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Abstract
Archives around the world hold vast digitized series of historical manuscript books or “bundles” containing, among others, 
notarial records also known as “deeds” or “acts”. One of the first steps to provide metadata which describe the contents of 
those bundles is to segment them into their individual deeds. Even if deeds are often page-aligned, as in the bundles con-
sidered in the present work, this is a time-consuming task, often prohibitive given the huge scale of the manuscript series 
involved. Unlike traditional Layout Analysis methods for page-level segmentation, our approach goes beyond the realm of a 
single-page image, providing consistent deed detection results on full bundles. This is achieved in two tightly integrated steps: 
first, we estimate the class-posterior at the page level for the “initial”, “middle”, and “final” classes; then we “decode” these 
posteriors applying a series of sequentiality consistency constraints to obtain a consistent book segmentation. Experiments are 
presented for four large historical manuscripts, varying the number of “deeds” used for training. Two metrics are introduced 
to assess the quality of book segmentation, one of them taking into account the loss of information entailed by segmentation 
errors. The problem formalization, the metrics and the empirical work significantly extend our previous works on this topic.
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1  Introduction

Extensive collections of historical manuscripts holding 
important notarial documents span across vast lengths of 
archive shelving globally. Many of these collections have 
been digitized, transforming them into high-resolution digi-
tal images.

Typically, these images are organized sequentially in vari-
ous archival units like folders, books or boxes, here called 
“image bundles”.1 Each of these bundles can encompass 
thousands of individual page images which are sequentially 
organized into several, often many “image documents”, also 
known as “files”, “acts”, or, specifically for notarial docu-
ments considered in this work, “deeds”.

For massive series of documents of this kind, it is often 
unfeasible for archives to provide detailed metadata that 
accurately describes the content of each bundle. In particu-
lar, if available at all, metadata often goes without informa-
tion about the specific location of individual deeds within 
a bundle. Automated solutions are needed to assist archival 
specialists in the arduous task of cataloging these expansive 
series. Segmenting bundles into distinct deeds stands as one 
of the preliminary phases in this operation. This is the pri-
mary focus of our current study.

Historically, efforts to address analogous challenges 
originated in the field of Layout Analysis (LA). This 
domain encompasses many document analysis tasks, from 
line detection and page layout segmentation to document 
understanding.

Numerous line detection and extraction techniques, a 
basic step for Handwritten Text Recognition (HTR) systems, 
lean on text baseline detection methods [6, 25] that employ 
diverse strategies. Some recent studies utilize convolutional 
networks [4] or employ encoder–decoder designs to concur-
rently achieve layout segmentation and line detection [3, 18, 
27]. Additionally, some incorporate a spatial attention mech-
anism across various resolutions to existing architecture [9].

Region Proposal Networks (RPN) are also used for sin-
gle-page LA. Tools like MaskRCNN [12] have proven effec-
tive for complex layout segmentations, as demonstrated in 
Refs. [2, 25]. Notably, in Ref. [1], the same methodology 
addresses challenges posed by having lines close together, 
facilitating data extraction from tables.

Furthermore, the LA domain has achieved consider-
able advancements by implementing transformer-based 
designs, which occasionally integrate HTR. For instance, the 

DONUT approach introduced in Ref. [14] offers document 
understanding by analyzing entire pages in an end-to-end 
fashion. Another solution, DAN [7], introduces a segmenta-
tion-free model that determines the logical layout and simul-
taneously recognizes textual content without necessitating 
geometrical data from LA.

The interest in these kinds of holistic approaches notwith-
standing, none of these works consider text-image process-
ing beyond the realm of a single-page image, which is the 
problem we face here.

Automatic classification techniques have been developed 
for image documents (deeds) to classify their specific typo-
logical categories, like “Letter of Payment” or “Will”, with 
encouraging results documented in Refs. [8, 21, 23, 30]. 
However, these studies assume that successive page images 
for each deed are assumedly given. Contrarily, real-world 
scenarios often present deeds nestled within bundles with-
out explicitly separating the distinct page images each deed 
comprises.

Therefore, to provide practical solutions for automated 
documentary management of these important series of man-
uscripts, a pending problem is how to segment a large bundle 
into its constituent deeds. This is the task considered in the 
present work. Previous approaches to this problem exist, but 
they should be considered only somewhat tentative. In stud-
ies like Refs. [5, 6] and [20], the authors introduce text-line-
oriented, page-level segmentation techniques using Hidden 
Markov Models (HMMs) and recurrent CTC-based systems 
to identify the deeds’ starting, middle, and ending sections 
within each page image. Further, Tarride et al. [29], outline a 
complete workflow for data extraction from registers. How-
ever, it is important to note that these studies do not provide 
results on segmenting entire bundles. Additionally, they lack 
methodologies to ensure consistent detection throughout a 
whole bundle.

In this paper, we propose a pipeline based on a simple 
neural network to obtain the posterior probabilities of each 
image over a closed set of classes: initial, middle, and final. 
Then, relying on the sequential order of the book’s images, 
we apply a decoding approach based on the global context on 
these image posteriors to segment the entire book. The book 
segmentation is evaluated in terms of two different metrics 
which clearly show that far better results are obtained when 
considering the global book context rather than local image 
classification. One of the main advantages of this pipeline is 
that it does not require any kind of textual transcripts of the 
images for training. The cost of producing reference tran-
scripts would be overly prohibitive for this task in practice. 
Unlike other approaches such as [7, 14], another advantage 
is that our method does not require large amounts of training 
data or the creation of any kind of synthetic data. It is also 
worth mentioning that this pipeline is hardware lightweight 
and can be trained with low memory GPU (6GB or less).

1  The protocols used in this work were not really “bundles”. How-
ever, once they are converted into digitized images, we no longer 
have anything like books, bundles, boxes, etc., but electronic files and 
folders. Since there is no commonly used term in archival science to 
refer to this kind of organized sets of page images, we have taken the 
liberty of using the term “image bundle”.
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This work extends the research started in Ref. [22]. Here, 
a detailed formalization of the problem and new ways of 
evaluating the results are proposed. Furthermore, we present 
more comprehensive experiments, with a larger and more 
complete dataset.

The presentation of our work is organized as follows. 
Section 2 describes the historical documents considered. 
Section 3 explains in detail the technical problem entailed 
by bundle segmentation and the solutions we propose. Sec-
tion 4 introduces the metric used to assess bundle segmenta-
tion results. Section 5 provides dataset and empirical setting 
details. Section 6 presentes the experiments carried out and 

the results achieved. And Sect. 7 summarizes the work car-
ried out and comes out with final remarks.

2 � The JMDB series of notarial record 
manuscripts

For this study, we have worked on a portion of the 16,849 
“notarial protocol books” which are more than three hun-
dred years old and are preserved in the Provincial Histori-
cal Archive of Cadiz (AHPC, by its acronym in Spanish). 
Each protocol book (or “bundle”) contains more than eight 

Fig. 1   A four-page deed from 
the JMBB-4949 bundle of the 
AHPC
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hundred pages, organized into two hundred and fifty deeds 
on average.

The portion considered in this work is a series of four 
bundles referred to as JMDB, which contain deeds written 
by the notary Jose Manuel Briones Delgado between 1712 
and 1726. The deeds of each bundle are arranged chrono-
logically, preceded by an onomastic and topographic index 
(about fifty pages) which has not been used in the experi-
ments presented in this paper. Figure 1 shows a typical 
JMDB deed.2

For the JMBD series, the deeds are page-aligned. Each 
deed always begins on a new recto page and can contain 
from one to dozens of pages, some of which may be almost 
blank or without any textual content. The first and last pages 
of each deed are often visually identifiable because of slight 
layout differences compared to other pages. However, 
separating the deeds of each bundle is not straightforward 
and remains a challenging task. The main difficulty is the 
similarity many regular pages share with the beginning or 
ending pages. Various “data-centric” and rule-based tech-
niques have been attempted, but none of them have worked 
sufficiently well. Additionally, another feature of this(and 
most other) collection(s) is the lack of textual transcripts. 
The deed in Fig. 1 showcases the starting, ending, and two 
intermediary page images.

While these details might appear very specific to these 
manuscripts, it is important to highlight this series’s sheer 
magnitude, which deserves the development of ad-hoc 
methods. Furthermore, innumerable notarial record series 
exhibit a similar bundle structuring, especially where each 
deed begins on a fresh page. However, it is pertinent to 
point out that other notarial record series exist where the 
deeds are not aligned at the page-level. Among them, we can 
mention Chancery (HIMANIS) [20], Oficio de Hipotecas de 
Girona (OHG) [26, 28], and The Cartulary of the Seigneury 
of Nesle (Nesle) [13].3 Though these particular manuscript 
types are not the focus of our current study, some of the 
concepts and methods introduced here might also be useful 
when addressing challenges associated with these kinds of 
bundles.

3 � Problem statement and proposed 
approaches

The bundle segmentation problem is formalized in this sec-
tion, along with the approaches we propose, based on indi-
vidual page-image classification and whole-bundle consist-
ence modeling.

3.1 � Problem formalization

Let B = D1,… ,DK be a bundle which sequentially encom-
passes K deeds.4 Each deed Dk , in turn, is a sequence of 
M(k)≥2 page images, denoted as Dk = Gk

1
,… ,Gk

M(k)
 . In the 

deed segmentation task, a bundle B is given just as a plain, 
unsegmented sequence of N page images B=G1,… ,GN and 
the problem is to find K+1 boundaries bk , 0≤k≤K , such 
that b0=0, bk−1<bk, bK=N , and B becomes described as a 
sequence of deeds D1,… ,DK , where Dk = Gbk−1+1

,… ,Gbk
 

and M(k) = bk − bk−1 , 1 ≤ k ≤ K.
As discussed in Sect. 2, all the deeds within a bundle 

start on a new page and also end with a full page, even if 
part of the page is unused. Initial and final deed pages will 
be referred to as “Initial” (I) and “Final” (F), respectively. 
All the pages within I  and F  will be referred to as “Mid” 
(M). Let C

def
= {�,�, �} be de set of page classes5 or labels. 

A sequence c1,… , cN , cj ∈ C, 1 ≤ j ≤ N of page labels that 
follows these rules is said to be consistent.

Given a label sequence c1,… , cN , the corresponding 
segmentation is readily obtained by successively setting the 
boundaries bk to the positions of the pages labeled with F, 
as outlined by the following pseudocode:

3.2 � Proposed approaches

Three increasingly complex solutions are proposed. The 
common idea is to model the likelihood of a (consistent) 
page label sequence, and then try to obtain as a result a 
sequence with maximum likelihood. In general, the prob-
ability of a label sequence c1,… , cN for a given bundle 
B=G1,… ,GN can be decomposed as:

(1)
b0 ∶=k∶=0;

for (j∶=1…N) if (cj=�){k∶=k+1; bk ∶= j}; K ∶=k

2  The entire JMBD collection, among others from AHPC, can be 
seen in the first folder of the following demonstrator: https://​www.​
prhlt.​upv.​es/​htr/​carab​ela/
3  https://​deeds.​libra​ry.​utoro​nto.​ca/​cartu​laries/​0249

4  To avoid cumbersome equations, we will abuse the notation and 
index the elements of a sequence of sequences with a plain, rather 
than parenthesized superindex. That is, we will write Dk , rather than 
D(k).
5  A deed may also contain blank or otherwise useless (“nonessen-
tial”) pages, which may appear either at the end of a deed, or within 
it. Nonessential pages are almost trivial to detect and, for the sake of 
simplicity, we assume they are eliminated from the bundle in a simple 
previous step.

https://www.prhlt.upv.es/htr/carabela/
https://www.prhlt.upv.es/htr/carabela/
https://deeds.library.utoronto.ca/cartularies/0249
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Assuming naive Bayes page class independence and also 
that P(cj ∣ B) only depends on the corresponding image Gj:

Now, rather than naive Bayes, a more context-aware decom-
position of the right part of Eq. (2) can be adopted (a deriva-
tion is given in “Appendix A”):

To obtain this expression, two independence assump-
tions have been made: page class dependency is first-order 
Markov; and Gj is conditionaly dependent only on cj and 
conversely cj is conditionally dependent only on Gj . This 
decomposition essentially corresponds to that of a Hidden 
Markov Model (HMM), as discussed below.

Our proposals to segment B into deads will amount to 
obtaining a page class sequence with maximum probability; 
that is:

where P(c1,… , cN ∣ B) is approximated by Eqs. (3) or (4). 
This optimization process is called decoding.

3.2.1 � Optical page class modeling

A classifier is required to estimate the class-posteriors 
P(c ∣ G) , c∈C needed in Eqs. (3,4) for each page image G 
of a bundle. This classifier is fully local in that it completely 
ignores the context of G (i.e., the preceding and succeding 
pages) and relies only on “visual” or “optical” features of 
each individual page image. Possible optical classifiers to 
model these probabilities are proposed in Sect. 3.3, below.

(2)P(c1,… , cN ∣ B) = P(c1 ∣ B)

N∏

j=2

P(cj ∣ B, c1,… , cj−1)

(3)P(c1,… , cN ∣ B) ≈

N∏

j=1

P(cj ∣ Gj)

(4)

P(c1,… , cN ∣ B) ≈ P(c1 ∣ G1)

N∏

j=2

P(cj ∣ cj−1)
P(cj ∣ Gj)

P(cj)

(5)ĉ1,… , ĉN = argmax c1,…,cN
P(c1,… , cN ∣ B)

Given a bundle B = G1,… ,GN , the page classifier is used 
to estimate a sequence of class-posteriors P(c ∣ Gj) , which 
will be referred to as the posteriorgram6 of B:

3.2.2 � Consistency constraints model

The probability decomposition of Eq. (4) is that of a first-
order HMM with a set of states Q = C = {�,�, �} and state 
transition probabilities P(c ∣ c�) , c, c� ∈ Q . The state-emis-
sion probabilities would be the class-conditional likelihoods 
P(G ∣ c) , where G is a page image and c ∈ C . These likeli-
hoods are proportional to P(c ∣ G)∕P(c) , as used in Eq. (4), 
where the posterior P(c ∣ G) is given by the image classifier 
(Eq. 6), and P(c) is trivially estimated from Ground Truth 
(GT) segmented bundles.

Note that the ultimate goal of segmentation is to preserve 
the coherence of the textual information of each deed of a 
bundle. To this end, each deed segment Dk , 1≤ k≤K , must 
fullfil the following hard Consistency Constraints (CC):  
Gbk−1+1

 is an I-page, Gbk
 is an F-page and, if M(K)>2 , 

Gbk−1+2
,… ,Gbk−1

 are all M-pages.
Correspondingly, only the state F can be final and the ini-

tial-state probability must be 1 for the state I and 0 for other 
states. In addition, P(� ∣�)= P(� ∣�)=P(� ∣�) =P(� ∣�)=0 . 
The other five transition probabilities can be straightfor-
wardly estimated from GT segmented bundles. This HMM 
topology is depicted in Fig. 2.

3.2.3 � Unconstrained decoding

Using Eq. (3), the optimization (5) becomes trivial (but con-
sistency is not guaranteed):

3.2.4 � Greedy decoding

Before attempting to obtain a globally optimal solution to 
Eq.(5), a much simpler greedy decoder can be devised by 
locally applying the CCs as follows:

(6)g1,… , gN , gjc
def
= P(c ∣ Gj), c ∈ C, 1≤ j≤N

(7)ĉj = argmax c∈C gjc, 1 ≤ j ≤ N

(8)
ĉ1 = �; ĉj = argmax c∈𝜌(ĉj−1)

gjc, 2 ≤ j ≤ N − 2;

ĉN−1 = 𝜋(ĉN−2); ĉN = �

I

M

F

Fig. 2   Topology of the Consistency Constraints HMM. For conveni-
ence, states are labeled with I, M, and F,  respectively corresponding 
to the initial, middle, and final pages of a deed

6  Following time-honored tradition in signal processing and auto-
matic speech recognition, the term posteriorgram is used for this type 
of (variable-length) sequences of posterior probability vectors.
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where the function � ∶ C → 2 C  is  def ined as: 
�(�)=�(�)={�, �}; �(�)={�} , and � ∶ C → C is a “previ-
ous label function” defined as: �(�) = �(�) = �; �(F) = �.

By construction, this greedy decoder yields a consistent 
label sequence. However, it does not guarantee that the prob-
ability of this sequence is maximum.

3.2.5 � Viterbi decoding

Following Eqs. (4) and (6) the optimization (5) becomes:

where g̃jcj
def
= gjcj∕P(cj),  gjcj , 1≤ j≤N , cj ∈ C , are the compo-

nents of the bundle posteriorgram, and P(cj) are the page 
class priors.

To achieve a globally optimal solution to this equation, 
a Dynamic Programming decoder is needed. The Viterbi 
algorithm, which is one of the most popular of this kind of 
decoders, can be outlined as follows.

Let V(j, q) denote the probability of a max-probability 
state sequence which ends in state q and generates the first 
j labels. Set V(1, �)=g1,�, V(1,�) = V(1,F) = 0 . Then the 
following recurrence relation holds for 2 ≤ j ≤ N:

Once V(N, �) is computed, backtracing yields a globally 
optimal consistent sequence of states and the correspond-
ing sequence of I,M,F  labels.

3.3 � Individual page image classification

To compute the posteriorgram introduced in Eq.  (6), a 
page-image classifier is needed to obtain the class posterior 
P(c ∣ G) for each page image G and each c ∈ {�,�, �}.

In the present work, several classifiers have been tried; 
namely, ResNet-{18,50,101} [11], ConvNeXt [16], and 
other transformer-based image classifiers, such as Swin [15]. 
All of them have been pre-trained on ImageNet from [32].

ResNet and ConvNeXt are both convolutional neural 
networks with a last, linear classification layer. ResNet is a 
commonly used architecture for image classification tasks. It 
consists of multiple convolutional layers with residual con-
nections between them. Residual connections enable the 
network to train much deeper architectures by mitigating 
the vanishing gradient problem. The specific architecture 
is determined by the number of ResNet blocks. The more 
blocks we set, the larger and deeper the network, and the 
greater number of parameters to be trained.

ConvNeXt, as the authors explain in Ref. [16], is a “mod-
ernized” ResNet with the latest advances from training 

(9)ĉ1,… , ĉN = argmax c1,…,cN
g1c1

N∏

j=2

g̃jcjP(cj ∣ cj−1)

(10)V(j, q) = max
q�∈Q

g̃jq P(q ∣ q�)V(j − 1, q�), q ∈ Q

ConvNets and Vision Transformers. In the present work, 
only ConvNeXt base has been used. ConvNeXt tiny was 
tried too, but the results were worse.

We also tried to train Vision Transformers, such as Swin 
[15], but the model had convergence difficulties and the 
results were rather poor. A possible cause is the difference 
in the resolution of images from the pre-training stage, 
where the original images were of 224 × 224 pixels, while 
we need to use an image size of 1024 × 1024 . A larger size is 
required because, in our classification task, the clues are usu-
ally words-sized visual features or relatively small boxes in 
specific parts of the image and a higher resolution is needed 
to avoid losing this information.

4 � Evaluation measures

In the approaches described in Sect. 3, several alternatives 
are proposed for the different components needed to build a 
complete bundle segmentation system.

To select the best system components, we first need to 
assess the performance of the different individual page 
image classifiers (Sect. 3.3), and then evaluate, end-to-end, 
the segmentation performance of the alternative decoders 
proposed in Sect. 3.2.

4.1 � Assessing individual page classifiers

The performance of the page image classifiers discussed in 
Sect. 3.3 could be assessed just using the conventional clas-
sification error rate. However, the impact of these classifi-
ers on the end-to-end performance of the different methods 
discussed in Sect. 3.2 is more dependent on the faithfulness 
of the class probability distribution than on their ability to 
make the best class choice without taking the context into 
account.

Therefore, we are interested in well-calibrated class 
probabilities, not just low classification errors. Even though 
incontextual classification by max class posterior fails to 
yield correct class hypotheses, decoding can achieve flaw-
less segmentation if the probabilities of the correct classes 
are not too low.

The faithfulness of a posterior distribution can be meas-
ured by the cross-entropy:

(11)

H(Pt,P) = − 1
N

N
∑

j=1

∑

c∈
Pt(c ∣ Gj) log2

P(c ∣ Gj) = − 1
N

N
∑

j=1
log2 gj,cj



Pattern Analysis and Applications (2024) 27:22	 Page 7 of 12  22

where Pt is the “target distribution”,7 N is the total number 
of samples (pages) and gj,cj is the class-posterior of the image 
Gj for the reference class cj , as defined in Sect. 3.2. It will be 
used to evaluate and compare the page-image classifiers 
between the probability distributions of the hypotheses and 
the reference distributions. This way, we will assess the 
uncertainty between both probability distributions, selecting 
the model with the lowest cross-entropy for later decoding 
and segmenting the books. It should be noted that cross-
entropy is rather preferable to classification error, since our 
goal is to measure the goodness of the image posterior prob-
abilities provided by the model to segment properly the 
image sequence.

4.2 � Assessing bundle segmentation performance 
end‑to‑end

Most importantly, to assess the ultimate goal of the pro-
posed approaches, we need to measure how well a whole 
bundle is segmented into its deeds. To this end, we propose 
two metrics called Bundle Segmentation Error Rate (BSER) 
and Content Alignment Error Rate (CAER).8 BSER aims to 
measure structural deed errors due to wrong segmentation 
boundaries, without considering the (textual) content of the 
deeds. On the other hand, CAER explicitly aims to measure 
the amount of textual information lost because of deed seg-
mentation errors.

In both cases, the same Dynamic Programming (DP) 
algorithm is used to align reference and hypothesis deeds. 
However, the individual deed alignment cost is different for 
BSER and CAER. For the moment, let us just assume this 
cost is given by a function L ∶ D ×D → ℝ

≥0 , where D is the 
set of deeds which includes the “empty deed” (a deed with 
no pages or words), denoted by �.

Let B̂ = D̂1,… , D̂K̂ be a sequence of K̂ deeds, obtained as 
a hypothesis for a whole bundle as explained in Sec. 3, and 
let B = D1,… ,DK be the corresponding reference GT. Using 
these sequences, the minimum deed editing cost to transform 
B into B̂ is E(K, K̂) , which can be computed by DP according 
to the following recurrence relation:

The decisions associated to the minimal cost E(K, K̂) are 
interpreted as deed edit operations; namely, deed insertions, 
substitutions and deletions, respectively corresponding to 
the three terms of the min function. An insertion indicates 

(12)
E(i, j) = min

(
E(i, j − 1) + L(𝜖, D̂j),

E(i − 1, j − 1) + L(Di, D̂j),

E(i − 1, j) + L(Di, 𝜖)

that a deed that was not in the reference does appear in the 
hypothesis. Conversely, a deletion means that a deed of the 
reference has disappeared in the hypothesis. A substitution, 
finally, corresponds to matching a pair of reference and 
hypothesis deeds.

4.2.1 � Bundle segmentation error rate

A deed here is considered just as a set of page images. 
Therefore, a direct way to measure how much two deeds 
differ is just to compute the difference between the sets of 
pages of the deeds.

Let D, D̂ ∈ D denote the sets of page images of a pair of 
reference and hypothesis deeds of some bundle. The indi-
vidual alignment cost for these two deeds is defined as the 
symetric set difference L(D, D̂)

def
= |D⊖ D̂| , which can be 

also computed as9 

According to this definition, the cost of a deed insertion, 
L(𝜖, D̂) = |D̂| , is the number of page images in D̂ . Simi-
larly for deletion, where the cost L(D, �) is the number page 
images in D. And the cost of a substitution L(D, D̂) is just 
the number of page images which are in D but not in D̂ 
and those page images that are in D̂ but not in D.

Finally, for the reference deed sequence of a bundle 
B = D1,… ,DK and the corresponding segmentation hypoth-
esis B̂ = D̂1,… , D̂K̂ , the BSER is defined as:

where E(K, K̂) is computed using Eq. (12) with the cost 
function given by Eq. (13) and T

def
=

∑K

i=0
�Di� is the total 

number of page images in B.

4.2.2 � Content alignment error rate

To define a metric that measures the information loss caused 
by segmentation errors, some issues must be taken into 
account. First, not solely the quality of structural segmenta-
tion should impact the evaluation metrics; also the deed’s 
textual content should be taken into account. However, rec-
ognition errors in nonessential pages or in pages containing 
minimal or low informational text should exert only a minor 
penalty on the overall bundle segmentation performance.

(13)L(D, D̂) = |D ∪ D̂| − |D ∩ D̂|

(14)BSER(B, B̂) =
1

T
E(K, K̂)

7  defined as Pt(c ∣ Gj) = 1 iff Gj is of class c, according to GT.
8  In previous publications this metric was called “Bundle Alignment 
Error Rate” (BAER).

9  Page image sets can be represented just as sets of page ID inte-
gers. Moreover, if these integers are sequentially assigned to the 
page images of a bundle, as is typically our case, L(Di, D̂j) can be 
trivially computed using the segmentation boundaries: of Di and 
D̂j , as: bi − bi−1 + b̂j − b̂j−1 − 2max(0,min(bi, b̂j) −max(bi−1, b̂j−1)) 
(cf. Sect. 3.1).
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Taking these issues into account and following [8, 20], we 
rely on Probabilistic Indexing (PrIx) [24] and Information 
Gain (IG) to compute a feature vector D ∈ ℝ

n for a refer-
ence deed and similarly 𝐃̂ ∈ ℝ

n for a deed hypothesis. The n 
components of these vectors correspond to the n words with 
higher IG, as determined in Refs. [20, 23], and the value 
of each component is the expected number of occurrences 
of the corresponding word, estimated from the image PrIx 
as also discussed in Refs. [20, 23]. In addition, an empty 
deed � is represented by the null vector 0 . Such a document 
characterization provides a compact representation of the 
information provided by the most relevant textual contents 
of the page images that constitute a deed.

This way, the sequence of deeds obtained by automatic 
bundle segmentation becomes represented as a sequence of 
vectors 𝐃̂1,… , 𝐃̂K̂ and, similarly, the corresponding GT ref-
erence as D1,… ,DK.

As explained in Ref. [23], the IG calculation depends on 
the documents’ classes. Since our interest lies in ranking 
words to select the top n, we have used the same order as in 
Ref. [23], where 12 deed typologies were adopted as classes. 
And also in accordance with the results of Prieto et al. [23], 
we have set the number of high IG words at n = 16 384.

If D, D̂ ∈ D is a pair of reference and hypothesis deeds, 
L(D, D̂) is defined in similar way as the “Bag of Words Error 
Rate” ( bWER ) in Ref. [31], but without normalization. It 
estimates the number of word insertion, substitution and 
deletion edit operations to transform the text in D into the 
text in D̂ , but ignoring the order of words in D or in D̂ . 
Specifically:

According to this definition, the cost of a deed insertion, 
L(𝜖, D̂) = ‖𝐃̂‖1 , is the number of (high IG) running words 
in D̂ . Similarly, the cost of a deletion L(D, �) is the number 
of (high IG) running words in D. And, in the case of a sub-
stitution, L(D, D̂) is the unnormalized bWER calculated with 
the two aligned deeds.

Finally, for the reference deed sequence of a bundle 
B = D1,… ,DK and the corresponding segmentation hypoth-
esis B̂ = D̂1,… , D̂K̂ , the CAER is defined as:

(15)L(D, D̂)
def
=

1

2

�
‖D − 𝐃̂‖1 + ��‖D‖1 − ‖𝐃̂‖1��

�

where E(K, K̂) is computed using Eq. (12) with the cost 
function given by Eq. (15) and T

def
=

∑K

j=0
‖Dj‖1 is the total 

number of (high IG) running words in B.

5 � Data set and experimental setup

The data set statistics are shown in this section, along 
with empirical details needed to make the experiments 
reproducible.

5.1 � Data set

Among the AHPC Series of Notarial Record Manuscripts 
described in Sect. 2, 50 bundles were included in the collec-
tion compiled in the Carabela project  [30].10, 11 From these 
bundles, in the present work we selected four: JMBD4946, 
JMBD4949, JMBD4950 and JMBD4952 to be manually 
tagged with segmentation GT annotations.

Table 1 shows statistics for this dataset. Each bundle has 
more than, or close to one thousand pages. The number of 
deeds is also shown, with more than two hundred deeds per 
bundle, and almost three hundred in JMBD4949. An inter-
esting fact is the large variation in the number of pages per 
deed, with a standard deviation of more than 14 pages per 
deed in JMBD4946. In fact, one of these deeds spans up to 
200 pages. This large deed size variability poses a challenge 
for automated segmentation, since methods which may rely 
solely on page count or structure are not sufficiently effec-
tive. Additional strategies, such as the methods presented in 
the present work, need to be employed to accurately identify 
and separate individual deeds within a bundle.

(16)CAER(B, B̂) =
1

T
E(K, K̂)

Table 1   Number of page images 
and deeds for the bundles 
JMBD4946, JMBD4949, 
JMBD4950 and JMBD4952

JMBD4946 JMBD4949 JMBD4950 JMBD4952

Number of pages 1399 1615 1481 980
Number of deeds 248 295 260 236
Average pages per deed 5.9 5.5 5.7 4.2
Min–max pages per deed 2–200 2–122 2–62 2–38
St-dev of pages per deed 14.3 9.9 8.2 4.1

10  The GT data is available in https://​zenodo.​org/​recor​ds/​10418​
179. The images are available under request from PARES (Portal de 
Archivos Españoles)
11  Inhttps://​www.​prhlt.​upv.​es/​htr/​carab​ela/ the images of this collec-
tion and a search interface based on Probabilistic Indexing are avail-
able.

https://zenodo.org/records/10418179
https://zenodo.org/records/10418179
https://www.prhlt.upv.es/htr/carabela/
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5.2 � Empirical settings

In a real use of the proposed methods, the most expensive 
step is the production of the required training data. There-
fore, we try to limit the amount of training deeds in our 
experiments as much as possible. To this end, we will obtain 
results using only one bundle as a training set and the other 
three as a test set. That is, we perform four experiments—
each using a different bundle for training. This protocol 
will allow us to study training data requirements in more 
detail by further limiting the amount of deeds used from 
each training bundle. Note that, for training it is not feasible 
to use isolated samples from bundles, since it would then 
be impossible to employ the entire contexts of that bundles 
for decoding them. Thus training with full bundles in this 
approach is more aligned with a real-world use case.

Note that the metrics discussed in Sect. 4 are defined at 
bundle level; for instance in Eq. (16) CAER is defined as the 
cost of all deed edit operations for a bundle, normalized by 
the total number of page images of the bundle. Since in the 
proposed protocol each experiment entails testing with three 
bundles, we do micro-averaging to compute the metrics; that 
is, the cost is accumulated over the three bundles and finally 
normalized by the total number of pages of these bundles.

The image-classifiers explained in Sect. 3.3 are trained, 
at least, for 15 epochs and a maximum of 30, with an early 
stopping of 5 epochs concerning to the evaluation loss. 
For all the models, a 15% of the training set was randomly 
selected for validation. The AdamW optimiser [17] was used 
with a learning rate of 0.001 with a batch size of 4, except for 

ConvNeXt, where it was reduced to 2 due to memory limita-
tions. A learning rate decay of 0.5 was applied after every 
10 epochs. All of the images were resized to 1024 × 1024.

To mitigate fluctuations due to the initialization of param-
eters of the learning algorithms, all the values reported in 
tables and curves in Sect. 6 are averages of results obtained 
with 10 random parameter initializations.

6 � Results

First, we evaluated the image classifiers discussed in 
Sect. 3.2, to measure the quality of the image class-posterior 
distribution they provide. Table 2 reports the cross-entropy 
for the different models trained with each bundle, along with 
the overall average.

ResNet50 clearly outperforms the other classifiers, fol-
lowed by the ConvNeXt model. Recall that no decoder was 
used in these experiments. According to these results, the 
model with the lowest cross-entropy, ResNet50, was selected 
to conduct the following tests where the test bundles are 
actually segmented.

These end-to-end bundle segmentation results were 
obtained using the posteriorgrams produced by ResNet50 
and each of the decoders proposed in Eqs. (7–9) of Sect. 3.2. 
Results in terms of both BSER and CAER metrics are 
reported in Table 3.

We first notice that the trends shown by BSER and CAER 
are very similar, indicating a high correlation between the 
two metrics, with BSER’s average slightly higher. This is 

Table 2   Cross-entropy (bits/page) between the hypothesis page-image class posterior and the reference (0/1) probability distributions. Training 
with one bundle and testing with the other three bundles

Classifier JMBD4946 JMBD4949 JMBD4950 JMBD4952 Average

ResNet18 0.028 0.027 0.031 0.116 0.050
ResNet50 0.013 0.009 0.014 0.022 0.015
ResNet101 0.043 0.016 0.028 0.065 0.038
ConvNeXt 0.017 0.009 0.022 0.027 0.019

Table 3   BSER and CAER 
achieved by different decoders, 
training with one bundle and 
testing with the other three 
bundles. The page image 
classifier was ResNet50. 
Results are in percentage. The 
highest standard deviation 
of fluctuations of the Viterbi 
decoding results (BSER and 
CAER) obtained for the 10 
trials is 4.55%, while 9.31% for 
the other decoding results

Metric Decoder JMBD4946 JMBD4949 JMBD4950 JMBD4952 Average

BSER Unconstrained 23.3 24.5 23.3 37.1 27.0
Greedy 22.7 24.5 23.1 36.2 26.2
Viterbi 5.6 9.0 5.7 13.4 8.4

CAER Unconstrained 19.1 20.1 21.0 29.4 22.4
Greedy 18.4 20.1 20.6 28.6 22.0
Viterbi 4.5 7.4 4.8 10.8 6.9
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because, while BSER considers all the book pages equally 
important, giving them the same weight, CAER does not. 
As explained in Sect. 4.2, CAER will penalize errors more 
heavily on a page with more textual content than on an 
empty one since it penalizes the wrong segmented content, 
not the wrong segmentation itself.

As expected, Viterbi decoding performs significantly bet-
ter than the other (unconstrained and greedy) approaches in 
all the four experiments. The last column shows the overall 
average, noting that the Viterbi performance is more than 
three times better than that of the other decoders. This makes 
it clear that considering the global context of the entire book, 
we have chances of achieving a far better segmentation. On 
the other hand, approaches that consider local context of 
the posterior probabilities yield results significantly worse. 
This demonstrates that the problem is not trivial enough to 
rely only on image classification without considering the 
global context.

The best result is achieved when training on JMBD4946, 
with 5.6% BSER and 4.5% CAER. The worst result is for 
training on JMBD4952, reaching a 13.4% BSER and 10.8% 
CAER. These results align with the average number of pages 
per deed, showing that training with larger deeds lead to a 
lower segmentation error on the test bundles. Each of the 
first three bundles have an average of close to 6 pages per 
deed, leading the low segmentation errors. In comparison, 
JMBD4952, with 4.2 pages per deed (the lowest count), 
exhibits the highest segmentation error.

Finally, learning curves were obtained to study the train-
ing needs of the final proposed approach; namely, individual 
page image class-posteriors computed by a ResNet50 clas-
sifier, followed by Viterbi decoding. For each bundle, an 

increasing number of deeds are considered for training and 
the other three complete bundles are used for testing, as in 
the experiments of Table 3. The number of training deeds 
was chosen in powers of two, preserving the order in which 
they appear in the bundle, without repetition. As in the previ-
ous experiments, each test was repeated 10 times, and aver-
age results were reported. Figure 3 shows these results.

Segmentation error decreases monotonically with the 
number of training deeds. Notably, from 64 deeds onwards, 
we begin to obtain useful segmentation performance, except 
for JMBD4952 which, as already noted, seems to be less 
informative for training because of the smaller size of its 
deeds. When training with any of the other three bundles, 
128 deeds appear to be enough since errors do not decrease 
significantly when twice as many training samples are used. 
On the other hand, the trend at the end of the JMBD4952 
curve suggests that better results could be achieved if more 
deeds of this bundle where available for training.

7 � Conclusion

We have proposed a system that, for the first time, can seg-
ment a large historical manuscript image bundle into the 
(many) multi-page deeds it encompasses. The proposed 
approach entails training an individual page image clas-
sifier to compute the class posterior of each page image 
of a full test bundle. This sequence of posteriors is then 
“decoded” to obtain a maximum probability class-label 
sequence which fullfills the full-bundle consistency con-
straints required for a proper deed segmentation.

Fig. 3   Learning curve when 
training with each bundle. 
Page class posteriors (posteri-
orgrams) were obtained with a 
ResNet50 classifier and decod-
ing was carried out with the 
Viterbi algorithm
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Different classifiers and decoders have been studied 
and compared to finally select the best combination. An 
important conclusion of this study is that adequately using 
the bundle’s global context not only ensures segmenta-
tion consistency but it leads to much better segmentation 
decisions.

On the other hand, we have introduced two new end-to-
end metrics to evaluate the raw and content-aware segmen-
tation accuracy at the bundle level. While the first metric, 
BSER, measures the segmentation errors, the second, 
called CAER, measures the loss of textual information 
caused by segmentation errors.

In future works, we will study whether an appropriate 
calibration of the posteriors may improve the segmenta-
tion using the Viterbi decoder [10]. We also plan to inte-
grate deed segmentation and deed typology classification, 
as studied in Ref. [8, 21, 23], taking into account both 
textual and visual information in a multimodal way [20]. 
In this way, we also plan to work with deeds without the 
page-level simplifying restrictions exhibited by the cor-
pora of this paper. In this regard, progress has been made 
with unrestricted deed corpora, utilizing both visual and 
textual information, where we hope results will be pub-
lished soon [19].

Appendix A

Derivation of Eq. (4)

Departing from Eq. (2):

In the first step, two independent assumptions have been 
made: P(cj ∣ G1,… ,GN) only depends on Gj , and page class 
dependency is first-order Markov. In the fourth step, it is 
assumed that Gj is conditionally dependent only on cj and 

(17)

P(c1,… , cN ∣ B) ≈ P(c1 ∣ G1)

N∏

j=2

P(cj ∣ Gj, cj−1)

= P(c1 ∣ G1)

N∏

j=2

P(cj, cj−1,Gj)

P(cj−1,Gj)

= P(c1 ∣ G1)

N∏

j=2

P(cj−1)P(cj ∣ cj−1)P(Gj ∣ cj, cj−1)

P(cj−1)P(Gj ∣ cj−1)

≈ P(c1 ∣ G1)

N∏

j=2

P(cj ∣ cj−1)
P(Gj ∣ cj)

P(Gj)

= P(c1 ∣ G1)

N∏

j=2

P(cj ∣ cj−1)
P(cj ∣ Gj)

P(cj)

inconditionally independent of cj−1—so P(Gj ∣ cj−1) = P(Gj) . 
In the last step, the Bayes’ rule has been used (again) to 
express the conditional likelihood P(Gj ∣ cj) as a function of 
the posteriors P(cj ∣ Gj).
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