
PhD Thesis

Detailed modeling, simulation,
and optimization of HVAC

systems for electric buses in
urban environments under
real operating conditions

Author:

Joan Dídac Viana Fons

Supervisor:

Dr. Jorge Payá Herrero

València, December 2024





A mon pare, Dídac Viana Gómez,

a qui més m’haguera agradat que llegira aquesta tesi





Abstract

Urban buses are crucial for EU public transport, comprising more
than half of all inland public transport journeys. Electric urban buses
in the EU could reduce life-cycle emissions by 76% by 2030 compared to
diesel. Although in 2024 only 1.4% of the EU’s bus fleet is electric, all
new urban buses must be zero-emission by 2035. This target highlights
the pivotal role of electric buses in the transition to sustainable urban
mobility.

The Heating, Ventilation, and Air Conditioning (HVAC) system is
crucial for maintaining a safe and comfortable environment in vehicles
but is also the primary auxiliary load, accounting for 1.5% of the global
oil consumption. In urban electric buses, the driving range can be
reduced by up to 50% in extreme weather. This emphasizes the need
to model and optimize HVAC systems to reduce their energy impact
and support the large-scale adoption of electric buses to mitigate urban
pollution and emissions from urban transport.

Current literature reveals significant gaps in the development and
application of detailed HVAC system models for electric buses operat-
ing in real-world urban environments. Specifically, there is a lack of
comprehensive methodologies that integrate detailed models for accu-
rate energy consumption assessments. Addressing these gaps is crucial
to understanding energy flows and optimizing the use of resources while
reducing costs and uncertainties.

In this thesis, a set of advanced models has been developed and
integrated into a comprehensive global model to accurately simulate
and optimize the HVAC system operation and energy consumption of



electric urban buses in real operating conditions.

The primary objective is to develop, validate and integrate a set of
six advanced models. First, the spatial model creates a 3D city repre-
sentation with buildings, trees, and a digital terrain model of the streets.
The kinematic model then generates a year-long stochastic driving cycle
using route data, street velocity limits, and traffic patterns. Next, the
climate model calculates the external air temperature, humidity, visible
horizon and radiation fluxes on all bus surfaces based on long-term cli-
mate data, the position and orientation of the bus and solar geometry.
The thermal and HVAC coupled model computes, on the one hand, the
thermal heat gains, node temperatures, moisture transfers, the thermal
loads of mass and body nodes, and the latent loads of the indoor node
using a system of ordinary differential equations, based on the bus op-
tical and thermophysical properties, occupancy, air changes, auxiliary
systems, and environmental conditions. On the other hand, the coupled
model evaluates the HVAC operating mode and the operation points of
each component of the equipment, their energy consumption and effi-
ciency, and the outlet conditions of the air and condensate flowrate. Fi-
nally, the battery model estimates the overall bus energy consumption,
including contributions from the motor, regenerative braking, HVAC,
and other systems, as well as the impact of the battery efficiency.

The second objective is to implement this global model into a ro-
bust simulation tool, apply it to real urban bus routes and extract key
insights from accurate disaggregated energy consumption results over
extended periods. This includes the assessment of strategies to reduce
the overall energy demand, analyzing the impact of different vehicle sub-
systems, supporting the optimization of the HVAC system components,
and evaluating their impact on the total vehicle energy consumption.

The findings reveal the complexities of estimating the HVAC en-
ergy consumption due to numerous interacting factors, stochastic vari-
ables, and discrete control logic, requiring diverse models and extensive
datasets. A model oversimplification can lead to significant errors, with
direct solar irradiation inaccuracies exceeding 50% due to unaccounted



shading effects and notable variations in thermal gains across bus sur-
faces. The results highlight the critical role of transient thermal models,
particularly when integrated with discrete control algorithms, and the
significant impact of high occupancy stochasticity on the thermal load.

The simulations show that under representative conditions, the
mean cooling demand on warm summer days is 12.1 kW, driven by so-
lar and occupancy loads, while the heating demand on cold winter days
averages 3.3 kW, mainly due to non-recirculated fresh air. The cool-
ing mode is predominant (44.6% of the time), followed by ventilation
(31.4%). The compressor consumes 69-75% of energy in summer and
58- 65% in mild months and winter. The HVAC consumption accounts
for 5- 12% of the total bus energy use. This share is higher on higher
frequency stops and lower speeds, reducing the driving range by 15-20%
on warm days. Under extreme conditions, the HVAC consumption can
rise by up to 165% on warm days and 181% on cold days. Insulation
and optimized coatings can reduce the heating and cooling demand
by 20- 31% while resizing the compressor by 25% offers cost savings
without any efficiency loss.





Resumen

Los autobuses urbanos son fundamentales para el transporte público
de la UE, representando más de la mitad de todos los viajes de trans-
porte público terrestre. Los autobuses eléctricos urbanos en la UE po-
drían reducir las emisiones de ciclo de vida en un 76% para 2030 en
comparación con los diésel. Aunque en 2024 solo el 1,4% de la flota
de autobuses de la UE es eléctrica, todos los nuevos autobuses urbanos
deberán ser de cero emisiones para 2035. Este objetivo resalta el pa-
pel fundamental de los autobuses eléctricos en la transición hacia una
movilidad urbana sostenible.

El sistema de Calefacción, Ventilación y Aire Acondicionado (HVAC)
es esencial para mantener un ambiente seguro y cómodo en los vehícu-
los, pero también es la principal carga auxiliar, representando el 1,5%
del consumo mundial de petróleo. En los autobuses eléctricos urbanos,
la autonomía de conducción puede reducirse hasta un 50% en condi-
ciones meteorológicas extremas. Esto resalta la necesidad de modelar
y optimizar los sistemas HVAC para reducir su impacto energético y
apoyar la adopción a gran escala de autobuses eléctricos para mitigar
la contaminación urbana y las emisiones del transporte urbano.

La literatura actual revela importantes lagunas en el desarrollo y
aplicación de modelos detallados de sistemas HVAC para autobuses
eléctricos que operan en entornos urbanos reales. En concreto, existe
una falta de metodologías que integren modelos detallados para evalua-
ciones precisas del consumo energético. Abordar estas lagunas es crucial
para comprender los flujos de energía y optimizar el uso de los recursos,
al tiempo que se reducen los costes y las incertidumbres.



En esta tesis, se ha desarrollado e integrado un conjunto de modelos
avanzados en un modelo global completo para simular y optimizar con
precisión la operación del sistema HVAC y el consumo de energía de los
autobuses eléctricos urbanos en condiciones reales de operación.

El objetivo principal es desarrollar, validar e integrar un conjunto
de seis modelos avanzados. Primero, el modelo espacial crea una rep-
resentación 3D de la ciudad con edificios, árboles y un modelo digital
del terreno de las calles. A continuación, el modelo cinemático genera
un ciclo de conducción estocástico de un año utilizando datos de ru-
tas, límites de velocidad en las calles y patrones de tráfico. Luego, el
modelo climático calcula la temperatura del aire exterior, la humedad,
el horizonte visible y los flujos de radiación en todas las superficies
del autobús, basándose en datos climáticos a largo plazo, la posición
y orientación del autobús y la geometría solar. El modelo térmico y
acoplado con el HVAC calcula, por un lado, las ganancias de calor, las
temperaturas de los nodos, las transferencias de humedad, las cargas
térmicas de los nodos de masas internas y de la carcasa, y las cargas
latentes del nodo interior utilizando un sistema de ecuaciones diferen-
ciales ordinarias, basado en las propiedades ópticas y termofísicas del
autobús, la ocupación, los cambios de aire, los sistemas auxiliares y las
condiciones ambientales. Por otro lado, el modelo acoplado evalúa el
modo de operación del HVAC y los puntos de operación de cada compo-
nente del equipo, su consumo de energía y eficiencia, y las condiciones
de salida del aire y del flujo de condensado. Finalmente, el modelo
de batería estima el consumo total de energía del autobús, incluyendo
las contribuciones del motor, la frenada regenerativa, el HVAC y otros
sistemas, así como el impacto de la eficiencia de la batería.

El segundo objetivo es implementar este modelo global en una her-
ramienta de simulación robusta, aplicarla a rutas de autobuses urbanos
reales y extraer conclusiones clave a partir de resultados precisos de
consumo de energía desagregado durante períodos prolongados. Esto
incluye la evaluación de estrategias para reducir la demanda total de
energía, analizar el impacto de los diferentes subsistemas del vehículo,
apoyar la optimización de los componentes del sistema HVAC y evaluar



su impacto en el consumo total de energía del vehículo.

Los hallazgos revelan las complejidades de estimar el consumo de
energía del HVAC debido a numerosos factores interrelacionados, vari-
ables estocásticas y lógica de control discreta, lo que requiere modelos
diversos y grandes conjuntos de datos. Una simplificación excesiva del
modelo puede llevar a errores significativos, con imprecisiones en la ir-
radiación solar directa superiores al 50% si no se consideran los efectos
del sombreado y variaciones notables en las ganancias térmicas en las
superficies del autobús. Los resultados destacan el papel crítico de los
modelos térmicos transitorios, especialmente cuando se integran con
algoritmos de control discreto, y el impacto significativo de la estocas-
ticidad en la alta ocupación sobre la carga térmica.

Las simulaciones muestran que, en condiciones representativas, la
demanda media de aire acondicionado en días cálidos de verano es de
12,1 kW, debido especialmente a las cargas solares y de ocupación, mien-
tras que la demanda de calefacción en días fríos de invierno es de 3,3
kW, principalmente debido al aire fresco no recirculado. El modo de
aire acondicionado es predominante (44,6% del tiempo), seguido por
la ventilación (31,4%). El compresor consume entre el 69 y el 75% de
la energía en verano y entre el 58 y el 65% en meses templados y en
invierno. El consumo de HVAC representa entre el 5 y el 12% del uso
total de energía del autobús. Esta proporción es mayor en paradas
más frecuentes y a velocidades más bajas, reduciendo la autonomía de
conducción en un 15-20% en días cálidos. En condiciones extremas, el
consumo de HVAC puede aumentar hasta un 165% en días cálidos y
un 181% en días fríos. El aislamiento y los recubrimientos optimizados
pueden reducir la demanda de calefacción y aire acondicionado en un
20-31%, mientras que reducir la capacidad del compresor en un 25%
ofrece ahorros de costes sin pérdida de eficiencia.





Resum

Els autobusos urbans són fonamentals per al transport públic de
la UE, representant més de la meitat de tots els viatges de transport
públic terrestre. Els autobusos elèctrics urbans a la UE podrien reduir
les emissions de cicle de vida en un 76% per a 2030 en comparació amb
els dièsel. Encara que en 2024 només l’1,4% de la flota d’autobusos de
la UE és elèctrica, tots els nous autobusos urbans hauran de ser de zero
emissions per a 2035. Aquest objectiu ressalta el paper fonamental dels
autobusos elèctrics en la transició cap a una mobilitat urbana sostenible.

El sistema de Calefacció, Ventilació i Aire condicionat (HVAC) és
essencial per a mantindre un ambient segur i còmode en els vehicles,
però també és la principal càrrega auxiliar, representant l’1,5% del con-
sum mundial de petroli. En els autobusos elèctrics urbans, l’autonomia
de conducció pot reduir-se fins a un 50% en condicions meteorològiques
extremes. Això ressalta la necessitat de modelar i optimitzar els sis-
temes HVAC per a reduir el seu impacte energètic i donar suport a
l’adopció a gran escala d’autobusos elèctrics per a mitigar la contami-
nació urbana i les emissions del transport urbà.

La literatura actual revela importants llacunes en el desenvolupa-
ment i aplicació de models detallats de sistemes HVAC per a autobusos
elèctrics que operen en entorns urbans reals. En concret, existeix una
falta de metodologies que integren models detallats per a avaluacions
precises del consum energètic. Abordar aquestes llacunes és crucial
per a comprendre els fluxos d’energia i optimitzar l’ús dels recursos, al
mateix temps que es redueixen els costos i les incerteses.

En aquesta tesi, s’ha desenvolupat i integrat un conjunt de models



avançats en un model global complet per a simular i optimitzar amb
precisió l’operació del sistema HVAC i el consum d’energia dels auto-
busos elèctrics urbans en condicions reals d’operació.

L’objectiu principal és desenvolupar, validar i integrar un conjunt de
sis models avançats. Primer, el model espacial crea una representació
3D de la ciutat amb edificis, arbres i un model digital del terreny dels
carrers. A continuació, el model cinemàtic genera un cicle de conduc-
ció estocàstic d’un any utilitzant dades de rutes, límits de velocitat
als carrers i patrons de trànsit. Després, el model climàtic calcula la
temperatura de l’aire exterior, la humitat, l’horitzó visible i els fluxos
de radiació en totes les superfícies de l’autobús, basant-se en dades
climàtiques a llarg termini, la posició i orientació de l’autobús i la ge-
ometria solar. El model tèrmic i acoblat amb el HVAC calcula, d’una
banda, els guanys de calor, les temperatures dels nodes, les transferèn-
cies d’humitat, les càrregues tèrmiques dels nodes de masses internes
i de la carcassa, i les càrregues latents del node interior utilitzant un
sistema d’equacions diferencials ordinàries, basat en les propietats òp-
tiques i termofísiques de l’autobús, l’ocupació, els bescanvis d’aire, els
sistemes auxiliars i les condicions ambientals. D’altra banda, el model
acoblat avalua el mode d’operació del HVAC i els punts d’operació de
cada component de l’equip, el seu consum d’energia i eficiència, i les
condicions d’eixida de l’aire i del flux de condensat. Finalment, el model
de bateria estima el consum total d’energia de l’autobús, incloent-hi les
contribucions del motor, la frenada regenerativa, el HVAC i altres sis-
temes, així com l’impacte de l’eficiència de la bateria.

El segon objectiu és implementar aquest model global en una eina
de simulació robusta, aplicar-la a rutes d’autobusos urbans reals i
extraure conclusions clau a partir de resultats precisos de consum
d’energia desagregat durant períodes prolongats. Això inclou l’avaluació
d’estratègies per a reduir la demanda total d’energia, analitzar l’impacte
dels diferents subsistemes del vehicle, donar suport a l’optimització dels
components del sistema HVAC i avaluar el seu impacte en el consum
total d’energia del vehicle.



Els resultats revelen les complexitats d’estimar el consum d’energia
del HVAC a causa de nombrosos factors interrelacionats, variables es-
tocàstiques i lògica de control discreta, la qual cosa requereix mod-
els diversos i grans conjunts de dades. Una simplificació excessiva del
model pot portar a errors significatius, amb imprecisions en la irra-
diació solar directa superiors al 50% si no es consideren els efectes de
l’ombreig i variacions notables en els guanys tèrmics en les superfícies
de l’autobús. Els resultats destaquen el paper crític dels models tèrmics
transitoris, especialment quan s’integren amb algorismes de control dis-
cret, i l’impacte significatiu de la estocasticitat en l’alta ocupació sobre
la càrrega tèrmica.

Les simulacions mostren que, en condicions representatives, la de-
manda mitjana d’aire condicionat en dies càlids d’estiu és de 12,1 kW,
degut especialment a les càrregues solars i d’ocupació, mentre que la
demanda de calefacció en dies freds d’hivern és de 3,3 kW, principal-
ment a causa de l’aire fresc no recirculat. El mode d’aire condicionat
és predominant (44,6% del temps), seguit per la ventilació (31,4%). El
compressor consumeix entre el 69 i el 75% de l’energia a l’estiu i entre
el 58 i el 65% en mesos temperats i a l’hivern. El consum de HVAC rep-
resenta entre el 5 i el 12% de l’ús total d’energia de l’autobús. Aquesta
proporció és major en parades més freqüents i a velocitats més baixes,
reduint l’autonomia de conducció en un 15-20% en dies càlids. En condi-
cions extremes, el consum de HVAC pot augmentar fins a un 165% en
dies càlids i un 181% en dies freds. L’aïllament i els recobriments op-
timitzats poden reduir la demanda de calefacció i aire condicionat en
un 20-31%, mentre que reduir la capacitat del compressor en un 25%
ofereix estalvis de costos sense pèrdua d’eficiència.
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Chapter 1

Introduction

1.1 Motivation
1.1.1 Environmental impact and mitigation measures of trans-

port in the EU
Transport is a basic need which helps integrate people into society

and is recognized as one of the essential services under the European
Pillar of Social Rights [1]. Transport systems have economic, environ-
mental, and social impacts on the communities.

The transport sector represents the largest energy-consuming end-
use sector in the European Union (EU), with more than a quarter of the
total energy consumption and greenhouse gas emissions [2]. While other
sectors have already lowered their emissions by 32% since 1990, the EU’s
transport emissions have increased by 33% and continue relying on oil
products in more than 93% of the final energy [3].

Road transport is responsible for more than three-quarters of the to-
tal EU’s transport greenhouse gas emissions [4] and is is one of the main
contributors to air and noise pollution. This is especially important in
urban areas, where over 70% of EU citizens live [5]. Air pollution is
a significant health concern for European citizens. Currently, 96% of
the urban population is exposed to air pollution levels above the rec-
ommendations of the World Health Organization, and around 300,000
people die every year due to air pollution in Europe [6]. Furthermore,
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CHAPTER 1. INTRODUCTION

at least 20% of the urban population in the EU is exposed to levels of
noise pollution which are harmful to health, and, in many cities, this
percentage can reach 50% of the urban population [7]. Summing up,
the environmental costs of road transport (including climate change, air
pollution, noise, well-to-tank and habitat damage) are estimated at 270
billion euros per year in the EU, which corresponds to more than 1.8%
of its GDP. This number increases up to 820 billion euros per year if
accidents and congestion are included as external costs [8].

European citizens expect solutions clean mobility solutions to re-
duce congestion, gas emissions, noise and air pollution [9, 10]. The
projected demand for passenger and goods could more than double by
2050, nearby increasing its negative impacts [11]. Paris commitments
requires zero carbon transport before 2050, which is theoretically feasi-
ble but ambitious new policies and substantial investments need to be
adopted [12].

In this context, the European Green Deal has committed to reducing
the emissions by at least 55% before 2030. The objective is to become
the first climate-neutral and zero-pollution continent by 2050 [13, 14].
The EU is focusing on further emission and pollution reductions in the
transport sector, introducing new policy instruments for road transport.
Within this scope, the two most important lines of action are, on the
one hand, transforming the current transportation model based on per-
sonal motor vehicles to one focused on active mobility and clean public
transport. On the other hand, it is important to reduce the impacts
associated with private vehicles [15]. From 2027 onward, greenhouse
gas emissions of the road transport sector will be covered by the new
emission trading system [16] and all new cars and vans registered in
Europe will be zero-emission by 2035 [17].

1.1.2 Situation and perspectives of urban electric buses in the
EU

The buses belong to the heavy-duty vehicle sector, which are re-
sponsible for around 25% of total road emissions, despite constituting
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only 2% of the vehicle fleet. To address this imbalance, the EU has
established strict commitments to reduce emissions in this sector [18].

Currently, the EU has strengthened the regulation on the CO2 emis-
sions for new heavy-duty vehicles, requiring manufacturers to reduce the
CO2 emissions of new vehicles own to 30-45% by 2030, to 65% by 2035
and to 90% by 2040 [19].

Urban buses represent the most common form of public transporta-
tion in the EU, accounting for over half of all inland public transport
journeys[20]. They also represent the most cost-efficient and flexible
form of public transportation, requiring minimal investment to estab-
lish new routes or lines, and have a significant potential to reduce traffic
congestion [21].

Urban buses contribute approximately to 3% of the total CO2 emis-
sions in the EU and are a major source of air pollution in urban envi-
ronments [22]. Currently, only 2% of buses are battery-powered electric
vehicles [23]. Nevertheless, the decarbonization of urban transport has
already started and is expected to accelerate [24]. Market data supports
this tendency, as more than one in three newly-registered urban buses
in the EU was fully electric in 2023 [25].

Moreover, European regulations reinforce and aim to accelerate this
trend by setting that all new urban buses registered in EU must be
zero-emission by 2035, with a 90% emissions reduction target for new
urban buses by 2030 [19].

Furthermore, battery-powered electric buses are the most effective
solution for achieving net-zero emissions in urban environments [26, 27,
28]. Specifically, a battery electric urban bus in the EU could reduce
life-cycle emissions by 76% by 2030, while a fuel-cell bus could reduce
them by 57% [29]. These differences are mainly driven by the emissions
associated with the fuel or electricity mix employed and the engine
performance of each powertrain.

In light of the discussed points, it is evident that urban electric buses
will play a pivotal role in transforming urban public transport in the
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EU, representing a critical step towards sustainable, efficient, and clean
urban mobility.

1.1.3 General challenges in the large-scale adoption of electrical
buses

Despite the numerous advantages of electric buses, significant bar-
riers still hinder their large-scale adoption. Addressing these challenges
requires a dual approach to planning, encompassing both long-term
strategic and operational approaches [30].

First, high financing costs present a substantial barrier, primarily
driven by the expenses associated with batteries and the necessary
charging infrastructure [31]. Although costs vary significantly across
different regions, the total lifecycle cost of electric urban buses is gen-
erally comparable to that of internal combustion engines [32]. When
considering externalized costs, such as environmental impacts, electric
buses become considerably more advantageous. These challenges can
be further addressed through policy support and public-private part-
nerships that formalize and implement long-term strategic frameworks
to finance the life cycle of fleets and infrastructure, ensuring regulatory
compliance and enhancing public accessibility and attractiveness [30].

Second, the lower operational flexibility of electric buses due to
their limited driving range and related infrastructure presents addi-
tional challenges. Comprehensive operational planning is required to
address these issues, including optimized routing and scheduling as well
as electric grid stability [33]. Such planning is essential to ensure service
and grid quality, reliability, and safety, thereby maximizing the benefits
of the transition to electric buses, including increased energy efficiency
and significant reductions in urban congestion, pollution, and emissions
[34].

In both strategic and operational planning, bus energy consumption
is a central parameter.

On the one hand, energy consumption is closely tied to the infras-
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tructure requirements and battery sizing of the electric bus fleet. Proper
battery sizing is a critical factor for operators, needing appropriate size
to meet all energy needs without being excessively large and expen-
sive. The bus energy demand influences the scale and distribution of
charging infrastructure, the capacity of electrical grids, and the need
for upgrades to existing facilities. Furthermore, energy consumption
plays a vital role in environmental sustainability, which is a key driver
behind the adoption of electric buses and their public support and ac-
ceptability. Lower energy consumption directly leads to with reduced
costs, emissions, and pollution.

On the other hand, the bus energy consumption directly influences
the operational efficiency of electric buses and charging infrastructure
by determining their driving range and charging needs. Energy con-
sumption is critical for the planning and optimization of routes and
charging strategies to ensure the reliability of bus schedules and grid
loads. Additionally, it helps reduce costs based on energy price fluctu-
ations.

Simulation tools based on accurate and comprehensive models of
electric buses are essential. These models can contribute to overcome
the barriers by:

• Addressing knowledge gaps: Comprehensive models enable a
deeper understanding of the electric bus performance, lifecy-
cle costs, and externalized costs, which can act as an institutional
and social barrier, helping in the definition, formalization, and
dissemination of effective policies and action plans.

• Establishing specific environmental conditions: Bus manufactur-
ers often provide performance range estimates under specific con-
ditions, but real-world operational ranges are influenced by fac-
tors such as speed profiles, elevation changes, and solar radiation
and temperature variations. These uncertainties can lead to op-
erational issues, such as reduced battery life, poor service qual-
ity, and high electricity peak loads. Accurate modeling of these
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dynamic factors in real operating conditions is therefore critical,
especially in urban contexts where traffic and microclimate condi-
tions, stop frequency, and passenger load variations significantly
impact energy consumption.

• Optimizing infrastructure and battery sizing: Characterizing the
energy demand under real operating conditions enables the correct
sizing of the infrastructure and battery, making the transition
to electric buses more feasible and cost-effective. Additionally,
the optimal sizing improves the energy efficiency of bus systems
by working within an appropriate operating range and reducing
overall energy demands.

• Aligning the operational planning and infrastructure: Better pre-
dictions of energy demand can enhance the reliability of bus
schedules and reduce the risk of overloads on the electric grid by
aligning the range capabilities of electric buses with the availabil-
ity, placement, and timing of charging.

• Providing strategic and decision-making framework: Accurate
models enable the prioritization of investments, estimation of
associated operational costs, and evaluation of new strategies
or policies by supporting informed and cost-effective decision-
making.

• Enabling subsystems optimization and integration of new solutions:
These models facilitate detailed analysis of each subsystem’s con-
tribution, supporting optimization and the evaluation of new
solutions within the overall system.

In conclusion, detailed and comprehensive energy consumption mod-
els help address the challenges in electric bus deployment, ensuring suc-
cessful adoption by addressing knowledge gaps, minimizing costs and
risks, optimizing resources, and reducing uncertainties.
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1.1.4 Contribution and importance of HVAC in the field
Mobile Heating, Ventilation, and Air Conditioning (HVAC) systems

are the main auxiliary energy load in vehicles [35], especially in urban
contexts [36], and particularly in buses. The latter need larger and more
energy-consuming systems, due to their design characteristics, such as
higher volume, weight or transparent areas, and operation character-
istics, as they run on fixed routes, move at slower speeds, and make
frequent stops with high occupancy levels [37].

Furthermore, HVAC systems contribute to the most significant un-
certainty in the overall energy consumption [38], due to their highly
sensitive dependency to the different operating conditions and their
nonlinear response.

This uncertainty is especially critical in electric buses, where the
driving range is a significant operational challenge, since the HVAC also
provides heating. Electrical motors do not generate sufficient exhaust
heat whereas in internal combustion engines they can fulfill the entire
heating demands. This results in a significant reduction in the range of
electric buses by up to 50% in cold winter and warm summer days [37].

The primary function of HVAC systems is to maintain a healthy,
safe, and comfortable thermal environment in the vehicle cabin by com-
pensating for the thermal loads and ensuring a proper ventilation for
fresh air and humidity control.

While these functions are essential to provide high-quality service,
they currently have a substantial negative impact. HVAC systems con-
sume 1.8 million barrels of oil equivalent per day, which represent more
than 1.5% of the current global oil consumption [39]. Furthermore,
they are responsible for more than 1% of the global energy-related CO2
emissions, a combination of energy consumption (70%) and refrigerant
leakage (30%). With no further policy action, energy use and emissions
may almost triple by 2050.

This energy-intensive operation highlights the importance of opti-
mizing HVAC systems, including refrigerant modifications and energy
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efficiency improvements, to reduce their environmental impact.

According to the American Society of Heating, Refrigerating, and
Air-Conditioning Engineers (ASHRAE), thermal comfort is defined as
a “condition of mind that expresses satisfaction with the thermal envi-
ronment“ [40]. This subjective and complex concept depends on both
personal and environmental factors. In line with this, the European
Standard EN-14750 [41], pertaining to air conditioning for urban and
suburban rolling stock, is the applicable standard in the EU, which es-
tablishes the thermal comfort specifications and HVAC requirements
for urban bus cabins.

Current standards for HVAC system design are based on broad cli-
mate zones, leading to frequent oversizing and missed opportunities for
optimization, as the lifecycle of most buses occurs in a single city. En-
ergy models that simulate the real operating conditions in specific urban
areas can help capitalize these opportunities by optimizing HVAC sys-
tems in this complex environment.
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1.2 Background and research context
1.2.1 Overview of HVAC systems in urban electric buses

In internal combustion engine vehicles, the cabin thermal manage-
ment is typically achieved with a vapor-compression system for cooling.
For heating, the waste heat of the engine is used. However, the rela-
tively low waste heat production by electric motors presents challenges
for the cabin heating in electric vehicles. The most popular solution
in electric vehicles is the use of a dedicated heater, such as Positive
Temperature Coefficient (PTC). However, this solution, significantly
reduces the driving range due to its high electricity demand, specially
in electric buses, where the thermal demand is much higher than in
light-duty electric vehicles.

The reversible vapor compression heat pump system is the most
promising and cost-effective technology for electric buses, and provides
both cooling and heating capacities with a higher energy efficiency.
These systems feature an inverter-driven compressor and a four-way
valve which can reverse the refrigerant flow direction, enabling the
switch between heating and cooling modes. The Coefficient Of Per-
formance (COP) is greater than one in most conditions.

The energy management of these systems consists in adjusting the
speed of compressor and fans, effectively balancing the cabin’s heat
loads to maintain thermal comfort while minimizing the electricity con-
sumption. Additionally, the control system regulates the ratio of recir-
culated air, ensuring a minimum fresh air flowrate per passenger.

In recent years, continuous innovations have been explored to boost
the performance of these systems, and reduce their environmental im-
pact.

For instance, Economized Vapor Injection (EVI) has been applied
to improve the heating capacity and performance at low ambient tem-
peratures [42].

Using two-phase ejector as an expansion valve can also improve the
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system performance in cooling mode, while reducing the heat exchang-
ers sizing [43].

The performance can be further improved by means of waste heat
recovery from the electric motor, controller, inverters and batteries [44,
45] or from the cabin exhaust air [46]. The use of thermal energy
storage based on Phase Change Materials (PCM) has also been studied
to provide both heating and cooling with high energy density [47].

With respect to the refrigerant, R1234yf is considered as an in-
terim option to replace R134a in the existing automotive HVAC sys-
tems. The thermophysical properties are similar, with a significantly
lower Global Warming Potential (GWP). However, the environmental
impacts of R1234yf and other Hydrofluoroolefin (HFO) become signifi-
cant due to the formation of trifluoroacetic acid (TFA), which will affect
the aquatic systems [48]. The hydrocarbon refrigerants are reported as
promising alternatives to R134a due to its lower GWP and improved
energy efficiency due to its good thermophysical properties compared to
R134a. Among them, R290 can be good replacement for R134a, show-
ing a better performance for both cooling and heating [49]. However,
compressor modifications are required and secondary loop configura-
tions are recommended. R744 is a feasible alternative in cold climates,
offering better heating performance at low temperatures but lower cool-
ing performance at high temperatures [50].

Also, other non-vapor compression systems have been explored, in-
cluding magnetic heat pump systems [51] and thermoelectric systems
[52].

However, most of these solutions are currently in research, develop-
ment and testing stage in the automotive industry.

In this thesis, a hybrid system has been used to model the HVAC,
which integrates a standard reversible vapor compression heat pump,
and supplementary PTC heaters, used to support the heating capacity
under very low ambient temperatures.
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1.2.2 Main approaches to estimate the energy consumption of
HVAC systems in urban electric buses

Calculating the energy consumption of HVAC systems of electric
buses under real operating conditions can only be performed with a
broader analysis that includes the examination of the main influenc-
ing factors. These factors are related with the cabin temperature, and
include the outdoor temperature and humidity, solar radiation, air ex-
changes, long-wave radiation exchanges, bus geometry, thermophysical
and optical properties, occupancy variation, and vehicle velocity.

To accurately model these elements in the complex and dynamic
context of urban bus services, it is necessary to develop extensive mod-
els. To know the impact on the battery autonomy, the model should
also calculate the consumption of the motor and all auxiliaries.

Current research on electric bus energy consumption are generally
divided into three methodological approaches: empirical methods, data-
driven methods and physical methods [53].

First, the empirical methods often assume the electric bus energy
consumption per distance as a constant [54, 55]. This simplifying es-
timation helps focus on other complex areas such as large-scale bus
scheduling or routing network optimization. However, these energy
consumption estimates vary widely across different studies (1.24–2.48
kWh/km [54], 1.20–2.90 kWh/km [55]) and cannot be easily extrap-
olated to other conditions. This is because these estimations do not
account for the specific operational conditions that can significantly in-
fluence the energy consumption.

Second, the data-driven methods, such as regression [56, 57], ma-
chine learning [53, 58, 59], or deep learning models [57, 60, 61], use al-
gorithms to predict the energy consumption based on large volumes of
experimental data, taking into account a variety of operational factors.
On the one hand, regression-based models explicitly quantify cause-
effect relationships, making them useful to develop control algorithms.
However, they often show a poor fit due to the high dimensionality
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and non-linearity of the problem. On the other hand, AI-based models
can accurately capture these non-linear relationships and achieve a rel-
atively high accuracy. However, the lack of explicit functional relation-
ships between the influencing factors limits the understanding of these
interactions and hinders the development of robust control algorithms.
Nevertheless, large amounts of experimental or real-world operational
data are needed to make the models representative and applicable to
the wide range of potential operating conditions. This requires exten-
sive data collection campaigns and subsequent data processing. Even
with such efforts, it remains challenging to ensure that the models are
truly representative, as they may not account for a full range of weather
conditions.

Third, the physical-based methods [62, 63, 64, 65] calculate the in-
stantaneous energy consumption using physical models and real-world
parameters of the processes and components involved in the system.
While this approach requires considerable effort in model development,
it offers a comprehensible assessment by explicitly and thoroughly es-
tablishing cause-effect relationships between operating conditions and
energy consumption. This allows for accurate predictions even in sce-
narios lacking prior data, thereby enhancing accuracy. Additionally,
these models can provide valuable data to feed into data-driven meth-
ods to aid in their modeling. However, some issues are still challenging
due to their stochastic nature (e.g., traffic, occupancy, temperature) or
technical complexity (e.g., lack of data, shading, interaction of multi-
ple physical systems). This often requires simplifications, which can
sometimes be excessive.

In this thesis, a physical-based approach is used to develop a set of
advanced models and integrate them into a comprehensive global model
that enables the simulation of the energy consumed by HVAC systems
in real operating conditions for an electric bus and its impact on the
overall energy consumption requires the following submodels:

• A 3D model of the urban area, including buildings, trees, and
streets, to establish shading, skyline, ground height, and slope at
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every point along the route.

• A kinematic model, incorporating the speed profile of the ac-
tual urban route, consistent with the bus schedule and stochastic
traffic conditions, to determine variables such as bus orientation,
elapsed time, distance traveled, velocity, and acceleration at each
discretized point along the route during the simulation period.

• A climate model, including the skyline and multicomponent ra-
diation on all vehicle surfaces, to obtain temperature conditions,
humidity, infrared sky irradiance, solar irradiance, and the skyline
profile, enabling the assessment of long-wave and solar radiation
at each bus surface at any position and time step of the driving
route.

• A transient thermal model of the vehicle cabin, with multiple
bus and external nodes, including heat gains, thermal loads, and
moisture transfers at each time step.

• An HVAC model to evaluate the operating mode and points of
each component, their energy consumption and efficiency, and
the outlet conditions of air and condensate flowrate at each point
along the route.

• A battery model of the bus to obtain overall energy consump-
tion throughout the route, including motor, regenerative brak-
ing, HVAC, battery thermal management system, pneumatic, hy-
draulic, and auxiliary electrical systems, as well as the impact of
battery efficiency.

As can be inferred from the previous list, calculating the HVAC
consumption requires a comprehensible modeling which reproduces the
main physical processes in a complex urban environment.
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1.2.3 Detailed review of the modeling techniques employed in
the present thesis

A comprehensive review has been performed within physical models.
A special focus has been held on models which evaluate the energy con-
sumption by HVAC systems in real operating conditions for an electric
urban bus.

GIS model

Spatial models are crucial for the development of large-scale, high-
resolution energy models in real-world contexts, particularly in exten-
sive and heterogeneous environments such as urban areas [66]. These
models provide not only real-world data but also enhance the scalabil-
ity of energy models. This scalability is enabled by the availability of
high-quality open data. When effectively abstracted (e.g., through dis-
cretization into points and systematic tabulation). The latter provides
the essential inputs for the application of large-scale energy modeling
[67].

In urban contexts, this approach involves shadow modeling, view
factors, and street slopes, through geometric analysis. Traditional
design-oriented software provides precise spatial definitions. However,
this is computationally intensive and constrained to smaller scales due
to the limited availability of extensive 3D-CAD data. For larger areas,
Geographic Information Systems (GIS) models are commonly employed
due to their flexibility, scalability, and the availability of standardized
open data [68]. The GIS-based energy model enables the integration,
analysis, interpretation, and visualization of detailed spatio-temporal
multi-variable data at urban scale [69].

Most urban mobility studies use GIS due to the integration of city
spatial transport network models with traffic, environmental, socioeco-
nomic, and demographic data [70, 71]. This integration helps with the
design, planning and management of transport networks and supports
decision-making processes and policy development and evaluation [72,
73].
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In energy studies related to mobility, researchers often use the spa-
tial transport network model [74, 62, 75]. Some authors have employed
spatial models to establish their kinematic models [76] and to deter-
mine the street slope [64, 62, 75, 77], which is a crucial input for the
powertrain model. However, there is a notable lack of urban mobility
studies which employ spatial models of the city (such as buildings or
trees) to reproduce and analyze specific thermal conditions within this
complex environment.

A 3D vector-based GIS model is proposed to accurately represent the
urban environment, including buildings, trees, and streets separately.
The buildings are created using a 3D vector model based on cadastral
and LiDAR altimetry data [78]. The streets are characterized by a 2-
meter resolution raster-based altimetric model or DTM, created from
LiDAR ground points using spatial interpolation through the Delaunay
triangulation method [79, 80]. Additionally, trees are depicted using a
3D vector model, providing the height and segmented canopy for each
tree [81]. This city model allows to obtain the skyline or visible horizon
of an specific point by means of a geometric analysis, determining the
height, slope and orientation of any surface, such as streets. This is
essential to predict whether a point is shaded or not at a given time.

Kinematic model

To accurately estimate the bus energy consumption in real-world
conditions, a kinematic model representing the speed profile or driving
cycle is essential [53]. While many authors use standard driving cycles
[82, 83], models using synthetic driving cycles derived from real-world
operations show significantly better results [58, 84, 85]. Recently, sev-
eral methods and approaches have been developed to create synthetic
driving cycles. Among these, the models based on stochastic techniques
are the most suitable due to the non-deterministic nature of real-world
traffic [58, 85]. Within the stochastic techniques, a distinction can be
made between those relying on high-frequency data obtained from real-
time data, which is not readily available and involves high collection
costs [77, 86, 62, 87], and those using low-resolution data [75, 64, 76].
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Based on this review, a driving route and a kinematic model have
been developed for a year-long simulation based on the commercial
schedule of the bus network. The model generates a synthetic driv-
ing cycle that represents the stochastic behavior of kinematic variables
such as time, distance, velocity, and acceleration in real-world traffic
conditions at each point along the route. The algorithm incorporates
the generation of weighted stochastic stop points, known as traffic stops,
using low-resolution open data (GTFS) and a mixed-integer nonlinear
programming (MINLP) formulation is employed.

Climate model

To accurately estimate the urban bus energy consumption and to
support in strategic and operational planning, it is crucial to work with
a year representative series of real climate conditions. However, most
studies only apply the models under specific fixed conditions [82, 64,
83] or in short periods [76, 77, 62, 86, 75]. Other researchers use annual
periods [74] or representative year data [87] to describe the climate
conditions. However, they do not account for the specific radiative and
shading conditions of the urban environment, nor do they provide a
detailed differentiation for each surface of the bus.

A year-long time series of hourly climate conditions has been devel-
oped for each point along the route and each side of the vehicle. Out-
door psychometric variables derived from Typical Meteorological Year
(TMY) data are included. The model includes indoor temperature reg-
ulation, sky temperature calculation, and detailed skyline profiles to
account for the urban impact on the radiation heat gain. The model
computes direct, diffuse, and reflected irradiance on all bus surfaces,
considering factors such as solar geometry, city surface reflectance, bus
orientation, shadowing and view factors. This comprehensive approach
enables an accurate modeling of heat transfer and energy consumption
in urban bus operating conditions, accounting for real-world climate
factors and providing a robust foundation for heat transfer analysis in
electric urban buses.
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Thermal model

To accurately estimate the thermal demand and the operating condi-
tions of the HVAC, dynamic cabin thermal models are essential. Cabin
thermal models have been extensively studied using several approaches.
Advanced Computational Fluid Dynamics (CFD) techniques are em-
ployed to analyze thermal comfort and spatial temperature distribution
within vehicle cabins [88, 89, 90]. Lumped parameter models offer a
balance between accuracy and computational efficiency [91] and can be
integrated with multiphysics software. However, many studies overlook
the vehicle’s driving profile and its impact on parameters such as ex-
ternal convection and shading [91, 92, 38]. Research often focuses on
specific operational conditions or standard test cycles, neglecting real-
world driving cycles and dynamic urban climates [93, 94, 95]. While
some studies aim to integrate kinematic and thermal load models for
a more comprehensive analysis of the energy demand, they often rely
on steady-state models [64, 62, 75] or on simplified models [86, 96,
97]. Other researchers employ advanced models, similar to those de-
veloped in this thesis, using commercial simulation environments (e.g.,
DYMOLA [82, 83, 87], TRNSYS [98], or MATLAB [99]). However,
none of these models incorporate input variables that account for de-
tailed thermal conditions, such as the bus orientation in specific routes
or critical factors like shadowing.

A transient dynamic thermal model has been created to predict the
sensible thermal load in a bus cabin under variable ambient conditions,
including shadowing and the vehicle orientation. The model uses a
lumped-parameter approach with three nodes: indoor air, bus body
envelope, and interior mass. A set of ordinary differential equations
using the Heat Balance Method (HBM), has been solved at each time-
step using an ode-solver to calculate the temperatures for each node.
The model accounts for the energy and mass flows, including convective,
solar radiative, and long-wave radiative heat gains. The total thermal
load is analyzed by decomposing it into six components: solar load,
external infrared load, air changes, occupancy load, auxiliary load, and
convection, conduction, and internal infrared load. This provides an
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overview of the energy requirements for an HVAC system, but also to
analyze the origin, which are the individual load components.

HVAC model

To accurately simulate the response of a real HVAC system, a de-
tailed heat pump components model has been employed. The model
has to include a control and a coupling with the cabin thermal model.

The HVAC energy consumption is often assumed constant [76, 77,
64, 62]. In some cases, the efficiency is modeled as a function of the
operating conditions [97, 100, 101, 102, 103, 104, 105, 74]. While some
studies quantify the impact of each component of the vapor compres-
sion cycle, they frequently lack a detailed description or model of these
components [105, 106, 107, 108]. Other investigations have developed
component models based on conservation equations, using compressor
efficiency curves derived from catalog data or from experimental data.
However, they often rely on an average overall heat transfer coefficient
to characterize the heat exchangers [109, 110, 111, 46, 112]. Only a
few authors [113, 114, 115, 82, 83, 87] have developed highly accurate
HVAC models that enable a robust numerical evaluation of the ther-
modynamic cycle, incorporating detailed physical models of each com-
ponent. However, some of these models [113, 114, 115] have not been
tested under real operating conditions in urban environments. Con-
versely, other studies [82, 83, 87] are limited by the omission of critical
thermal load factors related to urban vehicle conditions, such as shad-
ing effects on vehicle surfaces, and lack a representative evaluation pe-
riod that includes the kinematic conditions and the vehicle orientation.
Additionally, no studies have addressed important operational modes
such as frost/defrost, PTC elements, or the potential impact of window
openings.

A physical model of a real HVAC system has been developed, com-
ponent by component using the software IMST-ART [116]. The com-
pressor was characterized using its catalog data across its frequency
range. The fans were modeled based on their characteristic curves.
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1.2. BACKGROUND AND RESEARCH CONTEXT

The heat exchangers, expansion device, and connecting lines were de-
fined according to their geometric and thermophysical properties. The
control system was faithfully modeled to include variables such as the
compressor speed, the fan PWM (Pulse Width Modulation), recircu-
lation ratios, the PTC heater power, and defrost activation. These
controls were simulated across six operating modes: cooling, standard
forced ventilation, open windows ventilation, standard heating, heating
under frost/defrost conditions, and heating with PTCs. These models
were integrated into the extended thermal model by adding moisture
transfers, latent thermal loads, and the heat gain introduced by the
HVAC fans. The resulting model is capable of evaluating the operating
mode of the HVAC system, the operational points of each component,
their respective energy consumption and efficiency, as well as the outlet
conditions of the air and condensate flowrates.

Battery model

In order to predict the state of charge of the battery, and conse-
quently the vehicle autonomy, it is important to evaluate the consump-
tion of all other systems, not only the HVAC. This involves incorporat-
ing the powertrain consumption and other auxiliary systems, including
the efficiency of the battery itself. Many researchers simplify the pow-
ertrain model and exclude regenerative braking [77, 75]. Other studies
propose detailed powertrain models [62, 82, 76, 86, 74, 83, 82], but
these models are limited in their estimation due to the lack of slope
data [76, 86, 82] or dynamic route models [62, 74, 82, 83]. Regarding
the consumption of auxiliaries, some authors assume it as constant [76,
77, 64, 75] or omit significant systems [62], while others develop detailed
models of auxiliaries [82, 74, 83, 82], which have served as a foundation
for the models employed in this thesis.

The model incorporates seven subsystems which act on the battery
consumption. Motor consumption and regenerative braking energy are
calculated using a powertrain model that considers the street slope,
bus speed, acceleration, and road characteristics. The HVAC system’s
energy consumption is also accounted for. Hydraulic systems, focus-
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ing on the steering pump and suspension, along with pneumatic sys-
tems, primarily the brakes, are modeled based on the bus speed and
the frequency of the stops. The energy use of auxiliary electrical sys-
tems, including lighting, information, control, navigation, safety, and
emergency systems, is incorporated as well. The battery thermal man-
agement system, which combines heating in cold weather and cooling
on warm days, has a consumption modeled according to the external
temperature. Additionally, the efficiency of the battery’s charge and
discharge processes is also included. The total battery consumption is
determined by summing the energy contributions from all these subsys-
tems.

Summary

Table 1.1 provides a summary of several physical models from liter-
ature which calculate the energy consumption of electric buses in urban
areas. The selected models have thoroughly developed at least one of
the submodels described before, including the HVAC consumption, and
have simulated real-world operating conditions in urban environments.
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CHAPTER 1. INTRODUCTION

As observed in the table 1.1, none of the published models combines
all the necessary features to calculate accurately the energy consump-
tion in real-world urban environments. Most models either simplify the
problem or omit some submodels, including significant simplifications
in the HVAC submodel and the thermal load calculations. Very of-
ten, there is no 3D city model to calculate the shading and visibility
factors for radiative calculations. Only one author [64] has developed
a stochastic kinematic model that incorporates detailed traffic data.
Nevertheless, one of the most comprehensive models is described in
reference [87]. Although this model is detailed in most submodels, in-
cluding HVAC, and applies these models over a representative period,
it does not address detailed kinematic modeling and lacks advanced
HVAC control for factors such as defrost conditions, the consumption
of PTCs, or the possibility of window ventilation.
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1.3. IDENTIFIED GAPS AND RESEARCH QUESTIONS

1.3 Identified gaps and research questions
Based on the previous literature review, two main gaps and limita-

tions have been identified.

Firstly, there is a research gap in the development of coupled vehicle
and HVAC system models which can evaluate their impact on the overall
energy consumption of electric buses, in real-world urban environments.
Current literature lacks integration of the detailed models necessary to
fully capture the factors with an impact in these complex operational
conditions. For instance, previous studies overlook GIS models that
are essential for providing the inputs for detailed radiative and shadow
models. This can lead to substantial inaccuracies in energy consump-
tion estimations. Furthermore, there is limited literature regarding the
integration of dynamic thermal models with physical HVAC models,
including their operational modes and control logic, which is crucial
to determine the overall energy consumption and efficiency in variable
operating conditions.

Secondly, the energy consumption of electric buses has slightly been
studied in real driving cycles over long periods. The implementation of
this methodology into an efficient simulation tool enables disaggregated
results over annual periods, even with low time resolution. This tool
helps obtain the breakdown of the energy consumption of each individ-
ual component, as well as sensitivity analyses and optimization studies
based on a substantial datasets within a simulation environment. This
is crucial for strategic and operational planning in the large-scale de-
ployment of electric bus fleets.

To address these gaps, this thesis attempts to answer to the following
main questions:

• How can a comprehensive and detailed overall energy model of
electric buses be constructed to accurately represent the dynam-
ics of real operating conditions within a urban environments?

– Which factors and models are necessary to calculate the de-
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mand and the vehicle consumption?
– How can the cabin model be coupled with the HVAC model

for an accurate prediction of the consumption?

• As an application of the previous global model, which is the en-
ergy demand and consumption in real operating conditions of
urban electric buses of Mediterranean cities, and what measures
can be implemented to reduce them?

– What is the impact of the different thermal loads, and what
strategies can be employed to reduce them?

– What is the energy consumption of the HVAC system and
its impact on the overall consumption in real conditions in a
city?

– What is the frequency of the different operational modes of
the HVAC system and their corresponding energy consump-
tion and efficiency?

– If the compressor is sized according to the specific climatic
conditions at a given location, is it very different from a
conventional compressor in the automotive industry?
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1.4 Objectives
To address the research questions mentioned before, the primary

objective of this thesis is to develop a set of advanced models and inte-
grate them into a comprehensive global model that enables obtaining
the operation point and energy consumption of HVAC systems in elec-
tric urban buses under real driving conditions.

As an application, the second objective is to analyze the disaggre-
gated energy consumption and operating conditions to obtain an insight
on the current impact of the HVAC and potential improvements.

The following specific objectives were established to achieve these
goals:

1. Development and validation of a 3D city model based on Geo-
graphic Information Systems (GIS), incorporating a robust vec-
tor model of buildings and trees, and a Digital Elevation Model
(DEM) for streets.

2. Development and validation of a kinematic vehicle model that gen-
erates a representative driving cycle using a stochastic approach,
employing low-resolution GTFS route data, street speed limits,
and traffic stops at street intersections.

3. Development of a climatic model that captures outdoor air tem-
perature and humidity, multi-component radiation flows on the
bus surfaces and their visible horizons from a shading model. The
climatic model will use the city’s long-term climatic data (TMY),
solar geometry, and the outcomes from the previous models.

4. Development and validation of a transient thermal load model for
the bus cabin. A set of ordinary differential equations will enable
the calculation of the heat gains, node temperatures, moisture
transfers, internal mass and shell node thermal loads, and interior
latent loads. This is based on optical and thermophysical proper-
ties of the bus, occupancy, air exchanges, auxiliary systems, and
environmental conditions.
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5. Development of a physical model of a mobile reversible heat pump
using IMST-ART, represented by detailed performance map. This
model includes the compressor and fan speeds and recirculation
ratios. The control includes six operating modes, encompassing
cooling, standard forced ventilation, open windows ventilation,
standard heating, heating in frost/defrost conditions, and heating
with Positive Temperature Coefficient (PTC) heaters.

6. Integration of the thermal load and HVAC model to evaluate the
equipment operating mode and the working points of each com-
ponent, their energy consumption and efficiency, as well as the
output conditions of the airflow and condensate.

7. Development of a bus battery model to determine the total vehicle
energy consumption, including the engine, regenerative braking,
air conditioning, battery thermal management system, auxiliary
pneumatic, hydraulic, and electrical systems.

8. Integration of the previously developed models into a global model
which obtains the operating conditions, modes, and performance
points of the different system components.

9. Development of an efficient simulation tool, capable of obtaining
accurate disaggregated results over annual periods with a low time
resolution.

10. Simulation and evaluation of the energy demand and consumption
under real operating conditions of urban electric buses in a rep-
resentative Mediterranean city, considering both typical annual
conditions and extreme days of winter and summer.

11. Perform a sensitivity analysis to evaluate the impact of different
parameters and conditions on the thermal load, and propose ef-
fective strategies to reduce the thermal demand.

12. HVAC design application by optimizing compressor sizing for both
representative and extreme conditions.
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Specific objectives 1 to 8 align with the first main objective, whereas
objectives 9 to 12 correspond to the second main objective.

The thesis contributes to several Sustainable Development Goals
(SDGs). It enhances the understanding and assessment of the energy
impact of HVAC systems in electric buses, promoting innovation in sus-
tainable transportation (SDG 9). It also supports the development of
more efficient urban public transport (SDG 11) and aids climate change
mitigation by identifying potential improvements in energy consump-
tion and emissions (SDG 13).
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1.5 Scope and boundaries of the thesis
Given the complexity of the overall simulation tool, some hypothesis

have been assumed, and the models has also been conceived for some
specific situations. In summary:

• The research primarily focuses on the characteristics and needs of
urban buses in a Mediterranean climate. However, the proposed
models have been developed using available open data from most
cities worldwide and the model can be applied to many other
cities.

• The study has been applied to battery-powered electric buses,
although fuel cell electric buses could be used with all models
except the powertrain.

• The vehicle and HVAC system characteristics and control, are
based on real data provided by the bus company EMT in Valen-
cia and from the HVAC manufacturer. The results represent a
standard 12-meter electric bus.

• Operating conditions (such as occupancy and schedules) are based
on real data, while kinematic and climatic data are derived from
statistically representative open data.

• A single air node within the cabin has been used, and the driver’s
air conditioning unit has not been included in the model due to
the small temperature difference between the two thermal zones
as in previous studies from literature [99, 113].

• The modeling of external wind speed and direction has not been
considered. However, the external convection coefficient and in-
filtrations have been calculated based on the bus speed.

• A representative climate file of Valencia has been employed. How-
ever, the spatial variations of the urban heat island effects and
specific humidity within the urban environment were not consid-
ered.
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• Although the cabin humidity has been modeled, neither dehu-
midification nor defrosting modes have been considered, and no
control mechanisms based on these parameters have been estab-
lished.

• A hybrid system has been used to model the HVAC. The latter in-
cludes a standard reversible vapor compression heat pump system,
which is the most common technology in the EU. Supplementary
PTC heaters have been used used to support the heating under
very low ambient temperatures.

• Regarding the methodology, a through monitoring campaign was
proposed to the urban bus fleet of Valencia. Unfortunately, due
to funding issues this was not possible and the global model vali-
dation was performed against published data. As future work, it
would be very convenient to validate the integrated global model
within the urban context, and to compare the energy consump-
tion against real dynamic experimental tests. Nevertheless, all
the main sub-models have been validated independently. On the
one hand, the GIS and shadow model have been validated us-
ing real CAD elevation views of the buildings and the SketchUp
shadow tool, while the consistency of the kinematic model has
been validated using real GTFS data of bus schedule routes. On
the other hand, the cabin thermal model was validated with ex-
perimental tests, while the HVAC model was validated with the
manufacturer’s data and using the IMST-ART tool, which has
already been extensively validated in the literature with experi-
mental data from heating and cooling systems.
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1.6 Structure
The research has been organized as presented in Figure 1.1. The

background colors refers to chapters, shaded areas indicate overlapping
chapters, and the colors of the outline borders represent the objectives.

Figure 1.1: Structure of the thesis.

Chapter 1 provides an introduction to the motivation, the back-
ground and research context, the identified gaps and research questions,
the objectives, and the scope of the thesis.

Chapters 2 to 4 align with the three peer-reviewed articles published
as part of this thesis. A detailed description and contextualization of
the articles is provided below:

• Chapter 2: Development and validation in a 2D-GIS environment
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of a 3D shadow cast vector-based model on arbitrarily orientated
and tilted surfaces. The main objective of this article is the devel-
opment of a systematic GIS-based methodology. The latter has
helped generate a 3D vector-based city model of existing build-
ings and their shadow-cast profiles on arbitrarily oriented and
tilted planar surfaces, using a 2D-GIS approach. The method-
ology involves building the 3D city model with robust statistical
estimators and applying an analytical shadow model to calculate
shadow profiles on any arbitrarily oriented and tilted 3D surface
at any time of the year. The models have been thoroughly vali-
dated, demonstrating a building height error of less than 1% for
the city model and less than 2% in the overall methodology, in-
cluding both 3D and shadow model. The primary contribution of
this chapter is the development of an efficient and accurate GIS
model for the urban buildings and a highly accurate analytical
shadow-cast model. These models will serve as a foundation to
create tailored models in the context of urban mobility.

• Chapter 3: Dynamic cabin model of an urban bus in real driving
condition. This research presents the development and integration
of a comprehensive dynamic thermal model of a bus within real
urban driving route. The tool incorporates a 3D urban model,
including buildings, trees and streets. Regarding the bus posi-
tion, a weighted stochastic kinematic model has been employed,
including the bus route consistent with the bus schedule, the ac-
tual speed limits of the route and the traffic. A climate model has
been developed, considering all bus surfaces and environmental
factors. The latter includes a detailed long-wave and short-wave
radiative model, and a transient thermal model of the cabin, con-
sidering the different heat gains and thermal loads. The model
was validated against dynamic experimental tests and two impor-
tant hypotheses have been studied in detail: the time-step and the
stochasticity of the occupancy. Additionally, a sensitivity analysis
was conducted to measure and understand the influence of differ-
ent parameters and conditions on the thermal load. The main

31



CHAPTER 1. INTRODUCTION

contribution of this chapter is the development of comprehensible
models to analyze the thermal conditions of an urban bus un-
der real-world operating conditions. To this end, the GIS model
was enhanced by incorporating trees and streets. A more efficient
shading model was developed for urban mobility context, along
with a kinematic model that simulates the bus movement along
its driving route. Additionally, a climate model was established
to characterize the specific thermal conditions encountered by the
bus, and a thermal load model was proposed to quantify the en-
ergy required to maintain cabin comfort. These models were inte-
grated and used to simulate a representative year, yielding results
that facilitate the validation, justification, and understanding of
the thermal performance of these vehicles in practical operating
conditions.

• Chapter 4: HVAC system operation, consumption and compres-
sor size optimization in urban buses of Mediterranean cities. This
chapter is an example of the potential application of the global
model in multiple urban routes. As Chapter 3 focuses more on
the load analysis, Chapter 4 is complementary since it focuses on
the final target, which is the HVAC system energy consumption.
The latter has been analyzed in a representative year and also
in extreme weather conditions. The study introduces an HVAC
system based on component-based physical model, incorporating
a control model with six operating modes. This HVAC model is
integrated with an extended thermal model that captures the con-
tributions of the HVAC system to both energy and moisture mass
balances within the cabin’s air node. Additionally, a comprehen-
sive battery model evaluates the impact of the HVAC on the over-
all energy consumption, taking into account factors such as the
motor powertrain, regenerative braking, HVAC, battery thermal
management, pneumatic and hydraulic systems, auxiliary electri-
cal systems, and battery efficiency. The study also includes a
dual-approach optimization for the compressor sizing, addressing
both representative and extreme weather conditions. This chap-

32



1.6. STRUCTURE

ter contributes to the thesis by consolidating and integrating all
the developed models.

Chapter 5 contains a discussion of the results presented in the pre-
vious chapters, placing them within the broader context of the thesis.

Finally, Chapter 6 summarizes the main conclusions and contribu-
tions of this research, identifying potential future research directions
and challenges.
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CHAPTER 2. DEVELOPMENT AND VALIDATION IN A 2D-GIS ENVIRONMENT
OF A 3D SHADOW CAST VECTOR-BASED MODEL ON ARBITRARILY
ORIENTATED AND TILTED SURFACES

Abstract:

This paper presents a systematic GIS-based methodology to obtain
the shadow cast profile of a group of buildings on arbitrarily orientated
and tilted surfaces. The model is integrated in the widely-employed 2D-
GIS environment. Given its scalability, the methodology can be easily
applied from a local level up to a district, city or even regional level.
This work is of interest for a wide range of applications such as for
instance in Solar Resource Assessments (SRA) in urban environments.
The starting point is to use cadastral cartography and LiDAR altimetric
data to obtain a 3D vector-based model of the buildings using high
robust mode estimators. Once the geometry of the buildings is defined,
analytical models are applied to calculate the shadow-cast profile on any
arbitrarily orientated and tilted surface of the surroundings. The model
has been implemented in the R programming language. An extensive
validation has been carried out for several buildings of Valencia (Spain)
using CAD elevation views of the buildings and the SketchUp’s shadow
tool. The error of the vector-based city model is lower than 1% in
all LiDAR datasets. The maximum error of the overall methodology,
including both height and shadow models, is lower than 2%.

Keywords: Urban shadow model; Urban solar irradiation; 3D city
model; Daylight simulation; Model validation, GIS.
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Nomenclature
LiDAR: Light Detection and Ranging.

CAD: Computer-Aided Design.

SoI: Surface of Interest.

LoD: Level of Detail.

GIS: Geographic Information Systems.

DEM: Digital Elevation Model.

EDFM: Empirical Probability Density Function mode.

HRM: Half-Range mode.

HSM: Half-Sample mode.

SM: Shorth mode.

LMSM: Least Median of Squares mode.

RPM: Robust Parametric mode.

MAE: Maximum Relative Error.

RMSE: Root-Mean-Square Error.

Z: Height.

α: Plane azimuth or aspect.

G: Centroid of a polygon.

K: Kernel function.

h: Bandwidth.

µ: Mean.

B0: Building footprint.

Bn: SoI on its plane.

S0: Shadow footprint.

Sn: Shadow profile on its plane.

p0: Vertex of S0.

pn: Vertex of Sn.
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πh: Horizontal plane.

πr: Non-vertical rotated plane.

n̂: Direction vector of the πn.

û: Axis of rotation.

XY : Ground coordinate.

β: Plane elevation or slope.

SF : Shadow factor.

f : Probability density function.

λ: Power parameter of transformation.

ω: Standard deviation.

Bh: SoI projection on πh.

Br: SoI projection on πr.

Sh: Shadow profile projection on πh.

Sr: Shadow profile projection on πr.

ph: Vertex of Sh.

pr: Vertex of Sr.

πn: Plane of the SoI.

ĥ: Direction vector of the πh.

ŝ: Direction vector of the sun.

θ: Angle of rotation.
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2.1. INTRODUCTION

2.1 Introduction
Urban areas currently concentrate around half of the world’s popu-

lation but consume over two-thirds of the world’s energy and account
for around the same share of CO2 emissions [1]. This situation can
be seen as an opportunity since cities could potentially cut their car-
bon emissions by 90 percent by 2050 [2] using current technologies and
policies. This change in the paradigm of the cities has motivated the
development and enrichment of 3D city models extending their func-
tionality and usability in a perspective of sustainability [3]. Many of
these applications are energy-related [4, 5, 6] and these 3D city models
are the starting point in building or urban scales for assessing the ur-
ban solar resource [7]. In these applications, a correct shadow model is
essential to make a suitable solar assessment, especially in urban con-
texts, where complex geometries cast very large and variable shadows
resulting in a dramatic decrease of the incident solar radiation [8, 9].
Accurate shadow models are essential in many research areas such as in
urban daylight analysis, in urban building energy modeling or even for
the analysis of solar thermal and photovoltaic potential on urban scale.
Such areas require calculating accurately the specific shadow cast profile
by nearby obstructions throughout each day and season.

A shadow cast model must address multiple requirements, as the
accuracy of the results, the adaptability to the different building shapes
and orientations and finally, the scalability. Although there are many
algorithms to obtain shadow profiles in urban environments, there is still
no methodology which fulfills simultaneously the three above-mentioned
requirements. Therefore, the primary goal of the present study was to
perform and validate a simple solution for shadow profile cast calcula-
tion achieving:

• A good accuracy by applying analytical vector-based models.

• An adaptable model based on robust statistical estimators and
able to calculate cast shadows on arbitrary sloped and orientated
surfaces.
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• A scalable methodology starting from open and available data in
most countries and integrating the model into widely used 2D-GIS
environments.

Nowadays, the most common way to perform shading calculations is
usually with design-oriented software. Design-oriented models of build-
ings can predict their shadows with great precision. This software in-
cludes specialized applications such as Radiance [10] TOWNSCOPE II
[11] or SOLENE [12] and general 3D-CAD or BIM applications such
as SketchUp [13], Rhinoceros [14] or Autodesk Revit [15]. Although
design-oriented software has a high accuracy and provides advanced vi-
sualization capabilities, the high computational cost in the specialized
software and the lack of availability of 3D-CAD data at large scale or
a city level, the use of these tools is usually limited to a local or ar-
chitectural scale [7, 16]. In order to model and analyze entire cities,
non-analytical approaches have also been proposed, such as Machine
Learning [17, 18], which is a computationally efficient alternative to an-
alytical methods. However, those approaches cannot completely replace
analytical models, especially in environments with complex geometries
such as the urban landscape. Among the analytical methods and for ar-
eas up to some square kilometers, shadow calculations and other spatial
analysis are usually performed using Geographic Information Systems
(GIS) models, which have proved to be the most powerful method to
estimate the solar potential [8]. In these environments, shadow calcu-
lations have been commonly performed with a raster-based approach
based on a digital elevation model (DEM) employing common open-
source tools such as r.sun model [19] in GRASS GIS, the doshade com-
mand in the insol R package [20] or using proprietary software as the
Solar Analyst extension [21] in ArcGIS. These tools have specific rou-
tines for the calculation of shadows using ray-tracing algorithms based
on a DEM whereby a whereby the sunlight obstruction is evaluated for
every grid cell for a given timestamp or solar position. This approach
has the advantage of simplicity and high-speed processing, although this
is at the expense of accuracy and large file size, both of which depend
on the grid resolution [22]. Additionally, raster-based models are appro-
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priate for modeling data changes continuously across a region, as the
natural terrain, where the grid resolution is not critical. Furthermore,
raster models cannot be employed in areas of differing relief complexity
nor for the modeling of vertical surfaces since they would present dis-
continuities. Different strategies have been developed recently to assess
the solar potential on vertical surfaces which significantly contribute
to the overall solar potential of modern cities [23] due their high ar-
eas. These include models based on hyperpoints [24, 25], 2D triangular
mesh [26, 27] and 3D-voxel [28, 29]. The latter are all grid-based mod-
els that discretize the space in basic computational elements such as
hyperpoints, triangles or voxels, and apply the ray-tracing algorithm to
the planar-mid-point of the element. However, the previous approaches
are usually not available or not implemented in common GIS software.
Furthermore, only some of these publications [25, 27] have validated the
radiation results and none of them have been experimentally validated
the shadow results separately from the solar radiation. The other type
of data in common GIS environments is vector data. Vector data in GIS
is formed by one or more interconnected vertices or points which gener-
ate spatial entities representing real-world features, such as buildings.
The accuracy of this approach depends on scale and the desired level of
detail [30]. Vector-based models are more appropriate to automatically
model [31, 32] and analyze fine-scale urban spaces, characterized by a
highly variable and discontinuous relief, and common available data,
such as LiDAR and building footprints datasets. The degree of com-
plexity of a 3D model in GIS environments is categorized according to
the level of detail (LoD) concept of the standard CityGML [33]. Al-
though there are many models and strategies to obtain a vector-based
3D city models from LiDAR data, usually these methods are sensitive
to the local point density as well as to the noise, outliers and missing
data [34]. The higher the LoD the higher the density of required points.
Furthermore, the use of high LoDs for analytic purposes increases sub-
stantially the computational cost or limits the scale of the model to be
processed. In contrast, calculation errors due to the use of a low gran-
ularity (LoD) could be high [35]. Therefore, the LoD must be carefully
selected according to the shape of the buildings, the accuracy and the
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extension of the study. Furthermore, the LoD should be coherent with
the quality and availability of the LiDAR datasets. Wang et al. [34]
stated that the prismatic modeling (LoD1) is suitable for multilevel flat
buildings which prevail in cities. In parallel, the open and available
sources in most countries are usually low-density airborne LiDAR data
(<1 pts/m2) which are coherent with the different variants of LoD1 pro-
posed by Biljecki et al. [36]. Then, the prismatic modeling, which is
the simplest LoD, thoroughly models the real-world features in an ur-
ban context and can be applied to large areas using low computation
resources. Assuming a given fine footprint of the buildings (i.e. cadas-
tral map), the critical parameter to model accurately in LoD1 is the
building height which, as the geometric reference of the model, could
have higher influence on the results than the granularity (LoD) of the
model according to Biljecki et al. [35]. This is a key point particularly
in shadow analysis, where an error in the geometric model may involve
much larger errors in the shadow cast [37]. As a consequence and giving
the considerable level of contamination of LiDAR datasets, statistical
estimators with high robustness to outliers are essential to obtain cor-
rect height values of each building and therefore, to enable accurate
shadow calculations. Vector-based shadow algorithms are based on the
search for the intersections between the sun rays and the surface of
interest [38, 39]. Recent publications contribute to their advance in
GIS environments [29, 40, 41, 42, 43]. Among the previous literature,
the shadow model used by Vulkan et al. [42] and implemented in the
shadow R package [44], allows the calculation of shadow profiles on
horizontal planes based on a 2.5D vector-based model through trigono-
metric relations. The present work tries to move a step beyond the
previous shadow model of Vulkan et al. [42] by adding the possibility
to calculate shadows on tilted surfaces, and by including a quantitative
validation of the model. This paper proposes and validates a simple
solution for shadow modeling in cities from open and available data
in most countries and using widely used 2D-GIS environments. Given
the previous literature review, the present model includes the following
novelties:
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• Analytical vector-based shadow model to obtain a non-discretized
shadow profile cast in arbitrary sloped and orientated surfaces
integrated in the widely used 2D-GIS environment.

• Quantitative experimental validation of the shadow model for five-
hour interval of two representative days in three surfaces of dif-
ferent slopes.

• Analysis and discussion on the best robust mode estimators to
calculate the height of the buildings using LiDAR data.
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2.2 Model Description
The developed methodology is able to obtain a 3D vector-based city

model of the existing buildings and their cast shadow profiles over any
arbitrarily orientated and tilted planar surface in a 2D-GIS environment
(scheme in Figure 2.1). The methodology consists in building a 3D city
model (steps 1 to 3) in a 2D-GIS environment, using high robust statistic
estimators. After this, an analytical shadow model is applied (steps 5
to 9) to calculate the shadow profile on any arbitrarily orientated and
tilted 3D surface for any time of the year. The modeling approach

Figure 2.1: Workflow of the proposed methodology.

starts with the use of the cadastral map (1) and the contained LiDAR
data (2) to build the 3D city model (3) by the vertical extruding of
the buildings’ footprint with their estimated height value. Once it has
been obtained and given the sun position, the shadow model starts by
calculating the horizontal shadow footprint (5). The latter, combined
with the plane equations of the shaded surface (4), is projected onto
the plane of the surface of interest SoI (6). Finally, depending on the
slope β of the SoI the model processes differently these results in a 2D-
GIS environment. In non-vertical surfaces (8), the shadow profile (9) is
obtained as the intersection of the horizontal projection of the SoI and
the shadow footprint, while in vertical surfaces (7) a previous rotation
of the two polygons in the horizontal plane is required.
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2.2.1 City Model
First, a model of the desired buildings, district or city is developed.

The starting point is the flat footprint of the buildings included in the
cadastral cartography and the associated LiDAR point cloud dataset,
which contains the height value Z of a XY regular grid.

A vector-based 3D model of the buildings is then obtained following
a similar procedure to Ledoux and Meijers [45]. The latter is based on
the vertical extruding of the 2D building footprint, with a height value
Z obtained by a statistic estimator of the LiDAR points contained in
each polygon.

These height values of each building can be assumed as a sample
drawn from a unimodal, continuous distribution. Because of the na-
ture of the data (e.g. presence of obstacles or clouds, planimetric and
altimetric uncertainties or disparity between the footprints) these sam-
ples may contain a very significant presence of outliers or data from
outside the population which is sampled. As a consequence, the height
values of the LiDAR data enclosed within a building footprint are a
potentially highly skewed and kurtotic sample [46]. For this reason,
a proper measure of the central tendency, with low bias and high ef-
ficiency and robustness to outliers, is essential to obtain accurate and
reliable information from these datasets.

In this paper, the seven high robust statistic estimators studied
by Bickel [47] and Bickel and Frühwirth [48] have been considered to
measure the central tendency. Furthermore, the arithmetic mean or
central value, used in many cases in the generation of LiDAR-based
city models [45, 49], has been included in the comparative study. As
indicated in the results, the latter has shown that the mean value is
not a proper estimator of the building height due to its inherent outlier
sensitivity. The robust statistics correspond to the median and the
six mode estimators studied in Bickel and Frühwirth [48] which can be
classified into three groups:

(1) Kernel density estimation: non-parametric method to estimate
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a smoothed empirical probability density function of a random variable.
Considering a Gaussian kernel K, the density function f of a random
variable x based on a finite data sample {xi}n

i=1 is given in Eq. 2.1:

f(x) = 1
nh

n∑︂
i=1

K

(︃
x − xi

h

)︃
= 1

nh
√

2π

n∑︂
i=1

exp
[︄
−1

2

(︃
x − xi

h

)︃2
]︄

(2.1)

where h > 0 is the smoothing parameter called the bandwidth which
balances the trade-off between bias and noise, hence the choice of h
is crucial for the performance of its estimator. Then, the bandwidth
selection is based on the optimal properties of f by using the Sheather
& Jones (1991) procedure [50] implemented in the stats R package
[51]. Once the function f is obtained, the empirical probability density
function mode (EDFM) is defined as the value for which f reaches a
maximum.

(2) Direct estimation: this set of methods does not involve density
estimation. Four different mode estimators have been considered: the
half-range mode (HRM) which is based on finding iteratively the half-
range modal interval, defined as the interval of fixed range that contains
the maximum number of observations. The half-sample mode (HSM)
is also based on the iterative calculation of the modal interval, in this
case using half-samples instead of half-ranges. Finally, the last two
estimators are non-iterative and use only the first shortest half-sample
to estimate the mode. These estimators are the short mode (SM),
defined as the mean of these points, and the least median of squares
mode (LMSM), defined as the midpoint.

(3) Parametric estimation: this estimation is based on the data
transformation into a normal distribution and then an analytical cal-
culation of the mode of this transformed data. Within this group of
procedures, the strategy proposed by Bickel [47] has been considered.
In this case, a power transformation y = xλ with respect to the power
parameter λ is applied and the mean µ and standard deviation σ of
the transformed data y is estimated using the sample median and the
standardized median absolute deviation. The robust parametric mode

62



2.2. MODEL DESCRIPTION

(RPM) can be estimated according to the Eq. 2.2:

RPM = 1
2

⎡⎣µ +

√︄
µ2 + 4σ2(λ − 1)

λ

⎤⎦ (2.2)

The previous statistical estimators have all been compared with CAD
elevation views in order to determine which estimator is the best esti-
mate for the actual building height. As a result, an LoD1 block model
of the city is obtained according to the level of detail (LoD) concept
of the standard CityGML [33], which indicates the complexity and the
degree of abstraction of a 3D city model. This 3D city model, also
known as 2.5D model, is easily integrated in 2D-GIS environments by
saving the height value of each 2D building polygon as an attribute in
the associated database.

2.2.2 Shadow Model
The shadow model consists in an analytical procedure, applied and

integrated in 2D-GIS environments, to obtain the shadow profile on any
arbitrarily orientated and tilted surface for any point in time. Once the
buildings are defined, in order to implement the shadow model, a dis-
tinction is established between the shading objects (which cast shadows)
and the shaded objects or surface of interest (SoI) which receive such
shadows. The shading objects are fully defined by the 3D block city
model. For the shaded objects, the associated database contains the
centroid G height value of each polygon, its inclination (β) and orienta-
tion (α) of the plane πn. The shadow profile is represented in a 2D-GIS
environment given its projection Sh on the horizontal plane πh. The
shadow factor SF is defined as the ratio of the shaded area Sn with re-
spect to the total surface Bn. The shadow factor is consequently equal
to the ratio of their horizontal projections, as indicated in Eq. 2.3:

SF = Sn

Bn
= Sh

Bh
(2.3)

The shadow model starts from the shadow footprint S0 on a horizontal
plane πh by means of the model developed by Vulkan et al. [42]. This

63



CHAPTER 2. DEVELOPMENT AND VALIDATION IN A 2D-GIS ENVIRONMENT
OF A 3D SHADOW CAST VECTOR-BASED MODEL ON ARBITRARILY
ORIENTATED AND TILTED SURFACES

model consists in shifting the contour of the buildings in the opposite
direction to sun azimuth by a distance depending on the building height
and the sun elevation. Once the corresponding polygon S0 is obtained,
the model applies the operation of projection onto a plane along the
direction of a given vector for each vertex p0 of the polygon S0. Specif-
ically, the model calculates its projection Sn onto the plane πn in the
direction of the sun ŝ by applying vector equations to each point p0.
The projected point pn of point p0 onto the plane πn in the specified
direction ŝ is given in Eq. 2.4:

pn = p0 − t · ŝ t = n · v1
n · ŝ

v1 = G − p0 (2.4)

p0 ∈ πh pn, G ∈ πn∥n| = ∥ŝ∥ = 1

Once the projection pn of each vertex p0 is obtained, the polygon Sn is
assembled. In order to integrate the results in a 2D-GIS environment
and to use the corresponding tools, the model distinguishes between ver-
tical and non-vertical shadowed surfaces (Figure 2.2). For non-vertical
surfaces, the representation of the shadow profile in a 2D-GIS environ-
ment is obtained as the intersection between the horizontal projection
of the surface of interest Bh, which is usually equivalent to the given
footprint, and the shadow footprint Sh, obtained by projecting each
vertex pn of the polygon Sn on the horizontal plane πh, i.e., setting the
height of each vertex pn. to zero. For vertical surfaces, it is not possible

Figure 2.2: Shadow model for a) non-vertical and b) vertical surfaces.

to apply the previous approach given that, on a horizontal 2D environ-
ment, the vertical surfaces are represented as lines and not as polygons.
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For this reason, a rotation is applied to the surface of interest Bn and
the shadow footprint Sn on a plane πr, which is not vertical. Thus, the
rotated surface of interest Br and the shadow footprint Sr is obtained
using a same angle θ and rotation axis û for both polygons. Although
any non-vertical plane pr could be considered, the horizontal plane at
G point (pr in Fig. 2.2) is recommended, because in this way the real
magnitude of the shadow profile is obtained. The angle h and the axis
of rotation for this operation is given in Eq.2.5:

pr = G + v2 · cos(θ) + (v2 · û) · û · (1 − cos(θ)) + (û × v2) · sin(θ)
v2 = pn − G (2.5)
∥û∥ = 1

When the angle and axis has been considered, the resulting rotation
of such polygons on a horizontal plane is achieved by applying the Ro-
drigues’ rotation formula [52] to every vertex pn of the polygons Bn and
Sn. Eq. 2.6 defines the calculation, according to the right-hand rule,
of the rotated point pr of point pn by an angle θ, rotation axis û and
using G as a center of rotation:

θ = arccos
(︃

n · h

∥n∥ · ∥h∥

)︃
û = n × h

∥n × h∥
(2.6)

Once the non-vertical rotation pr of each vertex pn is obtained, the poly-
gons Sr and Br are assembled. Finally, the shadow profile in a 2D-GIS
environment is obtained by applying the same procedure than for non-
vertical shadowed surfaces, i.e., which is intersecting their horizontal
projection.
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2.3 Results, Model Validation, and Discussion
The methodology has been applied to several buildings of the Poly-

technic City of Innovation (CPI) of the Universitat Politècnica de Valèn-
cia (39◦28′12′′N, 0◦22′35′′O), which is located in the east of Spain (Fig-
ure 2.3). Such buildings present two significant points of interest for
the validation which are that the detailed CAD drawings are available,
and that the buildings cast shadows on horizontal, vertical, and tilted
surfaces of the surroundings. The methodology has been implemented
in the R programming language [51] and has been validated using CAD
software.

The CPI consists of 30 multilevel flat buildings. The total building
footprint area is of around 12,700 m2, placed in a 190x90m land, with
building height values in the range from 14 m to 29 m with respect to
the ground level, with a footprint area between 50 m2 and 2,150 m2.
Along the west side of the CPI, there is a 6◦ tilted garden over 20 m
width, approximately.

Figure 2.3: Location of the case study in València, Spain.

2.3.1 City Model
In order to validate the city model, the height of each building was

obtained using the statistic estimators of central tendency explained
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in Section 2.1 compared to the mean, as evidence of their robustness
towards outliers, and two open government LiDAR datasets of low-
density (0.5pts/m2), which correspond to the years 2009 and 2015 [53].
The accuracy of each statistic applied to each dataset has been evaluated
by comparing the results obtained with the heights defined in the CAD
elevation views. Two error estimators have been calculated for each
case: the root-mean-square error (RMSE) and the mean absolute error
(MAE), as given in Eq. 2.7:

RMSE =

√︄∑︁n
i=1(xCAD,i − xmodel,i)2

n

MAE =
∑︁n

i=1 |xCAD,i − xmodel,i|
n

(2.7)

Both error metrics are used together to measure the model performance.
The MAE is used to evaluate the average magnitude of the error while
the RMSE, compared with the prior, is employed to diagnose the pres-
ence of large errors. The RMSE and MAE of each estimator and LiDAR
dataset for all the buildings has been obtained in meters. The results
are shown in Table 2.1, where the final row “total” has been calculated
by running estimators over the merged LiDAR datasets. Very similar

Table 2.1: Root-mean-square error and mean absolute error of city models in
two LiDAR datasets.

RMSE [m]
SM LMSM HSM HRM EDFM RPM Median Mean

LiDAR 2009 0.061 0.060 0.064 0.063 0.063 0.065 0.065 1.423
LiDAR 2015 0.061 0.061 0.059 0.063 0.056 0.062 0.062 1.306
Total 0.061 0.061 0.061 0.063 0.060 0.064 0.063 1.366

MAE [m]
SM LMSM HSM HRM EDFM RPM Median Mean

LiDAR 2009 0.061 0.060 0.064 0.063 0.063 0.065 0.065 1.423
LiDAR 2015 0.061 0.061 0.059 0.063 0.056 0.062 0.062 1.306
Total 0.061 0.061 0.061 0.063 0.060 0.064 0.063 1.366

results can be observed for the seven high robust statistics studied by
Bickel and Frühwirth [48]. These measures of central tendency show
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mean errors lower than 0.1 m and no significant differences between the
two datasets are observed. Such results are consistent with the em-
ployed LiDAR datasets, which present a maximum RMSE in the Z
coordinate of 0.20 m [53]. Despite the high level of similarity between
the different statistical estimators, the estimator which provides the
best fitting with the real height, according to the results of the most
recent (2015) and the total set of LiDAR data, is the empirical proba-
bility density function mode (EDFM) based on a normal kernel function
and using the bandwidth according to the Sheather and Jones [50] pro-
cedure. In contrast, the mean value is not a proper estimator of the
building height, since it presents a high error due to its high sensitivity
to outliers. Figure 2.4 shows a comparison between the actual building

Figure 2.4: City model fit using the empirical probability density function
mode (EDFM) for two LiDAR datasets: a) 2009 and b) 2015.

height, extracted from the CAD drawings, and the height obtained by
the proposed model, using the EDFM with both LiDAR datasets. The
maximum relative error is smaller than 1% in all cases.

2.3.2 Shadow Model
In order to apply and validate the shadow model, the best building

height estimator and LiDAR dataset have been taken, which corre-
sponds to the EDFM of 2015 data. For such model, the shadow profile
has been calculated in three surfaces (Figure 2.5) with different β incli-
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nation (A-horizontal, B-vertical, and C-tilted) for five hours (from 10
to 14 local time) at both solstices to test both short and long shadows
for the location. In order to have a reference, the set of buildings has

Figure 2.5: Studied surfaces A, B, and C of the Polytechnic City of Innovation
(CPI).

been modeled in SketchUp using their detailed architectural 2D-CAD
views. The shadow profile has been obtained for each surface and hour
(Figure 2.6) by using the SketchUp’s shadow tool developed by Yezioro
and Shaviv [54].

Figure 2.6: Shadow profiles on different surfaces and hours on June 21st for
a) vertical surface, b) details of horizontal surface, c) horizontal surface, and
d) tilted surface.
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Following the procedure explained in the Section 2.2, the shadow
factor and the relative error series have been obtained for the five-hour
interval of each representative day in the studied surfaces.

Figure 2.7: Hourly shadow factor (1) and relative error (2) for a) June 21st
and b) December 22nd.

Figure 2.7 plots the shadow factor SF series and their relative error
(RE) against the CAD (SketchUp) results as given in Eq. 2.8.

RE = |SFCAD − SFmodel|
SFCAD

(2.8)

On the one hand, the time series of the shadow factor SF show that the
shadow is significantly greater in the early hours of the morning than in
the early afternoon on the inclined and vertical surfaces, while for the
horizontal surface, the inter-daily fluctuations are not so variable. These

70



2.3. RESULTS, MODEL VALIDATION, AND DISCUSSION

results are explained taking into account that the two non-horizontal
surfaces are oriented to the southeast (α = 288.6◦, counterclockwise
convention measuring from the south), so the shadows are null in this
orientation at 14:26 local time for June 21st and 14:14 local time for
December 22nd. There are taller buildings in the southeast and south-
west direction, which explains the small variation of the shadow factor
on the horizontal surface. Regarding the annual variation of the shadow
factor, the results show that the shadow is much greater in the winter
solstice than in the summer solstice, mainly because the solar elevation
in winter is much lower in the site latitude.

On the other hand, the series of the relative error show higher ac-
curacy on the sloped surface than on the horizontal, while for the ver-
tical surface, this precision is variable over time, showing maximums at
certain time points. The two primary elements influencing the model
accuracy are:

1. The city model error propagation, since the errors in the geomet-
ric model could lead to greater errors in the shadow cast. The
height of the buildings that cast shadows on the sloped surface
has an average error of 3 cm, similar to the values of the other
surfaces, which are 5 cm for the horizontal and 6 cm for the verti-
cal surface. However, the shadow on the vertical surface presents
the maximum relative error on June 21st at 12:00 local time when
the shadow cast is only due to a building whose height error is 10
cm.

2. The shadow and surface size, since the shadow factor SF is a rel-
ative measure of the shaded area with respect to the total surface
area. For this reason, the accuracy is logically greater in larger
areas.

Therefore, the greater precision of the model in the sloped surface
is due to the combination of a greater precision in the city model and
to a large area and shadow size (Fig. 2.6). However, despite these

71



CHAPTER 2. DEVELOPMENT AND VALIDATION IN A 2D-GIS ENVIRONMENT
OF A 3D SHADOW CAST VECTOR-BASED MODEL ON ARBITRARILY
ORIENTATED AND TILTED SURFACES

differences between the results obtained, the most notable aspect of the
series of the relative error is the very low error which is obtained.

For the validation of the overall methodology, including both height
and shadow models, the shadow profiles were also obtained in the
SketchUp’s shadow tool and the shadow factor SF was calculated in
each case. Table 2.2 presents the RMSE and the MAE of the over-
all methodology by the shadow factor obtained against the SketchUp
results of each surface and day.

Table 2.2: Root-mean-square error (RMSE) and mean absolute error (MAE)
of the overall methodology measured by the shadow factor obtained against
the SketchUp’s shadow tool for different days and surfaces.

Surface June 21st December 22nd Total

Sloped 0.09 (0.08) 0.04 (0.03) 0.07 (0.05)
Vertical 0.26 (0.18) 0.15 (0.13) 0.21 (0.16)
Horizontal 0.16 (0.13) 0.29 (0.27) 0.23 (0.20)
Total 0.18 (0.13) 0.19 (0.14) 0.19 (0.14)

The results show that the average accuracy of the shadow factor on
the sloped surface is significantly higher than in the other two surfaces
according to the relative errors shown in Figure 2.7. In contrast, the
results show no significant differences between the total values of the
two selected days. However, there are significant and complementary
differences between the vertical and horizontal surface at both solstices,
because the surfaces are perpendicularly oriented.

Finally, Figure 2.8 summarizes the validation of the overall method-
ology for the three surfaces on the two representative days. The hourly
results of the model have been compared with respect to the reference
SketchUp’s shadow tool results.

The results show that the average accuracy of the shadow factor on
the sloped surface is significantly higher than in the other two surfaces
according to the relative errors shown in Figure 2.7. In contrast, the
results show no significant differences between the total values of the
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two selected days. However, there are significant differences between the
values of the two days both for the vertical and horizontal surface. This
aspect can be explained by the size differences of the shaded surface
between the two days.

Finally, Figure 2.8 summarizes the validation of the global model for
the three surfaces on the two representative days. The hourly results of
the model have been compared with respect to the SketchUp results.

Figure 2.8: Global model fitting for all surfaces through the shadow factor
evaluation.
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2.4 Conclusions
An accurate estimation of shadow profiles is essential for sev-

eral downstream applications on urban scale. In these applications,
a shadow cast model must be accurate, adaptable to the geometric
complexity of the buildings and scalable.

The present article presents an accurate and systematic GIS-based
methodology which has been developed to obtain the shadow cast by
a group of buildings on arbitrarily orientated and tilted surfaces. The
methodology is integrated into the scalable and widely used 2D-GIS
environment and can be useful for the solar resource assessment in fine-
scale urban environments of most countries using open access data.

The starting point of the model is to employ cadastral cartography
and LiDAR altimetric data to obtain a 3D vector-based model of the
existing buildings, by means of robust statistical estimators. Analytical
models are finally applied for the calculation of the shadow cast on any
surrounding surface.

The above-mentioned methodology has been validated on 30 build-
ings of the Universitat Politècnica de València (UPV, Spain). The vali-
dation has been performed using the CAD elevation views of the build-
ings and 3D-CAD software. Different LiDAR point cloud datasets have
been employed and evaluated for the 3D model validation, while the
shadow model has been validated for both different surface orientations
and points in time. The following conclusions have been drawn:

• The error obtained in the validation of the vector-based 3D model
of the buildings is lower than 1% with all robust mode estimators.

• The mean value is not a proper estimator of the building height
because of its inherent high sensitivity to outliers. The authors
recommend to use robust estimators such as the EDFM.

• The maximum relative error of the overall methodology, including
both 3D and shadow model, is lower than 2% for the shadow factor
calculations.
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• The accuracy of the model is not dependent on the day of the year
or hour of the day but the shadow factor calculation is particularly
sensitive to propagation of the height model errors of the involved
buildings and, to a lesser degree, to the size of the shadow and
the surface.

As future work, the presented methodology will be used to calculate
the direct solar irradiation in buildings, including facades and tilted
roofs. For a full solar resource assessment, the diffuse component will
be considered by using the sky view factor (SVF) of the surfaces of
interest. The methodology will be further improved by including a 3D
city model that estimates the inclination and orientation of building
roofs and a shadow model that uses them as shading objects.
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Abstract:

The transport sector is a key sector to reduce the emission reduc-
tion targets. The main auxiliary load, the HVAC system, contributes
significantly to the energy consumption and affects the driving range in
electric vehicles. Accurate and dynamic models are needed to optimize
these systems in urban environments. This research presents a dynamic
thermal model of a cabin, including a detailed 3D urban model, a consis-
tent weighted stochastic kinematic model, a climate model accounting
for all bus surfaces and environment, and a transient thermal model of
the cabin. A validation was performed against dynamic experimental
tests. The most demanding mode is for cooling, with a mean cooling
demand of 105 kWh/100km in a warm summer day. The heating de-
mand on a cold winter day is around 22 kWh/100km. The components
analysis reveals that the occupancy contributes to 33-45% of the cooling
demand in summer and the solar components account for 20-42%. Air
changes contribute to 20% of the heating demand in winter, and con-
duction, convection, and internal infrared components represent 40%
of the negative load, except for summer when they account for 10-20%
of the positive load. A sensitivity analysis has also been performed to
quantify the impact of different strategies.

Keywords: Modeling; Thermal load; Electric vehicle; Urban; Bus; Air
conditioning.
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Nomenclature
GIS: Geographic Information Systems.

HVAC: Heating, Ventilation and Air Conditioning.

CFD: Computational Fluid Dynamics.

GTFS: General Transit Feed Specification.

HBM: Heat Balance Method.

SVF: Sky View Factor.

VF: Radiative View Factor.

TMY: Typical Meteorological Year.

MAPD: Mean Absolute Percentage Deviation.

DTM: Digital Terrain Model.

MINLP: Mixed Integer Nonlinear Programming.

T : temperature.

V : volume.

v̇ volumetric flowrate.

H: height.

A: area.

U : heat transfer coefficient.

m: mass.

ρ: density.

cp: specific heat capacity.

tCP U : computational cost.

n: count.

g: gravity acceleration.

ṅ rate.

θ: solar angle of incidence.

α: absorptance.
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τ : transmittance.

ϵ: emittance.

G: global irradiance.

B: direct irradiance.

D: diffuse irradiance.

R: reflected irradiance.

IG: infrared irradiance.

Q̇ sensible load power.

Q: sensible load energy.

İ solar radiative heat gain.

Ė long-wave radiative heat gain.

ω: Stefan-Boltzmann constant.

t: elapsed time.

d: distance traveled.

v: velocity.

a: acceleration.

sd: standard deviation.

e: external, outdoor node (subindex).

i: internal, indoor node (subindex).

m: mass node (subindex).

b: body node (subindex).

sky: sky node (subindex).

o: occupancy node (subindex).

a: auxiliary node (subindex).

s: sun node (subindex).

n: normal (subindex).

d: diffuse (subindex).
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0: horizontal (subindex).

win: windows (subindex).

wal: walls (subindex).

sol: solar (subindex).

inf : infrared external (subindex).

ach: air changes (subindex).

occ: occupancy (subindex).

aux: auxiliary (subindex).

cci: convection, conduction and internal infrared (subindex).

tot: total (subindex).

p: route point (subindex).

ţ: microtrip (subindex).

trip: trip (subindex).

BS: bus stop (subindex).

TS: trip stop (subindex).

lim: limit (subindex).

door: bus door (subindex).

cand: candidate (superindex).

j: bus surface (superindex).

+: positive (superindex).

−: negative (superindex).
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3.1 Introduction
Transport represents the largest energy-consuming end-use sector

in the European Union (EU), with more than a quarter of the total
energy consumption and greenhouse gas emissions [1]. The European
Green Deal has committed to reduce the emissions before 2050 by at
least 90% [2]. While other sectors have already lowered their emissions
by 32% since 1990, the EU’s transport emissions have increased by 33%
[3]. Therefore, the transport sector faces a significant challenge in the
coming decades.

Within the transport sector, mobile Heating, Ventilation and Air
Conditioning systems (HVAC) represent the main auxiliary load on the
battery [4], especially in urban transport [5]. In vehicles with an internal
combustion engine, mobile HVAC can have a peak consumption of 40%
in warm climates and congested traffic while for electric vehicles, they
can reduce the driving range by up to 50% in hot and humid days [6]
or by 50-70% under extreme cold conditions [7].

In buses, the thermal requirements are bigger due to the higher
volume, transparent area surfaces and occupancy. Thus, bigger HVAC
systems are required, which demand a higher energy consumption and
reduce the range of electric buses by 30-50% [8].

The main function of the mobile HVAC is to ensure a safe and
comfortable thermal environment in the cabin by compensating the heat
loads of the vehicle. Accurate, dynamic, low-computational models of
cabin heat loads are required to design, simulate, and optimize these
systems [9]. These models should cover the following key sub-models:

• A 3D model of the urban area, including buildings, trees and
streets.

• A kinematic model, including the speed profile of the real urban
route consistent with the bus schedule and the stochastic traffic
conditions.

• A climate model, including the skyline and multicomponent radi-
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ation in all surfaces of the vehicle.

• A transient thermal model of the vehicle cabin, including the dif-
ferent heat gains and thermal loads.

During the last decades, different analysis and methods have been ap-
plied in urban environments to evaluate the energy consumption of ve-
hicles in real driving conditions. For an accurate estimation of the
bus consumption in real conditions, a kinematic model that represents
the speed profile or driving cycle is essential [10, 11]. Many authors use
standard driving cycles, but models that employ synthetic driving cycles
derived from real-world operations demonstrate significantly better re-
sults [11, 12, 13]. In recent times, several methods and approaches have
been developed to build synthetic driving cycles but models based on
stochastic techniques are the most suitable due to the non-deterministic
nature of real-world traffic [11, 13]. Among the latter, a distinction
can be made between those that rely on high-frequency data obtained
from real-time data acquisition equipment, which is not readily available
and involves high collection costs [12, 14, 15] and those that use low-
resolution data [11, 16, 17]. In some of these studies, the authors only
focus on the generation of the synthetic driving cycle [12, 13]. Other
authors estimate the impact on consumption, although they exclusively
model the powertrain [11] or consider other factors such as occupancy,
traffic, environmental and route conditions [10, 14]. The previous stud-
ies do not model the thermal loads and assume a constant impact on
the consumption. In contrast, many studies incorporate thermal load
models, but do not consider a driving profile [17, 18] or assume a fixed
driving pattern between all bus stops [19]. However, most of these
studies have a high-level approach and use excessively simplified cli-
mate demand models. In some cases, they do not consider the solar
radiation [20, 17, 18], they use models based on a steady state balance
[15] or they assume a constant value [16]. Other authors implement
a more detailed transient thermal model, but only using one node of
air with no walls nor internal mass inertia and without considering the
variation the solar radiation due to the shadow casting or the route’s
orientation [19].
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Currently, there are two main approaches to model the vehicle’s
cabin. On the one hand, Computational Fluid Dynamics (CFD) mod-
els are commonly used to calculate in detail the heat transfer, the spatial
temperature distribution and the internal airflow [21, 22, 23], or to an-
alyze the occupants’ thermal comfort [24, 25, 26, 27]. On the other
hand, lumped parameter models are often employed, assuming that the
air properties are uniformly distributed in the cabin space. Such models
help determine the evolution of the internal temperature or to calcu-
late the heat which has to be removed to maintain the cabin in thermal
comfort conditions. Lumped parameter models offer an appropriate bal-
ance between accuracy and computational cost and ease the integration
with other systems and their control, such as HVAC, vehicle traction
or energy management. Furthermore, lumped parameter models have
been implemented in flexible and thoroughly validated software such as
AMESim [28], Modelica [29], Dymola [30], TRNSYS [31] or MATLAB
[32, 33, 34, 35, 36, 37] or in vehicle simulators such as GT-Suite [38],
AUTONOMIE [39] or ADVISOR [40]. However, most of these studies
have been applied to specific operational conditions or standard test
cycles to focus on model validation or calibration [31, 36], sensitivity or
parametric analysis [28, 30], energy management strategies [34] or com-
ponent design [29]. Other authors have used the models in real-world
driving cycles [28, 32, 34, 37], but without incorporating spatial models
of the route or buildings, nor modeling the climate conditions. Some of
these authors have used recorded climate data during the driving route
using sensors for model validation [32] or HVAC analysis [37] while
others exclusively gather data on real routes for the traction model [28,
34]. Finally, only one study [31] was found for a given interurban vehicle
journey and none of them have conducted under real driving conditions
in an urban environment.

In conclusion, many studies have been found in literature consider-
ing urban environments and cabin thermal models. However, no study
has been found integrating both accurate dynamic models to calculate,
under real driving conditions in urban environments, the thermal en-
ergy demands to help to assist design and optimization of the full HVAC
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system, for a given urban route.

Given the previous literature review, the present model includes the
following novelties:

1. Integration in a global simulation model over a period of one year,
with a time-step of 1 min, a detailed real vector-based 3D urban
and route model, a climate conditions model and a transient ther-
mal cabin model.

2. Development of a detailed long-wave and short-wave radiative
model including shadowing, view factors, angular-dependent and
multicomponent transmittance of windows and multicomponent
radiation on the different surfaces of the vehicle over a vehicle
routing model based on the real urban service route.

3. Development of a one-year period weighted stochastic urban driv-
ing cycle based on low-resolution data consistent with the bus
schedule, the actual speed limits of the route and the traffic.

4. Evaluation and justification of hypothesis, including the time-step
and the stochasticity of the occupancy.
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3.2 Methodology
The modeling approach consists in integrating four models (Fig.

3.1) which are applied sequentially in every time-step. Firstly, the ge-
ographic information system or GIS model (Section 3.2.3) is applied
to obtain, on the one hand, a vectorial-based 3D model of the city,
including buildings and trees and, on the other hand, a raster-based
digital terrain model (DTM) of the streets. Secondly, the kinematic
model (Section 3.2.4) is developed to construct a weighted stochastic
driving cycle for one-year period based on low-resolution open data of
the route (GTFS), the velocity limits of the streets and the generation
of weighted stochastic traffic stop points using the intersections of the
street network. Thirdly, the climate model (Section 3.2.5) is performed
to obtain, on the one hand and for each time-step, the air nodes temper-
ature (external and internal) and the multicomponent radiation fluxes
and skyline on each surface of the bus, both based on representative
long-term climate data of the city (TMV), the solar geometry and the
previous model outputs. The thermal capacitances and heat transfer
coefficients of each node and surface are obtained, based on the bus ge-
ometry and on the thermophysical properties of the different materials.
Fourthly, the thermal model (Section 3.2.6) is used to calculate, using
a system of ordinary differential equations, the different heat gains, the
mass and body node temperatures and the thermal loads and its com-
ponents, based on the bus optical properties, the model parameters for
occupancy, air changes and auxiliary and the conditions model outputs.
All the models have been developed in R [41] and are integrated in a
global model, which allows simulating the vehicle under the dynamic
and complex conditions of the urban environment within a 1-min time-
series along a representative year.

3.2.1 Location and climate conditions
The present study has been performed in Valencia, Spain (12

masl, 39◦28′12′′N, 0◦22′35′′O), which is characterized by a hot-summer
Mediterranean climate or Csa, according to the Köppen-Geiger climate
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Figure 3.1: Scheme of the methodology.

classification system [42]. Valencia can be taken as an example of a
Mediterranean city [43].

Figure 3.2 represents the diurnal hourly global horizontal irradiance
distribution for each month in TMY3 dataset of the period 2005-2020
from satellite-based PVGIS-SARAH2 database [44] with a mean value
ranging from 235 W m−2 in January to 516 W m−2 in August. The
hourly dry bulb temperature distribution within the driving cycle and
its schedule is in the mean range of 9.6 °C, with an annual minimum of
−1 °C and a maximum of 37 °C.
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Figure 3.2: (a) Diurnal hourly global horizontal irradiance G0 distribution and
(b) hourly dry bulb temperature Te distribution in the operation range time
for each month in TMY dataset.

3.2.2 Route and vehicle description
This study is based on real data from the bus and the driving route.

Among the different driving routes of the urban service fleet [45], the
route which has been selected has an electric bus (Irizar model i2e).
Route C1 is circular, with a total length of 4.99 km through the city
town (Fig. 3.3). The vehicle is a 12 m standard bus, with dimen-
sions 2.99 m height x 2.55 m width x 11.95 m longitude and standard
geometric and thermophysical characteristics of an urban bus with 80
passenger capacity. The characterization of the vehicle is summarized
in Table 3.1. The data has been obtained from the detailed geome-
try of the vehicle, and from the thermophysical and optical properties
of the different materials. All windows are one-pane 6 mm thick with
15 kg m−3 density [46], 1 W m−1 K−1 thermal resistivity [47] and glass
k value of 0.8 W m−1 K−1 thermal resistivity [48] and 1,400 J kg−1 K−1

specific heat capacity [49]. The frontal unit is a laminated glass with
anti-reflective coatings while the other windows are tempered body-
tinted glazing. The walls are multilayer bodies with a red paint exte-
rior coating with 0.88 of thermal emittance and 0.57 α solar absortance
[49]. The convective coefficients used for both walls and windows are
5 W m−2 K−1 for the indoor surfaces [50] while for outdoor surfaces are
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calculated according to the bus speed.

Figure 3.3: Location, 3D vectorial model and bus route of the case study in
València, Spain.

3.2.3 GIS model
This model generates a 3D spatial representation of the city, dis-

tinguishing between buildings, trees, and streets. The buildings have
been modeled using a 3D vector-based model based on cadastral and
altimetric information of the LIDAR point cloud using the methodol-
ogy explained in Ref. [50]. To represent the streets, a digital terrain
model (DTM) or raster-based altimetric model of 2 m of resolution has
been generated. This DTM was built from ground points of the LIDAR
dataset employing a spatial interpolation based on a Delaunay trian-
gulation approach [51, 52]. To represent the trees, a 3D vector-based
model has been employed based on [53], which yields the height and
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Table 3.1: Geometry of windows and walls, thermophysical and optical prop-
erties for each bus surface.

Front Left Right Back Roof Floor
Windows

Awin (m2) [45] 3.0 11.2 16.5 1.2 0.0 0.0
τwin [46] 0.69 0.45 0.45 0.45 0.45 0.45
qwin [46] 0.28 0.50 0.50 0.50 0.50 0.50
ϵwin [48] 0.84 0.84 0.84 0.84 0.84 0.84

Walls
Awal (m2) [45] 4.6 24.7 19.5 6.3 31.1 31.1
ρwal (kg m−3) [31] 55.3 55.3 55.3 55.3 45.6 19.0
cp,wal (J kg−1 K−1) [31] 1402 1402 1402 1402 1402 1337
Rwal (kW) [31] 0.690 0.690 0.690 0.690 0.235 0.690

segmented crown of each individual tree.

3.2.4 Kinematic model
Once the 3D model of the city is obtained, the driving route and

the kinematic model are obtained for a year of simulation period in a
daily range from 06:00h to 24:00h according to the commercial schedule
of the Valencia bus network [45]. First, the spatial information of the
simulated route and bus stops have been extracted from the public
transport feeds (GTFS) [54] and discretized into points every 1 m, where
the azimuth or direction of the route has been obtained. Second, the
ground height and slope have been calculated from the DTM.

The objective of the kinematic model is to construct a synthetic
driving cycle that characterizes the stochastic behavior of the kinematic
variables such as elapsed time t, distance traveled d, velocity v, and ac-
celeration a in the real-world traffic conditions, at each discretized point
along the route during the simulation period. To accomplish this goal,
an algorithm has been developed for the construction of a weighted
stochastic driving cycle, starting from the microtrips approach and in-
corporating a generation of weighted stochastic stop points (referred to
as traffic stops) using low-resolution open data (GTFS), and applying
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a mixed-integer nonlinear programming (MINLP) formulation.

A microtrip µ is defined as a section of a driving route between
two consecutive time points at which the bus has zero speed (Figure
3.4). These stop points could be bus stops as well as traffic stops,
which may include instances such as traffic lights, stop signs, pedestrian
crosswalks, or pauses prompted by congested traffic conditions. A trip
is the journey between two bus stops, which is composed of one or more
microtrips and the time spent at the stops. To construct the model,

Figure 3.4: Synthetic speed profile. In this example, a trip is composed of the
bus stop of duration tBS , three microtrips of duration tµ, and two traffic stops
of duration tT S . Other elements are the acceleration, which can be positive
a+ or negative a−, as well as the velocity limit vlim at each discretized point
of the trip.

two open data sources are available: the GTFS dataset and the city’s
street network, including the speed limits. On the one hand, the GTFS
dataset provides the trip duration ttrip and the distance traveled dtrip

for each bus line and day of the year. These values inherently contain
the real-world traffic conditions. On the other hand, from the city’s
street network, the associated speed limit vlim,p at each point p along
the trip and the intersections of the route with the remaining streets
are collected. In this study, these intersections have been considered as
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potential candidates for traffic stops in the stochastic generation of stop
points.

To obtain the kinematic variables at each discretized point p, a
MINLP problem has been formulated for each trip. The objective func-
tion is defined as the minimization of the absolute deviation between
the sum of times for the microtrips and stops of the trip and the to-
tal trip time ttrip. This problem is individually defined and solved for
each trip, being subjected to multiple constraints: spatial (traveled dis-
tance), temporal (duration of microtrips and stops), velocity (specific
street speed limits), acceleration (bus, comfort and safety limits), and
their interrelations in accordance with Eq. 3.1.

min
⃓⃓⃓⃓
⃓tBS,trip + nT S,trip · tT S,trip +

∑︂
µ

tµ,trip − ttrip

⃓⃓⃓⃓
⃓

s.t.:

ap,µ =
v2

p+1,µ − v2
p,µ

2 · dp,µ
ap,µ ∈ {a−

trip, 0, a+
trip}

tp,µ = 2 · dp,µ

vp+1,µ − vp,µ

∑︂
p

tp,µ = tµ,trip∑︂
µ

dµ,trip = dtrip

∑︂
p

dp,µ = dµ,trip (3.1)

tBS,trip, tT S,trip, nT S,trip ≥ 0 0 ≤ vp,µ ≤ vp,lim

tp,µ, tµ,trip, ttrip ≥ 0 dp,µ, dµ,trip, dtrip ≥ 0

where ap,µ, vp,µ, dp,µ, tp,µ denote the acceleration, velocity, traveled
distance, and elapsed time at point p in the microtrip µ, and dµ,trip,
tµ,trip the total traveled distance and elapsed time of the microtrip µ in
a certain trip.

To address this, the genetic algorithm developed in [55] has been
applied. Through this approach, five variables have been obtained for
each trip: the duration of the bus stop tBS,trip, the number of traffic
stops nTS,trip, their respective duration tTS,trip, and the positive a+

trip
and negative a−

trip accelerations. Table 3.2 shows the initial values,
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upper, and lower limits defined to solve the problem. For the weighted

Table 3.2: Initial values (IV), upper (UL) and lower (LL) limits for the MINLP
problem.

nT S,trip tBS,trip (s) tT S,trip (s) a+
trip (m/s2) a−

trip (m/s2)
IV 0 15 20 0.9 -0.7
LL 0 0 5 0.4 -0.4
UL ncand

T S,trip 25 30 1.5 -2

stochastic selection of traffic stops within each trip, a set of candidate
points denoted as ncand

TS,trip are obtained from the intersections of the trip
with other streets. The algorithm then selects combinations of these
candidates using random weighted sampling. The probability weights
for each candidate are assigned based on the speed limit of the respective
candidate in comparison to the rest of the candidates within the trip.
Consequently, intersections with streets featuring higher speed limits
have a greater likelihood of being chosen as traffic stops.

Furthermore, two convergence strategies are applied to the algo-
rithm when it exceeds a certain number of iterations, depending on
the sign of the objective function. If the objective function is positive,
indicating that the microtrip and stop times exceed the trip duration,
the speed limits are increased by multiplying vlim,p by a factor greater
than one. On the other hand, if the objective function is negative, the
number of candidate traffic stops is increased using random weighted
sampling to the non-stop trip points and by assigning its probability
weights based on the distance from other traffic stop candidates. Then,
points that are farther away from other candidates are more likely to
be selected.

Figure 3.5, as an illustrative example, the speed profile and ori-
entation obtained for a complete bus journey of the studied route is
presented.
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Figure 3.5: Speed profile obtained for a complete bus journey.

3.2.5 Climate Model
This model obtains the climate conditions at each bus surface in

any position and time step of the driving route. The starting point
is a year time series of hourly meteorological variables (TMY). The
variables obtained from TMY are the external outdoor temperature
Te, the horizontal infrared irradiance from sky IG0, the direct normal
irradiance Bn, and the global horizontal irradiance G0.

The indoor temperature Ti is determined in every time step using
the regulation curve described in the UNE-EN 14750 standard [56] as
a function of the TMY external outdoor temperature Te. The sky tem-
perature Tsky is obtained from the TMY horizontal infrared irradiance
from the sky IG0−sky according to [57].

Lastly, the skyline or horizon profile has been calculated for each
point of the route and each side of the vehicle. The use of the skyline
is important to model the impact of the real city environment on both
long-wave and solar radiation heat gain components. Firstly, the sky-
line helps to determine whether the surface is shadowed when the sun
is behind its horizon profile at a specific time, which impacts on the
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direct solar irradiance component. Secondly, the skyline allows to mea-
sure the Sky View Factor (SVF), defined as the proportion of the sky
which is visible. The SVF has an impact on the diffuse and reflected
solar irradiance components and also helps define the radiative view
factors used in the long-wave radiation heat exchanges between the bus
surfaces, the sky, and the surrounding city surfaces.

Finally, the direct Bj , diffuse Dj , and reflected Rj irradiance com-
ponents on each of the six j bus surfaces are obtained in each time
step using the TMY solar radiation variables, the solar geometry [58],
the city surfaces reflectance [59], the slope and orientation of each bus
surface, and the shadow effects obtained from the skyline.

3.2.6 Thermal Model of the Cabin
A transient dynamic thermal model has been developed to predict

the sensible thermal load (from now onward, thermal load) in the cabin
of the bus Qi under variable ambient conditions, including shadowing
and the orientation and slope of the vehicle during the route. This
model is based on a lumped-parameter approach, with three bus nodes,
assuming that the temperature is uniform in each node: the indoor air
node i, the bus body envelope b, representing all internal and external
window and wall surfaces of the bus enclosure, and the interior mass
m, representing the seats, dashboard and other thermal masses of the
vehicle. The thermal model is implemented as a system of ordinary
differential equations, using the Heat Balance Method (HBM) [48]. The
heat transfer between seven nodes enables the calculation of the mean
temperature of the indoor air Ti, the bus body Tb, and the bus mass
Tm. The external nodes are the external air node e, the surrounding city
surfaces, the sky, and the sun. The thermal load depends on multiple
energy and mass flows (Figure 3.6), conceptualized as heat gains or
contributions, which can be convective Q̇, solar radiative İ, or long-
wave radiative Ė.

Eq. 3.2 represents the energy balance of the indoor air. The total
mass of air has been assumed to be constant.
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Figure 3.6: Heat gains of the thermal model. Q̇b−i is the heat transfer from
the body to the indoor air, Q̇m−i from the mass to the indoor air, Q̇o−i is
the occupancy heat gain, Q̇e−i is the heat gain by air changes, Q̇e−b the heat
transfer from external to body, Q̇a−b is the heat gain from auxiliaries to body,
Ėe−b the long-wave radiation exchange between the exterior and the body,
Ėm−b the long-wave radiation exchange between the mass and the body, İs−b

the solar radiation heat gain to the body and İs−m the solar radiation heat
gain to the mass.

dQi

dt
= Vi · ρi · cp,i

dTi

dt
= Q̇b−i + Q̇m−i + Q̇o−i + Q̇e−i (3.2)

where Qi represents the thermal load, i.e., the power to add to or remove
from the cabin to have the comfort temperature. The occupancy Q̇o−i

heat gain, which includes the heat losses from the occupants, has been
modeled using the hourly occupancy schedule of a mean day as a long-
term representative time series, provided by the city bus service [45] and
the sensible heat load of a seated person in accordance with the UNE-
EN 14750 standard [56]. The heat gain by air changes Q̇e−i includes the
infiltrations of external air into the vehicle due to doorway openings and
by leakage due to faulty sealing. The mean air changes by infiltrations
are calculated in 4.34 h−1 considering the impact of the bus speed as
in [60]. Equation 3.3 describes the volumetric flowrate due to doorway
openings ve−i,trip in a certain trip taking into account the air exchange
through the doors orifice and the passage airflow which occur when the
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passengers come in or out of the bus [61].

ve−i,trip = tBS,trip

ttrip

(︄
Adoor

6 ·
√︄

g ·
⃓⃓⃓⃓
Te − Ti

Te

⃓⃓⃓⃓
· Hdoor + nocc · Vocc

)︄
(3.3)

where tBS,trip

ttrip
is the ratio of time that the doors are opened in the bus

stop in a given trip, Adoor and Hdoor are the area and height of the
opened doors [45], g is the acceleration of gravity, Vocc = 0.25 m3 is the
exchanged volume due to each occupant’s passage according to [61], and
nocc is the occupant’s passage rate at which passengers leave or enter
the bus, assumed as 1

10 of the stayed occupancy boarding or alighting
through the doors during the bus stop in a given trip. As previously
explained, the two last heat gain models (Q̇o−i and Q̇e−i) are related
to the occupancy, which exhibits an important stochastic tendency. In
section 3.2.2, a comprehensive evaluation of adopting a stochastic model
is conducted.

The heat gain from masses to indoor air Q̇m−i represents the con-
vective heat exchange between both nodes, expressed in Equation 3.4.

Q̇m−i = Um−i · Am · (Tm − Ti) (3.4)

where Um−i = 12 W m−2 K−1 is the heat transfer coefficient between
the mass and the indoor air according [36] and Am the area of the
interior mass assumed 100 m2, consistent with [36] considering the size
differences.

The heat gain Q̇b−i represents the convective heat exchange from
the body node to the indoor air, described in Equation 3.5.

Q̇b−i = Ub−i · Ab · (Tb − Ti) (3.5)

where Ub−i = 2.75 W m−2 K−1 is the heat transfer coefficient between
the body and the indoor air and Ab the body area, both obtained from
values of each surface of the bus, including windows and walls.

Equation 3.6 is the energy balance of the vehicle body.

mb · cp,b
dTb

dt
= −Q̇b−i + Q̇e−b + Q̇a−b + Ėe−b + Ėm−b + İs−b (3.6)
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where mb = 5,534 kg is the body mass and cp,b = 1,193 J kg−1 K−1 is the
specific heat capacity calculated from volumes and densities of windows
and the multilayered walls.

The long-wave radiation exchange between the exterior and the
body Ėe−b can be estimated according to Equation 3.7, obtained as
the result of the heat transfer between the body surfaces j, both walls
and windows, and the independent contributions of the sky and the
surrounding city surfaces. The temperature of the surrounding city
surfaces is considered uniform and equal to the external temperature
Te and the radiative view factors are obtained using the sky view factor.

Ėe−b = σ ·
∑︂

j

(︂
(ϵj

wal · Aj
wal + ϵj

win · Aj
win)·

(︂
SV F j · (T 4

sky − T 4
b ) + (1 − SV F j) · (T 4

e − T 4
b )
)︂)︂

(3.7)

where σ is the Stefan-Boltzmann constant.

The long-wave radiation exchange between the masses and the body
Ėm−b is obtained through Equation 3.8, where ϵm = 0.95 [62] is the
emittance of the interior mass and VFm−b = 1 [36] is the view factor
from the interior mass towards the body.

Ėm−b = σ · ϵm · VFm−b · Am · (T 4
m − T 4

b ) (3.8)

The solar radiation absorbed by the body İs−b is obtained according
to Equation 3.9, based on the global irradiance on each surface Gj

calculated in the climate model.

İs−b =
∑︂

j

(αj
wal · Aj

wal + αj
win · Aj

win) · Gj (3.9)

The convective heat gain from external air to body Q̇e−b is obtained
through Equation 3.10.

Q̇e−b = Ue−b · Ab · (Te − Tb) (3.10)

where Ue−b is the heat transfer coefficient between the body and the
external air, obtained from the geometry and thermophysical properties
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for each bus surface and calculating the convective coefficient through
Equation 3.11, as a function of the bus speed v according to [63].

he−b = 9 + 3.5 · v0.66 (3.11)

The heat gains due to auxiliaries Q̇a−b is fixed to 600 W, as 10% of the
waste heat of electric motor, motor controller, battery, and inverters
[64].

Equation 3.12 is the energy balance of interior mass node. The
thermal energy of the masses is calculated as the product of their ther-
mal mass, considered constant, and the variation of their temperature,
considered uniform.

mm · cp,m · dQi

dt
= −Q̇m−i − Ėm−b + İs−m (3.12)

where mm = 1,500 kg are the mass and cp,m = 750 J kg−1 K−1 the
specific heat capacity according to [30].

The solar radiation absorbed by the mass İs−m is obtained according
to Equation 3.13, starting from the direct Bj , diffuse Dj , and reflected
Rj irradiance on each surface j obtained from the climate model and
considering the angular behavior of the solar energy transmittance of
windows. Then, the direct radiation transmittance of each window
τ j

n,win is calculated for each time-step depending on the solar angle of
incidence θj according to Ref. [65], who address an accurate model of
the solar transmittance at angle of incidence given the normal incidence
transmittance, the number of panes in the window and the type of
coating. For the diffuse and reflected radiation transmittance τ j

d,win =
τ j

n,win(60◦) has been assumed in all windows, according to Ref. [58].

İs−m =
∑︂

j

(︂
Bj · τ j

n,win(θj) + (Dj + Rj) · τ j
d,win

)︂
· Aj

win (3.13)

The system of differential equations is solved every time-step with an
ode-solver. The cabin is pre-conditioned, as a common and recom-
mended strategy [66]. The different components of the total cabin load
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are calculated in order to quantify the different contributions and to
help obtain more effective optimization strategies. The total load has
been divided into six components:

• Solar Q̇sol, which measures the impact of İs−b and İs−m.

• External infrared Q̇inf, which quantify the impact of Ėe−b.

• Air changes Q̇ach, which addresses the impact of Q̇e−i.

• Occupancy Q̇occ, corresponding to Q̇o−i.

• Auxiliary Q̇aux, due to Q̇a−b.

• Convection, conduction, and internal infrared Q̇cci that groups
the rest of thermal gains corresponding to exchanges between the
three bus nodes and the conduction-convection between these and
the external air node.

The values of the load components are obtained in each time step as
the difference of the total load and the ode result obtained when the
corresponding thermal gains have been set to zero.
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3.3 Validation and Justification of Hypotheses
3.3.1 Validation

Kinematic model

In this section, the validation of the consistency of the kinematic
model is performed. Figure 3.7 shows the comparison of the normalized
trip elapsed time ttrip between the low-resolution GTFS data and the
prediction obtained by solving the MINLP of Eq. 3.1 in all simulated
trips. The synthetic driving cycle is accurate and consistent with the
bus schedule along the year since the maximum annual error is only 1%.

Figure 3.7: Normalized trip time comparison.

Thermal model

The thermal model was firstly validated against a warm-up with
an air heater and the following cool-down and secondly was validated
parking the vehicle under real outdoor conditions during several days of
summer, both using the same data and boundary conditions reported
in the study [36]. Figure 3.8 shows a comparison of measured and simu-
lated cabin air temperature and the mean absolute percentage deviation
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or MAPD= 1
n

∑︁n
t

⃓⃓⃓
ŷ(t)−y(t)

y(t)

⃓⃓⃓
, where ŷ is the prediction and y is the actual

value. As can be observed in Figure 3.8, the model reproduces accu-

Figure 3.8: Comparison of experimental and simulation indoor cabin temper-
atures.

rately the experimental data, with a mean absolute percentage error of
1.4% and 3.6%. With these results, the thermal model and its ability
to reproduce dynamic evolution are considered validated.

3.3.2 Justification of Hypotheses
Two important hypotheses have been studied in this section: the

time-step and the stochasticity of the occupancy. As the main objective
of the model is to predict the total thermal load within a trip, the load
has been selected as the target variable, and its sensitivity has been
analyzed depending on the assumptions.

Simulation time-step and computational cost

The present section explores the impact of the simulation time-step
in both the accuracy and the computational cost. 14 different time-
steps have been studied. For every month, a representative day has
been simulated, more particularly, the 15th of each month. Figure
3.9 shows the MAPD of mean daily cumulative total thermal loads,
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both for positive Q+
tot and negative Q−

tot contributions with respect to
the smallest time-step (1 second). The total computational cost per
trip tCPU in seconds is also represented on the second y-axis. For the
evaluation of the computational cost, all simulations used the same
computer with the following specifications: Processor Intel©CoreTM i5-
7300U CPU@2.60GHz, RAM: 8.0 GB and OS Windows 10, 64 bit. The

Figure 3.9: Impact of the time-step on the MAPD of the mean daily cumulative
total thermal loads and computational cost per trip

MAPD of both positive and negative thermal loads increase almost
logarithmically with increasing time-steps while the computational cost
decreases substantially when increasing the time-step from 1 to 20s. The
MAPD for a 1-min time-step is lower than 1% and the computational
cost is lower than 2 seconds. Thus, a time-step of 1 min has been
selected in the remaining part of the study, as a compromise between
good accuracy and an affordable computational cost.

Stochasticity of the occupancy

This section studies the impact on the thermal load of adopting
a stochastic model for two parameters associated with the occupancy.
The occupancy has been modeled in the thermal model using the mean
day hourly schedule as a long-term representative time series, while the
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rate at which passengers leave or enter the bus is assumed to be 1/10
of the occupancy in each bus stop. However, it is widely known that
passenger behavior exhibits a stochastic nature.

In order to evaluate the influence of the stochasticity of these pa-
rameters on the thermal load, a total of 20 samples for each variable are
generated. The samples are generated multiplying the original values
by a random factor for the normal distribution with a mean equal to 1
and two cases of standard deviation sd, a moderate dispersion (sd = 0.1)
and a high dispersion (sd = 0.2). The evaluation of each variable has
been conducted independently, while using the deterministic model of
the other variable, in order to evaluate the individual influence of each
parameter. Figure 3.10 (a) shows the distribution, boxplot and mean
(red point) of the original occupancy and the samples of each dispersion
case. The simulations have been carried out and the impact on both

Figure 3.10: Stochasticity of the occupancy.

the total daily cumulative positive and negative thermal load has been
evaluated. Figure 3.10 (b) shows the distribution and boxplot of the
MAPD for both positive and negative thermal load for the occupancy
stochastic model.

The impact of a moderate dispersion is not significant, with a fre-
quent MAPD of 2% and generally below 4%. In contrast, the influence
of a high dispersion can reach a non-negligible magnitude, with a max-
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imum MAPD of 6-7%.

Since actual dispersion data of occupancy is not available, the de-
terministic has been retained for the remaining studies.

In the case of the ratio of passengers boarding or leaving at each
bus stop, the findings indicate that there is no influence on the thermal
load for any level of dispersion, as the maximum MAPD is less than
0.1%.

3.3.3 Simulation Results
Figure 3.11 shows the node temperatures for a representative day of

a cold month (January), a mild weather month (March), and a warm
month (July). Figure 3.12 represents the inter-daily distribution of
the thermal load. The range of indoor air temperatures is (19 °C,

Figure 3.11: Temperatures of the external node Te, indoor air node Ti, sky
Tsky, body node Tb, and mass node Tm in a representative day of January,
March, and July.

29 °C), based on the outdoor external temperature range according to
the regulation curve described in the UNE-EN 14750 standard [56].
The body temperature is highly influenced by solar radiation, reaching
around 10 °C compared to the outdoor air temperature in summer. The
mass node temperature is also influenced by solar radiation, but even
more by the indoor air temperature and remains within a relatively
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Figure 3.12: Instantaneous thermal load components in a representative day
of January, March, and July. Components: conduction, convection, and in-
ternal infrared (Qcci), auxiliary (Qaux), occupancy (Qocc), air changes (Qach),
external infrared (Qinf), solar radiation (Qsol), and total (Qtot).

small range of around ±5 K, except for the summer midday, when it
reaches +7 K.

In winter, the most important negative load component is the con-
duction, convection, and internal infrared, mainly due to low external
temperatures, yielding a peak of −6.8 kW. This component is closely
related to infrared external exchanges, and both of them being linked to
the body temperature. If the body temperature does not exceed the in-
terior temperature, both components remove heat from the cabin, with
conduction, convection, and internal infrared playing a predominant
role. However, shortly after the body temperature surpasses the inte-
rior temperature, this component becomes positive due to heat transfer
into the cabin, while the infrared external component becomes predom-
inant in heat extraction, with a peak of −5.4 kW in summer when the
body temperature reaches 40 °C. Both components effectively reflect
the thermal inertia of the body node, which transfers the absorbed heat,
mainly through solar radiation, but with some delay and damping. An-
other significant component during winter is the air exchanges, which
reach −4.8 kW when the outdoor temperature is lower. This component
exhibits pronounced fluctuations, exceeding 2 kW, due to the opening
of doors at bus stops.
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In summer and spring, the most important component is the solar
radiation positive load, with a peak of 11.3 kW in summer and 10.4 kW
in spring.

Occupation has a significant positive contribution along the year,
between 4.1 kW and 7.4 kW, from 8:00 to 21:00. The contribution of
auxiliaries over the year and the contribution of the air changes in sum-
mer are nearly negligible.

Figure 3.13 shows the mean daily cumulative thermal loads for
each month, stacked in their different components (bars) and the totals
(points), both positive and negative. It is important to note that the
sum of the cumulative components does not correspond to the cumula-
tive totals since, in each time-step, the total values are the net balance
of positive and negative contributions. Therefore, there are components
with both signs on the same day, which means that its contribution has
cooled (negative) and heated (positive) the vehicle in different moments
of the day. This provides an overview of the energy requirements for an
HVAC system (totals) and their origin (load components). The cooling
demand for a warm summer day is around 162 kWh, while the heating
demand for a cold winter day is around 34 kWh. On the one hand, the
cooling demand is higher than 115 kWh between May and September
and the heating demand is higher than 20 kWh between December and
March. On the other hand, the heating demand is lower than 10 kWh
between June and October and the cooling demand is lower than 40 kWh
in January and December. These results are in accordance with the In-
ternational Council on Clean Transportation [67], International Energy
Agency [68], or an extensive campaign of urban buses in Italy [69].

The cumulative occupancy component is nearly constant over the
year, being 65-73% of total cumulative positive in winter and 33-45%
in summer. The cumulative external infrared component is also almost
constant, accounting for 35-44% of total cumulative negative in winter
and 67-91% in summer. The cumulative solar component has a rela-
tive weight of 20-42% of the total cumulative positive load throughout
the year, reaching more than 40% between April and August. The
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Figure 3.13: Cumulative mean daily thermal loads of the air changes com-
ponent Qach, conduction, convection, and internal infrared component Qcci,
occupancy component Qocc, auxiliary component Qaux, external infrared com-
ponent Qinf, and solar radiation component Qsol. Bars are the thermal load
components and points the total load.

cumulative air changes component is only important in the heating de-
mand with a contribution exceeding 20% between November and March.
Lastly, the conduction, convection, and internal infrared component
play a significant role in the negative load during winter, contributing to
around 40%. On the contrary, in summer, this component contributes
to the positive load but with a slightly lower percentage, ranging from
10-20%.

Based on these findings, as the occupation and external infrared
load are almost constant over the year, the variability of the cooling
and heating demand is mainly dependent on the positive solar load
component, the negative air changes load component, and on conduc-
tion, convection, and internal infrared components (with a positive or
negative sign depending on the season).
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3.3.4 Sensitivity Analysis
In this section, a sensitivity analysis has been performed to under-

stand and quantify the influence of different parameters and conditions
on the thermal load. Table 3.3 describes the parameters addressed in
the study. Figure 3.14 shows the mean daily cumulative total thermal

Table 3.3: Cases of the sensitivity analysis. B = Base case.
Category Case Description

External
wall color

[49]

B Red: εwall = 0.88, αwall = 0.57
C.1 Black: εwall = 0.86, αwall = 0.56
C.2 White: εwall = 0.76, αwall = 0.27
C.3 Clear: εwall = 0.90, αwall = 0.09

Wall insulation
[31]

B Polyurethane: 5 mm roof, 15 mm other surfaces
W.1 Polyurethane: 5 mm all surfaces
W.2 Polyurethane: 15 mm all surfaces
W.3 Polyurethane: 15 mm roof, 30 mm other surfaces

Window glass
[46]

B 6mm one-pane: front clear, others gray-tinted
G.1 6mm one-pane: all-clear
G.2 12mm one-pane: front clear, others gray-tinted
G.3 6+12+6mm two-pane: front clear, others gray-tinted

Air changes
[60]

B Leakage 4.34 h−1 and opens variable
A.1 Leakage 10 · B (windows open)
A.2 Leakage 0.5 · B (better sealing)
A.3 Leakage 0.1 · B & 0.1·Opens (air curtain)

Occupancy
[45]

B Hourly schedule 80 passengers max
O.1 0.50 · B
O.2 0.75 · B
O.3 1.25 · B

Outdoor
convective

coefficient [63]

B Function of the bus speed
H.1 0.50 · B
H.2 0.75 · B
H.3 1.25 · B

load (with dots) and the different components (with bars). Two dotted
horizontal lines represent the total load variation with respect to the
base case (B). In practically all cases, reducing the cooling load implies
increasing the heating load, and vice versa. In case G.2, the cooling de-
mand decreases by 3% without increasing the heating needs, although
the impact of the 12 mm one-pane is small. In both G.1 and G.3 cases,
the cooling demand grows, and the heating demand drops. In G.1 just
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Figure 3.14: Mean daily cumulative total thermal load for the different cases
of the sensitivity analysis. Cases: base B, external wall color C, wall insulation
W, window glass G, air changes A, occupancy O, outdoor convective coefficient
H. Bars are the mean daily cumulative thermal load components and points
the total load. Components: air changes Qach, auxiliary Qaux, conduction,
convection, and internal infrared Qcci, external infrared Qinf, occupancy Qocc,
solar radiation Qsol.

the solar contribution is affected, significantly increasing the cooling de-
mand. In G.3 the changes in the window insulation and their thermal
mass significantly reduce the heating demand.

The increase in the heating demand stands out in case A.1, where
a significant increase in infiltrations, for example due to the window
openings when there are no occupants [60]. This could reduce the cool-
ing demand by 23% but it would increase the heating demand by 386%.
In both A.2 and A.3 cases, the heating demand grows, and the cooling
needs are reduced. A.2 demonstrates that infiltrations caused by open-
ings have a more significant impact compared to infiltrations caused by
leakage (around 73% in the base case). This is evident as a 50% reduc-
tion in leakage infiltrations only results in a 14% decrease in heating
demand. In contrast, case A.3 shows a very significant reduction of the
heating demand, around 27%, through an action such as an air curtain,
which can minimize the air changes both for openings and leakage. This
action could be used exclusively in winter.
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The occupation has a linear impact on the thermal load, increas-
ing the heating demand in winter and reducing the cooling demand in
summer.

The influence of the wall insulation on the cooling demand is almost
negligible, but it significantly affects the heating demand. Using the
same thickness of polyurethane in the roof as in the other sides reduces
the heating demand by 8% and if the current thickness is doubled the
reduction would be 20%. In contrast, the importance of the external
wall color and coating in the cooling demand is clear. The use of very
dark or very clear colors yields a variation in the mean daily cooling
demand between 66 kWh and 113 kWh. With white walls, the current
cooling demand would be reduced by 31%.
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3.4 Conclusions
The present research involves the development and integration of a

set of advanced models that simulate the thermal cabin load of a vehicle
in the dynamic and complex conditions of the urban environment. A
detailed real 3D urban model have been developed and combined with a
kinematic model, which generates a consistent stochastic speed profile.
A climate conditions model calculates the radiation through each wall
and the shadows induced by the urban environment. A transient model
of the cabin enables the calculation of the thermal load. The model has
been validated experimentally.

For the rest of the analysis, the vehicle under study is a bus from the
urban fleet of València (Spain). The simulations have been performed
for one year with a time-step of 1-min. The model has helped to obtain
the thermal loads. This is essential to understand the impact of different
optimization strategies.

Before carrying out a sensitivity analysis, two important hypotheses
have been studied in detail: the time-step and the stochasticity of the
occupancy. A time-step of 1 min was finally fixed as a compromise
between accuracy and a low computational cost.

The results revealed that cooling load is the most demanding mode,
especially in July and August. The mean daily cooling demand per
distance covered for a warm summer day is around 105 kWh/100km.
The mean daily heating demand per distance covered for a cold winter
day is around 22 kWh/100km.

The occupation load is almost constant over the year, contributing
to 33–45% in positive loads in summer. The solar gain accounts for
approximately 20–42% of the positive load throughout the year, reach-
ing over 40% from April to August. The significance of air changes is
mainly observed during the colder months, contributing to more than
20% of the heating demand between November and March. The con-
duction, convection and internal infrared component is important (40
%) in negative loads.
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Finally, a sensibility analysis has been performed to comprehend
and measure the impact on the thermal load of 6 strategies, with 3
cases each. Window changing could affect the cooling (3%) and heating
(17%) demand depending on the number of panes and their thickness.
As the occupancy level rises, the cooling demand also increases in a
nearly proportional manner, whereas the heating demand decreases.
The impact of wall insulation on the cooling demand is very low but has
a significant influence on the heating demand (20%). The impact of air
changes on the thermal load can be important and could be managed
through devices and control systems to minimize the demand on the
HVAC system. Thus, the cooling demand could be reduced by 23% by
opening the windows when there are no occupants. In contrast, if an
action is employed to minimize air changes, the heating demand can be
reduced by 27%. The results also indicate that the external wall color
and coating has a relevant impact on the heating demand. With white
walls, the current cooling demand could be reduced by 31%.

As next steps, the model will be integrated into an HVAC system,
a powertrain and battery model, to analyze the energy consumption in
several routes of the city.
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Abstract:

Electric buses are a key element in the transition to sustainable
urban mobility. The HVAC system is the primary auxiliary load and
significantly affects the efficiency and the driving range. In this work,
advanced dynamic models have been developed to simulate accurately
and optimize the urban bus energy consumption under real operating
and extreme conditions, with a particular emphasis on HVAC systems.
This study integrates a 3D city model, a weighted stochastic driving cy-
cle, a climate model, a transient thermal model coupled with a physical
HVAC system model using IMST-ART and a battery model. Different
bus lines and urban typologies have been analyzed in the city of Valèn-
cia. The results indicate that the overall consumption is similar across
the different bus lines, around 2.10 Wh km−1. The HVAC is the second
largest contributor, after the powertrain, and can reduce the driving
range by 15-20% on mild and hot summer days, respectively. Finally,
the size of the compressor has been optimized, revealing that a scale
factor of 75% is more convenient, since the energy consumption can be
reduced by 3% with lower costs in the compressor.

Keywords: Modeling; HVAC; Electric vehicle; Urban; Bus; Optimiza-
tion
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Nomenclature
GIS: Geographic Information Systems.

HVAC: Heating, Ventilation and Air Conditioning.

CFD: Computational Fluid Dynamics.

GTFS: General Transit Feed Specification.

LCZ: Local Climate Zone.

SVF: Sky View Factor.

PWM: Pulse Width Modulation.

TMY: Typical Meteorological Year.

MAPD: Mean Absolute Percentage Deviation.

DTM: Digital Terrain Model.

MINLP: Mixed Integer Nonlinear Programming.

PTC: Positive Temperature Coefficient.

COP: Coefficient of Performance.

C: cooling mode.

H: heating mode.

V: ventilation mode.

T : temperature.

RH: relative humidity.

V̇ : volumetric flowrate.

m: mass.

t: elapsed time.

l: length.

v: velocity.

n: angular speed.

a: acceleration.

z: building height.
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z0: ground height.

nBS : number of bus stops.

İ: solar radiative heat gain.

Ė: long-wave radiative heat gain.

Q̇: convective load power.

Q: convective load energy.

V̇ : Power.

W : Energy.

ω̇: moisture transfer.

ω: humidity ratio.

∆hvap: heat of vaporization.

λice: frost/defrost control parameter.

pr: pressure ratio.

p: absolute pressure.

r: ratio.

δ: recirculation ratio.

e: external, outdoor node (subindex).

i: internal, indoor node (subindex).

m: mass node (subindex).

b: body node (subindex).

sky: sky node (subindex).

o: occupancy node (subindex).

a: auxiliary node (subindex).

s: sun node (subindex).

x: HVAC node (subindex).

D: demand (subindex).

ice: frost/defrost conditions (subindex).
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f : non-recirculated fresh air (subindex).
hvac: HVAC system (subindex).
out: exfiltrations (subindex).
fan: fan (subindex).
comp: compressor (subindex).
ptc: PTC (subindex).
tot: total (subindex).
wo: window open (subindex).
cndnst: condensate (subindex).
mot: motor (subindex).
reg: regenerative breaking (subindex).
hyd: hydraulic (subindex).
pne: pneumatic (subindex).
ele: electric auxiliaries (subindex).
eff : efficiency (subindex).
btms: battery thermal management system (subindex).
batt: battery (subindex).
U : unmet (subindex).
cond: condensing (subindex).
evap: evaporating (subindex).
dis: discharge (subindex).
suc: suction (subindex).
L: latent (superindex).
S: sensible (superindex).
+: positive (superindex).
−: negative (superindex).
N : nominal (superindex).
max: maximum (superindex).
min: minimum (superindex).
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4.1 Introduction
The electrification of urban buses is a key point for the transition

towards sustainable urban mobility. Currently, over 3% of all opera-
tional buses globally are electric, with perspectives of up to 10% by
2030 [1]. By 2030 only zero-emission city buses can be presumably sold
in the European Union [2]. The main auxiliary load on the battery is
the Heating, Ventilation, and Air Conditioning system (HVAC), which
can reduce the range of electric buses to 50% in cold winter or hot sum-
mer days [3]. Thus, a correct modeling and sizing of HVAC systems is
crucial in electric mobility to extend the vehicle range and to reduce the
environmental impact. The operation and sizing of the HVAC system is
based on standards [4] which only differentiate large climate areas and
do not size the systems for the specific working conditions. This means
that HVAC systems are often oversized and present significant room for
optimization. Dynamic, accurate and computationally efficient mod-
els are required [5], but the rest of the vehicle models should also be
thorough enough to have a good prediction of the HVAC impact on
the driving range. In recent years, significant advancements have been
performed in the prediction of the energy consumption of vehicles in ur-
ban environments. The number of articles with the keywords thermal
comfort, air conditioning and automobile has increased steadily since
the year 2000, reaching in 2022 four times the value of year 2000. These
studies focus on multiple factors which impact the energy consumption,
such as driving cycles or route characteristics, climate or environmen-
tal effects, HVAC systems, energy management or control strategies.
Many studies focus on examining the vehicle’s speed profile or driving
cycle. Recent research employs synthetic driving cycles derived from
real-world data and stochastic techniques for more accurate results, [6,
7]. However, the research is often limited to either the generation of
these driving cycles or to the modeling of the powertrain consumption,
without fully incorporating the complexities and energy impact of dy-
namic environmental conditions. Cabin thermal models have also been
well explored. One approach is with advanced Computational Fluid
Dynamics (CFD) which help analyze thermal comfort and the spatial
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temperature distribution in vehicle cabins [8, 9, 10]. Another approach
is with lumped parameter models, which offer a compromise between
accuracy and computational efficiency [11], and can be easily integrated
with other systems using multiphysics software. However, most exist-
ing studies fail to consider the vehicle’s driving profile and its impact
on important parameters, such as the external convection or shading
[12, 13]. They also focus on specific operational conditions or stan-
dard test cycles, often overlooking real-world driving cycles and the
dynamic urban climate [14, 15, 16]. Some studies attempt to combine
kinematic and thermal load models for a more comprehensive analy-
sis of energy demand [17, 18, 19, 20]. However, oversimplified models
are often employed, lacking the consideration of critical factors such
as the solar radiation, transient thermal effects, or latent heat gains
[12, 13, 19, 20]. Regarding the estimation of the HVAC consumption,
a constant energy consumption or efficiency is frequently assumed. In
some cases, the efficiency is introduced as a function of the operation
conditions [20, 21, 22, 23, 24, 25, 26]. Some studies quantify the in-
fluence of each component of the vapor compression cycle, but do not
present their description nor their detailed model [26, 27, 28, 29]. Other
investigations develop models of each component according to the con-
servation equations, with compressor efficiency curves obtained from
catalog databases or experiments, but they assume an average overall
heat transfer coefficient to characterize the heat exchangers [30, 31, 32,
33, 34]. Finally, other authors [35, 36, 37] develop an accurate HVAC
model using the IMST-ART software [38], which allows high numerical
robustness evaluation of refrigeration equipment performance, includ-
ing a detailed physical model of each component. However, only one
work [35] was found considering the operation of the HVAC system
during a given interurban vehicle journey and none of them have been
conducted under real operating conditions in an urban environment. Fi-
nally, other authors investigate the overall energy consumption of buses
in urban areas. Many of these studies focus on the operation, sizing, or
selection of the battery [39], on auxiliary systems [40], or the integration
of thermal systems [41], while others concentrate on planning charging
stations [42] or fleet management [43]. The models often oversimplify
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part of the sub-systems, and none focus specially on modeling a real
HVAC system, nor on modeling thermal loads in a dynamic and com-
plex urban environment. Concerning the optimization of mobile HVAC
systems, different studies explore changes in architecture, refrigerant,
or control strategies [44, 45, 46]. However, very few authors address the
sizing of the compressor, which is the most energy-consuming compo-
nent. For instance, some researchers focus on specific operating points
and conditions [47, 48], but not on the size of the compressor for real
driving conditions. The final objective of our work is to develop a de-
tailed HVAC simulation tool which can assist in the selection of the
size of the compressor, given the real conditions in which the vehicle
will work. Consequently, a detailed thermal model of the cabin is also
required, and the simulation tool has to provide information on the en-
ergy consumption of the system for all the necessary HVAC modes. The
present research extends the study of thermal loads presented in Ref.
[49] by coupling the models from this study with the humidity transfer
model, the HVAC system model and the energy consumption models of
the other bus systems, including the battery and the powertrain. The
integration of these models enables comprehensive simulations of the
HVAC system’s operation across typical annual and extreme weather
conditions, as well as the strategic optimization of the compressor size.
To the author’s knowledge, the present HVAC system model, which
combines detailed operational simulations with a compressor optimiza-
tion, is the most detailed found in literature up to date. This work
introduces the following novelties:

• Integration in a global simulation model of a detailed real 3D
urban model, a weighted stochastic urban driving cycle, a climate
conditions model, a coupled transient thermal cabin and HVAC
model, and an overall bus consumption or battery model.

• Development of a physical model of a real mobile reversible heat
pump. This model includes the compressor and fans’ speeds
and recirculation ratios within the control model of six operating
modes, encompassing cooling, standard forced ventilation, open
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windows ventilation, standard heating, heating in frost/defrost
conditions, and heating with PTCs.

• Demonstration that the compressor size can be reduced by a factor
of 25% by maintaining or even reducing the energy consumption.
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4.2 Methodology
The methodology integrates six models (Figure 4.1) applied sequen-

tially in every time step.

Figure 4.1: Scheme of the methodology.

Initially, the geographic information system (GIS) model (Section
4.2.3) constructs a vector-based 3D city model with buildings and trees,
and a raster-based digital terrain model (DTM) for streets. Next, the
kinematic model (Section 4.2.4) creates a year-long weighted stochas-
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tic driving cycle using low-resolution GTFS route data, street veloc-
ity limits, and stochastic traffic stops at street intersections. The cli-
mate model (Section 4.2.5) obtains the external air temperature and
humidity, the multicomponent radiation fluxes on the bus surfaces and
their skylines, for each time step, using the long-term city climate data
(TMY), solar geometry, and outputs from the previous models. The
thermal capacitances and heat transfer coefficients for each node and
surface are based on the bus geometry and material properties. The
thermal and HVAC coupled model (Section 4.2.6) computes, on the one
hand, the thermal heat gains, node temperatures, moisture transfers,
the thermal loads of mass and body nodes, and the latent loads of the
indoor node using a system of ordinary differential equations, based on
the bus optical and thermophysical properties, occupancy, air changes,
auxiliary systems, and environmental conditions. On the other hand,
the coupled model evaluates the HVAC operating mode and the opera-
tion points of each component of the equipment, their energy consump-
tion and efficiency, and the outlet conditions of the air and condensate
flowrate. Lastly, the battery model of the bus (Section 4.2.7) is devel-
oped to obtain the overall bus energy consumption, including motor,
regenerative braking, HVAC, battery thermal management system, the
pneumatic, hydraulic, and auxiliary electrical systems, as well as the
impact of the battery efficiency. All the models have been developed
in R [50] and the overall model has been solved with 1-minute time se-
ries for a representative year (Section 4.3.1) and under extreme weather
conditions (Section 4.3.2). The optimal compressor size is discussed in
Section 4.4.

4.2.1 Location and climate conditions
This study has been applied in València, Spain (39◦28′12′′N,

0◦22′35′′O, 12 masl), which has a hot-summer Mediterranean climate
[51]. València serves as an example of a Mediterranean city [52], since
the weather is similar to other cities such as Barcelona (Spain), Rome
(Italy), Lisbon (Portugal), or Marseille (France). The study uses a
representative year-long time series of hourly meteorological variables
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from the TMY dataset spanning 2005-2020 from the PVGIS-SARAH2
satellite-based database [53]. The hourly distribution of dry bulb tem-
perature during the driving cycle typically varies between 9-29 °C,
with yearly extremes of -1 °C and 37 °C. The median monthly value of
the relative humidity during the operating period varies from 80% in
January to 53.6% in June.

4.2.2 Route and vehicle description
This study uses real data from a specific electric bus and multiple

lines from the urban service fleet [54]. The selected bus is an Irizar i2e
electric bus, a standard 12-meter vehicle, with an 80-passenger capacity.
Three circular urban routes (Figure 4.2) have been simulated, covering
different urban typologies (Table 4.1). First, the C1 bus line covers
a 4.99 km circular city center route, with a mean speed of 8.77 km/h
and 3.4 bus-stops/km, predominantly in a compact-midrise urban area
(Local Climate Zone or LCZ 2 [55]) with a Sky View Factor (SVF)
or ratio of visible sky of 0.68. Second, the C2 bus line is an 8.55 km
circular route through a ring road, with wider and faster streets, with a
mean speed of 20.51 km/h, 3.0 bus-stops/km, in an open-midrise urban
landscape (LCZ 4) and SVF 0.76. Third, the C3 line is a 15.14 km
circular route through a more external traffic ring, where the buildings
are taller and streets narrower than the C2 route, with a mean speed
of 15.14 km/h, 2.9 bus-stops/km and a predominant LCZ 2.

Table 4.1: Characterization of the bus lines in the study.
line n_BS l (km) v (km/h) SVF z (m) z0 (m) LCZ
C1 17 4.99 8.77 0.68 21±9 14±2 2
C2 26 8.55 20.51 0.76 22±9 15±5 5
C3 36 12.46 15.14 0.67 24±10 14±3 2

4.2.3 GIS model
The GIS model creates a 3D spatial layout of the city, identify-

ing buildings, trees, and streets separately. The buildings have been
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Figure 4.2: Location, 3D vectorial model, and bus lines of the case study in
València, Spain.

generated using a 3D vector model derived from cadastral and LiDAR
altimetry data, as detailed in [56]. For streets, a 2-meter resolution
raster-based altimetric model or digital terrain model (DTM) is de-
veloped. This DTM is constructed from LiDAR ground points using
spatial interpolation through a Delaunay triangulation method [57, 58].
Trees are depicted with a 3D vector model based on the technique de-
scribed in [59], which provides the height and segmented canopy of each
tree. Using this city model, it is feasible to determine if a specific point
is shaded at a given moment, to calculate its skyline or visible horizon,
or to determine the street slope.

4.2.4 Kinematic model
This model, explained in detail in [49], generates a real-world repre-

sentative synthetic driving cycle that determines the kinematic variables
at each simulated point considering real-world traffic conditions. The
model integrates the city network, driving route, and bus stop spatial
data, with a weighted stochastic traffic stop generation and applying a
microtrip approach to define the driving cycle in a mixed-integer non-
linear programming (MINLP) formulation. The MINLP problem is
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applied for each trip, defined as the journey between two bus stops, and
minimizes the deviation between the GTFS’s empirical trip duration
data [60] and the calculated value of the constructed driving cycle, sub-
ject to spatial, temporal, and other kinematic related constraints. The
genetic algorithm from Ref. [61] has been applied to solve the problem,
obtaining the bus stop duration, the number and duration of traffic
stops, the kinematic variables, and the bus direction and ground slope
at each route point.

4.2.5 Climate model
This model calculates the climate conditions on each bus surface for

every route position and time step. The model provides external tem-
perature, horizontal infrared sky irradiance, direct normal irradiance,
and global horizontal irradiance. The sky temperature is derived from
TMY’s infrared sky irradiance [62]. A skyline profile has been obtained
for each route point to assess long-wave and solar radiation effects in
urban environments. This includes determining surface shadowing and
calculating the SVF, which has an impact on the diffuse and reflected
solar components and long-wave radiative exchanges. The direct, dif-
fuse, and reflected solar irradiance on each bus surface is calculated
using the TMY data, the solar geometry [63], the city reflectance [55],
the slope and orientation of each bus surface, and the shadow effects
from the skyline.

4.2.6 Coupled dynamic thermal and HVAC model

Description of the bus thermal load

An advanced dynamic thermal model has been developed to esti-
mate both the sensible and latent thermal load in real operation con-
ditions. This present model extends the model detailed in Ref. [49] by
adding the moisture transfers, the latent thermal loads and the heat
gain introduced by the fans of the HVAC system. The model is based
on a lumped-parameter approach, with three bus nodes (the indoor air
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i, the bus body envelope b, and the internal masses m) and four exter-
nal nodes (the external air e, the surrounding urban surfaces, the sky,
and the sun s), considering the variable environmental factors such as
the shading, vehicle orientation, and road slope during the route. The
thermal load is influenced by multiple energy and mass flows (Fig. 4.3).
These are abstracted as convective heat transfers Q̇, solar radiative heat
gains İ, long-wave radiative heat exchanges Ė and moisture transfers
ω̇. This thermal load model has been coupled with the HVAC model
into a system of differential ordinary equations (ODE), as detailed in
Section 4.2.6.

Description of the HVAC system

The HVAC system is the standard equipment of the municipal bus
fleet in València. An integrated rooftop HVAC system is used with a
conventional heat pump containing R134A as the refrigerant. The com-
pressor is a Bock model HGX34P/315-2A, a semi-hermetic four-cylinder
reciprocating compressor with variable speed. All heat exchangers are
modeled using their geometry and their thermo-physical characteristics
(i.e., materials, tube surface finish). The external unit has two fans
of 205 W, and the internal unit has four centrifugal fans of 394 W.
A thermostatic expansion valve ensures constant superheating at the
evaporator outlet of 8.6 K. The geometric characteristics (diameters
and lengths) and thermo-physical characteristics (pipe and insulation
materials and heat exchanges) of the refrigerant lines have also been
introduced. The HVAC system has a liquid receiver at the condenser
outlet. Finally, a set of PTCs (Positive Temperature Coefficient) ther-
mistors with a nominal power of 9 kW are integrated at the output of
the internal heat exchanger as an electrical auxiliary air heater. These
are used as back-up of the heat pump if its capacity is lower than the
thermal load.
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Figure 4.3: Heat gains and mass transfers of the thermal model. Q̇b−i is the
heat transfer from the body to the indoor air, Q̇m−i from the mass to the indoor
air, Q̇o−i is the occupancy heat gain, Q̇a−i is the heat gain from auxiliaries to
the indoor air, Q̇e−i is the heat gain by air changes, Q̇e−b the heat transfer
from external to the body, Q̇a−b is the heat gain from auxiliaries to the body,
Ėe−b the long-wave radiation exchange between the exterior and the body,
Ėm−b the long-wave radiation exchange between the mass and the body, İs−b

the solar radiation heat gain to the body and İs−m the solar radiation heat
gain to the mass, ṁx is the interior HVAC exchanger outlet mass flowrate, ṁf

is non-recirculated external fresh air mass flowrate, δ is the recirculation ratio
and ṁout is the exfiltrations mass flowrate.

IMST-ART performance maps of the HVAC system

The HVAC system has been modeled component by component with
IMST-ART, which assists in the selection, design, and optimization of
HVAC systems [64]. This software contains the geometric design of
each component, as well as its thermo-physical characteristics, and the
thermodynamic cycle described by the refrigerant. This professional
tool has undergone extensive experimental validation [38, 65, 66, 67]
with differences between measured and predicted values lower than 5%.
In this study, the compressor is defined through its catalog data for
different frequencies (15-50 Hz), the fans through their characteristic
curve, and the heat exchangers, expansion device, and lines through
the geometric and thermo-physical characteristics. Performance maps
are obtained through parametric studies, where the variables of inter-
est (compressor speed and energy consumption, capacity of the heat
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exchangers, refrigerant pressures and temperatures, outlet conditions
of the airflow and condensate flowrate) as a function of the input val-
ues (thermal demand, fans’ operating points and inlet conditions of the
airflow).

Coupled system of differential ordinary equations
In Eq.4.1-4.4, the energy and moisture mass balances of the cou-

pled dynamic thermal and HVAC model are established as a system of
differential ordinary equations.

mi · cp,i · dTi

dt
= Q̇b−i + Q̇m−i + Q̇S

o−i + Q̇a−i + Q̇S
e−i + Q̇S

x−i (4.1)

mb · cp,b · dTb

dt
= −Q̇b−i + Q̇e−b + Q̇a−b + Ėe−b + Ėm−b + İs−b (4.2)

mm · cp,m
dTm

dt
= −Q̇m−i − Ėm−b + İs−m (4.3)

mi · dωi

dt
= ω̇o−i + ω̇e−i + ω̇x−i (4.4)

This model extends the thermal load model explained in Ref. [49] by
adding the HVAC system contributions, both for energy and moisture
mass balances in the cabin’s air node. In Eq.4.1, the sensible heat from
climate control system Q̇S

x−i and the auxiliaries heat gain Q̇a, from the
HVAC internal fans is added to the energy balance in the cabin’s air
node energy balance to ensure that the temperature Ti is in comfort
conditions. Eq.4.4 represents the mass balance of moisture on the in-
door cabin node as a function of three sources: the moisture transfer
from the occupancy to the cabin ω̇o−i, obtained using the hourly oc-
cupancy, the latent heat load of a seated person according to UNE-EN
14750 standard [4], and the enthalpy of vaporization at the indoor psy-
chrometric conditions ∆hνap,i. The moisture transfer from the external
air node to the cabin due to leakages and openings ω̇e−i. The mois-
ture transfer from the climate control system ω̇x−i, obtained from the
coupled HVAC model.

The HVAC contributions of the balances, both the thermal gain
Q̇S

x−i and the moisture transfer ω̇x−i is calculated in accordance with
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Eq.4.5.

Q̇S
x−i = ρxV̇x−icp,x(Tx − Ti)

ω̇x−i = ρxV̇x−i(ωx − ωi) (4.5)

where x depends on the mode. In cooling mode (C), the cabin’s air
intake is the outlet airflow of the evaporator. In heating mode (H) the
air comes from the condenser. In ventilation mode (V), fresh air is
directly supplied from outdoors. In all cases, the cabin’s exfiltration
mass flowrate (ṁout) due to overpressure is assumed to be equivalent
to the non-recirculated cabin’s inlet mass flowrate.

The differential equation system is solved every time step using an
ode-solver. The initial conditions include cabin pre-conditioning at the
start of the day, which is a common strategy [68] to enhance early
passenger comfort and reduce the consumption of the battery.

Control and operation model of the HVAC system

The HVAC control strategy sets the indoor operating temperature
Ti according to a control curve [4] based on the external temperature
Te, while ωi is left unrestricted, ensuring it is within the acceptable
values of the standard [4]. The objective of the coupled model is to
obtain the operating point of the HVAC that compensates this specific
thermal load. If compensation is not possible, the indoor temperature
is iteratively adjusted to meet the net balance.

To determine the HVAC mode, the sensible thermal load Q̇S
i is

assessed for ventilation (V) suitability. In this case, V̇x−i combines
non-recirculated external fresh air from the internal fans V̇fan−i and, if
needed and conditions are favorable, the air intake through the windows
V̇wo−i. The first is calculated using a regulation coefficient rfan−i, rel-
ative to its nominal flowrate V̇ N

fan−i, conducted with the recirculation
ratio or through its PWM of the fans. The second is obtained with
a regulation coefficient rwo−i of the maximum airflow capacity when
opening all windows V̇ N

wo−i, considered to be 14.46 air changes per hour
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[69]. As a result, if ventilation compensates the load, x = V is fixed.
Otherwise, the mode is C for positive Q̇S

i and H for negative.

Once the mode is known, the total HVAC demand Q̇D is calculated
using Eq.4.6. Only the latent load in mode C has been considered
due to its significant impact on the consumption [70]. The impact of
frost/defrost operation has also been considered (in H mode).

Q̇D =
{︄

Q̇S
i + Q̇S

f + Q̇L
i + Q̇L

f , x = C

Q̇S
i + Q̇S

f + λice · Q̇ice , x = H
(4.6)

where Q̇L
i = ∆hvap,i ·ωo−i +∆hvap,e ·ωe−i is the latent load of the indoor

air node, obtained from the moisture contributions of the occupants and
the external node due to infiltrations and openings. Q̇S

f = ρe · V̇x−i ·
(1 − δ) · cp,e · (Te − Ti) is the energy required by the HVAC to heat or
cool the non-recirculated external fresh air, and Q̇L

f = ρe · V̇x−i · (1 −
δ) · ∆hvap,e · (ωe − ωi) its latent load. λice is a control parameter for
frost/defrost conditions, activated when the mode is H and Te < 5◦C
[62], and Q̇ice accounts for the loss of efficiency due to frost formation
and the extra load that must be compensated for the defrost, according
to the model described in [62], which also defines the extra power that
the compressor and fans must supply Ẇice in these conditions.

The recirculation ratio δ, defined as the ratio of the recirculated
mass airflow to the total mass airflow, is fixed for each mode (0% in
V, 64% in H, 90% in C) according to the standard system operation.
The internal fan air flowrates V̇x−i are set for each mode (PWM 60%
in H, PWM 80% in C, PWM 100% in V), while the PWM of the ex-
ternal axial fans depends on the external temperature in the H and C
modes (Table 4.2), and is turned off for ventilation. Once the demand
is determined, the psychrometric conditions of the airflow entering the
internal heat exchanger are calculated as a mixture of the recirculated
and non-recirculated airflow.

The compressor speed is calculated by multidimensional linear inter-
polation using the HVAC system’s performance map from IMST-ART,
based on the operating model, thermal demand, flowrates and tem-
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Table 4.2: PWM of external fans depending on the external temperature Te

and mode.

Mode C PWM (%) Mode H PWM (%)

Te ≤ 15◦C 60 Te ≤ 5◦C 90
15◦C < Te ≤ 20◦C 70 5◦C < Te ≤ 10◦C 80
20◦C < Te ≤ 25◦C 80 10◦C < Te ≤ 15◦C 70
25◦C < Te ≤ 30◦C 90 Te > 15◦C 60
Te > 30◦C 100

peratures and relative humidities. As a result, this map provides the
fan energy consumption, refrigerant pressures and temperatures, airflow
outlet conditions and condensate flowrate.

Figure 4.4: Methodology diagram for the coupled thermal load and HVAC
model.

Once the operating point of the HVAC system is obtained, the sen-
sible heat flow output from the internal exchanger is assessed for three
scenarios (Figure 4.4). The first involves the compressor speed falling
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within the manufacturer’s specified range and matching the sensible
demand, using the IMST-ART map interpolation for the desired outlet
temperature Tx. In the second situation, with the minimum compressor
speed (15 Hz) and excess sensible output, the equipment’s on-time ra-
tio tON is calculated for adjusted capacity and consumption. The third
case, at maximum compressor speed (50 Hz) with insufficient sensible
output, involves activating PTCs for heating and, if needed, iteratively
adjusting the indoor air temperature and HVAC inlet airflow to balance
the ODE.

Once the balances are resolved, the performance results such as the
compressor’s COPcomp, the overall COPhvac, and the pressure ratio pr

are obtained, according to Eq.4.7.

Ẇhvac = tON · (Wcomp + Wfan.i + Wfan,e + Wptc + λice · Wice)

COPcomp = Qhvac

tON · (Wcomp + λice · Wice,comp)

COPhvac = Qhvac

Whvac
(4.7)

pr = pdis

psuc

where Qhvac is the heat delivered by the equipment during the time-
step, Wice,comp is the extra power that the compressor must supply
in frost/defrost conditions during the time step, pdis is the absolute
discharge pressure and psuc is the absolute suction pressure.

4.2.7 Battery model
To determine the total bus energy consumption, the different power

flows at the components of the electric bus have been modeled. Seven
sub-systems are considered given their impact on the battery consump-
tion Ẇbat:

• The motor consumption Ẇmot and regenerative braking energy
Ẇreg are derived from the powertrain model explained in Refs.
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[71, 72], using the street slope from the 3D model, bus speed
and acceleration from the kinematic model, and bus and road
characteristics from Refs. [41, 54].

• The obtained HVAC system consumption Ẇhvac.

• The consumption of hydraulic systems Ẇhyd (primarily the steer-
ing pump and the suspension system) is modeled using a linear
approach [40]. A regression determines the consumption per dis-
tance as a function of the average speed and the number of stops
per distance.

• The consumption of pneumatic systems Ẇpne (mainly for the
brakes) is also modeled using a linear model [40].

• The consumption of auxiliary electrical systems Ẇele includes mul-
tiple sources such as the lighting systems, the information, con-
trol and navigation systems, or the safety and emergency systems.
Their overall consumption is assumed to be equal to 0.5 kW in all
lines.

• The battery thermal management system consumption Ẇbms in-
cludes heating on cold winter days and cooling during normal
operation, especially on hot days. This consumption has been
obtained as a function of the external temperature, by Ref. [40].

• The impact on consumption from the battery’s charge/discharge
efficiency Ẇeff has been modeled assuming an overall charging
and discharging efficiency of 0.93 [72].

Eq.4.8 encompasses the total battery consumption from the mentioned
power flow components.

Ẇbat = Ẇmot−Ẇreg +Ẇhvac+Ẇhyd+Ẇpne+Ẇele+Ẇbms+Ẇeff (4.8)
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4.3 Simulation results
4.3.1 Representative year

The present section shows the results of a one-year simulation with
a one-minute time step. The results focus on the HVAC system and the
total battery consumption for the three bus lines. Table 4.3 shows the
Mean Absolute Percentage Deviation (MAPD) for the different lines, as
calculated by MAPD = 1

n

∑︁n
t

⃓⃓⃓
ŷ(t)−y(t)

y(t)

⃓⃓⃓
, where ŷ is the prediction and y

is the reference value. The results reveal a very small difference between
the three lines, for all the main performance indicators of the HVAC
system. For this reason, the rest of the HVAC results focus mainly on
one single line (C1). Figure 4.5 shows the instantaneous thermal HVAC

Table 4.3: Mean absolute percentage deviation (MAPD) between lines C2 and
C3 with respect to C1 for the main daily indicators.

line Qi Wcomp Whvac COPcomp COPhvac Wmot

C2 3.4% 5.3% 3.7% 0.3% 0.8% 18.4%
C3 2.0% 2.1% 1.7% 0.1% 0.3% 14.3%

demand contributions (sensible and latent) on a typical cold winter day
(January), a mild day (March), and a hot summer day (July). The
two contributions to the total demand Q̇D, according to Eq.4.6, are
the thermal load of the cabin Q̇i, and the thermal load due to the
non-recirculated fresh airflow from outside Q̇f . Above, the operating
modes are represented: cooling (C), standard heating (Hhp), heating
under frost/defrost conditions (Hice), and heating with PTCs activated
(Hptc), ventilation mode with only internal blowers (Vfan), and venti-
lation where windows are also opened (Vwo). Figure 4.6 displays the
series of temperature T and relative humidity RH inside the cabin i,
outside e, and at the HVAC output x in the days discussed. Figure
4.7 shows the instantaneous consumptions of each HVAC component
and the total consumption Ẇhvac on the same representative days. The
consumptions of the compressor Ẇcomp, internal blowers Ẇfan,i, exter-
nal fans Ẇfan,e, and PTCs Ẇptc have been differentiated. In January,
due to low external temperatures, the thermal demand remains nega-
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Figure 4.5: Instantaneous thermal demand contributions to the HVAC de-
mand and the corresponding modes throughout a typical day in three different
months of the year.

tive and the indoor temperature stays at the minimum setpoint value
(19 °C), except during the midday. The system operates in heating
mode until 11:45, primarily to warm the non-recirculated fresh airflow
and compensate for the cabin conduction and convection losses. Until
11:15, under frost/defrost cycle conditions, the total absolute demand
is of 3.2-17.8 kW, the compressor consumption fluctuates between 0.8
and 7.0 kW and the fans consume 0.4 kW each. During the 30 minutes
of the standard Hhp operation, the absolute demand decreases from
3.2 kW to null and the temperature at the condenser outlet is between
1.0-8.9 °C, with a relative humidity between 41.1-63.0 %. The indoor
relative humidity, starting from 49.0 %, gradually increases throughout
the morning, mainly due to the moisture accumulation from occupants
because of the 64 % recirculation rate in this mode. Between 11:45
and 18:45, the cabin’s thermal demand becomes positive, primarily due
to occupancy and solar radiation, peaking at 6.4 kW. This demand is
compensated with ventilation, meeting the HVAC output to exterior
conditions, and the internal fan is the only consumption of the sys-
tem, with around 0.5 kW. The indoor relative humidity stays within
26.0-46.9 %, where the occupants’ contribution compensates for the de-
humidification by the exterior airflow. From 18:45 onward, the cabin’s
demand becomes negative again, almost symmetrically to the morning,
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Figure 4.6: Series of temperature T and relative humidity RH inside the cabin
i, outside e, and at the HVAC output x throughout a typical day in three
different months of the year.

until 23:00. At a total thermal absolute demand of 17.9 kW, the heat
pump cannot maintain the cabin temperature, and hereby the PTCs are
activated with a peak of 2.8 kW at 24:00, leading to a total consumption
of 10.2 kW to supply an absolute demand of 20.5 kW.

In March, the external temperature below 15 °C during early and
late hours activates the heating mode, with a total thermal absolute de-
mand ranging 2.0-9.8 kW, a compressor consumption around 0.5-2.4 kW
and total consumption, including fans, reaching up to 3 kW. From 9:00,
the cabin’s demand turns positive and is initially met by ventilation us-
ing internal blowers, consuming up to 0.8 kW to compensate for a peak
load of 14.1 kW. When this is insufficient, the windows are opened for
15 minutes, as the external conditions are favorable for load compen-
sation, but the airflow from the internal blowers is not high enough.
When still insufficient, the cooling mode is activated and the windows
are closed until 19:00. The thermal demand in the cabin reaches a max-
imum of 13.0 kW with a compressor consumption between 1.1-3.1 kW
and a total consumption, including fans, of maximum 4.0 kW. When
the cooling mode is activated, the cabin’s latent load reaches 2.2 kW
which is partially compensated by the non-recirculated fresh air, but
mainly by the condensation of moist air from the recirculated airflow
(90 %) in the evaporator. Consequently, the relative humidity in the
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Figure 4.7: Instantaneous HVAC consumptions of each component and the
corresponding modes throughout a typical day in three different months of
the year.

cabin drops drastically from 77.0 % to 37.0 %. From this hour onward,
the behavior is almost symmetric to the morning.

In July, the external temperature and relative humidity are high,
even early (25 °C/94 %). Thus, the cooling mode is activated to meet the
load requirements from occupancy and solar radiation. As the external
temperature increases, the cabin’s thermal demand and the compres-
sor consumption rise, peaking at 30 °C with a compressor consumption
of 6.8 kW and a total of 7.8 kW to compensate for a total demand of
24.1 kW with the 29.4 % of the latent component. The relative humidity
decreases until 61.0 %, mainly because the condensation in the evapo-
rator compensates for the indoor accumulation of moisture. After the
peak, the operation is symmetric to the morning. However, in this case,
at the end of the day, the load can be compensated just with ventilation.

Finally, the results have been compared with other reference pub-
lications [73, 74], achieving very similar outcomes for a comparable
bus under similar load conditions, both for cooling and heating modes.
Figure 4.8 represents the average daily cumulative sensible and latent
thermal HVAC demand contributions, using stacked bars for contri-
butions, and lines with points for the total accumulated demand QD,
including both positive and negative values. The cooling demand for a
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Figure 4.8: Average daily cumulative sensible and latent thermal HVAC de-
mand contributions.

warm summer day is around 218 kWh, while the heating demand for a
cold winter day is around 59 kWh. The cumulative cabin sensible heat
load contribution is the predominant factor in the cooling demand (70-
98%), while the sensible heat load from non-recirculated fresh airflow
is the main contributor to the heating demand (43-68%), compensating
for the cabin’s positive contributions. The latent loads of both contri-
butions compensate each other on cold and mild days, whereas on hot
days, they contribute significantly to the cooling demand, exceeding
20% from June to October.

Figure 4.9 represents the mean operation time percentage of each
mode. Since the thermal demand is compensated all year long, the per-
centage of uncompensated time has not been represented. Cooling mode
is the most frequently operating mode throughout the year (44.6%), fol-
lowed by ventilation (31.4%) and heating (24.0%). Cooling exceeds 50%
from May to October, while heating is activated scarcely, except from
December to March, with operating times ranging 31-41%. Ventila-
tion is dominant from November to March (42-55)%, often sufficient
to compensate for the positive cabin’s thermal loads in these months.
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Figure 4.9: Mean operation time of each HVAC mode.

However, during peak load hours in these months, especially in the mid-
dle of the day with high occupancy, cooling is still necessary. Similarly,
in summer, heating is still needed in the early or late hours of the day
with low occupancy to warm the fresh airflow. Between December and
March, the system operates 2-11% of the time under frost/defrost cycle
conditions due to the low external temperatures, representing 26% of
December’s heating operation. On the coldest winter days, in January
and December, brief PTC activation is needed (0.4%). The ventilation
mode, combining window opening with maximum fan airflow, is active
for about 5% annually when conditions are favorable and the airflow of
the internal blowers is insufficient, serving as an intermediary strategy
between fan-driven ventilation and active cooling.

Figure 4.10 shows the daily cumulative energy consumption of the
HVAC components, with stacked bars for the compressor Ẇcomp, inter-
nal fans Ẇfan,i, external fans Ẇfan,e, and PTCs Ẇptc, and points and
lines showing total consumption Ẇhvac.

The peak total consumption reaches 63.9 kWh in hot summer days,
with a minimum of 22.8 kWh on mild-cold days (November) and around
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Figure 4.10: Daily cumulative energy consumption of the HVAC components.

26.6 kWh in cold winter days (January and December). The com-
pressor is the largest consumer, accounting for 69-75% between April
and September, in cooling-dominated periods, and 58-65% in other
months when ventilation is the primary mode. The next major impact
comes from the internal fans (19-38%) with more impact in moderately
warm days where they are often the only operational device (ventilation
mode). The consumption of the external fans is low all throughout the
year (4-6% of the total). Lastly, the consumption of PTCs occurs only
on the coldest days and is low even in these days (0.4%).

Figure 4.11 illustrates the yearly distribution of compressor and fan
speeds (internal and external), across operating modes, using violin di-
agrams and a scatter plot to represent speed probability density and
operational points. The fan speed depends on the mode, with the scat-
ter plot showing the values and the violin diagram indicating the fre-
quency. Ventilation modes set the internal blowers to their maximum
speed (65 Hz) while deactivating the compressor and the external fans.
Internal blowers are fixed in heating and cooling, with external fans
(38-52 Hz) adjusted for external temperatures. The compressor usually
runs at minimum speed (15 Hz), staying below 35 Hz in cooling and
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Figure 4.11: Yearly distribution of compressor and fan speeds (internal and
external) across operating modes.

rarely exceeding it in heating (0.3% of the time, less than 0.1% annu-
ally). In heating, the on-time ratio is mostly below one (91.7% of the
time), while in cooling, it is 83.5%, highlighting the system’s oversizing
and optimization potential.

Figure 4.12 presents the yearly distribution of three key system pa-
rameters across different modes: global COPhvac for overall system
efficiency, compressor COPcomp for the efficiency of the most energy-
consuming component, and pressure ratio pr for operational range of
the system. Violin diagrams for each mode show the probability density
of these parameters, while a scatter plot illustrates their range of val-
ues. In cooling and standard heating, the COPcomp are similar with the
most probable value is around 4, while the COPhvac is 2.9-3.1, respec-
tively. Under frost/defrost conditions COPcomp falls to 3.7 and COPhvac

to 2.8. In PTC mode COPcomp drops below 2.5 and COPhvac to 2.2.
The pressure ratio ranges within 2.6-2.8 in cooling, 3.6-3.7 in standard
heating, and 3.6-6.7 under frost/defrost conditions, and reaches up to
6.8 in PTC mode. Table 4.4 displays the annual summary of the most
relevant indicators in each operating mode (m). Energy values per dis-

162



4.3. SIMULATION RESULTS

Figure 4.12: Yearly distribution of the global COPhvac, compressor COPcomp,
and pressure ratio pr across different modes.

tance covered, their operating time percentage in each mode (ot), and
performance and operation parameters have been obtained.

The cooling mode is active 44.8% of the time throughout the year,
compensating for 72% of the thermal load in the cabin using the same
percentage of the total annual consumption. The average annual con-
sumption is 400 Wh km−1, distributed among the compressor (74%),
internal fans (20%), and external fans (6%). The average COPcomp is
3.88, while the global is 2.71, with an average pressure ratio of 2.69. The
average on-time ratio is below 65%, showing that the HVAC system is
clearly oversized.

Ventilation is active 31.2% of the time but only compensates 15% of
the cabin load. Ventilation is used to compensate low-intensity positive
loads, consuming only 7% of the annual consumption, with an average
consumption of 53 Wh km−1 from the internal blowers.

Heating modes operate 23.9% of the time, compensating 13% of the
cabin load with an average consumption of 227 Wh km−1, accounting
for 21% of the annual consumption.
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Ẇ
c
o

m
p

Ẇ
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Ẇ
p

tc
Ẇ
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The average consumption is lower, but the average pressure ratio in-
creases to 3.77 due to the temperature and pressure differences between
evaporation and condensation. Among the three heating modes, the
standard heating mode is the least demanding, consuming on average
less than 50% of the cooling mode, as it operates under less demanding
conditions. The heating mode under frost/defrost conditions is much
more demanding, significantly reducing the efficiency of the evaporator
and compressor during frost and increasing the cabin load during de-
frost. As a result, the average pressure ratio increases by 18%, and the
average consumption rises to 487 Wh km−1, reducing the compressor
COPcomp. Finally, the heating mode with PTC is the most demand-
ing, always operating under frost/defrost conditions, the compressor
working at nominal speed (3,000 rpm) and adding the consumption of
PTCs. Consequently, the average pressure ratio increases to 6.63, the
consumption rises to 997 Wh km−1, and the global COPhvac drops down
to 2.09. The HVAC system is perfectly capable of covering the heating
demand. However, considering that the average on-time ratio in the
standard heating mode is below 40%, the size of the heat pump can
be potentially reduced, and the capacity of the PTC heaters increased
to meet the heating demand requirements during, for example, 2.3% of
the time represented by frost/defrost conditions and the current PTC
usage.

The results suggest a significant potential for optimization due to
the oversizing of the HVAC system. The mean on-time ratio in heating
and cooling is below 57%, and the thermal demand is never higher than
the system’s capacity. Some potential strategies could be downsizing
the HVAC system or introducing a thermal energy storage system. This
would result in higher operating times and depending on the compressor
and the control strategies, there is also room for a small improvement
in the overall system’s efficiency.

Figure 4.13 presents the average daily total cumulative energy con-
sumption of the bus that the battery needs to supply for the three
analyzed bus lines. The different contributions are represented with
stacked bars, the net battery consumption in a red circle, and the daily
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range net consumption with an error bar. Line C2 shows the high-

Figure 4.13: Average daily total cumulative energy consumption of the bus.

est average daily energy consumption (773 kWh), followed by C3 (571
kWh) and C1 (329 kWh), all of them with a daily range around (-25,42
kWh) concerning the annual mean. The variances between them are
primarily due to the different distances traveled, which is a result of the
mean speed, and to a lesser extent, the impact of acceleration, number
of stops, shading, and topographical factors of each route. However, the
energy consumption per unit of distance traveled remains remarkably
consistent across all three cases, registering at 2.09 Wh km−1 for lines
C1 and C2, and 2.12 Wh km−1 for line C3. This similarity is due to
the compensatory effect of the different consumption components in-
volved. In all lines, the powertrain consumption Wmot is the largest
component, being 76% in C1, 86% in C2 and 83% in C3, although a
significant portion of this (17% in C1, 20% in C2 and 18% in C3) is
recovered through regenerative braking Wreg, standing for a net impact
of 72% in C1, 83% in C2 and 80% in C3. The next highest consum-
ing component is the HVAC Whvac (12% in C1, 5% in C2 and 7% in
C3), followed the consumption due to the battery charge and discharge
efficiency Weff (7% in all lines), auxiliary electrical systems Wele and
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battery thermal management Wbtms (3% in C1, 1% in C2 and 2% in
C3), hydraulic systems Whyd (2% in C1, 1% in C2 and 2% in C3) and
pneumatic systems Wpne (2% in C1, 2% in C2 and 1% in C3).

The annual average HVAC consumption per km is 0.24 Wh km−1

for C1, 0.10 Wh km−1 for C2, and 0.14 Wh km−1 for C3. The impact of
the HVAC consumption on an average day of each month varies among
the lines, with C1 ranging 7-20% (0.13-0.47 Wh km−1), C2 between 3-
10% (0.06-0.20 Wh km−1), and C3 in 4-12% (0.08-0.27 Wh km−1). The
highest value occurs on a cooling-dominant day (July), and the lowest
on a ventilation-dominant day (February).

The overall consumption per distance traveled is comparable to
other publications, such as 2 - 4.6 Wh km−1 [39], 1.24 – 2.48 Wh km−1

[75], and 0.955 - 2.20 Wh km−1 [76].

4.3.2 Extreme weather conditions
This section analyzes the HVAC system’s performance under severe

weather conditions. For this purpose, the day with the highest cooling
demand and the day with the highest heating demand from the TMY
dataset were selected. To simulate extreme weather scenarios, the out-
door temperatures were adjusted by adding +2.5K and +5K in the peak
cooling day and by reducing the temperature (-2.5K and -5K) in the
peak heating day.

Table 4.5 presents the simulation results for the six cases of Line C1,
by encompassing the modified TMY days with elevated and reduced
temperatures. The most relevant indicators are reported in Table 4.5,
for instance the operational performance variables (mean pressure ratio
pr, mean compressor speed ncomp, mean compressor and global COP,
condensing Tcond, evaporating Tevap and discharge Tdis temperatures),
the energy consumption (compressor, PTC and total HVAC system)
and the unmet load ratio (QU ).

The analysis reveals significant variations in the HVAC system’s en-
ergy consumption under extreme weather conditions compared to the
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annual TMY mean. In very warm days, the HVAC system can con-
sume up to 90% more energy on the warmest peak TMY day or up to
165% more in the +5K case. In very cold days, the heating demand
increases the energy consumption by 40% on the coldest TMY day or
up to 182% in the -5K case. In these severe days, higher compressor
speeds and higher refrigerant pressures and temperatures are obtained,
hereby reducing the COP. In the heating scenarios, there is a significant
increase in the use of the PTCs.
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4.4 Optimization of the compressor size
Since the previous results indicate that the compressor is oversized,

a parametric study has been performed to assess the impact of the com-
pressor size on the energy consumption and on the load coverage. The
IMST-ART performance maps of the compressor have been scaled with
a factor of 100% (original scale), 87.5%, 75%, 62.5%, and 50%. These
maps were first employed to identify an optimal compressor size that
maximizes energy efficiency and meets the thermal load demands, both
in real and in extreme weather conditions, while ensuring that internal
operational limits, including refrigerant pressures and temperatures, are
not exceeded. For each compressor size, a representative year simulation
for line C1 was performed.

Figure 4.14 illustrates the impact of the compressor scale on the
compressor COPcomp, the compressor speed ncomp and the unmet load
ratio Qu. In order to consider the impact of more severe weather condi-
tions, in heating mode the impact of lower ambient temperatures (down
to -5°C) has been represented in the x-axis. In cooling mode, the im-
pact of +5°C in the ambient temperature has also been addressed. The

Figure 4.14: COPcomp, compressor speed (ncomp), and unmet load ratio (QU )
for different compressor scales under ±5K on the ambient temperature.

results clearly indicate that the current compressor is oversized, a scale
of 80% can adequately meet the thermal load during the peak demand
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days of the TMY. In winter, 5K lower ambient temperatures would lead
to 8% of unmet load. This number is higher for 5K higher tempera-
tures in summer (12% unmet load). For compressor scales below 75%
the system does not fully meet the cooling load.

Table 4.6 presents the full-year simulation results in terms of oper-
ating time, performance, energy consumption, and unmet load (QU ) for
different compressor scales. The results demonstrate that the system

Table 4.6: Main performance indicators obtained in Line C1 for different com-
pressor scales in a full year simulation.

Scale ot Wcomp Wptc Whvac COPcomp COPhvac ncomp QU

(%) (%) ( Wh
km ) ( Wh

km ) ( Wh
km ) (Hz) (%)

50.0 53 153 3 234 4.7 2.9 22 3.3
62.5 48 156 1 234 4.5 2.9 19 0.5
75.0 45 159 1 236 4.2 2.8 17 0.0
87.5 42 163 0 239 4.1 2.8 16 0.0
100 40 168 0 243 3.9 2.7 16 0.0

enhances its operation at lower scales. When the scale factor is 50%,
the operating time increases by 13%. The mean compressor speed is
reduced by 38% with a 23% decrease in the pressure ratio, a 4% reduc-
tion in average daily consumption, and a 7% improvement in the global
COP.

Considering the outcomes from extreme cases and the annual sim-
ulation across different scales, a 75% scale is optimal to maximize op-
erational efficiency and energy savings, while ensuring a full load com-
pensation for a representative year. This achieves a 3% reduction in
the annual energy consumption and a 4% enhancement in the COP,
equivalent to an annual saving of over 200 MWh when applied across
a fleet of 500 buses. Following the ASHRAE Standard [77] criterion,
which recommends a maximum annual QU of 3.4% to ensure adequate
thermal coverage, the optimal compressor scale could be reduced to 50%
of the current size. However, considering the expected temperature in-
crease due to climate change, a more conservative approach is to adopt
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a scale of 75%. With this scale, even under an extreme +5K scenario,
the uncompensated load would only exceed 2% of the time.
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4.5 Conclusions
The shift towards electric urban buses is key for sustainable trans-

portation, with HVAC systems playing a crucial role in extending the
range of batteries.

The present study introduces advanced dynamic models for simulat-
ing urban bus energy consumption under real conditions, emphasizing
HVAC consumption and its impact on overall energy consumption. This
study includes a 3D city model, a stochastic driving cycle for traffic re-
alism, and a climate model for environmental factors. The thermal
and HVAC model analyzes thermal loads and moisture, while a de-
tailed HVAC model covers multiple operating modes. A comprehensive
battery model evaluates overall energy usage, including the motor and
auxiliary systems, allowing precise simulations in complex urban envi-
ronments. The model has been applied to a bus from the urban fleet
of València, Spain. The simulations involve a one-year period at 1-min
intervals on three lines, covering different urban typologies. The mean
daily results for the main HVAC indicators across the three lines are
similar, with maximum deviations of 3.4% in cabin load, 3.7% in total
energy consumption, and 0.8% in global COP.

The results of the full-year simulation show that cooling is the dom-
inant mode (44.6% of the time), followed by ventilation (31.4%), and
heating (24.0%). The average annual consumption in cooling mode is
0.40 Wh km−1, for ventilation 0.05 Wh km−1, and the average for the
heating modes is 0.23 Wh km−1. The compressor generally operates at
a minimum speed (15 Hz) and only reaches its maximum speed (50
Hz) in heating mode for less than 0.1% of the total operational time.
Cooling mode speeds do not exceed 35 Hz, and heating mode rarely
does. Regarding the main performance indicators, in cooling and stan-
dard heating modes, the compressor’s COP averages around 4, while
the overall system’s COP is approximately 3. Under frost/defrost con-
ditions, these figures drop to 3.7 and 2.8, respectively, and decrease
further in PTC mode to below 2.5 and 2.2. Pressure ratios vary with
each mode, ranging from 2.6-2.8 in cooling, 3.6-3.7 in standard heating,
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3.6-6.7 under frost/defrost conditions, and up to 6.8 in PTC mode.

The impact of more severe weather conditions has also been an-
alyzed. The energy consumption increased substantially, up to 165%
more in the +5K scenario compared to the TMY annual mean. These
conditions forced the HVAC system to operate under higher pressures
and temperatures.

The study suggests that the HVAC system could be potentially
downsized, given that the on-time ratio is always below 65% in cool-
ing mode and below 40% in standard heating mode (no defrost). Po-
tential optimizations include increasing PTC heater capacity for occa-
sional frost/defrost conditions and introducing a thermal energy stor-
age buffer. Regarding the overall energy consumption for each line,
line C2 has the highest average daily energy use at 773 kWh, followed
by C3 (571 kWh) and C1 (329 kWh), with a daily variance of around
(−25.42 kWh) from the annual mean. Consumption differences are
mainly due to the traveled distance. The energy use per km is similar
across lines: 2.09 Wh km−1 for C1 and C2, and 2.12 Wh km−1 for C3.
The powertrain is the major consumer, with a significant part offset by
regenerative braking, with a mean annual net contribution of 76-86%.
The HVAC is the second largest contributor, with a mean annual ratio
between 5 and 12%. The HVAC system’s annual average energy con-
sumption varies by bus line: 0.24 Wh km−1 for line C1, 0.10 Wh km−1

for line C2, and 0.14 Wh km−1 for line C3. As a conclusion, the impact
of HVAC on urban electric bus consumption is notably higher on routes
with lower speeds and more stops per kilometer. In these cases, the
driving range in cooling mode, which is the most demanding mode in
València, can be reduced by the HVAC by up to 15% to 20% in mild
summer days with hot summer days, respectively.

Lastly, an optimization study has demonstrated that a scale factor
of 75% is more convenient for the compressor. The annual energy con-
sumption can be potentially reduced by 3%, with a 4% improvement in
the COP. The impact on the performance is relatively small, but a 25%
reduction of the size is not negligible with respect to its cost.
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The findings of this study underscore the importance of adapting
and optimizing HVAC systems given real operational conditions. This
can only be addressed with sufficiently detailed models on the thermal
model of the vehicle, of the thermal loads, or of the HVAC system.
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Chapter 5

Discussion of the main results

This chapter presents a comprehensive overview of the findings and
insights from the PhD thesis. The discussion is organized into two
sections:

• Discussion and justification of the modeling approach: This sec-
tion offers a general discussion on the methodology.

• Results overview: This section provides a comprehensive sum-
mary of the results, aligning them with the primary objectives
and identified research gaps in the literature.
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CHAPTER 5. DISCUSSION OF THE MAIN RESULTS

5.1 Discussion and justification of the modeling ap-
proach

This section justifies the level of detail and complexity adopted in
part of the submodels. This discussion is not included in the three pub-
lished articles, since it is a general perspective of the entire simulation
tool. This section discusses:

• The variability of the total instantaneous HVAC consumption is
analyzed, as well as its relationship with the external temperature
and the solar radiation.

• Exploring whether the global solar horizontal radiation from TMY
could determine the solar heat gain of the bus.

• Two potential approaches to shading models are discussed, as well
as the importance of employing a shading model in urban envi-
ronments.

• The effect of modeling each bus surface individually on the overall
thermal dynamics is evaluated.

• The differences between using a transient thermal model or a
steady-state model are compared.

5.1.1 The total instantaneous HVAC consumption
The operating conditions and their impact on the HVAC system

consumption in buses operating within an urban environment are com-
plex. On the one hand, these conditions are influenced by stochastic
variables such as weather, traffic, and passenger occupancy. On the
other hand, the HVAC system’s response and energy consumption are
nonlinear with respect to these conditions, and its control logic results
in discrete operational modes.

Figure 5.1 illustrates the density distribution of the HVAC instan-
taneous energy consumption over a representative year. The opera-
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Figure 5.1: Distribution density of the HVAC system’s consumption Whvac

over a representative year in the different operational modes (above) and total
(below).

tional modes are: cooling (C), standard heating (Hhp), heating un-
der frost/defrost conditions (Hice), and heating with PTCs activated
(Hptc), ventilation mode with only internal blowers (Vfan), and ventila-
tion where windows are also open (Hwo).

The results show the high variability of HVAC instantaneous con-
sumption, both in total and within each operational mode. This high-
lights that each operating mode is different, and yet all are necessary to
estimate the total HVAC consumption. It also underscores the potential
errors from oversimplification, particularly when assuming a uniform
behavior.

Figure 5.2 illustrates the relationship between the total equipment
consumption and both the exterior temperature and the horizontal ra-
diation for the different operating modes over a representative year.

The results reveal the HVAC consumption depends strongly on the
exterior temperature and solar radiation. These factors clearly affect the
consumption, but deriving a robust approximation based only on these
variables only is not straightforward. Other factors, including stochastic
variables, such as occupancy and traffic, also significantly affect the
thermal load and need to be integrated and consistently considered.
For instance, occupancy levels are related to bus stop waiting times
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Figure 5.2: Relationship between the total HVAC system’s consumption
Whvac, the exterior temperature Te and the horizontal radiation G0 differ-
entiating between operational modes.

and air exchanges due to the door opening and passenger flow. The
bus speed also affects on the external convection coefficients and on the
infiltration rates.

5.1.2 Solar heat gain
Solar radiation is identified as a major component of the total ther-

mal load, particularly during the summer months. This hypothesis
was confirmed in Chapter 3, which demonstrates that the solar load
(20-42%) of the total cumulative positive load over the year, exceeding
40% between April and August. Consequently, a correct modeling of
the solar radiation is crucial for the estimation of the HVAC system
consumption.

In urban vehicles, solar radiation is highly variable due to dynamic
factors such as shadows and the orientation of the bus. Consequently,
accurate modeling of the city and bus route is crucial to precisely esti-
mate the HVAC system consumption.

Figure 5.3 illustrates the total solar heat gain of the bus in relation to
horizontal global radiation, distinguishing between scenarios where the
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Figure 5.3: Relationship between the total solar heat gain Itot and the hori-
zontal global radiation G0, when the vehicle is shaded or unshaded.

vehicle is shaded or unshaded. The horizontal solar radiation does not
precisely determine the solar heat gain. Detailed models are necessary
to capture the specific solar gain of the bus at any given time.

5.1.3 Shadow models
In Chapter 2, a cast-based shadow model was developed to deter-

mine the spatial distribution of shading or partial shading on each sur-
face of the bus. This model is highly valuable in situations of partial
shading, for instance in the nonlinear response of photovoltaic systems
or in building surfaces where the duration of partial shading leads to
substantial variations in the building load. However, in the context of
urban buses, where the system is in motion, shading is intermittent and
its spatial distribution is less critical compared to the previous cases.
Consequently, there is an opportunity to simplify the shadow model to
one based on representative points on each surface of the bus. This
approach involves evaluating whether each point is shaded or not, as-
suming that if a point is shaded, the entire surface is considered to
be shaded. Based on this hypothesis, the model can be adapted to a
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skyline-based model, which assesses the visible horizon of these repre-
sentative points, thus making it more scalable.

(a) (b)
Figure 5.4: Comparison of shadow models on the 15-06-2023 12:50:00 CEST
in a partial shaded scenario where 12.25% of the roof surface is shadowed. (a)
Cast-based model: Shadow cast (dark gray) from buildings (light gray) and
trees (green) over a bus roof surface (blue). Red point represents the centroid
of the roof bus surface. (b) Skyline-based model: Visible skyline (dark gray)
and sun position (orange) from the centroid of the bus surface.

The cast-based model calculates, at each time step, the projection
of shadows from all surrounding elements onto a surface using a ray-
tracing algorithm and polygon closure methods (see Figure 5.4b). The
calculations are performed in every time step. In contrast, the skyline-
based model determines the visible skyline or horizon for a spatial point
(see Figure 5.4a), which remains constant regardless of time or the solar
position. In each time step the model determines if the sun is "hidden"
behind the skyline. This approach allows for the spatial discretization of
the route and the evaluation of consistent points across different time
steps, enabling the skyline to be computed once per point (valid for
any time step) and only checking at each time step whether the sun
intersects the skyline. Additionally, the skyline-based model provides
results for visible sky or view factors for diffuse and reflected solar radi-
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ation, as well as for long-wave radiative heat exchanges. Furthermore,
with this simplification of the model, additional surfaces can be incor-
porated without significantly increasing the overall computational cost.
For instance, trees, which are crucial for shading in urban spaces, can
be included. The scalability advantages of the skyline-based model are
diminished if multiple points on each surface need to be evaluated, as a
2D grid. The impact of using a single representative point was assessed.
Moreover, the skyline-based model simplifies the process by eliminating
the need to model partial shading on the bus surface and avoids the
complexity of solving 2D or 3D heat transfer equations with a large
number of interacting bus nodes.

Figure 5.5: Difference in accumulated direct solar radiation on the bus roof
throughout a day of June for the cast-based shadow model Bcast, the skyline-
based shadow model Bskyline and for the non-shadowed model Bno−shadow.

Figure 5.5 illustrates the variation in accumulated direct solar ra-
diation on the bus roof over a day in June across three models, com-
paring the direct component of radiation with and without shadow ef-
fects. The difference between the shadow models is very small, with
an accumulated difference of 1.3%. This finding leads to the conclusion
that the skyline-based model effectively balances accuracy and com-
putational cost, enabling scalable results without compromising the
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accuracy. However, if the shadows are not considered, the impact is
very high, with a daily cumulative increase of over 53%. This clearly
underscores the importance of employing a shading model in urban en-
vironments.

5.1.4 Bus surfaces in climate model
Table 5.1 shows the annual mean percentage of radiation fluxes dis-

tributed across different bus surfaces. The radiation includes the solar
irradiance absorbed by opaque surfaces and windows, the irradiance
transmitted through windows, and the long-wave irradiance exchanges
between bus surfaces, the sky, and the urban surroundings.

Table 5.1: Annual mean percentage of radiation in each bus surface, including
the solar irradiance absorbed by opaque surfaces Iwal,abs, absorbed by windows
Iwin,abs and transmitted by windows Iwin,tra, and the long-wave irradiance
exchanges with sky Esky and urban surrounding surfaces Esur.

front left right back roof floor
Iwal,abs (%) 4.4 22.5 17.8 6.1 49.2 0.0
Iwin,abs (%) 5.9 37.1 52.5 4.5 0.0 0.0
Iwin,tra (%) 14.7 33.4 47.6 4.3 0.0 0.0
Esky (%) 5.0 25.0 22.9 5.0 42.1 0.0
Esur (%) 5.0 23.5 24.3 5.1 9.7 32.4

The results show significant variations depending on the bus sur-
face, which supports the importance of modeling a bus with distinct
surface properties. The roof accounts for nearly half (49.2%) of the
total solar irradiance absorbed by opaque surfaces, followed by the left
and right sides, while the front and rear surfaces receive only a minimal
share. Additionally, the left and right sides are primarily responsible for
both the absorption and transmission of solar irradiance through win-
dows, as the roof and floor lack windows. The roof also demonstrates
the highest level of radiative exchange with the sky (42.1%), whereas
the floor predominantly engages in exchanges with urban surroundings
(32.4%). Furthermore, the differences in thermal capacities and con-
ductances due to the different materials of each surface must be also
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considered, as discussed in Chapter 3. These variations highlight the
necessity of modeling each surface individually to accurately capture
the overall thermal dynamics.

5.1.5 Transient thermal model
Figure 5.6 presents a comparison, for a typical day of June, of the

instantaneous total solar heat gain, the thermal load, and the thermal
load assuming no thermal capacity.

Figure 5.6: Comparison between instantaneous total solar heat gain İtot, ther-
mal load Q̇i and thermal load with null (10−6J/K) thermal capacity Q̇i,no−mass

in a day of June.

The results highlight the critical role of the thermal inertia in
dampering the effects of the heat gains on the thermal load. The ther-
mal load with no inertia shows results very similar to the heat gain.
This indicates that, in the absence of thermal masses, the vehicle re-
sponds almost immediately to changes in the solar heat gain, resulting
in rapid fluctuations in the thermal load. In contrast, when the inertia
is included, the peaks are less sharp and the curve more smooth. The
delayed and dampened peaks reflect that the thermal mass within the
space absorbs some of the incoming heat, releasing it gradually and
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thereby reducing the instantaneous load on the HVAC system.

This comparison highlights the necessity of incorporating a tran-
sient thermal model that includes accurate estimations of the thermal
capacities of bus materials, especially when integrating discrete control
algorithms.
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5.2 Results overview
This section provides a comprehensive overview of the findings and

insights of the thesis. They are divided into two parts based on the
primary objectives and identified research gaps in the literature.

5.2.1 Development of the methodology
All proposed submodels are essential to collectively achieve the pri-

mary goal of developing a comprehensive and accurate global model.
The model effectively simulates the operation and energy consumption
of HVAC systems and their impact on the overall energy use of electric
urban buses under real-world operating conditions.

The GIS model is crucial to accurately simulate the operating con-
ditions within an urban environment. This approach, largely absent in
existing literature, represents a significant contribution of this thesis.
Additionally, the GIS model is the foundation for many other devel-
opments within the study and facilitates the large-scale application of
energy models that employ real open data. This is particularly relevant
to accurately calculate the shading effects and view factors. Modeling
solar radiation and long-wave radiative exchanges is essential and has
a key impact on the thermal load in urban environments. Two shading
models have been developed using geometric methods. They are both
supported by validated 3D city models. The cast-based model exhibits
a high accuracy, while the skyline-based model offers a more scalable so-
lution for urban mobility applications, maintaining a similar accuracy.
This model also enables the calculation of the bus route slope, which
can significantly impact powertrain consumption in cities with sloping
streets.

The kinematic model establishes the relationship between the sim-
ulation time and the spatial position under real-world traffic conditions
using open data. The instantaneous speed is employed to determine
the external convection coefficients and infiltration rates. Furthermore,
it enables the consistent integration of occupancy data and the spa-
tiotemporal context of bus stops, including the air exchanges due to
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door opening and passenger flow. Moreover, this model is essential to
estimate the powertrain consumption, including motor and regenerative
braking, as well as the energy consumption of pneumatic and hydraulic
auxiliaries.

The climatic model integrates the necessary inputs to establish heat
exchanges between the bus and its environment. Differentiating the
different bus surfaces is crucial due to significant variations in conduc-
tance, thermal capacity, and radiative exchanges among them.

A dynamic thermal load model has been developed and validated,
demonstrating the importance of a transient approach that includes
accurate thermal capacities. This approach avoids errors associated
with steady-state models, which would misrepresent large fluctuations
in heat gains as thermal load, adversely affecting HVAC control al-
gorithms. The cabin model features detailed long-wave and multi-
component solar radiative models, accounting for shading effects, view
factors, and angular-dependent transmittance of windows on different
surfaces of the vehicle. These are not common in literature and they are
yet essential in the load calculation. The impact of occupancy stochas-
ticity on thermal load has been evaluated, showing that moderate dis-
persion has a small impact and only high dispersion significantly affects
the load. Additionally, the dispersion of passenger flow ratios has no
significant effect.

Few studies in the field of mobility have employed physical HVAC
models and their control mechanisms over extended simulation periods,
and none have provided the level of detail of the present study, includ-
ing a wide range of operating modes, the impact of frost-defrost cycles,
hybridization with positive temperature coefficient (PTC) heaters, and
integration of latent loads. This comprehensive approach enables an
in-depth analysis of how these effects impact each HVAC system com-
ponent, primary circuit variables, secondary circuit output flows, and
internal performance metrics.

The battery model has been built using state-of-the-art methodolo-
gies and effectively meets the study’s objectives. This research uniquely
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integrates this advanced model with previous studies by employing real-
world, representative parameters within an urban context.

The integration of these models results in a highly accurate, pro-
grammable, and scalable global model, composed of cutting-edge sub-
models supported by extensive open data sources.

5.2.2 Application in buses of Valencia and key findings
The global model was implemented in R as a simulation tool, con-

cluding that a one-minute time step offers a balance between accuracy
and computational cost.

Results over a representative year

Three bus lines (C1, C2, and C3) from the urban fleet of València
(Spain) were simulated with a one-minute time step during a represen-
tative year.

The results indicate a very minor difference in the mean daily ther-
mal load and HVAC consumption across the three bus lines, due to
their similar urban typologies and view factors. However, significant
differences arise in the powertrain consumption due to the different av-
erage speeds and distances traveled, leading to notable variations in the
relative impact of the HVAC equipment.

The HVAC system meets the thermal demand throughout the year
and all its components works within their designated performance
ranges.

On a warm summer day, the cooling demand reaches approximately
218 kWh (1.38 kWh/km for line C1). The primary driver of this demand
is the cumulative sensible heat load from the cabin, which accounts for
70% to 98% of the total cooling requirement. Latent heat loads also
contribute significantly, comprising over 20% of the cooling demand
from June to October. In contrast, on a cold winter day, the heating
demand is around 59 kWh (0.37 kWh/km for line C1). This demand
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is predominantly influenced by the sensible heat load from the non-
recirculated fresh airflow, which accounts for 43% to 68% of the total
heating demand. Latent heat loads are negligible in winter, as they are
effectively balanced between the fresh air and cabin heat loads.

Regarding the components of the sensible thermal load in a cabin,
the cumulative solar load contributes yearly to 20-42% of the positive
load, reaching more than 40% in summer. External infrared radiation
remains relatively constant, accounting for 35-44% of the negative loads
in winter and 67-91% in summer. The occupancy component is stable,
and is responsible for 65-73% of the positive loads in winter and 33-45%
in summer. Air changes significantly impact the heating demand, con-
tributing to over 20% of the negative loads in winter, while conduction,
convection, and internal infrared radiation account for around 40% of
the negative loads in winter and 10-20% of the positive loads in summer.

The total consumption in a warm summer day is around 63.9 kWh
(0.40 kWh/km in line C1) in warm summer days, with a minimum of
22.8 kWh (0.14 kWh/km in line C1) on mild-cold days and around 26.6
kWh (0.17 kWh/km in line C1) in cold winter days.

The cooling mode is on during 44.8% of the time, covering 72% of
the thermal load with an average daily consumption of 63 kWh (0.40
kWh/km for line C1). The breakdown by components is 74% for the
compressor, 20% of the internal fans, and 6% for the external fans. The
average COP for the cooling system is 3.88, or 2.71 indicating the con-
sumption of all auxiliaries, and an average pressure ratio of 2.69. Ven-
tilation is employed to compensate low-intensity positive loads. This
occurs during 31.2% of the time and handles 15% of the cabin load,
while consuming 7% of the annual energy, with an average daily en-
ergy consumption of 0.05 kWh (0.08 kWh/km for line C1), mainly for
the internal blowers. Heating modes operate during 23.9% of the time,
covering 13% of the load with an average daily consumption of 36 kWh
(0.23 kWh/km for line C1), or 21% of the annual consumption. The
standard heating mode is the least energy demanding, with half the
energy consumption of cooling. The average pressure ratio to 3.77.
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In contrast, frost/defrost conditions significantly raise the energy con-
sumption to more than double the average heating consumption and
reduce the overall efficiency. The most demanding mode is heating
with PTC heaters. In this mode, the consumption is three times the
average heating power. The COP is of only 2, and the pressure ratio
reaches more than 6. However, the annual impact of these two modes is
negligible, as frost/defrost conditions are active only 2.2% of the time
and the PTC mode operates just 0.1% of the time. This is nevertheless
a particular result for Valencia given its mild weather.

The compressor typically operates at a minimum speed of 15 Hz,
with an average on-time ratio below 57%. A maximum speed of 50
Hz is reached, but only in heating mode and in less than 0.1% of the
total operational time. In cooling mode, the compressor speed does
not exceed 35 Hz, with an on-time ratio below 65%. During the stan-
dard heating mode, the speed is maximum 25 Hz and the on-time ratio
remains below 40%. The study suggests that the heat pump system
could be downsized, and potential optimizations include increasing the
capacity of the PTC heater for occasional frost and defrost conditions
or incorporating thermal energy storage systems.

When assessing the overall energy consumption per bus line, line C2
demonstrated the highest average daily energy usage at 773 kWh, fol-
lowed by line C3 with 571 kWh, and line C1 with 329 kWh. Variations
in energy consumption among the lines are primarily attributed to the
differences in the distance traveled. However, the energy consumption
per kilometer remains relatively uniform across the lines, with mea-
surements of 2.09 kWh/km for lines C1 and C2, and 2.12 kWh/km for
line C3. The powertrain emerges as the predominant energy consumer,
with a significant portion of its energy use mitigated through regenera-
tive braking. The HVAC system is the second largest energy consumer,
accounting annually for around 5-12% of the total energy use, followed
by the consumption due to the battery charge and discharge efficiency
(7%), auxiliary electrical systems and battery thermal management (1-
3% each) and hydraulic and pneumatic systems (1-2% each).
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The impact of the HVAC consumption on an average day varies
between lines: C1 ranges from 7% to 20% (0.13–0.47 kWh/km), C2 from
3% to 10% (0.06–0.20 kWh/km), and C3 from 4% to 12% (0.08–0.27
kWh/km). The highest impact is observed on cooling-dominant days
of July, while the lowest is on ventilation-dominant days of February.

Extreme weather conditions

Four scenarios have been simulated to evaluate the performance
of an HVAC system along line C1 under extreme weather conditions.
These scenarios involved increasing outdoor temperatures by +2.5K and
+5K on the peak cooling day, and decreasing temperatures by -2.5K
and -5K on the peak heating day relative to Typical Meteorological
Year (TMY) data.

The results indicate a significant rise in the HVAC system’s energy
consumption under these extreme conditions. On the warmest days,
energy consumption increased by up to 90% and 165% in the +2.5K and
+5K scenarios, respectively. On the coldest days, the consumption rose
by up to 40% and 181% in the -2.5K and -5K scenarios. These extreme
conditions also led to higher compressor speeds, refrigerant pressures,
and temperatures, which resulted in a reduced coefficient of performance
(COP). In the heating scenarios, there was also a noticeable increase
in the use of pre-heating components (PTC). However, the load was
adequately managed by the current equipment within its operational
range, except in the -5K scenario, where 1.1% of the time the load was
not fully compensated.

Thermal load sensibility analysis

A sensitivity analysis was conducted to assess the impact of different
parameters and conditions on the thermal load along line C1 throughout
a representative year. The analysis revealed that changes in windows
significantly affect both the cooling and heating demands. Specifically,
changing the number of panes and their thickness can alter the cooling
demand by up to 3% and heating demand by up to 17%.
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As the occupancy increases, the cooling demand rises nearly pro-
portionally, whereas the heating demand decreases. Wall insulation
exhibits a minor impact on the cooling demand but has a substantial
influence on the heating demand, potentially leading to a 20% reduc-
tion. The impact of air changes on the thermal load is significant, and
effectively managing them with devices and control systems can sub-
stantially reduce the HVAC demand. For instance, opening windows
when the bus is unoccupied can decrease the cooling demand by 23%,
while using air curtains to minimize air changes can lower the heating
demand by 27%.

Furthermore, the study highlights that the color and coating of the
external walls plays a significant impact in the cooling demand. White
walls, in particular, have the potential to reduce the cooling demand by
up to 31%.

Compressor size optimization

A parametric analysis was performed for different compressor sizes,
ranging from 100% (original size) to 50% of the current dimensions.
The analysis identified that a compressor scaled to 75% of its original
size achieved an optimal performance. This size could potentially lower
the HVAC cost and, at the same time, improve the energy efficiency,
while maintaining the system’s capacity to meet the thermal loads. The
simulation results for a representative year indicated that the 75% scaled
compressor resulted in a 3% reduction in the annual energy consumption
and a 4% improvement in the COP.

Additionally, the study evaluated the HVAC system’s performance
under extreme weather conditions to verify the scaled compressor’s abil-
ity to handle peak loads. Even with ambient temperatures deviating by
±5 K from the typical meteorological year (TMY) peak days, the 75%
scaled compressor showed a satisfactory performance, with an unmet
load ratio below 2%.
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Chapter 6

Conclusions

6.1 General conclusions
The present thesis presents a detailed, full vehicle model to estimate

the instantaneous performance during an entire representative year, in
real operating conditions in urban areas. This environment is particu-
larly complex due to radiation, shadows, traffic, variable occupancy and
many more variables. By developing and validating a set of detailed
submodels, the research contributes to the creation of a comprehensive
global model to simulate the HVAC operations and energy consumption
in electric urban buses. The major conclusions about the development
of the methodology and its application are presented below.

6.1.1 Development of the methodology
• Estimating the operational conditions in real urban environments

and accurately determining the HVAC energy consumption is
complex, due to the influence of a wide range of factors, the
nonlinear responses and the discrete domain of real control logic.
Furthermore, a large volume of data is used and processed. For
this reason, a work environment designed to handle massive and
diverse datasets is completely necessary.

• A comprehensive set of submodels, including GIS, kinematic, cli-
matic, thermal load, HVAC, and battery models, is required.
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Their integration creates a highly accurate, programmable, and
scalable global model, supported by extensive open data sources.

• The GIS model provides a 3D representation of the city, creating
a realistic context based on extensive open data and facilitating
the large-scale application of models. Shading significantly im-
pacts the thermal loads. The developed approach helps obtain
the street slope, which can significantly influence the powertrain
consumption.

• The skyline-based shadow model is an accurate and scalable so-
lution for urban mobility applications.

• The kinematic model correlates the simulation time with the spa-
tial position in real-world traffic using open data. This helps to
calculate external convection coefficients, infiltration rates, and
the consumption of the powertrain, pneumatic, and hydraulic sys-
tems. The occupancy and bus-stop dynamics is also integrated to
evaluate the associated thermal loads.

• The climatic model incorporates and processes the required inputs
to simulate the heat exchanges between each bus surface.

• A transient thermal load model is essential. Steady-state models
are not recommended, especially when integrated with HVAC con-
trol algorithms. The model addresses radiative exchanges using
long-wave and multi-component solar models, including shading,
view factors, and window transmittance.

• High occupancy stochasticity significantly affects the thermal
load, whereas variations in passenger flow ratios have a minimal
impact.

• The physical HVAC model, combined with control algorithms,
provides a comprehensive analysis of the impact of each HVAC
component, primary circuit variables, secondary circuit output
flows, and the internal performance metrics across operating
modes and thermal load components.
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6.1.2 Application in buses of Valencia and key findings
• On warm summer days, the mean cooling power demand reaches

approximately 12.1 kW, primarily driven by the sensible heat
loads from the cabin, with latent heat loads also contributing sig-
nificantly. On cold winter days, the mean heating power demand
is around 3.3 kW, mainly influenced by the sensible heat loads
from non-recirculated fresh air and with practically negligible la-
tent heat loads.

• In summer, the cabin’s sensible heat load distribution reveals that
the occupancy contributes to 33-45% of the positive load, the solar
load reaches 40%, and external infrared radiation dissipates more
than half of the solar heat. In winter, air changes account for
20% of the negative load, external infrared radiation contributes
40%, and conduction, convection, and internal infrared radiation
account for the remaining portion.

• The mean power consumption in a warm summer day is around
3.5 kW in warm summer days, with a minimum of 1.3 kW on
mild-cold days and around 1.5 kW in cold winter days.

• Cooling is the predominant operational mode of HVAC system,
accounting for 44.6% of the total operational time. This is fol-
lowed by ventilation (31.4%) and heating (24.0%). The mean
power consumption of the HVAC system is 3.5 kW for cooling,
0.4 kW for ventilation, and 2.0 kW for heating.

• The compressor is the largest energy consumer, reaching 69-75%
during cooling periods, and 58-65% during ventilation periods.
The internal fans use 19-38% of the total energy, with peak usage
on moderately warm days. External fans account for 4-6% of the
annual consumption, while PTC heaters have a minor impact,
contributing to only 0.4% of the total energy use.

• The compressor COP is around 4 in cooling and standard heating
modes, while the overall system COP is approximately 3. These
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values decrease to 3.7 and 2.8, under frost/defrost conditions, and
drop further to below 2.5 and 2.2 in PTC mode. Pressure ratios
also vary according to the mode, ranging from 2.6-2.8 in cooling,
3.6-3.7 in standard heating, 3.6-6.7 under frost/defrost conditions,
and up to 6.8 in PTC mode.

• The results show that the HVAC system is oversized for a typ-
ical year. The average on-time ratio is of less than 65%. The
compressor can be downsized by 25%. Increasing the capacity of
PTC heaters can better manage peak loads during the 2.3% of
time affected by frost/defrost conditions.

• The overall energy consumption per kilometer is consistent across
bus lines, averaging around 2.1 kWh/km, with daily accumulated
variations driven by the differences in the powertrain consump-
tion related to distance traveled. However, the daily accumulated
HVAC consumption is similar across lines, resulting in variable
relative impacts of the HVAC equipment on overall energy use.

• The powertrain is the main annual energy consumer (76–86%),
followed by the HVAC system (5-12%), with a consumption of 0.24
kWh/km in line C1, 0.10 kWh/km in line C2, and 0.14 kWh/km
in line C3.

• The influence of the HVAC systems on the energy consumption
of urban electric buses is significantly more pronounced on routes
with lower speeds and a more frequent of stops per kilometer.
Under these conditions, the HVAC demands, especially in cooling
mode during mild to warm summer days, can reduce the driving
range by 15-20%.

• The energy consumption of the HVAC system increases signifi-
cantly under extreme temperatures, rising up to 165% on extreme
warm days and 181% on extreme cold days. Despite the increased
energy use and reduced efficiency, the system generally manages
the load, with minimal unmet load during the coldest conditions.
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• To reduce the thermal load, key strategies include change the win-
dows or the wall insulation, which can reduce the heating demand
by up to 17% and 20%, respectively. The color and coating of the
external walls can lower the cooling demand by up to 31%. A
proper management of the air changes, such as opening windows,
can reduce the cooling demand by 23%, while air curtains can
lower the heating demand by 27%.

• Downscaling the standard compressor by 25% is optimal for the
studied city, offering significant cost savings while maintaining
improved efficiency and effectively meeting load demands.

• The potential to reduce the HVAC size suggests reconsidering the
EN-14759 standard and allowing exceptions for public urban elec-
tric buses. This could optimize HVAC systems for specific cities,
supporting large-scale adoption and reducing urban transport im-
pacts.
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6.2 Future work and research opportunities
The current work opens several opportunities of research which can

be explored in the following fields:

• Expanding the model scope: Future work could involve modi-
fying the global model by adjusting sub-models and parameters
to simulate additional characteristics of different buses (e.g., 18-
meter articulated buses, double-decker buses), powertrains (e.g.,
fuel cells, hybrids), and operational environments (e.g., bus rapid
transit, shuttle buses, regional and intercity buses). Additionally,
the model could be adapted to simulate other type of vehicles such
as trams and trains.

• Refinement of submodels: The climate model can integrate satel-
lite data to consider the impact of the urban heat island effect on
temperature, as well as the urban moisture and dry island effects
on humidity. Additionally, the wind intensity and direction could
be introduced. The impact of rain could also be studied. The
thermal model could include detailed dynamic calculations of op-
tical parameters such as the surface reflectivity and absorptance
in urban environments. More cabin air nodes could be added (e.g.,
distinguishing between driver and passengers), and more detailed
models of convection coefficients could be introduced. The HVAC
model could simulate the airflow through the ducts and evalu-
ate the thermal comfort of passengers. Finally, the battery model
could be further refined using, for example, a first-order equivalent
circuit model.

• Global experimental validation: To enhance the reliability of the
global model, extensive measurement campaigns should be con-
ducted for experimental validation. This issue was discussed with
the bus fleet company of Valencia, but no dynamic measurements
were available.

• Simulating standards testing: Validating the model by simulating
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the different testing conditions defined in the standards represents
another important area of future work.

• Inclusion of Operating Modes: The current model can be ex-
tended to include specific operating modes such as window dehu-
midification and defrosting.

• Development of data-driven methods: A new approach can in-
volve using the detailed model to generate and evaluate data-
driven methods. These methods could be designed to be more
efficient for predefined scopes, making them valuable for broader
applications, including integration into control systems or large-
scale deployments.

• Techno-economic studies: Further research should address exist-
ing knowledge gaps through techno-economical and environmen-
tal studies, including the consideration of externalized costs. Such
studies would provide insights to inform effective policy-making
and action plans for sustainable public transportation.

• Design and optimization of infrastructure and operations: The
global model could also be employed in optimization studies of
the infrastructure design, battery sizing, and operational plan-
ning. These studies would focus on developing cost-effective in-
frastructure based on energy consumption, battery capacity, and
charging times, leading to more efficient and sustainable bus op-
erations.

• Subsystem optimization and integration of new solutions: There
is significant potential for optimizing subsystems, particularly in
the area of the HVAC system. Future research could explore en-
hancements such as optimizing heat exchangers or using other
refrigerants (e.g., R744, R290). Moreover, the use of integrated
thermal strategies (e.g., waste heat recovery from electric motors,
controllers, inverters, and batteries), and thermal energy storage
solutions offer promising areas for future research.
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