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A B S T R A C T

Monitoring sensory quality in cocoa-based products is time-consuming and requires expert panelists. Integrating
Mid-infrared (MIR) spectroscopy and chemometric models is a promising tool for real-time quality inspection.
This study evaluated machine learning (ML) models based on the latent relationship between spectral and
sensory information to predict the overall quality of roasted cocoa. Fifty-four roasted cocoa samples were
analyzed using ATR–FTIR in the 4000–650 cm− 1 range and sensory evaluated by four trained panelists. Spectral
data were preprocessed using Multiplicative Scatter Correction (MSC) and combined with sensory data. Subse-
quently, the block-scale Principal Component Analysis (PCA) was performed. Secondly, a PCA was calibrated
only on the spectral data to obtain uncorrelated regressors as input to the supervised ML techniques. Supported
Vector Machine Regression Model (SVMR) and the Random Forest Regression Model (RFR) were used to predict
the overall quality of roasted cocoa samples. The training (75 %) and validation (25 %) of the ML techniques
were performed 1000 times, and the hyperparameters optimization of each method was assessed via multifactor
Analysis of Variance (ANOVA). According to the tasting panel results, the cocoa beans from different growing
areas, initially appeared to have similar sensory characteristics. However, using PCA, a distinction was identified
in the northern beans. The SVMR and RFR models demonstrated an outstanding ability to describe the overall
quality of roasted cocoa samples. Further, the statistical results revealed the potential of MIR coupled with SVMR
as a reliable and robust tool for the rapid (CT < 0.02 s) and accurate prediction (MRE < 2 %, R2 > 99.9 %) of the
overall quality of roasted cocoa-based products. This work demonstrates that it is possible to implement artificial
intelligence tools to support decisions in cocoa evaluation, ensuring compliance with quality standards and
allowing segmentation according to origin and characteristics.

1. Introduction

Cocoa (Theobroma cacao L.) is a globally traded commodity, widely
used as a raw material with significant relevance in various industries,
including confectionery, functional foods, and beverages (cocoa and
chocolate derivatives) [1]. Cocoa is popularly appreciated and
consumed worldwide by people of all ages for its flavor, color, and
health benefits [2]. The chemical composition of cocoa beans has been

extensively investigated due to its potential cardiovascular health.
Cocoa beans are mainly composed of fat (>40 %), proteins (12–13 %),
fiber (11–19 %), and carbohydrates (>32 %) [3]. Further, the beans are
also rich in polyphenols and methylxanthines such as theobromine and
caffeine, which have been described as having a crucial role in reducing
overall serum cholesterol, enhancing lipoprotein levels and insulin
sensitivity, as well as providing protection against cognitive decline,
Alzheimer’s, and Parkinson’s disease [4].
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The cocoa industry is facing increased global demand for cocoa
beans. Moreover, consumers are increasingly concerned about the origin
of cocoa products and the supply chain behind cocoa production. These
facts create the need to increase production and the intensification of
research in this field [5]. In this sense, the worldwide demand for cocoa-
based products acclaims higher demands regarding its quality assess-
ment from different aspects such as sensory, physical, chemical, and
nutritional, among others [6].

The quality of cocoa beans is highly influenced by several factors
such as geographical origin, edaphoclimatic conditions, genotype, and
postharvest activities on fermentation, drying, roasting, and storage [7].
Therefore, quality standardization is critical as cocoa beans are culti-
vated mainly by many independent farmers who applied different
agronomical practices and postharvest activities, resulting in heteroge-
neity of cocoa batches [1]. Thus, the use of a larger dataset that contains
the description of cocoa commodities in detail (origin, growing prac-
tices, postharvest activities) and its combination with a robust multi-
variate model could be a reliable tool to trace the authenticity and the
quality of cocoa products for accomplishing the growing interest of
consumers in food quality terms [8]. To achieve this, collecting data on
the quality of cocoa beans from different growing areas and origins
could be an effective strategy to cluster cocoa bean samples based on
their sensory attributes [9].

Quality assessment of cocoa liquor and cocoa-based products in the
food industry is commonly done by organoleptic sensory tasting. The
sensory evaluation is time-consuming and requires trained expert
tasters, which hinders its inline industrial application as a routine
analysis for quality monitoring. In the framework of Food Quality 4.0
and big data, the real-time quality inspection of all manufactured food
products and processes is a big challenge at all factories [10]. So, the
cocoa industry must develop non-destructive and non-invasive tools to
support and complement sensory analysis information in real-time.

Integrating current technologies, such as vibrational near-infrared
(NIR), fluorescence spectroscopy, chromatography, nuclear magnetic
resonance, and X-ray with chemometrics models, could complement the
sensory analysis of food products [11]. In this way, vibrational spec-
troscopy methods such as Fourier Transform Infrared spectroscopy
(FTIR) have emerged as a promising technology for the quality assess-
ment of foodstuffs [12]. This technology enables a fast, easy, and non-
destructive testing mode, adequate for process characterization, qual-
ity inspection, and detection of adulterant food matrices, and its com-
bination with multivariate data analysis has improved quality control in
food science [13].

The large volume of data obtained from FTIR technology needs to be
analyzed using robust chemometrics models. In this sense, data mining
(DM) and machine learning (ML) enable the mathematical modeling of
complex chemical-based datasets by extracting meaningful features
driven by the data (pattern recognition) [14]. Additionally, ML allows
the prediction of learned features based on latent patterns (non-evident
information) presented in datasets [15]. Pattern recognition DM-based
methods are split into two main groups: the unsupervised techniques,
which include the Principal Component Analysis (PCA) and Hierarchical
Cluster Analysis (HCA). At the same time, the supervised approach
consists of the k-Nearest Neighbours (kNN), Partial Least Squares (PLS)
and soft independent modeling by class analogy (SIMCA), among others.
Further, in the ML field, the supervised techniques include Support
Vector Machines (SVM), Decision Trees (DT), and Random Forests (RF),
among others [14].

Several works have reported the feasibility of combining FTIR and
unsupervised/supervised chemometric models for the quality assess-
ment of various food products [16,17,18,13]. Regarding the applica-
tions of FTIR made on cocoa beans and cocoa-based products, Batista
et al. [19] and Hu et al. [20] have satisfactorily calibrated a PLS model
that used the infrared spectral data for the accurate prediction of total
antioxidant capacity and total phenolic compounds in cocoa beans and
chocolate. Nevertheless, there is an essential gap in the literature about

integrating FTIR and chemometrics models to understand the non-
evident fundamental relationship between infrared spectral data and
sensory attributes of roasted cocoa beans. Furthermore, there is no in-
formation about a robust multivariate chemometric model for the
quality assessment of roasted cocoa products in a non-destructive way
by using an infrared spectrum. This knowledge supplies trustworthy
information on the specific chemical markers of cocoa-based products,
and their correlation with sensory attributes provides the basis to
develop an automatic intelligence system for support and complement
the sensory decision-making of incoming cocoa batches and cocoa-based
products at the industrial level [1].

Therefore, the main aim of this work was to develop a multivariate
model based on the latent relationship between spectral and sensory
information for rapid and accurate prediction of the overall quality of
roasted cocoa beans from different growing areas in Huila-Colombia.
For this purpose: (i) experimentally determined the Mid-infrared
spectra and sensory profile of roasted cocoa beans cultivated in
different areas, (ii) explored the latent relationship between spectral and
sensory information via PCA-coupled RF models, and finally (iii)
addressed the computer modeling of spectral and sensory information
using ML techniques for the rapid prediction of the overall quality of
roasted cocoa beans using FTIR technology.

2. Materials and methods

2.1. Reagents

The following reagents were used in the study: theobromine 99 %
(CAS 83-67-0, Sigma-Aldrich, USA), caffeine 99 % (CAS 58-08-2, Sigma-
Aldrich, USA), acetic acid (CAS 64-19-7, Merck, Germany) and meth-
anol (CAS 67-56-1, Merck, Germany).

2.2. Cocoa sample processing

Fifty-four cocoa samples (Theobroma cacao L.) of 60 kg were
collected directly from cocoa farmers in the Huila region of Colombia.
The samples were processed in controlled conditions in the Centro
Surcolombiano de Investigación en Café (CESURCAFÉ). Cocoa samples
were obtained from three different growing areas, namely the northern
region (Colombia and Tello municipalities), the northwestern region
(Palermo, Santa Maria, Teruel, Íquira and Nátaga), and the central re-
gion (Gigante, Algeciras, Campoalegre and Rivera).

Regarding cocoa pod processing, cocoa beans were extracted from
their fruits and fermented immediately in wooden crates for seven days.
During the first three days, the raw cocoa mass reached 45 ◦C in
anaerobic mode to achieve germ death, and then aerobic conditions
were guaranteed to complete the fermentation process. Subsequently,
the samples were sun-dried until they reached a moisture content be-
tween 6 and 7 % on a wet basis (% w.b.). During the cocoa drying
process, the moisture content of beans was monitored with a grain
moisture tester (G600, Gehaka AGRA, Brazil). Only the healthy dried
cocoa beans without infection or physical damage were considered for
the analysis.

2.3. Genotype characterization of dried cocoa samples

To characterize the genotype of cocoa samples, the relationship be-
tween theobromine/caffeine was determined. The analysis was achieved
in triplicate following the methodology reported by Collazos-Escobar
et al. [21]. For this purpose, aqueous extractions were carried out by
using 200 mg of dried cocoa previously ground in a rotary knife
(FPSTFP3322, Oster®, Colombia) in 50 mL of Milli-Q hot water for 25
min at 85 ◦C in a water bath (WNE 45, Memmert, Germany). Then, the
samples were independently stirred in the magnetic plate at 800 rpm for
10 min.

An Agilent 1260 Infinity II series liquid chromatograph HPLC
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instrument (Agilent Technologies. Santa Clara. CA. USA) with a Poros-
hell 120-C18 (2.7 μm, 4 μm − 4.6 × 150 mm) column was used for the
analysis. An isocratic elution with methanol and water with 0.2 % acetic
acid (20:80 v/v) for 10 min was employed to detect theobromine and
caffeine.

2.4. Roasting and grinding conditions

The roasting process was carried out with dried cocoa samples (110
g) at a temperature of 120 ± 2 ◦C for 27 ± 2 min using laboratory
rotatory equipment (TC-150R, Quantik, Colombia). The roasting pro-
gram was followed according to Collazos-Escobar et al. [22]. Subse-
quently, the roasted cocoa samples were manually dehulled and ground
in a rotary knife (FPSTFP3322, Oster®, Colombia) to obtain cocoa nibs.

2.5. Initial moisture content and water activity (aw)

The moisture content of roasted cocoa nibs was determined in trip-
licate by drying 10 g of samples in an oven (UF55, Memmert GmbH+Co.
KG, Germany) at 105 ◦C until constant weight (24 h approximately). The
aw was measured in triplicate using a vapor sorption analyzer (VSA,
Aqualab Decagon Devices-Inc. Pullman, USA). In every test, 5 g of
roasted cocoa sample was used to measure aw.

2.6. Fourier-transform infrared (FTIR) spectroscopy

Mid-infrared (MIR) spectral information of roasted cocoa samples
was acquired using an FTIR spectrophotometer (Cary 630, Agilent
Technologies, Santa Clara, CA) coupled with a horizontal ATR sampling
accessory (Diamond ATR). The infrared spectra were obtained in the
wavenumber range of 4000–650 cm− 1, using 4 cm− 1 resolution, scan
rate 16, and background correction [23]. Each spectrum for the roasted
cocoa samples consisted of 900 wavenumbers. To remove any bias
linked to the experimental acquisition of MIR data, all the infrared
spectra were preprocessed via baseline correction followed by Multi-
plicative Scatter Correction (MSC) [21]. Data preprocessing was per-
formed by R statistical software (version 4.2.3–2023, R statistics, St.
Louis, MO, USA) using the ChemoSpec R-function [24].

2.7. Sensory analysis of cocoa liquor

The preparation of cocoa liquor for sensory analysis started with the
fine-grinding of roasted cocoa beans in a Bunn G3HD milling device
(Bunn Coffee Mill, Springfield, II. USA). Then, cocoa liquor samples
were tempered in a water bath at 50 ± 2 ◦C during the sensory analysis
session. Three highly trained panelists from CESURCAFÉ and one expert
panelist from the Sensory Analysis Laboratory of the Universidad de
Antioquia evaluated the cocoa liquor samples. The sensory panelists
were previously trained under the standard (GTC 280, 2017). To achieve
that, all panelists received five days of orientation, 2 h per session daily,
to familiarize themselves with the cocoa samples and the evaluation
process. The panelists collected a reference framework using aromatic
standards for cocoa and its different products, such as powders, choco-
lates, and beverages, to obtain the list of descriptors that would allow
obtaining the maximum sensory information of the samples. Further-
more, to prevent any bias from excessive sample analysis, the analysis
was limited to a maximum of eight samples per day, according to rec-
ommendations by Barrientos et al. [6].

Ten sensory attributes were assessed: acid, aroma, astringent, bitter,
cocoa/chocolate, floral, fruity, green/raw, malt/candy, and nuts. These
attributes were selected according to the Equal Exchange and TCHO
technical team’s tasting guide for the sensory analysis of cocoa [25]. The
sum of individual scores for all sensory attributes represented the overall
quality of cocoa samples, as this cumulative metric quantifies the sen-
sory balance of a cocoa sample.

An ordinal scale of 0 to 10 was used to quantify the attribute’s

intensities. The score of 0 indicated the absence of characteristics in the
sample, with 1–2 low intensity, 3–5 medium intensity, 6–8 high in-
tensity, and 9–10 very high intensity. The sensory analysis was con-
ducted in individual room cubicles with ambient conditions of 26± 2 ◦C
and 50 to 60 % relative humidity, and the liquor samples were given to
the panelists at the temperature of 50 ± 2 ◦C.

Sensory attributes (acid, aroma, astringent, bitter, cocoa/chocolate,
floral, fruity, green/raw, malt/candy, nuts, and overall quality) were
analyzed using a Generalized Linear Mixed (GLM) model. A GLM model
was used to assess the influence of cocoa growing areas and trained
testers on the different sensory attributes. Cocoa growing areas were
entered as a fixed factor, and tasters were included as a random factor
within each model. Mean pairwise comparisons were performed using
Fisher’s Least Significant Difference (LSD) intervals to statistically
determine whether the mean values of sensory attributes were signifi-
cantly (p < 0.05) affected by cocoa growing areas. This model was
selected due to its suitability for analyzing response variables with
different distributions, such as normal, binomial, Poisson, gamma, and
others. Thus, the use of a GLM model represents a robust approach
applicable to a wide range of data, including continuous, binary, count
data, and proportions [26]. The residual validation of the fitted GLM
models was conducted by performing several tests on the model’s re-
siduals to examine their normality (Shapiro-Wilk’s test and q-q plot),
independence (Ljung-Box’s test), and homoscedasticity (linear
regression-MLR on square residuals). Hypothesis tests and statistical
assumptions were assessed at a confidence level of 95 %. The statistical
analysis was carried out using STATGRAPHICS Centurion XVIII
(Manugistics, Inc., Rockville, MD, USA).

2.8. Explorative analysis

A PCA was performed to explore the latent relationship between MIR
spectral information and sensory quality attributes of roasted cocoa
samples. This approach was conducted to elucidate the latent relation-
ship between MIR spectral information and sensory data, thereby
enabling differentiation between cocoa-growing regions. The latent
variables calculated via this strategy revealed common sources of vari-
ability between the spectral and sensory datasets. Consequently, these
latent variables were utilized as exploratory tools to assess the distin-
guishability of different regions based on their latent structures.

For this approach, the spectral (54 samples × 900 wavenumbers of
MIR-spectra, section 2.6) and sensory (54 samples × 11 quality attri-
butes, section 2.7) datasets were combined in the same framework (54
samples × 911 original variables) to model the non-evident information
based on the latent structure of the PCA technique.

Firstly, the multi-block scaling strategy was carried out to avoid
model bias and to balance the effect caused by differences in the scales
and number of variables of both combined data sets [27]. This approach
consisted firstly of mean-centered and scale independently of the spec-
tral and sensory datasets to have unit variance. Then, each scaled dataset
was divided into the root square of its number of variables. Further, they
were integrated with the same framework (54 samples × 911 original
variables) for PCA analysis.

The PCA model used the Singular Value Decomposition (SVD) al-
gorithm to extract the orthogonal latent eigenspace by compressing the
spectral and sensory information into a reduced number of Latent Var-
iables (LVs) via a linear combination of the original variables [28]. A
total of 53 LVs, which account for the 100 % variability of the original
data set, were extracted. The SVD calculations led to obtaining uncor-
related scores (t, 54 samples × 53 LVs) and the PCA loadings (p, 53 LVs
× 911 original variables) corresponding to the weight of the original
variables in the framework to explain the variability of the original
space. Moreover, to detect and remove outlier samples from the exper-
imental data and to validate the PCA model, multivariate control sta-
tistics such as the Residual Sum of Squares (RSS) and the Hotelling t-
squared (T2) were employed [29].
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Secondly, to analyze the influence of the growing region over the
latent structure of spectral and sensory information, the RF algorithm in
multi-classification mode (RFC) was fitted to select the most critical LVs
to faithfully differentiate the cocoa growing areas [21]. This strategy
consisted of calibrating RFC using the scores-t as model inputs and the
column vector of cocoa growing areas as a response variable. Computing
modeling was carried out 1000 times employing 100 random trees, and
the RF calculations were performed using the RandomForest R-package
[30]. Then, the RFC algorithm’s Mean Decrease Accuracy (MDA) crite-
rion was employed to rank the most relevant LVs to accurately classify
the cocoa samples belonging to each growing region.

The variable importance score assigned to a LV during the training
process of an RFC or Random Forest Regression Model (RFR) model as-
sesses the informativeness of each feature. This score is used as the
criterion for stratified sampling of the feature subspace during forest
construction. This method of feature selection effectively leverages the
more informative features while not entirely disregarding the less
informative ones [31].

2.9. Machine learning-based model for sensory quality assessment

The Supported Vector Machine Regression Model (SVMR) and the
RFR were used to mathematically describe the overall quality scores of
the roasted cocoa samples (section 2.7) based on the infrared informa-
tion obtained by FTIR technology. For this purpose, a PCA model
(different from the PCA model tuned in section 2.8) was first calibrated
using spectral data (54 samples × 900 wavenumbers of MIR-spectra,
section 2.6) to obtain the uncorrelated scores, which explained all the
infrared spectral data (tsp). In this model, all of the LVs (53 components)
were extracted (summarizing 100 % of experimental variability), and
the PCA model’s validation was also achieved via RSS and T2 multi-
variate statistics.

Afterward, the computer modeling procedure was performed,
considering tsp as model regressors and the overall quality as a response.
The training and statistical validation of the ML techniques were per-
formed following the strategy reported by Sanchez-Jimenez et al. [29].
This consisted of randomly dividing the experimental data 1000 times in
two data sets; 75 %was used for model training, and the remaining 25 %
was used for model validation.

To optimize the hyperparameters of each ML technique, different
independent multilevel factorial designs (DOEs) were formulated as the
basis to find the best combination of hyperparameters to maximize the
accuracy in the prediction of the overall quality of roasted cocoa samples
by the MLmodel. This strategy was implemented to statistically quantify
the impact of combining different hyperparameters on the predictive
accuracy and capability of each ML model. In this way, the SVMR
technique was assessed by a DOE (2132), considering two kernel func-
tions (KF, rbfdot and laplacedot), three types (esp-bsvr, esp-svr, and nu-
svr) and regularization parameter (C: 1, 500.5, and 1000). Further, in all
cases, the epsilon parameter (ε) was set to 0.1.

Regarding the RFR algorithm, a DOE (41) was formulated using
different numbers of trees (100, 550, 1000 and 10,000) while keeping
constant the number of predictors sampled for splitting at each node
(Mtry) as the square root of the number of LVs, resulting in Mtry = 7.34
[21]. Computational procedures were conducted on R statistical soft-
ware using different R-packages: the kernlab for SVMR [32]and the
RandomForest for the RFR [30].

Additionally, an ensemble-learning feature selection strategy was
proposed to effectively select the LVs during the tuning process of a ML
model, aiming to maximize its predictive power. This was achieved by
utilizing the percentage increase in Mean Square Error (MSE, %) crite-
rion derived from the optimized RFR as a variable selection tool to
identify the most significant LVs. This criterion quantifies the increase in
MSE caused by removing an explanatory variable from the model,
thereby revealing the importance of each regressor in calibrating the
predictive model [31]. These selected LVs were then used to train a new

SVMR.
In each partition of the experimental data set, the formulated DOEs

were simultaneously executed to train (75 %) and validate (25 %) the
ML using each hyperparameter combination. The optimal configuration
of each ML technique was found using two multiway Analysis of Vari-
ance (ANOVA) models. Both considered the hyperparameters of each
ML technique and the random partitions of the experimental data set as
model factors and the mean relative error (MRE), Eq. (1) and coefficient
of determination (R2), Eq. (2) as variable responses to be independently
minimized and maximized, respectively.

MRE (%) =
100
N

∑N

i=1

⃒
⃒OVexp − OVpred

⃒
⃒

OVexp
(1)

R2(%) = 100 −
∑N

i=1
(
OVexp − OVpred

)2

∑N
i=1

(
OVexp − OVpred

)2 (2)

where OVexp and OVpred are the experimental and predicted overall
quality values and N is the number of experimental data. Low MRE
figures and R2 > 98 % reflect a reasonably satisfactory fitting of a
mathematical model [33].

Furthermore, the computation times (CT, s) for training and vali-
dation processes were recorded (system time R-function was employed).
This information was considered to quantify the time necessary to train
and validate the SVMR and RFR techniques and their computational cost.
Computation analyses were run on an Intel Core i7 processor, working at
2.2 GHz and with 16 GB RAM.

Finally, the multifactor ANOVA models employed to optimize the
hyperparameters of SVMR and RFR were residually validated by exam-
ining the normality (Shapiro-Wilk’s test and q-q plot), independence
(Ljung-Box’s test), and homoscedasticity (linear regression-MLR on
square residuals). These statistical procedures were also carried out
using STATGRAPHICS Centurion XVIII (Manugistics, Inc., Rockville,
MD, USA).

3. Results and discussion

3.1. Sensory and spectra characterization of cocoa samples by region

Roasted cocoa samples presented an initial moisture content of 0.02
± 3.01 × 10–3 kg water/kg dry matter (kg water/kg d.m., equal to 1.90
± 0.31 %wet basis) and aw of 0.30± 0.02. Therefore, this result allowed
us to classify the roasted cocoa samples as low-moisture food [34]. These
values were quite similar to those reported by Collazos-Escobar et al.
[22] who claimed that such figures are characteristic of properly roasted
cocoa samples. The characterization of cocoa samples in terms of
moisture content and water activity is crucial for accurate infrared
spectral analysis. Controlling water content in food samples is essential
because water’s strong absorption bands in the infrared region can bias
FTIR analysis. Moreover, excess water content in food products can
significantly impact their sensory and physical properties, including
texture, flavor, and aroma. Therefore, to ensure the reliability of
infrared spectral-based investigations, the initial determination of
moisture content and water activity was imperative.

Sensory analysis evidenced scores close to zero in the attributes
associated with defects (over-fermented and earthy/moldy), indicating
that the cocoa beans were fermented correctly (Table 1). The regions
only presented statistically significant differences (p < 0.05) in the
aroma attribute, with the northwestern region showing higher values
(6.5 ± 0.35), while the central region gave lower values (6.2 ± 0.36).

The flavor is a fundamental characteristic for differentiating cocoa
hybrids, with compounds such as 2,3-butanediol, linalool, β-myrcene,
cis/ trans − β-ocimene, 2-nonanone, 2-nonanol, 2-heptanol, methyl ac-
etate, acetophenone being those that have been shown to differentiate
between different cocoa genotypes [35]. On the other hand, the fact that
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there are no differences in most attributes indicates that the cocoa
produced in the different regions of Huila-Colombia are very homoge-
neous in their sensory characteristics, and the existing differences are
challenging to detect by a sensory tasting panel. Regarding the geno-
type, in the growing areas of Huila-Colombia, the cocoa farmers plant
several genotypes indiscriminately in the same growing area. Due to this
reason, it was necessary to establish the theobromine/caffeine rela-
tionship between the cocoa variety of roasted samples [36]. The relation
of theobromine/caffeine values between 3–9 defines the Trinitario va-
riety, and the Forastero variety can be classified with values higher than
9 (Fig. 1).

These genotype results were interesting because of their contribution
to explaining the behavior of the sensory data, as they demonstrate the
contribution of all genotypes in all regions. The cocoa crops of Colombia
have a high genetic variability due to the ecotypes generated from
crosses between the Forastero and Trinitario clones. The infrared spectra
and the primary vibrations were obtained from the different roasted
cocoa by region (Fig. 2). The wavenumber at 3400 cm− 1 has been
related to the (O–H), high-intensity peaks of 2924 and 2855 cm− 1

corresponded with symmetric and asymmetric group vibrations (C–H)
due to modification in the alkenes, lipids, and olefins that are typical of
roasting cocoa beans, while 1745 cm− 1 corresponding to the vibration of
(C––O) esters group [37]. In other studies, bands at 2922–2855 cm− 1

have been associated with vibrations of the C–H bonds of caffeine and
lipid molecules [18]. The bands referred to at 1663 and 1620 cm− 1 can
be attributed to stretching vibrations of alkenes (C––C), while the axial
deformation of the group (N–H) in the aromatic ring of possible alka-
loids such as caffeine and theobromine shows signals between
1750− 1600 cm− 1 [21]. Carbohydrates such as sucrose, glucose, and
fructose generally offer absorption bands between 1400 and 900 cm− 1.

In chocolates, the bands 909 cm− 1, 1239 cm− 1, 1472 cm− 1, 1734 cm− 1,
2917 cm− 1, and 2850 cm− 1 were associated with lipids, 989 cm− 1, 1051
cm− 1, and 1067 cm− 1 was assigned to carbohydrates, proteins in 1178
cm− 1 and 1650 cm− 1 is associated with the possible presence of caffeine
[20]. These results indicated that a simple qualitative analysis of the
infrared spectrum and sensory characteristics did not allow us to
distinguish the differences between the roasted cocoa; it is necessary to
perform a deeper analysis of the information to demonstrate the
behavior of the samples by region.

3.2. Multivariate exploratory analysis by PCA and RFC

A PCA was performed to understand if any pattern allowed a better
characterization of the roasted cocoa samples based on sensory and
spectral information. This analysis permitted extracting the main un-
derlying trends and patterns, filtering out noise, and improving the data
quality. Scatterplot scores of PC1 and PC2 explained 43.8 % of the
variability (Fig. 3A).

The scatter of observations revealed a clear separation between
samples from different regions. Despite some overlap, a general trend of
clustering by region emerged, indicating that samples from different
regions had distinct characteristics (Fig. 3A). It was observed that the
central region had a different spatial location compared to the northern
region. Additionally, PC3 (13.5 %) showed different clustering patterns,
making it possible to separate the northwest region from the other two
regions (Fig. 3B). This result manifested that both PC2 and PC3
contributed to the differentiation between regions, although PC2 ap-
pears to have a greater impact on the separation based on the explained
variability.

From the PCA results, it is possible to infer that the samples present
spectral and sensory characterization differences. This allows us to
observe how PCA helps to eliminate redundancies and retain only the
most informative features.

Fig. 3C showed the importance of each principal component in the
RFC model measured as mean decrease precision. This method measures
each variable’s impact on the accuracy of the model, providing an
intuitive way to identify which variables are most critical to the pre-
diction. In this regard, PC1 has the highest importance, with a decrease
in accuracy of approximately 4 % (Fig. 3C), indicating that it is the
model’s most relevant component for classification. Other principal
components also have some importance, but significantly less than PC1.
This reinforces the interpretation of the PCA plots, where PC1 explained
most of the variability. Thus, it was evident that some components were
more critical for grouping the samples by regions (Fig. 3C), highlighting
the contribution of PC1, PC3, and PC2.

It should be noted that for PC1, there is a high contribution of the

Table 1
Mean scores of sensory attributes of cocoa samples from three regions.

Sensory attribute Central North Northwestern

Acid 3.9 ± 0.23a 4.10 ± 0.20a 4.10 ± 0.24a

Aroma 6.20 ± 0.36a 6.40 ± 0.20b 6.50 ± 0.34ab

Astringent 3.65 ± 0.23a 3.50 ± 0.16a 3.50 ± 0.19a

Bitter 3.70 ± 0.15a 3.70 ± 0.14a 3.70 ± 0.22a

Cocoa/chocolate 4.40 ± 0.25a 4.60 ± 0.21a 4.40 ± 0.25a

Floral 4.30 ± 0.32a 4.20 ± 0.29a 4.20 ± 0.44a

Fruity 4.20 ± 0.30a 4.20 ± 0.30a 4.30 ± 0.41a

Green/raw 3.10 ± 0.37a 3.10 ± 0.39a 2.90 ± 0.34a

Malt/Candy 3.40 ± 0.26a 3.40 ± 0.14a 3.35 ± 0.29a

Nuts 4.10 ± 0.40a 4.10 ± 0.13a 4.30 ± 0.29a

Overall quality 6.10 ± 0.49a 6.10 ± 0.39a 6.30 ± 0.55a

Samples: Central (n = 15), North (n = 16), Northwestern (n = 23). Results are
expressed as mean ± standard deviation (M±SD). Different letters in the row
indicate significant differences between regions (p < 0.05).

Fig. 1. Determination of cocoa genotype using the theobromine-caffeine ratio.

Fig. 2. Infrared spectrum and primary vibrations between 4000–650 cm− 1 of
the roasted cocoa samples.
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sensory variables green/raw, acid fruity, and floral (Fig. 4A). This in-
dicates that samples located along this component (central and northern
region) were more closely related to these variables (Fig. 3A and 3B).
Also noteworthy is the influence of spectral bands in the range
2800–3000 cm− 1. This may be due to the power of the stretching of the
functional groups present in the lipids (asymmetric and symmetric CH2),
which have been described at 2930–2920 cm− 1 and 2860–2840 cm− 1

[19]. PC3 was another component that evidenced great importance for
separating the cocoa samples (Fig. 3C). This component contributes to
the separation of samples from the northwest region (Fig. 3B), possibly
due to the influence of floral, bitter, and chocolate/cocoa sensory vari-
ables and wavelengths between 2500–2700 cm− 1 (Fig. 4B). Finally, the
importance of the sensory variables is highlighted in most of the PCs,
especially in PC2, where an essential contribution of the variables
green/raw, astringent, bitter, acid, cocoa/chocolate, floral, nuts, aroma,
fruity and overall quality is evidenced (Fig. 4C). Wavelengths between
650–750 cm− 1 and 1300–1400 cm− 1 also show evidence of significant
loading in PC18, PC16 and PC17 (Fig. 4). Some vibrations between
650–900 cm− 1 in the infrared spectrum bands have been associated with
some polysaccharides such as galactan and fructose β-d-fructose [38],
originating from valence vibration of the C–O bond and stretching of
the C–O bond. On the other hand, carbohydrate vibration attributed to

angular deformation of the aromatic ring C\H can occur in the region
between 1400 to 1200 cm− 1 [18].

3.3. Machine learning for cocoa quality assessment

As Materials and Methods (section 2.9) explained, the mathematical
modeling of the overall quality of roasted cocoa samples as a function of
spectral information was performed using two ML techniques. The sta-
tistical results of SVMR and RFR are presented separately in Table 2 for
the training (75 %) and validation (25 %) data set.

At the same time, the assessment of correspondence between the
experimental overall quality and predicted values by the trained/vali-
dated ML models is depicted in Fig. 5. Thus, the training of the ML
modeling provided MRE ranging from 3.30 × 10–3 % to 2.20 %, R2

varied from 99.77 % to 99.99 %, and CT ranged between 0.02 s to 0.07 s
(Table 2). In the case of validation, the MRE figures obtained varied
from 1.60 % to 3.1 %, the R2 was between 99.74 % to 99.85 %, and in
the interval between 2.65 × 10–3 s to 3.34 × 10–3 s for the CT.

In general, the high figures of both goodness of fit metrics and lower
computational time in the model’s training and prediction of the vali-
dation data set revealed that SVMR and RFR techniques exhibited a
noticeable ability to describe the overall quality of roasted cocoa

Fig. 3. Clustering trends by regions obtained by PC1 vs. PC2 (A), PC1 vs. PC3 (B) and the importance of each component in separating the samples according to
accuracy in the RFC (C). PC (Principal Components), RFC (Random Forest Classification Model).

Fig. 4. Loadings for PCs (Principal Components) critical for classifying cocoa samples by region according to RFC (Random Forest Classification Model) analysis.
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samples as a function of the infrared spectral information. Further, both
methods accomplish the criteria to select a mathematical model for
practical applications (lower MRE figures and R2 > 98 %, section 2.9).
However, assessing the agreement between the experimental data and
prediction by the ML models is highly recommended. In this sense, both
SVMR and RFR showed a noticeable linear agreement between experi-
mental and predicted overall quality values for the training (Fig. 5A and
5C) and validation (Fig. 5B and 5D) data sets, respectively. The larger

correspondence between the experimental overall quality of roasted
cocoa samples and the predicted by the ML models indicated that the
infrared spectral data summarized into all LVs extracted from the orig-
inal space and considering them (tsp) as model regressors of ML tech-
niques, were able to explain the variability of the overall quality of
roasted cocoa samples. Thus, the statistical results obtained in Table 2
and the closely aligned cocoa sensory quality assessment by ML tech-
niques (Fig. 5) revealed that both trained/validated models could relate
the latent relationship between infrared spectra and sensory informa-
tion. Nonetheless, the statistical results also allowed us to detect a
slightly more remarkable ability of SVMR than RFR for making pre-
dictions of the overall quality of roasted cocoa samples due to the lower
MRE and CT and higher R2 values of SVMR.

The description of the overall quality of roasted cocoa samples was
fundamentally a data-driven task. Given the variability of industrial-
level challenges, there is no one-size-fits-all ML model or set of pre-
defined hyperparameters that can address all problems [39]. Each issue
must be individually analyzed with hyperparameters tailored to the
specific context. Consequently, investigating different ML techniques to
better describe the quality score of roasted cocoa based on infrared
spectra is of significant research interest. This necessitates exploring
various models and optimizing their hyperparameters, as detailed in
section 2.9.

To gain a comprehensive understanding of the performance differ-
ences between SVMR and RFR, it is essential to examine the fundamental
principles behind each algorithm. SVMR depicts a sophisticated mathe-
matical approach that uses vector spaces and margin optimization to
find hyperplanes for classifying data. This involves maximizing the
margin between classes while minimizing the predicted error by solving
a quadratic optimization problem. Furthermore, SVMR demonstrates
versatility by adeptly handling both linear and nonlinear systems,

Table 2
The goodness of fit of trained Machine Learning (ML) models (75 %) and their
statistical results for the validation data set (25 %).

ML
technique

Hyperparameters MRE (%) R2 (%) CT (s)

SVMR KF: laplacedot
Type: nu-svr
C=500.5
ε = 0.1

Training
3.30 × 10–3 ±

5.50 × 10–4
99.99 ±

0.01
0.02 ± 8.44 ×

10–3

Validation
1.60 ± 1.00 99.74 ±

0.01
2.65 × 10–3 ±

6.30 × 10–3

RFR NRT=1000
Mtry = 7.34

Training
2.20 ± 0.20 99.85 ±

0.02
0.07 ± 0.02

Validation
3.10 ± 0.80 99.77 ±

0.03
3.34 × 10–3 ±

6.86 × 10–3

SVMR (Supported Vector Machine Regression Model) and RFR (Random Forest
Regression Model), KF (Kernel function), C (Regularization parameter), ε
(epsilon), NRT (number of regression trees), Mtry (number of predictors
sampled for splitting at each node). MRE (mean relative error), R2 (coefficient of
determination), and CT (computation time). Results are expressed as mean ±

standard error.

Fig. 5. Experimental and predicted OV (overall accuracy) values via SVMR and RFR for training (75 %) and validation (25 %) data sets. SVMR (Supported Vector
Machine Regression Model) and RFR (Random Forest Regression Model).

G.A. Collazos-Escobar et al. Infrared Physics and Technology 141 (2024) 105482 

7 



achieved by employing KFs to transform data into higher-dimensional
spaces [40]. From the statistical outcomes for the trained/validated
SVM (R2 < 99.9 and MRE < 2 %, Table 2), it can be observed that the
laplacedot kernel function, nu-svr, and C=500.5 with a constant ε = 0.1
were the optimal hyperparameters for this technique to accurately
describe the overall quality of roasted cocoa samples as a function of
infrared spectra. This result can be attributed to the combination of
reduced outlier sensitivity provided by the laplacedot kernel (compared
to rbfdot), the flexible error control of nu-svr (respect to esp-bsvr, esp-svr,
and the balanced regularization parameter C (lower values tend to
underfitting and higher promote overfitting), which together enhance
the model’s robustness and generalization capability [41,42].

RFR ensembles several randomly selected regression trees (NRT,
Table 2) based on the bagging principle to improve the model’s diversity
and uses mathematical averaging to avoid overfitting. This approach
reduces the model’s sensitivity to variations in the training data [43].
Each regression tree splits the data into subsets based on feature con-
ditions to minimize the error between predicted and experimental
values [44]. According to the statistical results (section 2.9 and Table 2),
using 1000 NRT was sufficient to accurately describe the overall quality
of roasted cocoa samples. In contrast, using only 100 or 550 NRT could
lead to increased underfitting, while 10,000 NRT would substantially
increase computational costs without significant improvements in pre-
diction accuracy. Therefore, 1000 NRT depicted an optimal balance
between computational efficiency and model accuracy [31].

Although solving non-linear problems via SVMR requires a lot of
informatics resources [14], the CT was lower than the one used via RFR
to ensemble 1000 NRT to solve the same mathematical task. Thus, SVMR
could be considered the best ML model for assessing the sensory quality
of roasted cocoa samples. The feasibility of SVMR has also been suc-
cessfully used in many applications, such as the mathematical descrip-
tion of the water adsorption process of Achira biscuits [39], the
discrimination of Extra Virgin Olive Oils [45], for the determination of
coconut maturity based acoustical signals [46], for detection of oil yield
using NIR [47]and quantification of butter yellow adulteration in
mustard oil [48].

Finally, the statistical results of the ensemble-learning feature se-
lection strategy based MSE criterion of RFR for training a new SVMR are

illustrated in Fig. 6.
As seen in Fig. 6A, the most relevant LVs for maximizing the agree-

ment between the experimental and predicted overall quality values of
roasted cocoa samples were identified for both training (MRE < 0.1 %,
R2 > 99.9 %, and CT=0.01 s, Fig. 6B) and validation (MRE < 2 %, R2 >

99.0 %, and CT=1 × 10–3 s, Fig. 6C) datasets. These LVs were ranked
according to the MSE criteria of the optimized RFR (1000 NRT, Table 2).
The results demonstrated that using PC7, PC32, PC4, PC37, PC36, PC24,
PC51, PC5, PC40, PC48, PC6, PC18, PC47, and PC17 (Fig. 6D to 6R) in
the tuning of the SVMR allows for reliable prediction of cocoa quality.
These LVs revealed the contribution of key infrared spectral bands
correlated with the sensory scores of samples, as seen in the loading’s
plots (Fig. 6D to 6R). The ensemble-learning strategy was effective not
only for accurately describing overall quality as a function of infrared
spectra but also for significantly reducing the CT, thereby calibrating a
rapid and parsimonious predictive tool for real-time quality inspection.

Integrating infrared spectral data with sensory information into ML
models posed several challenges. The main issue was the high dimen-
sionality and complexity of the spectral data, combined with the high
heterogeneity of the sensory data [49]. These factors complicated the
mathematical modeling, affecting the time and cost of computational
calculations required to predict the overall quality of roasted cocoa
samples. To address these challenges, our research implemented several
strategies. The use of infrared spectral preprocessing, dimensionality
reduction techniques using PCA, and the training of advanced ML latent
variables-based models allowed for the reduction of the overfitting risks
and enhanced computational efficiency. Both are essential for an inline
industrial implementation and provide the basis to develop further
studies in this field.

This is the first step in developing data-driven computer chemo-
metric models, which would be able to include more regressors in the
mathematical modeling. For instance, different cocoa varieties, post-
harvest processing activities such as fermentation, drying, storage,
roasting, and non-invasive acquisition techniques (FTIR, hyperspectral
imaging, ultrasound, among others) to describe not only their influence
on sensory quality but also polyphenols, methylxanthines, antioxidants,
rheological properties, among others. These computer tools could help
support real-time decision-making at the industrial level and facilitate

Fig. 6. Ensemble-learning strategy for latent-variable selection in the training (75 %) and validation (25 %) process of the Support Vector Machine Regression
(SVMR) model.
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the implementation of non-invasive intelligent systems to screen cocoa
batches with unpleasant sensory profiles that do not meet quality stan-
dards. Furthermore, they can help segment batches according to their
origin and quality features.

4. Conclusions

This work showed that the incorporation of ML models such as RFR
and SVMR depicted an excellent option to reliably establish the rela-
tionship between infrared spectral data and sensory attributes of roasted
cocoa beans. Additionally, the incorporation of latent variables revealed
important information about the effect of the region on the sensory
quality of cocoa, which was impossible to reveal through sensory anal-
ysis or the description of the spectrum.

The infrared spectral data comprised of all latent variables extracted
from the original space and considered as regressors of the ML tech-
niques model effectively explained the variability in the overall quality
of the roasted cocoa samples. Supported Vector Machine Regression
Model permitted a precise description of the overall quality of roasted
cocoa samples (MRE < 2 % and R2 > 99.9 %) within lower computa-
tional time–cost (CT < 0.02 s), allowing the real-time monitoring of the
overall quality of roasted cocoa beans and cocoa-based products as an
intelligent tool to support and complement sensory quality assessment
in the screening of incoming cocoa batches at industrial level.

Finally, this study highlights the importance of developing more
complete chemometric models that can incorporate a variety of re-
gressors in the mathematical modeling (cocoa varieties, fermentation,
drying, storage, roasting) and various non-invasive acquisition tech-
niques (FTIR, FTNIR, hyperspectral imaging, and ultrasound). This in-
tegrated approach allows an understanding of the influence of multiple
factors associated with cocoa cultivation and processing on sensory
quality and other aspects such as polyphenol, methylxanthine, and
antioxidant content.
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[4] F. Mariatti, V. Gunjević, L. Boffa, G. Cravotto, Process intensification technologies
for the recovery of valuable compounds from cocoa by-products, Innov. Food Sci.
Emerg. Technol. (2021), https://doi.org/10.1016/j.ifset.2021.102601.

[5] N.N. Suh, E.L. Molua, Cocoa production under climate variability and farm
management challenges: Some farmers’ perspective, J Agric Food Res 8 (2022),
https://doi.org/10.1016/j.jafr.2022.100282.

[6] L.D.P. Barrientos, J.D.T. Oquendo, M.A.G. Garzón, O.L.M. Álvarez, Effect of the
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