with a synthetic biogas sample.

Figure 7.7. Comparison of the TEM of the 15Ni/LaAlO₃ catalyst (a) after the reduction step and (b) after the stability test with a synthetic biogas sample.

Figure 7.8. Stability test results regarding CO₂ conversion (•) and CH₄ selectivity (•) for the 15Ni-10Ce-Sep catalyst with a sweetened synthetic biogas sample. Reaction conditions: 1 atm, 320 °C, WHSV = 20,000 mL (g_{cat} h)⁻¹, CH₄: CO₂: H₂ = 3:2:8

Figure 7.9. Comparison of the X-ray diffractograms of the 15Ni-10Ce-Sep catalyst after the reduction step and the stability test with a synthetic biogas sample.

Figure 7.10. Comparison of the TEM of the 15Ni-10Ce-Sep catalyst (a) after the reduction step and (b) after the stability test with a synthetic biogas sample.

Figure 9.1. Thermogravimetric differential analysis (TG/DTA) of the zeolite-based catalysts after the impregnation step for the (a) $5Ni/FER(\infty)$, (b) $5Ni/ITQ-6(\infty)$, (c) 5Ni/FER(30), (d) 5Ni/ITQ-6(30), (e) 10Ni/ITQ-6(30), (f) 15Ni/ITQ-6(30), and (g) 20Ni/ITQ-6(30).

Figure 9.2. Thermogravimetric differential analysis (TG/DTA) for: (a) the support precursors for LaAlO₃ before the calcination, and the Ni-impregnated LaAlO₃ supports with different metallic loadings: (b) 5% wt.; (c) 10% wt.; (b) 15% wt.

Figure 9.3. Thermogravimetric differential analysis (TG/DTA) for: (a) sepiolite, (b) 0Ni-10Ce-Sep, (c) 5Ni-0Ce-Sep, (d) 5Ni-1Ce-Sep, (e) 5Ni-10Ce-Sep, (f) 5Ni-30Ce-Sep, (g) 10Ni-10Ce-Sep, and (h) 15Ni-10Ce-Sep.

Figure 9.4. Individual deconvolution of CO₂-TPD profiles for (a) calcined sepiolite, Sep_450C; (b) 5Ni-0Ce-Sep; (c) (b) 5Ni-1Ce-Sep; (d) 5Ni-10Ce-Sep; and (e) 5Ni-30Ce-Sep.

List of Tables

Table 1.1. Values of equilibrium constant (lnK), standard Gibbs Free energy change ($\Delta_r G^o$), standard entropy change ($\Delta_r S^o$), and standard enthalpy change ($\Delta_r H^o$) at T = 25 °C and P = 1 bar for possible reactions related to the CO₂ methanation.

Table 2.1. Summary of directing goals set as secondary objectives for the design and development of the catalysts for the CO₂ methanation reaction studied in the PhD Thesis.

Table 3.1. Outline the experimental conditions used for the catalytic experiments and tests carried out in this study.

Table 4.1. Denomination employed in this chapter for the zeolite-based catalysts prepared over ferrierite (FER) and ITQ-6 zeolites. All Ni loading refers to nominal values established during their preparation.

Table 4.2. NiO crystallite size for the zeolite-based catalysts (D_{NiO}), corresponding Ni⁰ crystallite size after the reduction step (D_{Ni^0}) and Ni loading.

Table 4.3. Textural properties for the zeolite samples: BET surface area (S_{BET}), t-plot micropore area (S_{MICRO}), t-plot external surface area ($S_{EXTERNAL}$), t-plot micropore volume (V_{MICRO}), and BJH mesopore volume, (V_{MESO}).

Table 4.4. Textural and reducibility properties for reduced FER and ITQ-6 type catalysts: active metal surface area, S_{Ni} , Ni^0 average particle size, D_{Ni} , molar H_2 monolayer uptake, and percentual reducibility at 450 °C.

Table 4.5. Turnover frequency values and apparent activation energy values (E_{a,CO_2}^*) towards CH₄ formation via CO₂ methanation (TOF_{CO_2} and E_{a,CO_2}^*) and CO methanation (TOF_{CO} and $E_{a,CO}^*$) for the 5% wt. Ni zeolite-based catalysts.

Table 4.6. Comparison of the best catalytic performance conditions achieved for a series of zeolite-based catalysts for the CO_2 methanation reaction, and the corresponding experimental conditions employed for the catalytic tests.

Table 5.1. Denomination employed in this chapter for the oxide-based catalysts. All Ni loading refers to nominal values established during their preparation.

Table 5.2. Elemental weight percentage for lanthanum aluminate samples, as determined by ICP-OES, and La/Al molar ratio.

Table 5.3. Textural properties: BET surface area (S_{BET}), t-plot mesopore area (S_{MESO}), t-plot mesopore volume (V_{MESO}), Ni⁰ metallic surface area (S_{Ni}), Ni⁰ average crystallite size, (D_{Ni}), and molar H₂ monolayer uptake.

Table 5.4. CO₂-TPD deconvolution for the concentration of weak (50-200 °C), moderate (200-400 °C), and strong (400-900 °C) basic sites and total basicity for the different supports and catalysts.

Table 5.5. Catalytic data and selected properties: yield to CH₄ at 250 °C ($Y_{250 \circ C}$), turnover frequency at 250 °C ($TOF_{250 \circ C}$), activation energy towards CH₄, E_{a,CH_4} , intermediate basic sites concentration, B_{CO_2} , and average Ni⁰ crystallite size, D_{Ni} .

Table 5.6. Vibration modes for different species in the 15Ni/LaAlO₃ catalyst and corresponding wavenumber.

Table 6.1. Denomination is employed in this chapter for the sepiolite-based catalysts. The number

 preceding the elements Ni and Ce refers to the nominal loading values established during their

 preparation.

Table 6.2. Elemental weight percentage for nickel and cerium, and Mg/Si atomic ratio for nickelceria-sepiolite materials.

Table 6.3. Textural properties of ceria-nickel sepiolite catalysts: BET surface area, S_{BET} , t-plot micropore area, S_{micro} , t-plot external surface area, S_{ext} , and t-plot micropore volume, V_{micro} .

Table 6.4. H₂-chemisorption data for nickel-ceria-based catalysts: metallic dispersion, active metal surface area, S_{Ni} , Ni⁰ average particle size, D_{Ni} , and molar H₂ monolayer uptake.

Table 6.5. CO₂-TPD deconvolution for the weak (50 – 200 °C), moderate (200 – 400 °C) and strong (400 – 600 °C) basic sites and total basicity for the sepiolite-based catalysts.

Table 6.6. Assignation of the corresponding wavenumber to the vibration modes observed in the nickel-sepiolite-ceria catalysts.

Table 6.7. Catalytic data regarding 5% wt. Ni catalysts and selected properties: TOF at 250 °C, $TOF_{CH_4,250 \circ C}$, moderate basicity concentration, B_{CO_2} , average Ni⁰ crystallite size, D_{Ni} , and moderate basicity per unit of active metallic surface area, B_{CO_2}/S_{Ni} .

 Table 7.1. Selected catalysts with optimum results from previous results used for the WHSV and stability tests with synthetic sweetened biogas.

Table 7.2. Textural properties of selected catalysts used for the stability tests with synthetic sweetened biogas samples: Ni^0 crystallite size, D_{Ni} , sintering extent, carbon elemental content, C (wt. %), and BET surface area, S_{BET} .

Table 7.3. Results for selected catalysts at the end of the stability tests: used weight hourly speed velocity (WHSV), yield to CH₄ at the end of the test, Y_{CH_4} , and CH₄ production rate, F_{CH_4} .