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A B S T R A C T

This paper is concerned with the analysis of the pure torsion and distortion of straight box beams with trapezial
cross-sections and hinged walls. A one-dimensional mechanical model for this kind of system subjected to
anti-symmetric loads on the end cross-sections and no warping constraints is developed. The distortional
stiffness of the system is provided by the torsional rigidity of the wall panels. The cross-sectional kinematic
condition for which torsion and distortion are uncoupled has been determined. Novel explicit expressions of
the internal and external distortional moments, the distortion constant, and the distortional warping pattern
have been deduced; they can be directly translated to the classical distortion theory. Results of representative
test cases with different section shapes and loads show excellent agreement with finite element models using
shell elements. The model is a first step to analyse bridge decks with a distortionable central cell for wind
engineering applications. Finally, an extension of the model, including the distortional stiffness provided by
the frame bending stiffness of the cross-section walls, is presented. The extended model is applicable to assess
the large-scale torsional–distortional effects in long beams with closed cross sections.
1. Introduction

Bridge deck girders are generally designed to avoid any significant
in-plane deformation of their cross-sections. This kind of deformation
is called distortion. In a typical bridge box girder, distortion is con-
trolled by means of diaphragms (in concrete bridges) or stiffening
frames/trusses (in steel and composite bridges) located at convenient
distances inside the box beam. An adequate control of the distortion
ensures the beam-like behaviour of girders whose cross-section pro-
portions are sometimes far from the typical proportions of a structural
beam cross-section.

The original motivation of this paper is the search of a novel
strategy to mitigate wind-induced vibrations of long-span bridges. The
authors have proposed a novel approach consisting of bridge decks
composed of two symmetric box girders joined by a deformable central
cell [1]. The central cell is allowed to distort in a controlled man-
ner, adding a non-conventional degree of freedom to the deck, when
considered as a beam-like structural element (Fig. 1). By adequately
tuning the distortional and the torsional natural frequencies of the deck,
a significant increase in the critical flutter velocity can be achieved.
Testing this strategy, either in a wind tunnel facility or through nu-
merical simulations, requires an efficient one-dimensional (1D) model
to evaluate the mechanical properties and the vibrational response
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of the non-conventional distortion-controlled girder. Before addressing
this ultimate goal, which remains out of the scope of this article,
this research deals with the problem of the distortional behaviour of
symmetric box-girder-like assemblies with trapezial shape and hinged
walls, resembling the central cell of the cross-section depicted in Fig. 1.

There is an extensive body of knowledge on the mechanics of
distortion of box girders. Vlassov [2] pioneered the study of distortion
by modelling the behaviour of a closed rectangular box cross-section
by means of a linear combination of assumed deformation patterns —
one of which corresponded to the torsional and distortional warping,—
whose coefficients were the unknown functions to be determined.
Wright et al. [3] developed the analysis of distortion of box girders
using the analogy to the deflection of a beam on elastic foundation.
The theory was further developed and completed for curved beams
by Dabrowski [4], and for tapered beams by Křístek [5]. Steinle [6]
summarised the theory and assessed the importance of the assumption
of neglecting the shear deformation of the section walls. Boswell and
Zhang formulated a curved box beam finite element that considered
distortion [7], analysed the distribution of anti-symmetric external
forces as shear-flow resultants along the walls and the definition of
distortional moment [8], and studied the relation between torsional and
distortional warping patterns [8,9] (Boswell and Li).
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Fig. 1. Distortion-controlled deck cross-section.
The classical approach to the analysis of distortion of box cross-
sections is based on the fact that the distortion between stiffening
frames is resisted by in-plane bending deformation of the individual
wall plates. The derivative of the distortional warping pattern is as-
sumed to be equal to the piecewise constant distribution of tangential
displacements in distortion. In closed cross-sections, this assumption is
equivalent to neglecting the average in-plane shear strain in the cross-
section plates (cf. [8]). It is the same assumption made in the analysis
of restrained torsional warping in open cross-sections, but it contradicts
the case of pure torsion of box cross-sections. The latter requires adding
a shear flow around the cells, causing the in-plane shear deformation
that ensures warping compatibility along the cross-section midline [9].
However, the assumption has been commonly adopted to formulate
box beam finite elements including distortional modes, e.g. Kim and
Kim [10] (for single-cell rectangular box beams in the static case), Park
et al. [11] (for multiple-cell rectangular box beams), or recently Zhao
et al. [12] and Campo-Rumoroso et al. [13].

More refined torsion–distortion theories that consider in-plane shear
flow for warping compatibility are based on Schardt’s Generalised
Beam Theory (GBT) [14] that systematises and expands Vlassov’s [2]
and Benscoter’s [15] concept of cross-section deformation modes for
closed cross-sections. (See Camotim et al. [16] for an overview of
GBT.) Following the systematic of deformation modes, Jönsson [17]
developed a general orthogonalisation method to determine the warp-
ing functions associated with different deformation modes of open
and closed cross-sections and noted that uncoupling distortion and
torsion in closed cross-sections is in general not possible because of the
required compatibility of induced shear flows [18]. Kim and Kim [10]
followed a similar approach for general shaped cross-sections. Based
on these concepts, Andreassen and Jönsson developed a thin-walled
beam element including the distortion of the cross-section [19], and
recently Cambronero-Barrientos et al. [20] proposed a similar element
including shear lag. More complex cross-section deformation modes
can be evaluated by refining the discretisation of the cross section, as
e.g. Gonçalves et al. [21], but the selection of representative modes be-
comes challenging. The requirement of a shear flow to ensure warping
compatibility in the deformation of the closed cross-section is crucial
in our subsequent developments.

While the presented state-of-the-art includes beam finite elements
that can simulate box beams considering torsion and distortion, there
are conceptual questions related to the phenomenon of distortion that
still deserve careful consideration. We address them in this paper:
firstly, the relation between cross-section warping and the coupling
between torsion and distortion; secondly, the evaluation of consistent
distortional moments that are usually defined using simplifying equilib-
rium arguments not applicable to general loading patterns (e.g. [8,11]
for multi-cell cross-sections).

This paper aims to develop a theory of pure distortion of beams
with box cross-section and one axis of symmetry, analogous to the
theory of pure torsion. For that purpose, anti-symmetric forces are
assumed to act only at the end cross-sections, and wall panels are
allowed to deform with no external warping constraints. There are
two mechanisms to resist distortional loads: The first is the intrinsic
resistance provided by the torsional stiffness of the individual walls;
it can be analysed by considering the beam as an assembly of hinged
walls. The second mechanism is the additional stiffness against dis-
tortion provided by out-of-plane bending of the walls or by other
devices such as diaphragms or springs (Fig. 2). The bulk of our paper is
2 
Fig. 2. Resisting mechanisms in pure distortion: torsional stiffness of the walls of a
hinged assembly (dashed-blue); out-of-plane bending stiffness of the walls as frame
(dark blue).

focused on studying of the hinged assembly, which becomes essential
for the consistent formulation of the model. The development starts
with analysing the kinematics and evaluating the shear flow needed
for compatibility, following [17]; then, the virtual work principle is
applied to derive consistent internal forces and external loads. The
main results are: (1.) The explicit definition of the distortional warping
pattern for symmetric trapezial cross-sections that includes a shear-
flow induced term similar to the one present in the torsional warping
pattern of box cross-sections; (2.) The constitutive definition of the
internal torsional and distortional moment, including the explicit def-
inition of the section constants that relate them to the torsional and
distortional strains; (3.) The kinematic condition that uncouples torsion
and distortion; (4.) The consistent definition of the external distortional
moment from any anti-symmetric set of external point or surface forces.
The distortional stiffness provided by the frame bending of the wall
plates is considered in the last part of the paper; the corresponding
term is included in the virtual work principle to provide a complete
formulation of the theory of pure torsion and distortion of box beams
with one axis of symmetry. Additionally, with this model, we lay the
foundation to analyse the behaviour of composite cross-sections with
distortionable core — as in Fig. 1 —, as stated at the beginning of the
introduction.

We follow a progressive approach to the problem: Section 2 intro-
duces the simple problem of a box beam with a square cross-section
and hinged walls; Section 3 analyses the pure distortion of a doubly
symmetric rectangular cross-section; in Section 4, the analysis will
be extended to the uniform torsional and distortional behaviour of
symmetric trapezial cross-sections when anti-symmetric forces act on
the corners of both end sections; finally, Section 5 completes the model
by adding a distributed distortional stiffness term and presents, as an
extension, a simplified theory for variable torsional and distortional
moment densities acting along the beam; Section 6 summarises the
conclusions.

In all subsequent developments, we assume linear elastic mate-
rial, small strains and small displacements (first-order theory). The
following assumptions hold for the beam: (1.) Walls are made of
thin or moderately thin plates compared to the width of each plate;
(2.) The beam is sufficiently constrained in the mid-cross-section to
avoid global rigid body motions; (3.) The warping component (parallel
to the beam centreline) of the displacement of each material point is
not constrained and is constant along every line parallel to the beam
centreline; (4.) Self-weight is neglected.
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Fig. 3. Left: distortion of a square box assembly with hinged walls: initial shape (red) and distorted shape (blue). Right: kinematics of end cross-sections (background cross-section
in dimmed colour).
2. Pure distortion of a square box beam

The simplest example of the intrinsic distortional stiffness provided
by the torsional rigidity of the individual walls is given by a box beam
with continuously hinged corners and square cross-section of side 𝑏
in which all walls have the same thickness 𝑡 (Fig. 3). Assuming that
rigid body motions of the full beam are restrained, forces are applied
on every corner of the end sections; their orientation is such that
triggers the distortion of cross-sections. Note that at each end section,
the applied forces are oriented along the diagonals of the section, they
cancel out along each diagonal, and they are opposed to the forces
acting on the other diagonal. Because of the double symmetry of the
cross-section, the displacements of each corner are directed along the
diagonals as well. The rate of torsional rotation of the top and bottom
plates (flanges) is equal to 𝛾 ′𝐷∕2 (constant), where 𝛾𝐷(𝑥) is the distortion
angle (change of the angle formed by adjacent walls), and the rate
of torsional rotation of the lateral plates (webs) is equal to −𝛾 ′𝐷∕2.
If the diagonal forces are decomposed in the horizontal and vertical
direction, and their components are assumed to act perpendicularly on
the corresponding plate, it is clear that each plate is subjected to a
constant torque of magnitude 𝐹𝑏∕

√

2. This torque will cause each plate
to twist with the following constant rate of rotation:

𝜃′ = 𝐹𝑏
√

2𝐺𝐽𝑤
, (1)

where the torsion constant of each thin wall plate is 𝐽𝑤 = 1
3 𝑏𝑡

3. As
this rate of rotation is equal to 𝛾 ′𝐷∕2, the following constitutive relation
between external load and rate of distortion follows:

2 𝐹𝑏
√

2
= 𝐺𝐽𝑤 𝛾 ′𝐷. (2)

A way to interpret this expression is that the sum of the magnitudes
of the torsional moments acting on one flange and on one web cause
the rate of distortion of the cross-section given by the formula. We
can think of 2𝐹𝑏∕

√

2 as a generalised distortional moment, and 𝐽𝑤
being the distortion constant. This simple example shows that the
hinged assembly of plates possesses an intrinsic stiffness to resist a pure
distortional load.

If the walls are thin, the stiffness of the assembly will be very low.
In the limit, when the torsional stiffness of the plates is neglected, the
hinged assembly is a mechanism. The distortional stiffness can be, of
course, increased by adding diaphragms or stiffening frames. In this
case, the contribution of the torsional stiffness of the individual plates
may become negligible compared to the contribution of the frames.
3 
(This is the situation when considering the distortion of bridge box
girders.)

The analysis of sections different from the doubly symmetric square
one becomes more involved because an additional shear flow is needed
to enforce the compatibility of the warping pattern.

3. Pure distortion of doubly-symmetric rectangular box beams

In this section, the pure distortional behaviour of doubly symmetric
rectangular box beams with hinged walls is analysed.

3.1. Kinematics

Assuming that the beam is only subjected to a pure distortional set
of loads with zero force and moment resultants, the distorted shape of
a doubly-symmetric rectangular cross-section must have the following
properties:

• Anti-symmetry.
• The rotation centres of the flanges are located on the vertical

symmetry axis of the cross-section.
• The rotation centres of the webs are located on the horizontal

symmetry axis.
• Pairs of adjacent rotation centres are located on the straight line

passing through the corresponding corner of the cross-section.

These conditions are reflected in Fig. 4; note that the position of the
rotation centres is fully determined by a single parameter. Selecting
𝐷 (horizontal distance from the centres of rotation of the webs to the
vertical symmetry axis) as independent parameter, the distance 𝑑𝑓 is
given by the following relation:
𝑑𝑓
𝑏∕2

=
𝑑𝑓 + ℎ∕2

𝐷
⇒ 𝑑𝑓 = 𝑏ℎ

2(2𝐷 − 𝑏)
. (3)

In this section, the kinematics of the cross section is referred to
coordinate systems adapted to the walls of the cross-section and centred
in each wall (Fig. 4): 𝑠 is the arc-length coordinate, with origin on
the mid-point of the wall mid-line, positive when advancing counter-
clockwise, and 𝜂 is the transverse coordinate, positive when pointing
inwards.

The in-plane displacements of the centreline are functions of the ro-
tations of each wall: 𝜃𝑓 (𝑥) for the flanges, and 𝜃𝑤(𝑥) for the webs. As the
motion is considered to be infinitesimal, the distortional displacements
at a given point of the mid-line can be obtained as the product of the
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Fig. 4. Parameters and reference systems (left), and distortional deformation mode (right).
distance to the centre of rotation times the rotation angle of each panel:

Flange: 𝑢𝑠,𝑓 (𝑥, 𝑠𝑓 ) = 𝑢𝑠,𝑓 (𝑥) = −𝑑𝑓 𝜃𝑓 (𝑥), (4a)

𝑢𝜂,𝑓 (𝑥, 𝑠𝑓 ) = 𝑠𝑓 𝜃𝑓 (𝑥). (4b)

Web: 𝑢𝑠,𝑤(𝑥, 𝑠𝑤) = 𝑢𝑠,𝑤(𝑥) = −(𝐷 − 𝑏∕2) 𝜃𝑤(𝑥), (4c)

𝑢𝜂,𝑤(𝑥, 𝑠𝑤) = 𝑠𝑤 𝜃𝑤(𝑥). (4d)

Note that the displacements in the centreline direction do not depend
on the arclength coordinate (𝑠𝑓 or 𝑠𝑤) and are constant along each wall.

The displacement of every corner must be the same when calculated
on the flange and on the web. Selecting, for example, the horizontal
component of the upper right corner yields:

−𝑑𝑓 𝜃𝑓 (𝑥) = (ℎ∕2) 𝜃𝑤(𝑥). (5)

Therefore, from (3), the following relation between angles holds:
𝑏

2𝐷 − 𝑏
𝜃𝑓 (𝑥) = − 𝜃𝑤(𝑥). (6)

The distortion angle 𝛾𝐷(𝑥) is defined as the average of the change in
the angle of opposite corners of the cross-section. The change in each
opposite corner is the difference of the signed rotations of the adjacent
flange and web. Hence,

𝛾𝐷(𝑥) = 𝜃𝑓 (𝑥) − 𝜃𝑤(𝑥). (7)

Signed angles (positive ≡ counterclockwise) are used in the formula. By
joining Eqs. (6) and (7), the following relations between the rotation
angles of the walls and the distortion yield:

Flange: 𝜃𝑓 =
(

1 − 𝑏
2𝐷

)

𝛾𝐷(𝑥), (8a)

Web: 𝜃𝑤 = − 𝑏
2𝐷

𝛾𝐷(𝑥). (8b)

Substituting these into Eqs. (4), the displacements of the mid-line in the
arc-length and in the normal directions are expressed in terms of the
arc length and of the 𝑥 coordinate:

Flange: 𝑢𝑠,𝑓 (𝑥, 𝑠𝑓 ) = 𝑢𝑠,𝑓 (𝑥) = − 𝑏ℎ
4𝐷

𝛾𝐷(𝑥), (9a)

𝑢𝜂,𝑓 (𝑥, 𝑠𝑓 ) =
(

1 − 𝑏
2𝐷

)

𝑠𝑓 𝛾𝐷(𝑥). (9b)

Web: 𝑢𝑠,𝑤(𝑥, 𝑠𝑤) = 𝑢𝑠,𝑤(𝑥) =
(

1 − 𝑏
2𝐷

) 𝑏
2
𝛾𝐷(𝑥), (9c)

𝑢𝜂,𝑤(𝑥, 𝑠𝑤) = − 𝑏
2𝐷

𝑠𝑤 𝛾𝐷(𝑥). (9d)

Fig. 5 shows the rigid-body part of the warping displacements in the
longitudinal direction 𝑥 induced by the distortion. The displacement
𝑢𝑠,𝑓 causes the flange to rotate along the vertical symmetry axis of the
mid cross-section. The value of this rotation is — see (9) —
𝑢𝑠,𝑓 |𝑥=0.5𝐿 = − 𝑏ℎ 𝛾 ′ , (10)
0.5𝐿 4𝐷 𝐷

4 
where 𝛾 ′𝐷 = 𝛾𝐷|𝑥=0.5𝐿∕(0.5𝐿) denotes the (constant) rate of distortion.
Similarly, the displacement 𝑢𝑠,𝑤 causes the web to rotate along the
horizontal symmetry axes of the mid cross-section, and the value of
this rotation is
𝑢𝑠,𝑤|𝑥=0.5𝐿

0.5𝐿
=
(

1 − 𝑏
2𝐷

) 𝑏
2
𝛾 ′𝐷. (11)

Therefore, the warping displacements caused by these rigid body rota-
tions of the flange and web walls are:

Flange: 𝑢rbm
𝑥,𝑓 (𝑠𝑓 )|𝑥=0.5𝐿 = −𝑠𝑓

𝑢𝑠,𝑓 |𝑥=0.5𝐿
0.5𝐿

= ℎ
2

𝑏
2𝐷

𝑠𝑓 𝛾 ′𝐷. (12a)

Web: 𝑢rbm
𝑥,𝑤 (𝑠𝑤)|𝑥=0.5𝐿 = −𝑠𝑤

𝑢𝑠,𝑤|𝑥=0.5𝐿
0.5𝐿

= − 𝑏
2

(

1 − 𝑏
2𝐷

)

𝑠𝑤 𝛾 ′𝐷. (12b)

Signs are consistent with the orientation of the displacements. Note
that, at every corner, the warping of the flange and the warping of the
web are incompatible, unless the choice 𝐷 = 𝑏 is made.

The twisting moment resisted by each wall of the cross-section is:

Flange: 𝑀𝑥,𝑓 = 𝐺𝐽𝑓 𝜃
′
𝑓 =

(

1 − 𝑏
2𝐷

)

𝐺𝐽𝑓 𝛾 ′𝐷. (13a)

Web: 𝑀𝑥,𝑤 = 𝐺𝐽𝑤𝜃
′
𝑤 = − 𝑏

2𝐷
𝐺𝐽𝑤 𝛾 ′𝐷, (13b)

where 𝐽𝑓 , 𝐽𝑤 are the torsion constants of the flange and of the web.
The initial assumption is that the beam is only subjected to distortional
loads with zero force and moment resultants. As, in general, 𝑀𝑥,𝑓 and
𝑀𝑥,𝑤 will not cancel out, it follows that the section walls must be
subjected to a shear flow such that (a) warping due the rigid-body
motion plus the shearing of the walls is compatible, and (b) the total
moment resultant on the cross section is null.

To enforce warping compatibility, a constant shear 𝑁𝑥𝑠 must flow
along the cross section (positive if counter-clockwise). Using the centres
of the walls as origin, the warping due to the shear deformation is:

Flange: 𝑢shear
𝑥,𝑓 (𝑥, 𝑠𝑓 ) = 𝑠𝑓

𝑁𝑥𝑠
𝐺𝑡𝑓

. (14a)

Web: 𝑢shear
𝑥,𝑤 (𝑥, 𝑠𝑤) = 𝑠𝑤

𝑁𝑥𝑠
𝐺𝑡𝑤

. (14b)

Enforcing warping compatibility at the corners,
(

𝑢rbm
𝑥,𝑓 + 𝑢shear

𝑥,𝑓

)

|𝑠𝑓=−
𝑏
2
=
(

𝑢rbm
𝑥,𝑤 + 𝑢shear

𝑥,𝑤

)

|𝑠𝑤=+
ℎ
2
, (15)

yields

𝑁𝑥𝑠 = 𝐺
(

1 − 𝑏
𝐷

) 𝑏ℎ
2𝑏
𝑡𝑓

+ 2ℎ
𝑡𝑤

𝛾 ′𝐷. (16)

This shear flow is statically equivalent to the following torsional mo-
ment:

𝑀 shear
𝑥 = 2𝑏ℎ𝑁𝑥𝑠 = 𝐺𝐽 1

2

(

1 − 𝑏
𝐷

)

𝛾 ′𝐷, (17)

where 𝐽 = 4(𝑏ℎ)2∕(2𝑏∕𝑡𝑓 + 2ℎ∕𝑡𝑤) is the torsion constant of the box
cross-section resulting from Bredt’s formula, i.e. assuming that the
thickness of the walls is very small.
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Fig. 5. Warping displacements at the upper-right corner of an end cross-section due to rigid body motions of the walls.
Now, the condition of vanishing resultant moment can be enforced:

2𝐺𝐽𝑓 𝜃
′
𝑓 + 2𝐺𝐽𝑤𝜃

′
𝑤 + 𝐺𝐽 1

2

(

1 − 𝑏
𝐷

)

𝛾 ′𝐷 = 0. (18)

Plugging in the rates of rotation of the walls in terms of the rate of
distortion (8) allows to solve for the parameter defining the position of
the rotation centres, 𝐷:

𝐷 =
𝐽 + 2(𝐽𝑓 + 𝐽𝑤)

𝐽 + 4𝐽𝑓
𝑏. (19)

As expected, if 𝐽𝑓 = 𝐽𝑤 then 𝐷 = 𝑏 and 𝑀 shear
𝑥 = 0. On the other hand,

if the torsion constant of the walls is much smaller than the torsion
constant of the closed cross-section then 𝐷 → 𝑏 and 𝑀 shear

𝑥 → 0 as well.
𝐷 > 𝑏 when 𝐽𝑤 > 𝐽𝑓 , and vice versa.

The numerator of the right-hand side of Eq. (19)

𝐽 = 𝐽 + 2(𝐽𝑓 + 𝐽𝑤) (20)

is an approximation to the torsion constant of a rectangular box cross-
section when the thickness of the walls is not neglected: while 𝐽 only
considers the constant shear flow along the walls, 𝐽 also includes the
effect of the circulation of shear stresses on each wall. Using (20),
the value of 𝐷 to match the condition of vanishing moment can be
rewritten as:

𝐷 = 𝐽
𝐽 + 2(𝐽𝑓 − 𝐽𝑤)

𝑏. (21)

Note that one is not bound to choose this canonical value of 𝐷. How-
ever, for an arbitrary choice of 𝐷, it is necessary to add an additional
term to Eq. (18) to achieve zero torsional moment; this term is the
torsional moment corresponding to a constant rotation rate 𝜃′𝑥 of the
whole cross-section:

2𝐺𝐽𝑓 𝜃
′
𝑓 + 2𝐺𝐽𝑤𝜃

′
𝑤 + 𝐺𝐽 𝛽 𝛾 ′𝐷 + 𝐺(𝐽 + 2𝐽𝑓 + 2𝐽𝑤)𝜃′𝑥 = 0, (22)

where the following parameter has been introduced to improve read-
ability:

𝛽 = 1
2

(

1 − 𝑏
𝐷

)

. (23)

Rearranging this expression and using Eq. (20) yields the condition of
zero total torsional moment for an arbitrary value of 𝐷:

𝐺𝐽 𝜃′ + 𝐺(𝛽𝐽 + 𝐽 − 𝐽 ) 𝛾 ′ = 0. (24)
𝑥 𝑓 𝑤 𝐷

5 
This expression is analogue to the condition of zero axial force in a
section subjected to simple bending where the origin is not located on
the centroid:

𝐸𝐴𝑢′ + 𝐸𝑆𝑦 𝜃
′
𝑦 = 0. (25)

This analogy brings to light the fact that the geometric interpretation of
the total torsional rotation 𝜃𝑥 depends on the choice of 𝐷 in the same
way that the meaning of longitudinal displacement 𝑢 of the centreline
depends on the choice of origin for the cross section in (25). In contrast,
the definition of the distortion angle 𝛾𝐷 is independent of 𝐷, as happens
for the flexural rotation in the bending analogue. The term (𝛽𝐽+𝐽𝑓−𝐽𝑤)
plays the same role as the first moment of area: it vanishes for the
principal value of 𝐷 —Eq. (21)—.

3.2. Consistent definition of internal distortional moments

The internal distortional moment can be derived from the principle
of virtual work. The internal virtual work is the sum of the work done
by the twisting moment on each wall along the corresponding virtual
twist 𝛿𝜃′𝑓 , 𝛿𝜃′𝑤, and the work done by the shear flow 𝑀 shear

𝑥 = 𝐺𝐽 𝛽 𝛾 ′𝐷
along the virtual twist 𝛿𝜃′ shear𝑥 = 𝑀 shear

𝑥 ∕𝐺𝐽 = 𝛽 𝛾 ′𝐷:

𝛿𝑊 int = ∫

𝐿∕2

−𝐿∕2

(

2𝐺𝐽𝑓 𝜃′𝑓 𝛿𝜃′𝑓 + 2𝐺𝐽𝑤 𝜃′𝑤 𝛿𝜃′𝑤 + 𝐺𝐽 𝛽 𝛾 ′𝐷 𝛽 𝛿𝛾 ′𝐷
)

d𝑥

= ∫

𝐿∕2

−𝐿∕2
𝐺
(

2(𝛽 + 1∕2)2𝐽𝑓 + 2(𝛽 − 1∕2)2𝐽𝑤 + 𝛽2𝐽
)

𝛾 ′𝐷 𝛿𝛾 ′𝐷 d𝑥. (26)

The quantity inside the big parenthesis defines the distortion constant 𝐽𝐷
of the cross section. Selecting the principal value of 𝐷, (21), taking into
account that 𝐽 = 𝐽 + 2(𝐽𝑓 + 𝐽𝑤) and rearranging, yields the distortion
constant for rectangular box cross-sections

𝐽 𝑝𝑟
𝐷 = 1

2
(𝐽𝑓 + 𝐽𝑤) −

(𝐽𝑓 − 𝐽𝑤)2

𝐽
, (27)

that corresponds to the principal choice of centres of rotation. When
𝐽𝑓 = 𝐽𝑤, 𝐽 𝑝𝑟

𝐷 is equal to the torsion constant of one wall. Note that this
is precisely the value derived for the square box cross section —see
the right-hand side of Eq. (2)—. As expected, the distortion constant is
much lower than the torsion constant even for moderately thick walls.
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Fig. 6. General distortional pattern of a symmetric box girder cross section.
The internal virtual work can be expressed as

𝛿𝑊 int = ∫

𝐿∕2

−𝐿∕2
𝑀𝐷 𝛿𝛾 ′𝐷 d𝑥, (28)

where the co-factor of the virtual distortional strain provides the con-
stitutive definition of the internal distortional moment in terms of the
distortion constant 𝐽 𝑝𝑟

𝐷 :

𝑀𝐷 = 𝐺𝐽 𝑝𝑟
𝐷 𝛾 ′𝐷. (29)

4. Torsional–distortional behaviour of symmetric trapezial box
beams

In this section, we extend the previous results to a straight beam
with symmetric trapezial section subjected to opposite sets of anti-
symmetric forces applied at the end sections, and we show that in
general, pure torsion and distortion are coupled.

The relevant dimensions of the cross section mid-line, the parame-
ters defining the positions of the centres of rotation and an arbitrary
distortional motion have been represented in Fig. 6. Subscripts 𝑡, 𝑏
and 𝑤 refer to the top flange, bottom flange and web, respectively. All
results in this section are applicable to a trapezial box cross section in
which the top flange has lateral cantilevers. In this case, in subsequent
expressions, 𝐽𝑡 would represent Bredt’s torsion constant of the whole
top flange, including the cantilevers. Nevertheless, the dimension 𝑏𝑡
would remain the distance between the webs at the level of the top
flange.

4.1. Kinematics

The basic kinematic assumptions are the same as for the rectangular
section. The anti-symmetric distortional pattern is defined by four
parameters (Fig. 6): 𝑑𝑡 and 𝑑𝑏 are the distances of the centres of rotation
of the top and bottom flanges to the mid-lines of the flanges, 𝑟𝑡 is
the distance from the midline of the top flange to the line joining
the centres of rotation of the web plates, 𝑟𝑤 is the distance from the
intersection of the lines joining opposite rotation centres to the midline
of each web, and 𝐷 is the distance of the centres of rotation of the web
plates to the symmetry axis.

The description of the kinematics of the trapezial cross-section is
more involved than the kinematics of the rectangular one. The geomet-
ric relations that link the rotations of the walls with the distortion of the
cross-section are worked out in the Appendix. The distortion angle of
a given section 𝛾𝐷 is defined as the average of the change in the angle
of opposite corners of the cross-section. The change in each opposite
corner is the sum of the rotations of the adjacent flange and web:

𝛾 = 1 (𝜃 + 𝜃 ) − 𝜃 . (30)
𝐷 2 𝑡 𝑏 𝑤

6 
According to the Appendix, Eq. (A.13), and Fig. 6, the wall rotations
caused by the distortion are:

𝜃𝑡 = 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑡
− 1

2

)

+ 𝛽
)

𝛾𝐷, (31a)

𝜃𝑤 = −𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷, (31b)

𝜃𝑏 = 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑏
− 1

2

)

+ 𝛽
)

𝛾𝐷, (31c)

with the following definitions for the geometric parameters:

�̄� =
𝑏𝑡 + 𝑏𝑏

2
, 𝛼𝑡 =

𝑏𝑡
�̄�
, 𝛼𝑏 =

𝑏𝑏
�̄�
, 𝛽 = 1

2

(

1 − �̄�
𝐷

)

. (32)

With the previous considerations, the in-plane kinematics of the
trapezial cross-section due to the torsional rotation 𝜃𝑥(𝑥) and the
distortion 𝛾𝐷(𝑥) is described by (cf. Eqs. (A.15)):

Top flange: 𝑢𝑠,𝑡(𝑥) = 𝑟𝑡

(

𝜃𝑥 − 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷

)

, (33a)

𝑢𝜂,𝑡(𝑥, 𝑠𝑡) = 𝑠𝑡

(

𝜃𝑥 + 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑡
− 1

2

)

+ 𝛽
)

𝛾𝐷

)

. (33b)

Web: 𝑢𝑠,𝑤(𝑥) = 𝑟𝑤 𝜃𝑥 +
( ℎ
ℎ𝑤

𝐷 − 𝑟𝑤
)

𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷, (33c)

𝑢𝜂,𝑤(𝑥, 𝑠𝑤) = 𝑠𝑤

(

𝜃𝑥 − 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷

)

. (33d)

Bottom flange: 𝑢𝑠,𝑏(𝑥) = 𝑟𝑏

(

𝜃𝑥 − 𝛼𝑡𝛼𝑏
(1
2
− 𝛽

)

𝛾𝐷

)

, (33e)

𝑢𝜂,𝑏(𝑥, 𝑠𝑏) = 𝑠𝑏

(

𝜃𝑥 + 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑏
− 1

2

)

+ 𝛽
)

𝛾𝐷

)

. (33f)

4.2. Compatibility of warping displacements

Because of the anti-symmetry of the deformation of the cross-
section, the 𝑢𝑥 warping component of the midline displacement of both
top and bottom flange midpoints must vanish. The 𝑢𝑥 warping displace-
ments of the midline are due to rigid body motions of the walls, as
well as to their in-plane shear deformation. Therefore, the accumulated
warping from the top to the bottom flange midpoints must vanish too.
The following equations provide the warping increments due to rigid
body motions of the walls caused by torsion and distortion; they have
been evaluated starting from the midpoint of the top flange, advancing
in the counter-clockwise direction, and ending at the midpoint of the
bottom flange, following the same argument used in Fig. 5:

Top fl.: 𝛥𝑢rbm𝑥,𝑡 = −
𝑏𝑡
2
𝑟𝑡 𝜃

′
𝑥 +

𝑏𝑡
2
𝑟𝑡 𝛼𝑡𝛼𝑏

( 1
2
− 𝛽

)

𝛾 ′𝐷, (34a)

Web: 𝛥𝑢rbm𝑥,𝑤 = −ℎ𝑤𝑟𝑤 𝜃′𝑥 − ℎ𝑤
( ℎ
ℎ𝑤

𝐷 − 𝑟𝑤
)

𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾 ′𝐷, (34b)

Bottom fl.: 𝛥𝑢rbm𝑥,𝑏 = −
𝑏𝑏
2

𝑟𝑏 𝜃
′
𝑥 +

𝑏𝑏
2

𝑟𝑏 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾 ′𝐷. (34c)
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Adding the three contributions and taking into account that
1
2
𝑟𝑡𝑏𝑡 +

1
2
𝑟𝑏𝑏𝑏 + 𝑟𝑤ℎ𝑤 = �̄�ℎ (35)

and the definition of 𝛽 in Eq. (32), yields

𝛥𝑢rbm𝑥 = 𝛥𝑢rbm𝑥,𝑡 + 𝛥𝑢rbm𝑥,𝑤 + 𝛥𝑢rbm𝑥,𝑏

= −�̄�ℎ 𝜃′𝑥 − (𝐷 − �̄�)ℎ 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾 ′𝐷

= −�̄�ℎ
(

𝜃′𝑥 + 𝛼𝑡𝛼𝑏 𝛽 𝛾
′
𝐷
)

. (36)

A shear flow 𝑁𝑥𝑠 is needed to cancel the warping increment between
top and bottom intersections of the midline with the symmetry axis.
Assuming 𝑁𝑥𝑠 positive in the counter-clockwise direction, the warping
increment due to the shear flow from top to bottom is:

𝛥𝑢shear𝑥 = 1
2
𝑁𝑥𝑠
𝐺

( 𝑏𝑡
𝑡𝑡

+
2ℎ𝑤
𝑡𝑤

+
𝑏𝑏
𝑡𝑏

)

. (37)

he magnitude of 𝑁𝑥𝑠 follows from the condition of zero net-warping,

𝑢rbm𝑥 + 𝛥𝑢shear𝑥 = 0, (38)

ielding:

𝑥𝑠 = 2𝐺 �̄�ℎ
𝑏𝑡
𝑡𝑡
+ 2ℎ𝑤

𝑡𝑤
+ 𝑏𝑏

𝑡𝑏

(

𝜃′𝑥 + 𝛼𝑡𝛼𝑏 𝛽 𝛾
′
𝐷
)

= 1
2�̄�ℎ

𝐺𝐽
(

𝜃′𝑥 + 𝛼𝑡𝛼𝑏 𝛽 𝛾
′
𝐷
)

, (39)

where 𝐽 is Bredt’s torsion constant. This shear flow is statically equiv-
alent to

𝑀 shear
𝑥 = 2�̄�ℎ𝑁𝑥𝑠 = 𝐺𝐽

(

𝜃′𝑥 + 𝛼𝑡𝛼𝑏 𝛽 𝛾
′
𝐷
)

, (40)

which is the fraction of the total torsional moment needed to enforce
the compatibility of warping displacements at the corners of the cross-
section. Note that the expression (17) deduced for the rectangular
section is a particular case of (40) when there is no torsion.

4.3. Constitutive equations

The internal virtual work is the sum of the virtual work due to the
rotation of each wall plus the virtual work done by the shear flow (40):

𝛿𝑊 𝑖𝑛𝑡 = ∫

𝐿
2

− 𝐿
2

(

𝐺𝐽𝑡(𝜃′𝑥 + 𝜃′𝑡 )(𝛿𝜃
′
𝑥 + 𝛿𝜃′𝑡 )

+2𝐺𝐽𝑤(𝜃′𝑥 + 𝜃′𝑤)(𝛿𝜃
′
𝑥 + 𝛿𝜃′𝑤) + 𝐺𝐽𝑏(𝜃′𝑥 + 𝜃′𝑏)(𝛿𝜃

′
𝑥 + 𝛿𝜃′𝑏)

+𝐺𝐽 (𝜃′𝑥 + 𝛼𝑡𝛼𝑏 𝛽 𝛾
′
𝐷)(𝛿𝜃

′
𝑥 + 𝛼𝑡𝛼𝑏 𝛽 𝛿𝛾

′
𝐷)
)

d𝑥. (41)

Substituting the expressions of the wall rotation rates according to
Eqs. (31), collecting the factors of the virtual strains 𝛿𝜃′𝑥 and 𝛿𝛾 ′𝐷 and
simplifying yields

𝛿𝑊 𝑖𝑛𝑡 = ∫

𝐿
2

− 𝐿
2

(

(

𝐶𝜃𝜃 𝜃
′
𝑥 + 𝐶𝜃𝛾 𝛾

′
𝐷
)

𝛿𝜃′𝑥 +
(

𝐶𝛾𝜃 𝜃
′
𝑥 + 𝐶𝛾𝛾 𝛾

′
𝐷
)

𝛿𝛾 ′𝐷
)

d𝑥. (42)

with

𝐶𝜃𝜃 = 𝐺𝐽, (43a)

𝐶𝜃𝛾 = 𝐶𝛾𝜃 = 𝐺𝛼𝑡𝛼𝑏
(

𝛽𝐽 + 𝐽𝑓−𝑤
)

, (43b)

𝐶𝛾𝛾 = 𝐺𝐽𝐷, (43c)

and

𝐽 = 𝐽 + 𝐽𝑡 + 2𝐽𝑤 + 𝐽𝑏 (44a)

𝐽𝑓−𝑤 =
( 1
𝛼𝑡

− 1
2

)

𝐽𝑡 +
( 1
𝛼𝑏

− 1
2

)

𝐽𝑏 − 𝐽𝑤, (44b)

𝑓+𝑤 = 2
( 1
𝛼𝑡

− 1
2

)2
𝐽𝑡 + 2

( 1
𝛼𝑏

− 1
2

)2
𝐽𝑏 + 𝐽𝑤, (44c)

𝐷 = 𝛼2𝑡 𝛼
2
𝑏

(

𝛽2𝐽 + 2𝛽𝐽𝑓−𝑤 + 1
2
𝐽𝑓+𝑤

)

. (44d)
 t

7 
he constitutive definition of the internal torsional and distortional
oments follows from the cofactors of the virtual strains in (42):

[

𝑀𝑥
𝑀𝐷

]

=
[

𝐶𝜃𝜃 𝐶𝜃𝛾
𝐶𝛾𝜃 𝐶𝛾𝛾

] [

𝜃′𝑥
𝛾 ′𝐷

]

. (45)

With these definitions, the internal virtual work reads

𝛿𝑊 𝑖𝑛𝑡 = ∫

𝐿
2

− 𝐿
2

(

𝑀𝑥 𝛿𝜃
′
𝑥 +𝑀𝐷 𝛿𝛾 ′𝐷

)

d𝑥. (46)

The constitutive equations are fully uncoupled when

𝛽 = 𝛽𝑝𝑟 = −
𝐽𝑓−𝑤
𝐽

⇒ 𝐷 = 𝐷𝑝𝑟 =
𝐽

𝐽 + 2 𝐽𝑓−𝑤
�̄�, (47)

where 𝐷𝑝𝑟 defines the principal centres of rotation of the webs. In this
case,

𝑀𝑥 = 𝐺𝐽 𝜃′𝑥, 𝑀𝐷 = 𝐺𝐽 𝑝𝑟
𝐷 𝛾 ′𝐷, (48)

with the distortion constant corresponding to the principal centres of
rotation given by

𝐽 𝑝𝑟
𝐷 = 𝛼2𝑡 𝛼

2
𝑏

( 1
2
𝐽𝑓+𝑤 −

𝐽 2
𝑓−𝑤

𝐽

)

. (49)

4.4. External torsional and distortional moments

Let us first consider the action of anti-symmetrical forces 𝐹𝑦, 𝐹𝑧
applied at the corners of the cross-section at 𝑥 = 𝐿∕2 and their opposites
at 𝑥 = −𝐿∕2 — Fig. 7, left—.

The external distortional moment, as well as the torsional moment,
are consistently defined by means of the external virtual work as
follows. According to the kinematic Eqs. (33), the virtual displacements
in the 𝑠 and 𝜂 direction at the vertices are

𝛿𝑢𝑠,𝑡|𝑥=𝐿∕2 = 𝑟𝑡

(

𝛿𝜃𝑥| 𝐿
2
− 𝛼𝑡𝛼𝑏

( 1
2
− 𝛽

)

𝛿𝛾𝐷| 𝐿
2

)

, (50a)

𝛿𝑢𝜂,𝑡|(𝑥=𝐿∕2,𝑠𝑡=±𝑏𝑡∕2) = ±
𝑏𝑡
2

(

𝛿𝜃𝑥| 𝐿
2
+ 𝛼𝑡𝛼𝑏

(( 1
𝛼𝑡

− 1
2

)

+ 𝛽
)

𝛿𝛾𝐷| 𝐿
2

)

, (50b)

𝛿𝑢𝑠,𝑏|𝑥=𝐿∕2 = (ℎ − 𝑟𝑡)
(

𝛿𝜃𝑥| 𝐿
2
− 𝛼𝑡𝛼𝑏

( 1
2
− 𝛽

)

𝛿𝛾𝐷| 𝐿
2

)

, (50c)

𝛿𝑢𝜂,𝑏|(𝑥=𝐿∕2,𝑠𝑏=±𝑏𝑏∕2) = ±
𝑏𝑏
2

(

𝛿𝜃𝑥| 𝐿
2
+ 𝛼𝑡𝛼𝑏

(( 1
𝛼𝑏

− 1
2

)

+ 𝛽
)

𝛿𝛾𝐷| 𝐿
2

)

.

(50d)

The external virtual work of the point forces on the cross-section at 𝐿∕2
is:

𝛿𝑊 ext
|𝑥=𝐿∕2 = ±2𝐹𝑧 𝛿𝑢𝜂,𝑡|(𝑥=𝐿∕2,𝑠𝑓=±𝑏𝑡∕2) − 2𝐹𝑦 𝛿𝑢𝑠,𝑡|𝑥=𝐿∕2

± 2𝐹𝑧 𝛿𝑢𝜂,𝑏|(𝑥=𝐿∕2,𝑠𝑓=±𝑏𝑏∕2) − 2𝐹𝑦 𝛿𝑢𝑠,𝑏|𝑥=𝐿∕2
= 2

(

�̄� 𝐹𝑧 − ℎ𝐹𝑦
)

𝛿𝜃𝑥| 𝐿
2

+
(

𝛼𝑡𝛼𝑏
(

�̄� 𝐹𝑧 + ℎ𝐹𝑦
)

+ 2 𝛼𝑡𝛼𝑏 𝛽
(

�̄� 𝐹𝑧 − ℎ𝐹𝑦
))

𝛿𝛾𝐷| 𝐿
2
. (51)

Hence, the external torsional moment and distortional moment acting
on the end section are the cofactors of the virtual rotation and the
virtual distortion:

𝑀𝑥 = 2
(

�̄� 𝐹𝑧 − ℎ𝐹𝑦
)

, (52a)

𝑀𝐷 = 𝛼𝑡𝛼𝑏
(

�̄� 𝐹𝑧 + ℎ𝐹𝑦
)

+ 2 𝛼𝑡𝛼𝑏 𝛽
(

�̄� 𝐹𝑧 − ℎ𝐹𝑦
)

. (52b)

or the principal centres of rotation, the distortional moment is

̃𝑝𝑟
𝐷 = 𝛼𝑡𝛼𝑏

(

�̄� 𝐹𝑧 + ℎ𝐹𝑦
)

− 2 𝛼𝑡𝛼𝑏
𝐽𝑓−𝑤
𝐽

(

�̄� 𝐹𝑧 − ℎ𝐹𝑦
)

. (53)

n sections with thin walls, 𝐽𝑓−𝑤 ≪ 𝐽 , and the second term can be
eglected.

Ref. [8] includes a detailed derivation of the distortional moment
aused by anti-symmetric vertical and horizontal forces causing tor-
ional moments 𝑀𝑥𝑣 and 𝑀𝑥ℎ respectively (Fig. 7, right). The deriva-
ion is based on the mentioned splitting of the loads into a torsional
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Fig. 7. Anti-symmetric force pattern on the end cross-section (left). Typical anti-symmetric loading, e.g. [8] (right).
part and a distortional part using equilibrium of a slice. Their result is
(with our notation):

𝑀𝐷 = 1
2

(

𝑀𝑥𝑣
𝑏𝑏
𝑏𝑡

−𝑀𝑥ℎ

)

(54)

Following the described procedure, our result is:

𝑀𝐷 = 1
2
𝛼𝑡𝛼𝑏

(

𝑀𝑥𝑣
𝑏𝑏
𝑏𝑡

−𝑀𝑥ℎ

)

+ 𝛼𝑡𝛼𝑏𝛽
(

𝑀𝑥𝑣 +𝑀𝑥ℎ
)

. (55)

Choosing the principal centres of rotation, the second term is negligible.
The first term is very similar to (54), except for the non-dimensional
product 𝛼𝑡𝛼𝑏 which is close to 1 for regularly sized cross-sections.
The difference between the results is a consequence of our derivation
being consistent with the principle of virtual work. The advantage of
this approach based on the virtual work principle, is that it allows to
calculate the consistent external distortional moments caused by any
set of antisymmetric loads acting on the end sections.

4.5. Considerations about the distortional warping pattern

From Eqs. (34) and (37), the distortional warping pattern 𝜔𝐷(𝑠) is
such that the warping displacements are 𝑢𝑥 = 𝜔𝐷(𝑠) 𝛾 ′𝐷, and is composed
of the following linear functions:

Top fl.: 𝜔𝐷,𝑡(𝑠) = 𝑟𝑡 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝑠 + 𝐽
2�̄�ℎ

𝛼𝑡𝛼𝑏 𝛽 𝑠, (56a)

Bottom fl.: 𝜔𝐷,𝑏(𝑠) = (ℎ − 𝑟𝑡) 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝑠 + 𝐽
2�̄�ℎ

𝛼𝑡𝛼𝑏 𝛽 𝑠. (56b)

The warping pattern in the web is a linear function between the
values at the top and bottom corners. The second term on the right
hand side of Eqs. (56) is a consequence of the shear flow required
for warping compatibility. The warping pattern depends on 𝑟𝑡, i.e., of
the choice of the horizontal axis. However, it is remarkable that the
shear flow required for compatibility, Eq. (39), and the constitutive
equations, Eq. (45), are independent of 𝑟𝑡. This also applies to the
distortional moment caused by anti-symmetric forces, Eqs. (53), which
is independent of the position of the horizontal axis. Thus, the present
theory is independent of the position of the horizontal axis. This is
a similar situation as in Saint-Venant’s torsion theory, that does not
provide any information about the position of the rotation centre of the
cross-section. Although in the previous developments we have chosen
the same reference for describing torsion and distortion, the results
remain valid when choosing different values of 𝑟𝑡 for torsion and for
distortion in Eqs. (34).

In cases with restrained warping (out of the scope of this paper), the
distribution of normal stresses would be proportional to the warping
pattern, and it would be necessary to choose a particular value for 𝑟𝑡
in distortion, so that the moment of the pattern with respect to the
horizontal axis is cancelled. This orthogonality requirement leads to
the concept of centre of distortion that has been used in some references
(e.g. [11,22]).
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4.6. Validation

In this section we validate our model comparing the results with
Finite Element models solved with the open-source code Kratos Mul-
tiphysics [23]. We have performed five numerical tests on 50 m long
beams with hinged panels. Test cases have been labelled A to E. Cases
A, B and C have the same thin-walled rectangular cross-section. Cases
D and E correspond to trapezial cross-sections with thin and moder-
ately thick walls respectively. The dimensions and relevant mechanical
properties of each test case are included in Table 1; the distortion
constant and the external distortional moment have been referred to the
principal position of the rotation centres 𝐷𝑝𝑟, reflected in the table, to
work with uncoupled constitutive equations. Different sets of forces at
the end cross-sections have been applied in each case: pure distortional
forces in case A, pure torsional forces in case B, almost torsional forces
in case C, and the same set of anti-symmetric forces in cases D and E.
The details and the corresponding external torsional and distortional
moments evaluated with Eq. (53) are included in Table 2.

In the FE model, the origin of the global reference system is placed
at the central cross-section. The vertical axis is the symmetry axis
of the cross-section and the section horizontal axis coincides with its
shear centre. The rotation around the 𝑥-direction has been released
in all nodes along the edges between web and flange panels to sim-
ulate the hinges. Translations along the 3 coordinate directions have
been restrained at the nodes of the central cross-section where the
warping component of the displacement should vanish according to
the kinematics. Cross-section walls have been modelled with planar,
transverse-shear-deformable 4-node quadrilateral shell elements with a
maximum element size of 𝛥𝑥 = 1m in the 𝑥 direction and 𝛥𝑠 = 0.5m
along the cross-section midline. Each beam has been subjected to a
set of anti-symmetric torsional–distortional forces at the corners of the
end cross-sections (𝑥 = −25m and 𝑥 = 25m); the system of forces is
completely defined by the values of the components 𝐅𝑡𝑜𝑝,𝑟𝑖𝑔ℎ𝑡 = [𝐹𝑦, 𝐹𝑧]
of the force applied at the top-right corner of the frontal 𝑥 = 25m
cross-section. The FE model and the resulting deformation of Test A
are represented in Fig. 8.

The results of the model and the FE simulation for the cross-section
located at 𝑥 = 𝐿∕4 = 12.5m are included in Table 3. To calculate the
1D model results for the torsional rotation and for the distortion we
have first calculated the (constant) torsional and distortional rotation
rates using the constitutive Eqs. (48), and then multiplied by the
distance of the cross-section to the origin (12.5 m). Finally, the warping
displacements follow from Eqs. (34). In the case of the FE models, the
distortion is calculated evaluating the rotation of each wall from the
coordinates of the corner nodes and then using Eq. (30); on the other
hand the torsional rotation follows from subtracting the rotation of
each wall caused by the distortion given by Eqs. (31) from the total
rotation of the wall given by the corner coordinates, and averaging the
results. Fig. 9 includes the representation of the forces, the in-plane
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Fig. 8. Finite element model with boundary conditions and loads (top). Deformation (bottom). The model and the results correspond to test case A.
Table 1
Dimensions (m), position of the web rotation centres and mechanical properties of the various test cases.
Case Shape 𝑏𝑡 𝑡𝑡 ℎ 𝑡𝑤 𝑏𝑏 𝑡𝑏 𝐷𝑝𝑟 (m) 𝐽 (m4) 𝐽 𝑝𝑟

𝐷 (m4)

A, B, C rectangular 3.0 0.04 2.0 0.04 3.0 0.04 2.999 78 5.762 × 10−1 5.333 × 10−5

D trapezial 5.0 0.05 2.0 0.025 3.0 0.05 3.998 36 7.558 × 10−1 9.786 × 10−5

E trapezial 5.0 1.0 2.0 0.5 3.0 1.0 3.514 65 1.796 × 101 7.079 × 10−1
Table 2
Applied forces and corresponding torsional and distortional moments.
Case 𝐅top,right (N) Type of loading 𝑀𝑥 (Nm) 𝑀𝐷 (Nm)

A [15 000.0, 10 000.0] Pure distortional 0 6.000 × 104

B [15 000.0, −10 001.481 043] Pure torsional −1.200 × 105 −1.038 × 10−6

C [15 000.0, −10 100.0] Predominant torsion −1.206 × 105 −2.995 × 102

D [0, 10 000.0] Mixed 8.000 × 104 3.748 × 104

E [0, 10 000.0] Mixed 8.000 × 104 3.232 × 104
Table 3
Torsional rotation, distortion and warping of the top-right corner of the section located
at 𝑥 = 𝐿∕4 = 12.5m for the different numerical tests.

Test 𝜃𝑥 (rad) 𝛾𝐷 (rad) 𝑢top,right
𝑥 (m)

A model 0 1.741 × 10−1 −1.045 × 10−2

FEA 4.060 × 10−8 1.740 × 10−1 −1.047 × 10−2

B model −3.223 × 10−5 −3.012 × 10−12 7.736 × 10−7

FEA −3.222 × 10−5 −7.580 × 10−7 8.198 × 10−7

C model −3.239 × 10−5 −8.576 × 10−4 5.223 × 10−5

FEA −3.238 × 10−5 −8.602 × 10−4 5.238 × 10−5

D model 1.638 × 10−5 5.928 × 10−2 −5.399 × 10−3

FEA 1.486 × 10−5 5.950 × 10−2 −5.421 × 10−3

E model 6.893 × 10−7 7.066 × 10−6 −6.423 × 10−7

FEA 7.933 × 10−7 8.412 × 10−6 −7.647 × 10−7

deformation and the warping displacements for every test. Note that
the indicated scale of the deformation is different for each of tests
and diagrams to provide a good visualisation of the difference between
model and FEA results.
9 
Case A corresponds to a thin-walled rectangular cross-section sub-
jected to a pure distortional action. The model results show excellent
agreement with the FE simulation.

Case B considers the same cross-section of the previous test sub-
jected to a pure torsional action caused by anti-symmetric forces de-
fined by their components [15 000, −10 001.481 043] N at the top-right
corner. The decimal precision is required to cancel the distortional
moment according to Eq. (53) —note that the distortional moment
is 11 orders of magnitude smaller than the torsional moment (cf.
Table 2).— The response is clearly torsional with negligible values
for the distortion in both, our model and the FE simulation. The
magnitude of the deformation is much smaller that in case A because
the torsional stiffness is much higher than the distortional one (see
Table 1.) It is remarkable to notice that the system of forces causing
this pure torsional response is not orthogonal to the system causing
pure distortion. An orthogonal system would produce the maximum
value of the torsional moment for the given magnitude of the forces,
but would also cause distortion, again according to Eq. (53).

The high sensitivity of the system to distortional deformations is
illustrated by case C. In this test, anti-symmetric forces defined by
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Fig. 9. Validation tests. End section loads and deformations at 𝑥 = 𝐿∕4 = 12.5m.
[15 000, −10 100] N at the top-right corner have been applied. The
horizontal component differs just 1% from the one in Test B, however,
the response is now dominated by the distortion in spite of the small
difference. The match between our 1D model and the FE simulation is
excellent.

In the last two test cases (D and E), anti-symmetric vertical forces of
magnitude 10 000N are applied to a beam with trapezial cross section.
The cross-section of case D is thin-walled and the cross-section of case
E has thicker walls. In case D, the relative difference between values
of distortion and warping resulting from the 1D model and from FEA
is lower than 0.4%. However, the relative difference between values of
the torsional rotation is higher (10.2%), but the difference is not rele-
vant considering the much lower order of magnitude of the torsional
rotation, as demonstrated by the visual inspection of the deformation.
The way in which the torsional rotation is estimated for the FE analyses
justifies the mentioned percentage difference: as explained before, the
torsional rotation follows from the estimated distortion; hence, a small
 ∫

10 
error in the distortion is automatically amplified when the order of
magnitude of the torsion is much lower than the order of the distortion.
Finally, case E shows the behaviour when walls are thick. Since our
model uses the thin-wall hypothesis, considerable errors were expected.
The relative differences are higher (13.1% for the torsional rotation,
16.0% for the distortion and 9.8% for the warping) but the 1D model
can reproduce the overall deformation with reasonable accuracy.

5. Extension of the model for cross-sections with added distor-
tional stiffness

It is straightforward to add to the internal virtual work (46) a term
providing direct distortional stiffness resulting from the frame bending
stiffness of the cross-section walls, ideally distributed stiffening frames
or diagonal springs. Denoting the added stiffness by 𝑘𝐷, the virtual
work equation 𝛿𝑊 𝑖𝑛𝑡 = 𝛿𝑊 𝑒𝑥𝑡 reads:

𝐿
(

𝛿𝜃′𝑀𝑥 + 𝛿𝛾 ′ 𝑀𝐷 + 𝛿𝛾𝐷 𝑘𝐷𝛾𝐷
)

d𝑥

0

𝑥 𝐷
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= 𝑀𝑥|0 𝛿𝜃𝑥|0 +𝑀𝐷|0 𝛿𝛾𝐷|0 +𝑀𝑥|𝐿 𝛿𝜃𝑥|𝐿 +𝑀𝐷|𝐿 𝛿𝛾𝐷|𝐿, (57)

here the tilde denotes the torsional and distortional moments applied
t the start and end sections. (Note that the origin for the independent
ariable 𝑥 is now at the start section.) Integration by parts provides the
nternal equilibrium equations,

′
𝑥 = 0, 𝑀 ′

𝐷 − 𝑘𝐷𝛾𝐷 = 0, (58)

s well as the appropriate boundary terms. Substituting the constitutive
qs. (45) into (58) yields the equilibrium equations of pure torsion-
istortion for a constant cross-section box beam in terms of the generalised
isplacements:

𝜃𝜃 𝜃
′′
𝑥 + 𝐶𝜃𝛾 𝛾

′′
𝐷 = 0, (59a)

𝛾𝜃 𝜃
′′
𝑥 + 𝐶𝛾𝛾 𝛾

′′
𝐷 − 𝑘𝐷𝛾𝐷 = 0. (59b)

he equations show that torsion and distortion are, in general, coupled.
It is possible to analyse problems with variable torsional and dis-

ortional moments using a similar approach as the one commonly used
or closed or solid cross-sections subjected to torsion. For that purpose,
he virtual work of the external distributed torsional and distortional
oads,

𝐿

0

(

𝛿𝜃𝑥𝑚𝑥 + 𝛿𝛾𝐷𝑚𝐷
)

d𝑥, (60)

ust be added to the right hand side of Eq. (57). Integrating by parts,
he internal equilibrium equations become

′
𝑥 + 𝑚𝑥 = 0, 𝑀 ′

𝐷 − 𝑘𝐷𝛾𝐷 + 𝑚𝐷 = 0. (61)

hoosing 𝐷 = 𝐷𝑝𝑟 uncouples the constitutive Eqs. (47); then,

𝑥 = 𝐺𝐽 𝜃′𝑥, 𝑀𝐷 = 𝐺𝐽 𝑝𝑟
𝐷 𝛾 ′𝐷, (62)

ith the explicit expression of the distortion constant 𝐽 𝑝𝑟
𝐷 given by (49).

n the following, we dispense with the superscript 𝑝𝑟 to avoid cluttered
xpressions. Substituting the constitutive equation into the equilibrium
quation for the distortion yields

𝐽𝐷 𝛾 ′′𝐷 − 𝑘𝐷𝛾𝐷 + 𝑚𝐷 = 0. (63)

n the homogeneous case (𝑚𝐷 = 0), this equation coincides with
q. (38) in Jönsson [18]. According to this author, the equation de-
cribes the ‘‘large scale’’ distortional behaviour of a closed thin-walled
eam. This means that it provides a valid solution sufficiently far from
ross-sections where distortion is constrained and warping gradients
re strong, in spite of not having considered warping constraints nor
n-plane bending of the cross-section walls.

The solution of the torsion equation in (61) is trivial and will not
e discussed here. The general solution of the homogeneous distortion
quation (63) (𝑚𝐷 = 0) is:
[

𝛾𝐷(𝜉)
𝑀𝐷(𝜉)

]

=

[

cosh(𝜆𝜉) 𝐿
𝐺𝐽𝐷

sinh(𝜆𝜉)
𝜆

𝐺𝐽𝐷
𝐿 𝜆 sinh(𝜆𝜉) cosh(𝜆𝜉)

]

[

𝛾𝐷(0)
𝑀𝐷(0)

]

, (64)

ith the non-dimensional coordinate 𝜉 = 𝑥∕𝐿, and the parameter

= 𝐿

√

𝑘𝐷
𝐺𝐽𝐷

. (65)

inally, using (64), the solution for a simply supported beam (zero dis-
ortion at the end sections) subjected to a uniform external distributed
istortional moment 𝑚𝐷 is:

𝐷(𝜉) =
𝑚𝐷𝐿2

𝐺𝐽𝐷
1
𝜆2

(

cosh(𝜆) − 1
sinh(𝜆)

sinh(𝜆𝜉) − cosh(𝜆𝜉) + 1
)

, (66a)

𝑀𝐷(𝜉) = 𝑚𝐷𝐿
1
𝜆

(

cosh(𝜆) − 1
sinh(𝜆)

cosh(𝜆𝜉) − sinh(𝜆𝜉)
)

. (66b)

Fig. 10 represents the distortion given by Eq. (66a) in two different
ormalisations. On the left, it is normalised by the distortion constant:
t is remarkable that for higher values of 𝜆 the distortion tends to be
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constant along the beam axis and its normalised value is very small,
because 𝐽𝐷 is very small. On the right, the distortion is normalised by
he additional stiffness 𝑘𝐷; for higher values of lambda the normalised
alue equals 1 along most part of the domain, meaning that the distor-
ion is simply given by the elastic relation 𝑚𝐷 = 𝑘𝐷 𝛾𝐷. This result is

consistent with the fact that when 𝜆 has a large value, the distortion
onstant is negligible compared to the added distortional stiffness, and
he distortional response is elastically determined by the stiffness of the
ection frame or by additional (distributed) diaphragms or springs.

A final comment on the external distributed moments: they must be
alculated from the external distribution of surface forces. Starting from
general distribution, the first step is to extract the anti-symmetric

art. Then, the density of external torsional moment 𝑚𝑥 follows from
standard calculation. The consistent distributed distortional moment
𝐷 is given by the external virtual work equation:
𝐿

0
𝛿𝛾𝐷 𝑚𝐷 d𝑥 = ∫

𝐿

0

(

2∫

ℎ𝑤,sup

−ℎ𝑤,inf

(

𝛿𝑢𝑠,𝑤 𝑝𝑠 + 𝛿𝑢𝜂,𝑤 𝑝𝜂
)

d𝑠𝑤

∫

𝑏𝑡∕2

−𝑏𝑡∕2

(

𝛿𝑢𝑠,𝑡 𝑝𝑠 + 𝛿𝑢𝜂,𝑡 𝑝𝜂
)

d𝑠𝑡 + ∫

𝑏𝑏∕2

−𝑏𝑏∕2

(

𝛿𝑢𝑠,𝑏 𝑝𝑠 + 𝛿𝑢𝜂,𝑏 𝑝𝜂
)

d𝑠𝑏

)

d𝑥, (67)

here 𝑝𝑠, 𝑝𝜂 are the components of the external surface forces acting
n the cross-section walls referred to the adapted frame. The external
istortional moment results from substituting the distortional part of
he kinematic Eqs. (A.15) into the virtual displacements, factoring out
𝛾𝐷 and evaluating the integrals along the section mid-line inside the
ig parentheses.

We have shown in this section that the extended model produces
stimates of the smoothed torsional rotations and distortional angles
ased on explicit expressions for the section parameters and the dis-
ributed distortional stiffness; the latter may include the bending stiff-
ess of the section frame and the averaged distortional stiffness of
ntermediate diaphragms. Therefore, it is well suited to assess the global
or large-scale) torsional–distortional effects in long beams with closed
ross-sections with moderately thick walls or with thin walls where
he effect of internal stiffeners can be distributed along the length.
owever, the model cannot accurately estimate the stresses nor the
radients of the kinematic variables near sections where distortion is
onstrained. Further work is needed to determine the model’s range
f validity by quantifying the deviation between the extended model’s
esults and those obtained with more sophisticated models.

. Conclusions

In this paper, we present a one-dimensional model for the pure
istortion and torsion of straight box beams with hinged walls and sym-
etric trapezial cross-section, in which the stiffness against distortional

ctions is solely provided by the torsional stiffness of each individual
all. Anti-symmetric loads are applied at the end cross-sections and no

onstraints to warping displacements are considered. In the last part of
he paper, we propose an extended model to consider the distortional
tiffness provided by the frame bending stiffness of the cross-section
alls, as well as a consistent method to calculate distributed external
istortional moments along the beam.

It can be concluded that:

1. The mathematical description of the pure torsional–distortional
response of a box beam with symmetric cross-section is indepen-
dent of the selected origin of coordinates on the symmetry axis
(in analogy to Saint-Venant’s torsion).

2. Our theory provides the relation between torsional and distor-
tional moments, and torsional and distortional strains, in terms
of a 2 × 2 constitutive matrix. Easy to evaluate, explicit expres-
sions of the constitutive parameters have been derived. Torsion
and distortion are generally coupled for an arbitrary position of
the centres of rotation of the cross-section walls.
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Fig. 10. Normalised distortion along the beam for different values of 𝜆. Left: normalisation by the distortion constant. Right: normalisation by the additional distortional stiffness.
3. The distance of the centres of rotation of the web panels to the
vertical symmetry axis influences the kinematic description and
the definition of the parameters related to the distortion. There
is one principal position of the rotation centres that uncouples
the torsional and distortional response.

4. The principal position of the centres of rotation defines a prin-
cipal distortion constant. As expected, the principal distortion
constant is several orders of magnitude smaller than the torsion
constant, except for sections with moderately thick walls.

5. The results of our model for beams with different proportions
and wall thickness show very good agreement with the results
of finite element models using shell elements.

6. We provide expressions for evaluating external distortional mo-
ments resulting from arbitrary anti-symmetric loads. The expres-
sions are consistent with the principle of virtual work; hence,
they are also applicable to more sophisticated distortion models.

7. The solution of the extended model (including distributed dis-
tortional stiffness) depends on the ratio between the additional
distortional stiffness 𝑘𝐷 and the intrinsic distortional rigidity
𝐺𝐽𝐷. The extended model is suitable to assess the large-scale
torsional–distortional effects in long beams with closed cross
sections with moderately thick walls or with thin walls where the
effect of internal stiffeners can be distributed along the length.

Further work is needed to quantify the applicability of the extended
model when the beam is subjected to non-constant distortional mo-
ments, and to adapt the model to composite cross-sections like the one
motivating this research.
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Appendix. Kinematic relations in a symmetric trapezial cross-
section

The parameters 𝑑𝑡, 𝑑𝑏, 𝑟𝑡 and 𝐷 defining the kinematics of cross-
section are represented in Fig. 6. Only two of them are needed to
describe the in-plane kinematics of the cross-section, because they are
related by the following geometric relationships:
2 𝑑𝑡
𝑏𝑡

=
𝑑𝑡 + 𝑟𝑡
𝐷

,
2 𝑑𝑏
𝑏𝑏

=
𝑑𝑏 + ℎ − 𝑟𝑡

𝐷
=

𝑑𝑏 + 𝑟𝑏
𝐷

. (A.1)

It is convenient to select 𝑟𝑡, defining the position of the horizontal line
joining the lateral centres, and 𝐷, distance of the lateral centres to
the symmetry axis, as independent parameters. This is equivalent to
selecting the location of the centres of rotation of the web plates. The
location of the rotation centres of the flanges is then determined by
the diagonal lines passing through the corners of the mid-line of the
cross-section. Hence:

𝑑𝑡 =
𝑏𝑡

2𝐷 − 𝑏𝑡
𝑟𝑡, 𝑑𝑏 =

𝑏𝑏
2𝐷 − 𝑏𝑏

𝑟𝑏. (A.2)

The displacement vectors of the top and bottom left corners, consider-
ing only their in-plane components, can be expressed in horizontal and
vertical coordinates in the plane of the cross-section as:

𝐮top =
[

𝑑𝑡𝜃𝑡, −
1
2
𝑏𝑡𝜃𝑡

]𝖳, 𝐮bottom =
[

−𝑑𝑏𝜃𝑏, −
1
2
𝑏𝑏𝜃𝑏

]𝖳. (A.3)

The unit vector from the top to the bottom left corners reads:

𝝀 =
[

cos𝜙, − sin𝜙
]𝖳, (A.4)

where 𝜙 is the inner angle between the top flange and the web. The
displacement of the points of the left web in the mid-line direction is
constant along the web. Therefore,

𝑢𝑠,𝑤 = 𝐮top ⋅ 𝝀 = 𝐮bottom ⋅ 𝝀, (A.5)

hence,
(

𝑑 cos𝜙 + 1 𝑏 sin𝜙
)

𝜃 =
(

−𝑑 cos𝜙 + 1 𝑏 sin𝜙
)

𝜃 . (A.6)
𝑡 2 𝑡 𝑡 𝑏 2 𝑏 𝑏
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On the other hand, the following relations hold:

cos𝜙 =
𝑏𝑡 − 𝑏𝑏
2ℎ𝑤

, sin𝜙 = ℎ
ℎ𝑤

. (A.7)

Substitution in the previous expression shows that the rotations of the
top and bottom flanges are related as follows:
(

𝑏𝑡 + (𝑏𝑡 − 𝑏𝑏)
𝑑𝑡
ℎ

)

𝜃𝑡 =
(

𝑏𝑏 + (𝑏𝑡 − 𝑏𝑏)
𝑑𝑏
ℎ

)

𝜃𝑏. (A.8)

The mid-line direction component of the displacement of the points
f each flange is constant along it too. From this fact, it follows that
he angle of rotation of both webs is the same regardless of their
nclination, because it depends only on the difference between top
nd bottom flange displacements along the mid-line direction (constant
long each flange) and on the vertical dimension of the cross-section ℎ.
his fact holds for the rotation of the segment located on the symmetry
xis as well. Hence,

𝑢𝑠,𝑡 = −𝑑𝑡 𝜃𝑡 = 𝑟𝑡 𝜃𝑤 ⇒ 𝜃𝑡 = −
𝑟𝑡
𝑑𝑡

𝜃𝑤, (A.9a)

𝑠,𝑏 = −𝑑𝑏 𝜃𝑏 = (ℎ − 𝑟𝑡) 𝜃𝑤 ⇒ 𝜃𝑏 = −
ℎ − 𝑟𝑡
𝑑𝑏

𝜃𝑤 = −
𝑟𝑏
𝑑𝑏

𝜃𝑤. (A.9b)

Now, we wish to express the rotation angles of each wall in terms of
the distortion angle. Starting from the definition (7) of the distortion
angle,

𝛾𝐷 = 1
2
(𝜃𝑡 + 𝜃𝑏) − 𝜃𝑤, (A.10)

and substituting the previous expressions of the angles yields

𝛾𝐷 = −1
2

( 𝑟𝑡
𝑑𝑡

+
𝑟𝑏
𝑑𝑏

+ 2
)

𝜃𝑤 = −
(𝑏𝑡 + 𝑏𝑏)
𝑏𝑡𝑏𝑏

𝐷𝜃𝑤, (A.11)

Using (A.2), (A.9) and (A.10), the rotation angles of the walls can be
written in terms of the distortion as follows:

𝜃𝑡 =
(

2𝐷 − 𝑏𝑡
𝑏𝑡

𝑏𝑡𝑏𝑏
(𝑏𝑡 + 𝑏𝑏)𝐷

)

𝛾𝐷(𝑥) =
(

𝑏𝑏
�̄�

−
𝑏𝑡𝑏𝑏
�̄�2

�̄�
2𝐷

)

𝛾𝐷(𝑥), (A.12a)

𝜃𝑤 = −
𝑏𝑡𝑏𝑏

(𝑏𝑡 + 𝑏𝑏)𝐷
𝛾𝐷(𝑥) = −

𝑏𝑡𝑏𝑏
�̄�2

�̄�
2𝐷

𝛾𝐷(𝑥), (A.12b)

𝜃𝑏 =
(

2𝐷 − 𝑏𝑏
𝑏𝑏

𝑏𝑡𝑏𝑏
(𝑏𝑡 + 𝑏𝑏)𝐷

)

𝛾𝐷(𝑥) =
(

𝑏𝑡
�̄�
−

𝑏𝑡𝑏𝑏
�̄�2

�̄�
2𝐷

)

𝛾𝐷(𝑥), (A.12c)

here �̄� = (𝑏𝑡 + 𝑏𝑏)∕2 is the average width of the flanges. Note that the
ngles of rotation of the wall depend on 𝐷, but are independent of 𝑟𝑡.
inally, the wall rotations are expressed in terms of non-dimensional
arameters for convenience:

𝑡 = 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑡
− 1

2

)

+ 𝛽
)

𝛾𝐷, (A.13a)

𝜃𝑤 = −𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷, (A.13b)

𝜃𝑏 = 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑏
− 1

2

)

+ 𝛽
)

𝛾𝐷, (A.13c)

ith the following definition for the non-dimensional parameters:

𝑡 =
𝑏𝑡
�̄�
, 𝛼𝑏 =

𝑏𝑏
�̄�
, 𝛽 = 1

2

(

1 − �̄�
𝐷

)

. (A.14)

Note that the definition of 𝛽 is the similar to the one of the rectangular
ross-section —Eq. (23).

Finally, taking into account Eqs. (A.9) and (A.13), the in-plane
istortional kinematics of the trapezial cross-section is

Top fl.: 𝑢𝑠,𝑡(𝑥, 𝑠𝑡) = −𝑑𝑡𝜃𝑡 = 𝑟𝑡𝜃𝑤 = −𝑟𝑡 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷, (A.15a)

𝑢𝜂,𝑡(𝑥, 𝑠𝑡) = 𝑠𝑡𝜃𝑡 = 𝑠𝑡 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑡
− 1

2

)

+ 𝛽
)

𝛾𝐷. (A.15b)

Web: 𝑢𝑠,𝑤(𝑥, 𝑠𝑤) = −𝑑𝑤𝜃𝑤

=
( ℎ
ℎ𝑤

𝐷 − 𝑟𝑤
)

𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷, (A.15c)

𝑢 (𝑥, 𝑠 ) = 𝑠 𝜃 = −𝑠 𝛼 𝛼
( 1 − 𝛽

)

𝛾 . (A.15d)
𝜂,𝑤 𝑤 𝑤 𝑤 𝑤 𝑡 𝑏 2 𝐷
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Bottom fl.: 𝑢𝑠,𝑏(𝑥, 𝑠𝑏) = −𝑑𝑏𝜃𝑏 = 𝑟𝑏𝜃𝑤 = −𝑟𝑏 𝛼𝑡𝛼𝑏
( 1
2
− 𝛽

)

𝛾𝐷, (A.15e)

𝑢𝜂,𝑏(𝑥, 𝑠𝑏) = 𝑠𝑏𝜃𝑏 = 𝑠𝑏 𝛼𝑡𝛼𝑏
(( 1

𝛼𝑏
− 1

2

)

+ 𝛽
)

𝛾𝐷. (A.15f)
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