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We develop a full randomization of the classical hyper-logistic growth model
by obtaining closed-form expressions for relevant quantities of interest, such as
the first probability density function of its solution, the time until a given fixed
population is reached, and the population at the inflection point. These results
are obtained under very general hypotheses on the distributions of the ran-
dom model parameters by taking extensive advantage of the so-called random
variable transformation method. To illustrate the practical implications of our
findings, we apply them to model the growth of multicellular tumor spheroids
using empirical data. In this context, we explore two methodologies—the
Bayesian approach and the random least mean square method—aimed at
effectively addressing the challenge of assigning appropriate distributions to
model parameters. This ensures that probabilistic fits accurately capture the
inherent uncertainties of tumor growth dynamics. Finally, we notably show that
the results obtained using both approaches in the randomized hyper-logistic
model align closely with each other, surpassing those yielded by the randomized
logistic model.
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1 INTRODUCTION AND MOTIVATION

Questions related to the concept of growth and its patterns have always been the subject of numerous studies in completely
different areas, such as forest growth in Ecology [1], microbial and bacterial growth in food in Biology [2], growth of
tumors in Medicine [3, 4], or national economic growth in Economics [5], just to mention a few ones. The great interest in
describing the growth dynamics in different settings has led to a number of distinctive growth curves, which, depending
on the evolution of the quantity of interest over time, have linear, logarithmic, exponential, sigmoidal (S-shaped), and so
forth, forms or a combination of some of them.

This study delves into randomized growth models, specifically those resulting in a sigmoidal curve with a horizontal
asymptote. The curve exhibits three phases:

• Lag phase: Population growth is slow due to a scarcity of reproductive individuals.
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• Log or exponential phase: Growth accelerates as resources abound and environmental resistance is low.
• Stationary phase: Growth decelerates due to survival competition, reaching the environment's carrying capacity.

A common feature in population dynamics is the exponential growth phase when the highest reproductive rate of the
species is reached, which is called the inflection point. Therefore, the growth rate plays an important role in these models,
as it measures the percentage of change of a given metric over a specific period. One of the first to develop a mathematical
formula to estimate this rate and predict exponential growth was Malthus, which gave rise to the so-called Malthusian
growth model, also named the exponential growth model. Malthus's model is the simplest population dynamics model.
Despite its mathematical simplicity, Malthus's model is considered the cornerstone of growth models because it estab-
lishes the basis for more complex and refined models, such as the Verhulst, Gompertz, and Bertalanffy models (see the
original contributions in [6, 7], and [8], respectively). Shortly after Bertalanffy, Richards [9] proposed a new growth model
from which Verhulst, Gompertz, and Bertalanffy models can be obtained as special cases. Richard's model was designed
to provide greater flexibility to the growth models that had been proposed up to that time. In this paper, we address the
study of the hyper-logistic model, which has also been considered when dealing with growth modeling in different sce-
narios. As it shall be seen later, we will study this relevant growth model in case its parameters are random variables,
which is more realistic in real-world applications.

For completeness, we shall first summarize the main features of relevant growth models to better motivate the
hyper-logistic model. In the Malthus model, the growth rate, dp(t)

dt
, is proportional to the size of the existing population,

p(t), which leads to the following initial value problem (IVP):{
dp(t)

dt
= rp(t),

p(0) = p0,
(1)

where r is the constant of proportionality and p0 is the initial population size. Apart from its utility in modeling early-stage
growth, this model often fails to accurately describe overall population dynamics as it generates unbounded growth,
neglecting both resource limitations and competition factors.

Verhulst introduced the concept that populations reach a growth limit due to resource scarcity and intra-species
competition. This is represented by the logistic growth equation, an extension of the exponential model. Here, the rate
of population change ( dn(t)

dt
) is proportional to the existing population (n(t)) and the available resources (1 − n(t)

k
), where

k > 0 denotes the carrying capacity or the stable population level. The model is then formulated via the following IVP:{
dn(t)

dt
= rn(t)

(
1 − n(t)

k

)
,

n(0) = n0,
(2)

where r is the intrinsic growth rate and n0 is the population size at time t = 0. As we are interested in growth curves
with a sigmoidal shape, we will limit ourselves to the case that r > 0. In addition, it is worth mentioning that the higher
this rate is, the sooner the carrying capacity will be reached since the slope of the curve in the exponential phase is very
high. However, if r < 0, the growth curve is asymptotic to 0, leading to population extinction, while if r = 0, the popula-
tion remains constant and equal to n0 over time. A key aspect of this model is that the population at the inflection point
is exactly half the carrying capacity, that is, ninf = k

2
. This constraint imposes symmetry on the curve, which could be

undesirable. However, despite this limitation, numerous studies have utilized the logistic curve to model various biolog-
ical systems and disease dynamics [10–12]. Various modifications of the logistic model have emerged as parameterized
versions, offering relaxed constraints or limitations inherent in the original logistic model [13].

In 1968, Blumberg proposed a modified logistic differential equation to address a key limitation of the Verhulst model:
the requirement for the inflection point to align exactly with half of the carrying capacity. Previous efforts attempted to
circumvent this by treating the growth rate constant as a time-dependent polynomial, but often resulted in underestima-
tion of future values. Blumberg introduced the hyper-logistic function, also known as the generalized Verhulst model,
by weighting each proportionality term with a certain power. This model is also referred to as the generalized Verhulst
model [2, 14], as a generalization of Richard's model,{

dx(t)
dt

= rx(t)𝛼
(

1 − x(t)
k

)𝛾

,

x(0) = x0,
(3)
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CORTÉS ET AL. 3

where r is the time-independent growth constant, k is the limiting value of the growth variable x = x(t), and 𝛼, 𝛾 > 0 are the
shape parameters. An 𝛼 > 1 means that the initial population growth rate exceeds that implied by the original model, and
an 𝛾 > 1 implies that the population is more sensitive to resource decline than the original model indicates. Otherwise,
if 𝛼, 𝛾 < 1, it does not exercise its full growth potential and is less sensitive, respectively [2]. These additional parameters
highlight the significance of the Blumberg growth model, allowing for flexibility in placing the sigmoid curve's inflection
point between the minimum and carrying capacity [15]. When differential equation in (3) is expressed as an integral
equation, it may lack an analytical solution except for specific values of the shape parameters, as noted by Blumberg [16].
Additionally, the inflection point can be determined as

xinf =
𝛼

𝛼 + 𝛾
k. (4)

For 𝛼 ⋙ 𝛾 , the inflection occurs near k, while for 𝛼 ⋘ 𝛾, xinf approaches 0 and inflection occurs only if x0 < xinf
[13]. Note that if the exponents are equal, 𝛼 = 𝛾 = 1, both expressions (3) and (4) reduce to the Verhulst case. It is
worth mentioning that Tsoularis and Wallace defined in 2002 the generalized population logistic model, from which the
Blumberg equation is obtained as a particular case [13].

In 1976, Turner et al. introduced a general growth model with specific parameter constraints, leading to a series of
nested empirical models [17]. These models exhibit a unique characteristic: The rate of size change is proportional to
the product of one increasing function and another decreasing function with size. A particular case stemming from this
equation is the hyper-logistic equation, which takes the following form:

{
dv(t)

dt
= b

k
v(t)1−p(k − v(t))1+p, 0 < p < 1, b, k, v0 > 0,

v(t0) = v0.
(5)

This reparametrizes Equation (3), where v(t) represents the population or size of the organism at time t, and k − v(t)
indicates the difference between the size at time t and the carrying capacity k. The authors set b

k
as the proportionality

constant, with b denoting the intrinsic growth constant. In their growth postulate, the exponents of the functions satisfy
certain constraints: The first exponent is 1 − p, and the second is 1 + p, summing to 2 with −1 < p < 1 [17]. As we focus
on growth models, p is confined to the interval (0, 1). Consequently, Equation (5) relies on a single shape parameter, p,
possessing one more parameter than Equation (2). Lastly, we assume that the population or size of the organism at the
initial time, t0, is v0.

These shape parameters determine the balance between the two terms of the growth rate, thereby shaping the growth
curve. Initially, the second term carries more weight due to the greater distance to the carrying capacity, rising to a power
exceeding 1. Conversely, toward the end, the first term dominates as the second term diminishes near 0 when v = v(t)
approaches k, leading to almost zero growth during the stationary phase. Notably, both terms are comparable in magni-
tude during the exponential phase. Additionally, the constant velocity dictates the speed of transitioning between phases.
When p approaches 0, we obtain a reparametrization of the logistic equation, expressed as

{
dv(t)

dt
= b

k
v(t)(k − v(t)),

v(t0) = v0,
(6)

and for which the solution is

v(t) = k

1 + e−b(t−t0)
(

k
v0
− 1

) . (7)

In this contribution, we focus on the study of growth model (5) whose solution is given by [17]

v(t) = k

1 +
(

bp(t − t0) +
(

k
v0
− 1

)−p)− 1
p

. (8)
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4 CORTÉS ET AL.

TABLE 1 Formulation of some growth models via the relative instantaneous growth
function g(t) =

.x(t)
x(t)

.
Model g(t) =

.x(t)
x(t)

Malthus r
Logistic r

(
1 − x(t)

k

)
Richard rx(t)𝛼−1

(
1 − x(t)

k

)𝛾

Hyper-logistic b
k
(k−x(t))1+p

x(t)p

In order for this expression to have a sigmoid shape (corresponding to a growth curve), it is easy to check that 0 < v0 <

v(t) < k for t > t0. Finally, notice that Blumberg or hyper-logistic model (3) is consistent with Turner's general model (5)
when 𝛼 = 1 − p > 0 and 𝛾 = 1 + p > 0.

Remark 1. Although in the previous presentation, different growth models have been introduced with reference to
the explicit expression of the function, say 𝑓 (t), defining the instantaneous variation of the population, dx(t)

dt
= .x(t),

one can also motivate the formulation of every growth model in terms of the function, say g(t), defining the relative
instantaneous growth function

.x(t)
x(t)

. In Table 1, one summarizes both formulations for each of the growth models
previously mentioned.

It is essential to point out that when growth models are applied to real-world data, their parameters must be estimated
from samples containing uncertainties collected from sampling processes. Apart from this source of randomness, one
should add the lack of intrinsic knowledge of the growth process, which may often depend on complex factors such as
environment, genetics, and birth/death rates, that rarely are known in a deterministic manner. This approach encourages
the use of random or stochastic growth models formulated through differential equations to enhance realism compared
to deterministic models. To account for uncertainties, in the setting of differential equations, one mainly distinguishes
two approaches, namely, stochastic and random differential equations, in short, SDEs and RDEs, respectively. SDEs are
those where uncertainties are driven by an irregular process (nowhere differentiable), typically a Wiener process or a
Brownian motion, leading to Itô-type SDEs [18, p. 96]. The rigorous treatment of SDEs requires special stochastic calculus
such as Itô calculus [19]. From the point of view of uncertainty quantification, SDE can often be obtained by means of
Gaussian perturbation (via the white noise process) of their deterministic differential equations counterparts. Although
the celebrated central limit theorem from probability theory supports this approximation in many cases, it could limit the
most proper pattern to describe uncertainties in real-world problems. Indeed, as highlighted in [20], the Wiener process is
sample continuous but with unbounded variation paths, which does not suit the idea of modeling real situations since, in
many situations, the real-world phenomenon is subjected to fluctuations that are known to be bounded. Apart from these
issues, in the case of the stochastic formulation of the logistic model using the SDE approach, one can obtain two main
classes of SDEs, namely, additive or multiplicative logistic SDE, depending on the way the intrinsic noise or perturbation,
via the white noise, is done from its deterministic formulation. The results provided by these two logistic models are
generally different, and, as addressed in [21], the approximation of parameter estimation could become challenging.

Complementary to SDEs, RDEs are those where uncertainty is directly assigned in model inputs (initial/boundary
conditions, source term, and/or coefficients) by assuming they are random variables (or stochastic processes) with regular
sample behavior (e.g., continuous trajectories) [18, p. 97]. Assigning appropriate probability distributions to these model
inputs is crucial under this approach. In recent years, several studies have adopted this methodology to investigate various
growth models with uncertainties. For example, in [22], the logistic growth model is examined considering uncertainties
in environmental carrying capacity and initial population. Similarly, in [23], Bertalanffy's non-autonomous growth model
is extended to the random setting using the RDE approach.

A key advantage of RDEs lies in their flexibility to assign suitable probability distributions to model inputs, enabling the
description of the dynamics of the growth phenomenon being studied. This is achieved while retaining the well-known
advantages from classical calculus to obtain the corresponding RDEs' solution. Indeed, the solution of an RDE retains the
same form as in the classical setting but with model parameters treated as random variables. Consequently, the resulting
solution becomes a parametric stochastic process, requiring the determination of its probability distribution to describe
the random dynamics accurately. However, it's worth noting that, compared to SDEs, the advancement of this approach,
as indicated in various references [18, 24], is currently less developed.

In the case of the hyper-logistic model (5), the exponent, p, the proportionality constant, b, and the carrying capacity,
k, that determine growth dynamics depend on environmental factors, especially temperature, so there is an intrinsic
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CORTÉS ET AL. 5

uncertainty that in its deterministic formulation is neglected. Here, we shall follow the above-mentioned RDE approach,
and for the sake of generality, we shall assume that all these parameters are random variables. Therefore, the formal
randomization of model (5) writes

{
dv(t,𝜔)

dt
= b(𝜔)

k(𝜔)
v(t, 𝜔)1−p(𝜔)(k(𝜔) − v(t, 𝜔))1+p(𝜔), 𝜔 ∈ Ω,

v(t0) = v0(𝜔),
(9)

where k = k(𝜔), b = b(𝜔), p(𝜔), and v0 = v0(𝜔) are absolutely continuous random variables defined in a common complete
probability space (Ω,Ω,P). As usual, the 𝜔-notation highlights the dependence on events of the probability space. When
evident, the 𝜔-dependence will be hidden to alleviate the notation. For the sake of generality in our subsequent mathe-
matical development, we shall assume a joint probability density function (PDF) for model parameters, say 𝑓0(b, k, p, v0).
When model parameters are independent, this function factorizes as the product of the marginal PDFs of each parameter,
𝑓0(b, k, p, v0) = 𝑓b(b)𝑓k(k)𝑓p(p)𝑓v0 (v0). As previously indicated, now the solution is the following parametric stochastic
process,

v(t, 𝜔) = k(𝜔)

1 +
(

b(𝜔)p(𝜔)(t − t0) +
(

k(𝜔)
v0(𝜔)

− 1
)−p(𝜔)

)− 1
p(𝜔)

, 𝜔 ∈ Ω. (10)

As specified in the introduction section, in our context, we shall assume that 0 < v0 < v < k in order for the above
solution to have a sigmoid shape, so increasing and then admitting an inverse. As invertibility of the solution is a condition
that will be required later in the probabilistic analysis of the problem, hereinafter, we will assume that we work in the
following conditional space (Ω,Ω,P[· |C]), being C = {𝜔 ∈ Ω ∶ 0 < v0(𝜔) < v(𝜔) < k(𝜔)} ∈ Ω.

In the setting of RDEs, beyond solving the corresponding equation or model, it's vital to derive key probabilistic proper-
ties of the solution, including the expectation and variance functions. Moreover, computing its finite distributions (fidis),
particularly focusing on the first PDF (1-PDF) denoted by 𝑓1(v, t), is highly desirable. Integration of this function enables
the calculation of expectation, variance, and all one-dimensional statistical moments, that is,

E[v(t, 𝜔)n] = ∫
∞

−∞
vn𝑓1(v, t)dv, n = 1, 2, … , (11)

where E[·] denotes the expectation operator. Notably, for n = 1 and n = 2, we obtain the mean and the variance,
respectively,

𝜇v(t) = E[v(t, 𝜔)] = ∫
∞

−∞
v𝑓1(v, t)dv, (12)

𝜎2
v (t) = V[v(t, 𝜔)] = ∫

∞

−∞
v2𝑓1(v, t)dv − (E[v(t, 𝜔)])2. (13)

Additionally, the 1-PDF offers crucial probabilistic insights, such as the probability that the solution falls within a
specific set of interest, denoted as [v1(t̂), v2(t̂)], for any fixed but arbitrary t̂ ≥ 0,

P({𝜔 ∈ Ω ∶ v(t̂, 𝜔) ∈ [v1(t̂), v2(t̂)]}) = ∫
v2(t̂)

v1(t̂)
𝑓1(v, t̂)dv,

and to construct (1 − 𝛼)% probabilistic intervals (PIs), for 𝛼 ∈ (0, 1),

∫
v1(t̂)

0
𝑓1(v, t̂)dv = 𝛼

2
= ∫

1

v2(t̂)
𝑓1(v, t̂)dv,
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6 CORTÉS ET AL.

where

1 − 𝛼 = P({𝜔 ∈ Ω ∶ v(t̂, 𝜔) ∈ [v1(t̂), v2(t̂)]}).

This way, we obtain a complete probabilistic description of the stochastic solution at each arbitrary time instant t̂.
The main contribution of this paper is the randomization of the hyper-logistic growth model using the so-called RDE

approach and its subsequent comprehensive probabilistic analysis. This study includes the calculation of 1-PDF under
very general hypotheses on the data. The study also incorporates, as a novelty, the application of the theoretical results
to modeling the growth of multicellular tumor spheroids using real-world data. The application shows the superiority of
the randomized hyper-logistic model with respect to the random logistic model.

The paper is organized as follows. Section 2 is divided into three parts. In Section 2.1, the 1-PDF of the solution stochastic
process (10), corresponding to the randomized hyper-logistic model, is determined under very general hypotheses on
the random inputs. In real-world applications of the hyper-logistic model, apart from the solution itself, there are other
relevant quantities of interest, such as the time until a given population (in a wide sense) size is reached and the inflection
point. In our setting, these quantities must be interpreted as random variables. This also aims to determine the PDF of
these random variables in Sections 2.2 and 2.3, respectively. To face the above-mentioned goals within Section 2, we will
extensively apply the random variable transformation (RVT) technique introduced at the beginning of this section. This
probabilistic method has the advantage of providing a semi-explicit expression (in terms of integrals), which is very useful
in practice. In Section 3, we present a real-world application of the randomized hyper-logistic model to study the dynamic
growth of multicellular tumor spheroids. Subsequently, we apply the theoretical results obtained in the previous section
to obtain a complete solution of the random model. Assigning adequate probability distributions to the model parameters,
which are random variables, is a critical step when applying the model to real data, and two different approaches are used
for this purpose. Specifically, we apply Bayesian and random least mean square (RLMS)-based techniques in Sections 3.1
and 3.2. In both subsections, we include a discussion about the obtained results via these approaches. In Section 3.3, we
compare the results provided by the two aforementioned techniques for assigning the distributions of the parameters of
the randomized hyper-logistic model. We finish this section by performing a comparison of the results obtained via the
randomized versions of the hyper-logistic and logistic models in Section 3.4. The main conclusions of our study are drawn
in Section 4.

2 FULL PROBABILISTIC SOLUTION OF THE RANDOMIZED MODEL

The main objective of this section is to determine an exact expression to the 1-PDF of the stochastic solution of the ran-
domized hyper-logistic model given in (10) as well as further relevant probabilistic information for its applications in
real-world scenarios. Specifically, the PDFs of two interesting quantities in the analysis of population dynamics are also
obtained: The PDF of the time until a given fixed population size is reached, particularly the meantime and the time of
the inflection point, and the PDF of the population at the inflection point. For this purpose, the RVT technique is applied.
This method enables us to obtain the joint PDF of a random vector, which is functionally dependent on another random
vector whose PDF is given, in terms of the aforementioned known joint PDF, via an inverse transformation and the cor-
responding Jacobian. In Theorem 1, we state this theorem in its classical multidimensional form, although it should be
noted that it can be adapted to many particular situations [25, 26].

Theorem 1 (RVT technique [25]). Let u(𝜔) = (u1(𝜔), … ,un(𝜔)) and w(𝜔) = (w1(𝜔), … ,wn(𝜔)) be n-dimensional
absolutely continuous random vectors defined in a complete probability space (Ω,Ω,P), where 𝜔 ∈ Ω. Let r ∶
R

n → R
n be a one-to-one transformation of u into w, that is, w = r(u). Assume that r is continuous in u and

has continuous partial derivatives with respect to u. Then, if 𝑓u(u1, … ,un) denotes the joint PDF of vector u(𝜔),
and s = r−1 = (s1(w1, … ,wn), … , sn(w1, … ,wn)) represents the inverse mapping of the transformation r =
(r1(u1, … ,un), … , rn(u1, … ,un)), the joint PDF of vector w(𝜔) is given by

𝑓w(w1, … ,wn) = 𝑓u (s(w1, … ,wn)) |Jn| ,
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CORTÉS ET AL. 7

where |Jn| is the absolute value of the Jacobian, which is defined by

Jn = det
(
𝜕s
𝜕w

)
= det

⎛⎜⎜⎜⎝
𝜕s1(w1,… ,wn)

𝜕w1
… 𝜕sn(w1,… ,wn)

𝜕w1

⋮ ⋱ ⋮
𝜕s1(w1,… ,wn)

𝜕wn
… 𝜕sn(w1,… ,wn)

𝜕wn

⎞⎟⎟⎟⎠ .

As previously indicated, to alleviate the notation, we will omit the 𝜔-dependence for random variables when evident
within the context.

2.1 Computing the 1-PDF of the solution stochastic process v(t, 𝜔) given by (10)
Let t > t0 be fixed, and using the same notation as in Theorem 1, let us define the following deterministic mapping
r ∶ R

4 → R
4, that transforms the random vector u = (b, k, p, v0), whose PDF 𝑓u(u) = 𝑓u(b, k, p, v0) is assumed to be known

(observe that it is the joint PDF of the random parameters also previously denoted by 𝑓0(b, k, p, v0)), in the random vector
w = (w1,w2,w3,w4) = r(b, k, p, v0), as follows:

w1 = r1(b, k, p, v0) =
k

1 +
(

bp(t − t0) +
(

k
v0
− 1

)−p)− 1
p

,

w2 = r2(b, k, p, v0) = k,

w3 = r3(b, k, p, v0) = p,

w4 = r4(b, k, p, v0) = v0.

It is worth pointing out that the above transformation is not unique; nonetheless, it represents the most elementary
choice: considering that the parameter b can be isolated from the equation, we keep the rest as the identity transformation.
Then, isolating b, the inverse mapping is

b = s1(w1,w2,w3,w4) =

(
w2
w1

− 1
)−w3

−
(

w2
w4

− 1
)−w3

w3(t − t0)
,

k = s2(w1,w2,w3,w4) = w2,

p = s3(w1,w2,w3,w4) = w3,

v0 = s4(w1,w2,w3,w4) = w4.

The inverse transformation is well defined since, by hypothesis, 0 < v0(𝜔) < v(𝜔) < k(𝜔), b(𝜔) > 0, and 0 < p(𝜔) < 1
with probability 1 (w.p. 1). Finally, we calculate the Jacobian

|J| = w2

w2
1(t − t0)

(
w2

w1
− 1

)−w3−1

,

which is positive w.p. 1 since, as previously pointed out, in the conditional space, the following condition w2(𝜔) = k(𝜔) >
v(𝜔) = w1(𝜔) holds w.p. 1. So, applying Theorem 1, the PDF of the random vector w is given by

𝑓w(w) = 𝑓u

⎛⎜⎜⎜⎝
(

w2
w1

− 1
)−w3

−
(

w2
w4

− 1
)−w3

w3(t − t0)
,w2,w3,w4

⎞⎟⎟⎟⎠
w2

w2
1(t − t0)

(
w2

w1
− 1

)−w3−1

.
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8 CORTÉS ET AL.

Then, marginalizing with respect to the first component, which is the solution, and taking t > t0 arbitrarily, the 1-PDF of
the solution stochastic process is

𝑓1(v, t) = ∫
∞

0 ∫
1

0 ∫
∞

0
𝑓u

⎛⎜⎜⎜⎝
(

k
v
− 1

)−p
−
(

k
v0
− 1

)−p

p(t − t0)
, k, p, v0

⎞⎟⎟⎟⎠
k

v2(t − t0)

(
k
v
− 1

)−p−1

dv0dpdk. (14)

In the case of independence among the input parameters, as the joint PDF is equal to the product of the marginals, the
expression for the 1-PDF would be

𝑓1(v, t) = ∫
∞

0 ∫
1

0 ∫
∞

0
𝑓b

⎛⎜⎜⎜⎝
(

k
v
− 1

)−p
−
(

k
v0
− 1

)−p

p(t − t0)

⎞⎟⎟⎟⎠𝑓k(k)𝑓p(p)𝑓v0 (v0)
k

v2(t − t0)

(
k
v
− 1

)−p−1

dv0dpdk. (15)

Remark 2. From a computational standpoint, it is interesting to observe that expressions (14) and (15) can be
represented via an expectation with respect to v0, p, and k,

𝑓1(v, t) = Ev0,p,k

⎡⎢⎢⎢⎣𝑓b

⎛⎜⎜⎜⎝
(

k
v
− 1

)−p
−
(

k
v0
− 1

)−p

p(t − t0)

⎞⎟⎟⎟⎠
k

v2(t − t0)

(
k
v
− 1

)−p−1⎤⎥⎥⎥⎦ . (16)

In the first case, the weaker hypothesis that (v0, p, k) has a joint PDF can be assumed, while in the second case,
these random variables are independent. Therefore, in both cases, we can make use of Monte Carlo simulations to
obtain the 1-PDF 𝑓1(v, t).

Remark 3. Later, we will deal with the case where v0 is a deterministic value, say v0 = v∗0. Then, its PDF is defined by
means of a Dirac Delta function 𝛿(v0 − v∗0). In such a case, the expression (15) writes

𝑓1(v, t) = ∫
∞

0 ∫
1

0 ∫
∞

0
𝑓b

⎛⎜⎜⎜⎝
(

k
v
− 1

)−p
−
(

k
v0
− 1

)−p

p(t − t0)

⎞⎟⎟⎟⎠ 𝑓k(k)𝑓p(p)𝛿(v0 − v∗0)
k

v2(t − t0)

(
k
v
− 1

)−p−1

dv0dpdk. (17)

2.2 PDF of time until a given fixed population size is reached
A key magnitude in population dynamics is the time until a given fixed amount of the population, v̂, is reached. An
expression of this quantity can be determined from the deterministic solution (8), taking v = v̂ and isolating the time t.
Assuming that the input parameters are random variables, the random parameter that represents the time until a given
population v̂ is reached is

t(𝜔) =

(
k(𝜔)

v̂
− 1

)−p(𝜔)
−
(

k(𝜔)
v0(𝜔)

− 1
)−p(𝜔)

+ b(𝜔)p(𝜔)t0

b(𝜔)p(𝜔)
.

Let u = (b, k, p, v0) be the random vector of input parameters, and 𝑓u(u) = 𝑓u(b, k, p, v0) = 𝑓0(b, k, p, v0) its PDF, which
is assumed to be known. In this case, in agreement with the earlier reasoning, we define the following deterministic
mapping to apply the RVT method to obtain the PDF of t(𝜔) in terms of 𝑓u(u),
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CORTÉS ET AL. 9

w1 = r1(b, k, p, v0) = t =

(
k
v̂
− 1

)−p
−
(

k
v0
− 1

)−p
+ bpt0

bp
,

w2 = r2(b, k, p, v0) = k,

w3 = r3(b, k, p, v0) = p,

w4 = r4(b, k, p, v0) = v0.

The inverse mapping and the Jacobian are, respectively,

b = s1(w1,w2,w3,w4) =

(
w2
v̂
− 1

)−w3
−
(

w2
w4

− 1
)−w3

w3(w1 − t0)
,

k = s2(w1,w2,w3,w4) = w2,

p = s3(w1,w2,w3,w4) = w3,

v0 = s4(w1,w2,w3,w4) = w4,

|J| = ||||| −1
(w1 − t0)2w3

((w2

v̂
− 1

)−w3
−
(

w2

w4
− 1

)−w3
)||||| = 1

(w1 − t0)2w3

((w2

v̂
− 1

)−w3
−
(

w2

w4
− 1

)−w3
)

> 0,

which are well defined when 0 < v0(𝜔) < v̂ < k(𝜔) w.p. 1. This relation is fulfilled by hypothesis, since as 0 < v0(𝜔) <
v(t, 𝜔) < k(𝜔) for t > t0, then 0 < v0(𝜔) < v̂ < k(𝜔). The joint PDF of the random vector w is

𝑓w(w) = 𝑓u

⎛⎜⎜⎜⎝
(

w2
v̂
− 1

)−w3
−
(

w2
w4

− 1
)−w3

w3(w1 − t0)
,w2,w3,w4

⎞⎟⎟⎟⎠
1

(w1 − t0)2w3

((w2

v̂
− 1

)−w3
−
(

w2

w4
− 1

)−w3
)
.

Calculating the marginal distribution of the random variable w1, we directly obtain the PDF of the time until a fixed
amount of the population v̂ is reached

𝑓 (t; v̂) = ∫
∞

0 ∫
1

0 ∫
∞

0
𝑓u

(
1

p(t − t0)

((
k
v̂
− 1

)−p

−
(

k
v0

− 1
)−p)

, k, p, v0

)
× 1
(t − t0)2p

((
k
v̂
− 1

)−p

−
(

k
v0

− 1
)−p)

dv0dpdk.
(18)

As before, if the model parameters are independent random variables, the PDF expression becomes

𝑓 (t; v̂) = ∫
∞

0 ∫
1

0 ∫
∞

0
𝑓b

(
1

p(t − t0)

((
k
v̂
− 1

)−p

−
(

k
v0

− 1
)−p))

𝑓k(k)𝑓p(p)𝑓v0 (v0)

× 1
(t − t0)2p

((
k
v̂
− 1

)−p

−
(

k
v0

− 1
)−p)

dv0dpdk.
(19)

In models of this nature, the calculation of specific times, notably the meantime, t 1
2
, and the time at the inflection point,

tin𝑓 , are of particular relevance. In the deterministic theory, the first time occurs when v = k
2

, while the second when
v = vin𝑓 = k(1−p)

2
. Both times can be computed by substituting the corresponding v in (8) and isolating t (see Remark 4).

Now, randomizing the input parameters and applying the RVT method, we obtain, respectively,

𝑓 (t 1
2
) = ∫

∞

0 ∫
1

0 ∫
∞

0
𝑓u

(
1

p(t − t0)

(
1 −

(
k
v0

− 1
)−p)

, k, p, v0

)
1

(t − t0)2p

(
1 −

(
k
v0

− 1
)−p)

dv0dpdk,
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10 CORTÉS ET AL.

𝑓 (tin𝑓 ) = ∫
∞

0 ∫
1

0 ∫
∞

0
𝑓u

(
1

p(t − t0)

((
2

1 − p
− 1

)−p

−
(

k
v0

− 1
)−p)

, k, p, v0

)
× 1
(t − t0)2p

((
2

1 − p
− 1

)−p

−
(

k
v0

− 1
)−p)

dv0dpdk,

which are well defined in the conditional space previously indicated.

Remark 4. It can be calculated exact expressions for t 1
2

and tin𝑓 :

t 1
2
=

1 −
(

k
v0
− 1

)−p
+ bpt0

bp
, tin𝑓 =

(
2

1−p
− 1

)−p
−
(

k
v0
− 1

)−p
+ bpt0

bp
.

It is interesting to observe that, under our assumption 0 < p < 1, one gets

t 1
2
− tin𝑓 =

1 −
(

2
1−p

− 1
)−p

bp
> 0.

This justifies that in the hyper-logistic model, the inflection point does not coincide with half of the carrying capacity;
even more, the former is always smaller than the latter, which is a main difference with respect to the logistic model.
This property also holds in our random setting since we assume 0 < p < 1 w.p. 1.

2.3 PDF of the population size at the inflection point, vin𝑓

We have seen that the inflection point, vin𝑓 , is a distinctive feature of the hyper-logistic model with respect to the logistic
model. We here characterize the inflection point of the hyper-logistic model in the random setting by computing its PDF.
To this end, we first obtain its explicit expression.

d2v
dt2 = b2

k2 v1−2p(k − v)1+2p (k(1 − p) − 2v) = 0 ⇒ vin𝑓 =
k(1 − p)

2
> 0.

The positiveness of vin𝑓 is obtained due to k > 0 and 0 < p < 1.
Now, by applying the RVT method, one obtains the PDF of vin𝑓 ,

𝑓 (vin𝑓 ) = ∫
1

0
𝑓k,p

( 2vin𝑓

1 − p
, p
)

2
1 − p

dp, vin𝑓 > 0, (20)

being 𝑓k,p(k, p) the marginal distribution of the joint PDF 𝑓0(b, k, p, v0) of the input parameters.

3 APPLICATION

This section aims to show how the previous theoretical results developed in Section 2 can be applied to model a real-world
problem. We shall deal with the modeling of a tumor growth assuming that its dynamics adjusts a sigmoid curve emanated
from the RDE (9), where v(t) denotes the size of the tumor at the time instant t. Specifically, we study the growth of mul-
ticellular tumor spheroids, that is, how the average spheroid volume (measured in 109μm3) varies over time (in days). To
conduct our analysis, we will use the data collected in Table A1 (see Appendix A). For each of the 45 observations, we have
the mean volume of 50 individual spheroids at different time instants. The data set can be found in [3], which has been
previously published in [27, 28]. It is worth pointing out that further information about how the spheroid measurements
were obtained, their culture and so forth, can be found within these references.

To obtain a complete probabilistic description of the solution of the randomized model given in (10) at any given point
in time, we shall determine its 1-PDF. According to the results obtained in Section 2.1, we first need to assign an adequate
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CORTÉS ET AL. 11

FIGURE 1 Scheme of Section 3. The boxes that we will use to make comparisons between methods and models are highlighted.

joint PDF for the model parameters, 𝑓0(b, k, p, v0). This step is crucial in practice since such a distribution should capture
the uncertainty of the data. In this paper, we will address this challenge using two approaches: the first one is based on
Bayesian inference [18, 29], and the second one relies on the RLMS technique [18, 30]. As the application of our theoretical
results to model the growth of multicellular tumor spheroids shall require distinguishing several cases when applying the
Bayesian and RLMS approaches, for the sake of clarity, Figure 1 shows the organization of our subsequent analysis.

3.1 First approach: Bayesian inference
As mentioned in Section 1, the observed data involve uncertainties. Therefore, let 𝑦i be the observations of the mean
volume of spheroids obtained for each time instant ti, i = 0, … , 44. The variability or noise in the observations is defined
as an additional component as follows:

𝑦i = v(ti) + 𝜖i, i = 0, … , 44,

where 𝜖i ∼ NT(0, 𝜎2) are independent and identically distributed (i.i.d.) random variables distributed as a truncated
normal distribution with T = [0,∞[ and v(ti) ≡ v(ti, 𝜔) is the solution given in (10) at t = ti, i = 0, … , 44.

The solution, being a stochastic process, yields a PDF at each time t. Thus, the mean or expectation of these random
functions characterizes the probabilistic fit to the data, which captures its trend. Therefore, each observation is the mean
plus a normal (Gaussian) perturbation centered on it with variability that takes positive values, hence the truncation.
Alternatively, the Gamma distribution could serve as a suitable option due to its strictly positive values. Although the
results are similar, the use of the normal distribution is computationally advantageous.

The model parameters are the values used in the model to represent and explain the patterns in the observed data. As
a result, inherent uncertainty within the data manifests intrinsically during the model fitting procedure. The Bayesian
approach provides a more complete way of quantifying uncertainty in model outcomes, as it takes into account not
only the variability in the observed data but also that of the model parameters, treating them as random variables with
associated probability distributions. Using Bayes' theorem, we obtain the posterior probability distribution of the model
parameters given the available information, which is based on updating previous information about the parameters as
new data are obtained, that is,

p(𝜽|y) ∝ p(y|𝜽)p(𝜽),
p(y|𝜽) = 44∏

i=0
N(𝑦i|v(ti), 𝜎2),

(21)
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12 CORTÉS ET AL.

where

𝜇i = v(ti) =
k

1 +
(

bp(ti − t0) +
(

k
v0
− 1

)−p)− 1
p

.

So far, for the sake of generality in our mathematical analysis, we have assumed that all model parameters are random
variables. However, in practice, it might be more realistic for some of them to be deterministic. Our previous results are
consistent since deterministic constants can be treated as degenerated random variables, that is, random variables whose
probability is concentrated at the corresponding deterministic point, so being its distribution, the Dirac Delta function
centered at that point. As discussed in detail in the next two subsections, this is the case for the initial condition v0.

3.1.1 v0 as random variable
Given the generality of the theoretical results and their intended application, we begin by postulating that all model
parameters are random variables.

To address the inferential process within the Bayesian framework, assigning suitable prior distributions to the param-
eters is crucial. We have opted for univariate prior distributions for each model parameter, since to the best of our
knowledge, no literature is available about the parameters. Therefore, the prior distribution, say p(𝜽), will be determined
by the product of the prior distributions of model parameters. Notably, parameters k, v0, and b are defined as random vari-
ables with strictly positive domains, while p lies within the interval (0, 1). Additionally, we have graphically explored the
behavior of the solution of the differential equation for different combinations of parameter values so that the solution
reflects the trend of the sigmoidal function. Consolidating our findings, we established the following non-informative
prior distributions:

b ∼ Unif(0.01, 10), k ∼ Unif(1,200), p ∼ Unif(0.01, 1),

v0 ∼ Unif(0.001, 1), 𝜏 ∼ Ga(0.5, 0.5).
(22)

The parameter 𝜏 comes from how the Normal distribution is defined in WinBUGS software, N(𝜇, 𝜏), where 𝜏 = 1
𝜎2 ,

which was used to carry out the Bayesian analysis in this work. A commonly employed non-informative prior distribution
for 𝜏 is a Gamma distribution, parameterized to maintain moderate variance values and prevent extreme assignments.

The posterior distribution of model parameters is estimated through Bayesian sampling techniques, such as Gibbs sam-
pling, a type of Markov chain Monte Carlo (MCMC) algorithm. In this study, all analyses were conducted using RStudio
software, utilizing the R2WinBUGS package to interface with WinBUGS software, where the mentioned algorithm is
employed. The MCMC method involves building a Markov chain whose stationary distribution coincides with the target
distribution. Indeed, the chain resulting from Gibbs sampling is a sample of the desired posterior distribution. The ker-
nel density estimation technique was applied to obtain the densities. The Gaussian distribution was chosen for the kernel
function, and Silverman's rule was used to determine the bandwidth.

We set three chains, whose initial values are randomly generated by the WinBUGS program itself, with 5M iterations
and 2M for the burn-in period. We set 2000 for the n.thin argument of the RStudio program's bugs function, indi-
cating that the algorithm saves one value every 2000 iterations and thus avoiding autocorrelation between values. The
resulting sample size is N = 1500 for each chain. However, to obtain the densities, the samples of all three are combined,
giving a total number of 4500. From the results obtained from these configurations, we obtain the marginal posterior
distributions of each parameter. Finally, the coda package in RStudio was employed to conduct posterior analyses of
the generated Markov chains, including convergence diagnostics, to ensure their convergence to their stationary distri-
butions. In addition, these include the cross-correlations between different variables in MCMC output. A moderate and
strong relationship is observed between them (0.65, −0.55, −0.75, and −0.8 between k and p, b and p, b and k, and p and
v0, respectively). This may be due to a combination of the intrinsic algebraic structure of the model and complex biological
phenomena.

Once the posterior distribution of the parameters has been drawn, we can employ the theoretical outcomes since they
all depend on the PDF 𝑓0(b, k, p, v0). It is noteworthy that we can distinguish between the following two cases:

• Independent: assuming independence among the random variables b, k, p, and v0. Therefore, the PDF 𝑓0(b, k, p, v0) will
be the product of the individual marginal distributions, that is, 𝑓B(b)𝑓K(k)𝑓P(p)𝑓V0 (v0).

• Dependent: it occurs due to the dependencies between the variables, as highlighted above. This dependency structure
is effectively captured using copulas, which offer a flexible framework for modeling complex dependency patterns. By
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CORTÉS ET AL. 13

FIGURE 2 Probabilistic fits (solid lines) to the data (points) collected in Table A1, representing the expected value of the solution (10) of
the randomized hyper-logistic model. We consider two cases: first, when the four parameters b, k, p, v0 are considered independent random
variables, giving rise to PDF derived from the product of marginal posterior distributions obtained using the Bayesian approach. Secondly,
when these parameters present a dependence structure modeled via Frank's and Gumbel's copulas that determine the corresponding joint
PDFs. [Colour figure can be viewed at wileyonlinelibrary.com]

encapsulating the joint behavior of the variables, the copula function yields the joint PDF of the random variables,
𝑓0(b, k, p, v0). Among the options, Frank's and Gumbel's copulas emerge as the most appropriate for our context.
The former is used to model both positive and negative dependencies and is capable of capturing a wide variety of
dependency patterns. The latter is also commonly used to model both types of dependencies and possesses the ability
to capture some asymmetry. Both copulas are characterized by a single parameter, denoted as a for Frank's copula and
c for Gumbel's copula, which will be adjusted using optimization techniques as explained in Section 3.2. Specifically,
we have obtained a = 0.1 and c = 1.5, respectively.

In this way, we illustrate that both cases can be implemented and applied in practice. First, we proceed to fit the data.
In Figure 2, we can observe the probabilistic fit to the data for both cases, where a considerable similarity is perceived.
However, it is remarkable that the mean does not effectively capture the data pattern. This observation is in line with
the discussion on the variability of the sigmoidal curve's phases. In particular, and as also detailed in the paper [3], the
controlled initial conditions of the first phase of cell culture experiments result in minimal variability in cell volume
growth (i.e., researchers take cells at their initial growth phase, so their volume during the first phase of the curve has
virtually no variability). If v0 has variability, it negatively affects the quality of the fit since it is concentrated in larger values
during the first phase. Therefore, considering it as a random variable does not contribute substantially to improving the
model's ability to explain the data. Moreover, compared to the variability of the later phases, this variability is negligible,
suggesting that v0 can be considered deterministic without losing the quality of fit. This conclusion motivates the analysis
presented in the next subsection.

3.1.2 v0 as a deterministic constant
Hereinafter, we shall consider the initial condition, v∗0 = 0.0160808, as a fixed parameter. This value has been estimated
via a deterministic fitting using the NonlinearModelFit function by Wolfram Mathematica©. Substituting this value
into the likelihood defined in (21), keeping the same prior distributions for the remaining random variables as in (22), and
employing the same settings for the algorithm as described in Section 3.1.1, we obtain the marginal posterior distribu-
tions for each model parameter shown in Figures B1 and B2 (right panel). The deviance, which appears in the results
obtained in Appendix B, is provided automatically by the WinBUGS software as an integral component of the Bayesian
analysis process. It is defined as −2 log(likelihood). From these plots, we have obtained some statistical measures to help
characterize the central location and dispersion of the data. We specifically have calculated the mean and standard error
(see Table B1), providing a more complete understanding of the distributions.

As for the posterior analyses, convergence is confirmed by the Gelman–Rubin test, which indicates a potential scale
reduction factor of 1 for all estimated parameters (see Figure B3). This convergence is visually corroborated by trace plots

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10206 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [31/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


14 CORTÉS ET AL.

FIGURE 3 Probabilistic fit via expectations (solid lines) using the data in Table A1, together with the 95% CrIs (dashed lines) of the
solution (10) derived from the random hyper-logistic model, in two different scenarios. First, when the parameters b, k and p are treated as
independent random variables, and thus, the PDF is the product of their marginal posterior distributions obtained by Bayesian inference.
Second, when these random parameters exhibit a dependence structure, and the joint PDF is determined using the Frank's and Gumbel's
copulas. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Evaluation metrics are computed for the model
parameters under two distinct scenarios.

Product of marginals Frank's copula Gumbel's copula
MAPE 18.6729 19.3869 19.808
RMSE 0.357796 0.359216 0.359959

Note: First, when parameters are assumed to be independent (so, their density is the
product of marginal posterior distributions). Second, when parameters are treated as
dependent random variables (and their joint density is calculated via copulas). In both
cases, the initial condition v0 is treated as a deterministic constant within the Bayesian
framework.

(left panel of Figures B1 and B2), which show well-mixed chains with random scatter around the mean value. As before,
we also explored cross-correlation, whose strength and direction of the relationships between parameters are illustrated
in Figure B4.

For the sake of consistency with the preceding section, we will address both scenarios, independence and dependence,
in the application of the theoretical findings. Figure 3 illustrates the first results obtained. On the one hand, we have the
probabilistic fit to the data (solid lines), which is consistent and identical for both scenarios, indicating its effectiveness.
On the other hand, we determine the 95% credible intervals (CrIs) around the mean of the posterior distribution. It should
be noted that similar results are obtained for the dependence case (see dashed lines for Frank's copula [a = 0.1] and
Gumbel's copula [c = 1.5]); however, these CrIs are slightly wider than those obtained for the independence case (see
dashed lines for the product of marginals).

In addition, we computed goodness-of-fit metrics, including the mean absolute percentage error (MAPE) and the root
mean squared error (RMSE), whose values are collected in Table 2. Considering the table values and the fits with their
respective 95% CrIs, we focus on the scenario where parameters are assumed independent. This decision was made to meet
the primary objective of this section: to illustrate the application of the theoretical results in a real-world context. By opting
for independence between parameters, we ensure a manageable computational burden, unlike the significant increase
in complexity involved with copulas. Both the probabilistic fit and CrIs yield satisfactory results, effectively capturing the
trend and uncertainty of the data.

3.1.3 Results and discussion
After estimating the distributions of the model parameters with v∗0 = 0.0160808, we constructed the 1-PDF of the
solution stochastic process for the randomized hyper-logistic model. The resulting plot is depicted on the left side of
Figure 5, illustrating that the PDF is approximately concentrated around the mean volume quantity for each time instant
and displays a Gaussian shape with varying degrees of kurtosis. This is due to the data's variability according to the
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CORTÉS ET AL. 15

sigmoidal curve's different phases. In the initial phase, characterized by low variability, cells adapt to culture conditions
until reaching a critical point that initiates the exponential phase. Variability in this phase, which contains the inflection
point, may arise from environmental factors, intrinsic variability of the cells, and/or the response of the biological system
to the experimental conditions. In the deceleration phase, cells reach the maximum carrying capacity, and/or there are
factors limiting cell growth. The variability in this phase could be due to the complexity of the biological processes that
regulate growth deceleration. It is also observed that the mass density shifts with time toward the PDF of the carrying
capacity, k.

As an interesting supplement, we add some statistical characteristics of the 1-PDF obtained above, such as the
expectation, variance, and 95% CrIs, which are listed in Table B2. Note how the expected value increases with time and
stabilizes around the average carrying capacity 7.5. However, the variance increases until t = 25 and subsequently
decreases, stabilizing at approximately 0.035. For instance, at t = 45 days, the expected mean volume of the spheroid is
7.15839 109μm3 with a 95% CrI of [6.6, 7.6].

In addition, as outlined in Section 2, the PDF of time has been determined. Figure 6, left panel, shows the time required
for the spheroid to reach certain fixed sizes v̂ that have been chosen to span the entire range of v̂. It is worth noting that as
the volume increases, the PDF tends to become more platykurtic and, therefore, less informative. This pattern is further
highlighted in Table B3, where it is observed that both the mean and variance increase with volume. This phenomenon
occurs because as the volume nears the carrying capacity, there are more instances where that size has been achieved.

We point out that all the computations performed to conduct the previous analysis, including the probabilistic fit, CrIs,
and fit measures, were carried out using Wolfram Mathematica©.

In summary, the Bayesian approach captures the general trend and inherent variability present in the data, thereby
addressing the complexity of the system. This is accomplished through posterior distributions, which encapsulate the
uncertainty regarding parameter values after considering the observed data and prior information.

3.2 Second approach: RLMS technique
As outlined earlier, to effectively apply the theoretical findings from Section 2.1, it is essential to assign suitable distri-
butions to the model parameters. Unlike the Bayesian approach, which updates posterior distributions based on prior
knowledge and observed data, the RLMS technique requires the assignment of parametric PDFs. These densities are char-
acterized by a specific set of parameters, which are obtained by an optimization process using some fitting criterion on the
sample, such as the minimization of the mean square error. The probability distributions for each parameter are chosen,
taking into account their respective domains and all available information about them. Since there are several possible
options for the choice of such distributions, this step constitutes a critical point of this technique but also an advantage
in practice because of its flexibility.

3.2.1 v0 as a deterministic constant
In this work, the chosen option relies on the positivity of model parameters and validation through statistical tests.
Unlike the Bayesian approach previously presented, which requires starting with a prior probability distribution reflect-
ing pre-data knowledge about a model parameter, the RLMS technique utilizes the data itself to guide the selection of
parametric probability distributions. The distribution selected for each model parameter, along with the justification for
such a choice, is as follows:

• Based on various tests and the requirement for strict positivity, the parameter b typically assumes values between 0 and
1. Hence, we propose a Beta distribution for it, expressed as

b ∼ Be(𝛼, 𝛽), 𝛼 > 0, 𝛽 > 0.

• For the shape parameter, p, which is constrained within the known range (0, 1), we opt for a uniform distribution,
denoted as

p ∼ Unif(𝜌1, 𝜌2), 0 < 𝜌1 < 𝜌2 < 1.

• For the carrying capacity, k, we assume a log-normal distribution since it must be positive and asymmetric (longer right
tail, and although k has a clear upper limit, if it varies at the upper end, this distribution can capture such variability).
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16 CORTÉS ET AL.

Formally, we denote this distribution as

k ∼ LN(𝜇, 𝜎), 𝜇 ∈ R, 𝜎 > 0.

• For consistency with the Bayesian methodology explained earlier and considering the nature of our data, it is more
advisable to consider the initial condition v0 as a deterministic constant. Therefore, in this subsection, we take the same
fixed numerical value as in the Bayesian approach, namely,

v∗0 = 0.0160808.

To determine the parameters for each proposed probability distribution, 𝛼, 𝛽, 𝜇, 𝜎, 𝜌1, and 𝜌2, the following steps have
been carried out using Wolfram Mathematica©. Initially, a nonlinear deterministic fit of the solution of the hyper-logistic
equation defined in (8) is applied to the data. This yielded point estimates of the parameters and their associated standard
errors (see Table C1). Subsequently, we performed an initial search to estimate the parameters of the probability distri-
butions assigned to the model's random inputs, 𝛼0, 𝛽0, 𝜇0, 𝜎0, 𝜌0

1, and 𝜌0
2. This involved ensuring that their expectations

aligned with the point estimates in Table C1, and their variances matched the squared standard errors in the same table.
Notably, for p, we considered a smaller variance to enhance fitting accuracy. Specifically,

b ∼ Be(𝛼0, 𝛽0) ∶ E[b] = 0.178912, V[b] = 0.01620142,

k ∼ LN(𝜇0, 𝜎0) ∶ E[k] = 7.60358, V[k] = 0.2197632,

p ∼ Unif(𝜌0
1, 𝜌

0
2) ∶ E[p] = 0.192177, V[p] = 0.00012.

We obtain the first estimate for the parameters from the exact expressions of the mean and variance of each distribution.
From these starting values, the next step is to find the optimal parameter estimates, 𝛼, 𝛽, 𝜇, 𝜎, 𝜌1, and 𝜌2, by solving the
following optimization program:

min
𝛼, 𝛽, 𝜇, 𝜎, 𝜌1, 𝜌2

44∑
i=0

(𝑦i − E[v(ti, 𝜔; 𝛼, 𝛽, 𝜇, 𝜎, 𝜌1, 𝜌2)])2, (23)

which consists of minimizing the squared errors between the observed values 𝑦i, listed in Table A1, and the expectation
of the solution at each time instant ti. The expectation is calculated using (12), where 𝑓1(v, t) is defined in (17). Given the
parametric nature of this approach, the PDFs involved in (17) are expressed as follows:

𝑓b

⎛⎜⎜⎜⎝
(

k
v
− 1

)−p
−
(

k
v0
− 1

)−p

p(t − t0)

⎞⎟⎟⎟⎠ =
((

k
v
−1

)−p
−
(

k
v0
−1

)−p

p(t−t0)

)𝛼−1(
1 −

(
k
v
−1

)−p
−
(

k
v0
−1

)−p

p(t−t0)

)𝛽−1

Γ(𝛼)Γ(𝛽)
Γ(𝛼+𝛽)

,

𝑓k(k) =
1

k𝜎
√

2𝜋
e−

(ln k−𝜇)2

2𝜎2 , 𝑓p(p) =

{ 1
𝜌2−𝜌1

, p ∈ (𝜌1, 𝜌2),

0, otherwise,

where Γ is the Gamma function. Bear in mind that in (17), 𝑓v0 (v0) = 𝛿(v0 − v∗0) represents a D irac Delta function centered
at 0.0160808, reflecting our assumption that v∗0 = 0.0160808. To minimize the objective function (23) in the multidimen-
sional space, a nonlinear optimization algorithm is applied. More specifically, we employed the Nelder–Mead method,
which explores the solution space around the initial estimates of the parameters 𝛼0, 𝛽0, 𝜇0, 𝜎0, 𝜌0

1, and 𝜌0
2. Consequently,

the following local optimum values are obtained:

𝛼 = 105.518, 𝛽 = 453.518, 𝜇 = 2.01784, 𝜎 = 0.0299154, 𝜌1 = 0.149667, 𝜌2 = 0.197989.

The resulting quadratic error is 5.68149, and its square root is 2.38359. After determining the optimal parameters of the
distributions, we computed their main statistical characteristics, such as mean, variance, and standard error, as detailed
in Table C2.
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CORTÉS ET AL. 17

Product of marginals Frank's copula Gumbel's copula
MAPE 14.9529 15.2872 15.216
RMSE 0.356311 0.355721 0.356895

TABLE 3 Model evaluation metrics are assessed under
both independence (product of the proposed distributions
with their respective optimal values obtained) and
dependence (utilizing copulas) between parameters within
the RLMS approach.

FIGURE 4 Probabilistic fit via expectations (solid lines) using the data in Table A1, together with the 95% PIs (dashed lines) of the
solution (10) derived from the random hyper-logistic model, in two different scenarios. First, when the parameters b, k, and p are treated as
independent random variables, and thus, the PDF is the product of the proposed distributions obtained by RLMS technique. Second, when
these random parameters exhibit a dependence structure, and the joint PDF is determined using the Frank's and Gumbel's copulas. [Colour
figure can be viewed at wileyonlinelibrary.com]

To complement the analysis conducted within the RLMS framework and maintain alignment with the study carried
out using Bayesian methodology, we will also examine scenarios involving both independence and dependence.

Copula parameter estimation
The joint PDF using copulas is constructed with Wolfram Mathematica©'s CopulaDistribution function, incorpo-
rating Frank's and Gumbel's copulas, along with their respective parameters a and c, and the probability distributions of
the model parameters, obtained using the Bayesian and the RLMS approaches, as arguments. By means of a copula, the
dependence between model parameters is taken into account. The copula's parameter is determined in a similar way to
the adjustment of the parameters of the distributions proposed above using the optimization program (23). However, in
this fitting case, the expectation of the solution depends only on the copula's parameter, E[v(ti, 𝜔; a)] for Frank's copula
and E[v(ti, 𝜔; c)] for Gumbel's copula, using 𝑓1(v, t) as given in (14).

3.2.2 Results and discussion
Once we have confirmed that the RLMS technique yields satisfactory fits to the data in all cases, we will proceed with
probabilistic fitting. Regarding the intervals, it is important to note that 95% PIs are established under the RLMS approach.
Similar results to the Bayesian scenario are obtained for the case of copulas, as evidenced in Table 3. Furthermore, the PIs
are slightly wider in the copula case, particularly during the exponential growth phase, compared to when independence
is assumed (see Figure 4). However, it is worth pointing out that this difference is less pronounced compared to the
Bayesian approach.

According to the results obtained under the Bayesian approach, we select the scenario where the model parameters
are assumed to be independent random variables. On the right side of Figure 5, we show the 1-PDF then obtained. It can
observed that it exhibits a behavior similar to the one described in the first approach. Additionally, Table C3 highlights
the ascending trend of the expected value over time, approaching a mean value of the carrying capacity of approximately
7.43. As for the variance, it experiences an increase until t = 25, after which it decreases to stabilize around approximately
0.05. Everything is in full agreement with the results obtained throughout the probabilistic fitting process.
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18 CORTÉS ET AL.

FIGURE 5 Left side: Graphical representation of the 1-PDF, 𝑓1(v, t), as defined in (17), derived from the solution of model (9) using the
Bayesian approach. This is achieved by applying the product of marginal posterior distributions for the densities of the random model inputs.
Right side: The same 1-PDF, now obtained using densities of the random model inputs with parameters estimated via the optimization
program (23) through the RLMS approach. In both cases, v∗0 = 0.0160808, and the 1-PDF is shown at the time instants
t ∈ {10,15, 20,25, 30,35, 40,45, 50,55, 60}. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Left side: Graphical representation of the PDF, 𝑓 (t; v̂), given in (19), representing the time until different fixed values of volume
v̂ ∈ {0.0273598, 0.218878, 1.24487, 3.24213, 5.11628, 6.73051, 7.15458} are reached. The densities for the model parameters are obtained by
the Bayesian approach. Right side: The same PDFs; now, we use densities for the model parameters obtained by the RLMS approach. In both
cases, v∗0 = 0.0160808. [Colour figure can be viewed at wileyonlinelibrary.com]

Similarly, the PDF of time has been computed, which is plotted on the right side of Figure 6. As in the first approach,
with the spheroid size increasing, the shape of the time density becomes more flattened. This trend is also evident in
Table C4, where we observe an increase in both the mean and variance values as the fixed value of v̂ increases.

3.3 Comparison of both approaches
Examining the results obtained from both methodologies for estimating the densities of random model inputs when the
initial condition v0 is treated as a deterministic constant and b, k, and p are assumed to be independent variables, it is
evident that both the Bayesian and RLMS approaches accurately capture the expected value, yielding closely matching
results. However, a minor discrepancy exists in the 95% intervals, as the Bayesian approach yields CrIs slightly wider than
the PI's obtained via the RLMS approach. This fact is particularly observed at the onset of the second phase of the sigmoidal
curve. This fact could be explained because of the inherent difference between these two methodologies. Indeed, in the
Bayesian approach, prior distributions are iteratively updated with observed data, resulting in a posterior distribution
that consider both variability and dependency structure. In the RLMS technique, parametric probability distributions are
selected based on the physical interpretation of the model inputs, and parameters are estimated using a criterion that
ignores the presence of a dependence structure between variables.

When comparing the metrics, we see that the RMSE values are almost identical for both methods (Bayesian method:
0.3577 and RLMS method: 0.3563). However, there is a notable difference in the MAPE values (18.67 and 14.95, respec-
tively). This variation is due to the higher sensitivity of the MAPE to values close to zero, which is consistent with the
results obtained in both fits.

The results collected in Tables B2 and C3 outline the statistical attributes of the 1-PDFs. They reinforce the agreement
between the Bayesian and RLMS methodologies. Notably, the mean values of the PDFs exhibit gradual increases over time,
converging to 7.49 and 7.43, respectively. Similarly, the variances stabilize around 0.03 and 0.05, respectively, underscoring
the consistency of the results provided by both approaches.
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CORTÉS ET AL. 19

Concerning the time PDFs, consistent behavior is observed in both cases, resulting in similar mean values of the PDFs
for each fixed quantity. However, it is noteworthy that the variance for larger quantities is notably higher in the second
approach.

In summary, although both Bayesian and RLMS approaches effectively estimate expected values, they differ in their
treatment of variability and dependence structure. Hence, the RLMS approach provides slightly smaller metrics and
narrower intervals than the Bayesian technique.

3.4 Comparing the results using hyper-logistic versus logistic models
As indicated in Section 1, the hyper-logistic model overcomes some drawbacks of the logistic model, particularly its less
flexibility to describe the dynamics in certain growth phenomena. This issue is strongly related to the fact that in the
logistic model, the inflection point must coincide with half of the carrying capacity, while in the hyper-logistic model, this
point depends on the new parameter p, which provides greater flexibility. This section is devoted to illustrating this key
point within the setting of the above biological application and considering the randomized version of both models. To
ensure a fair comparison, we use the same parametric probability distributions as those employed in the RLMS approach
for the b and k parameters of the randomized hyper-logistic model. Furthermore, we assume independence among the
model's parameters and maintain the same value for v∗0 = 0.0160808. To carry out the probabilistic fitting using the
random logistic model, we first calculated the 1-PDF of its solution using the RVT technique. This results in the following
expression:

𝑓1(v, t) = ∫
∞

0 ∫
∞

0
𝑓B(b)𝑓K

⎛⎜⎜⎝e−b(t−t0) − 1
e−b(t−t0 )

v0
− 1

v

⎞⎟⎟⎠ 𝛿(v0 − v∗0)
||||| (1 − e−b(t−t0))v2

0

(ve−b(t−t0) − v0)2

||||| dv0db. (24)

In Figure 7, one observes that the logistic model does not fit the data well since it starts the growth phase from the
beginning, unlike the hyper-logistic model, which is better suited to the first phase. The superiority of the hyper-logistic
model over the logistic model can also be assessed by means of MAPE and RMSE

MAPE (hyper-logistic) = 14.9529 < 97.3157 = MAPE (logistic),

RMSE (hyper-logistic) = 0.356311 < 0.373154 = RMSE(logistic).

Finally, we calculated the expectation of the PDF of the inflection point for both models and found that the expected
value of the inflection point for the hyper-logistic model is smaller (approximately 3.11) than that for the logistic model
(approximately 3.68). This discrepancy may explain why the hyper-logistic model fits better in the initial phase, as its
curvature changes earlier than that of the logistic model.

FIGURE 7 Probabilistic fit to the data collected in Table A1, representing the expectation, 𝜇v(t), along with the 95% PI's of the 1-PDF,
expressed in (24), of the solution derived from the randomized logistic model using the RLMS method. [Colour figure can be viewed at
wileyonlinelibrary.com]
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20 CORTÉS ET AL.

4 CONCLUSIONS

This paper presents a methodology for handling uncertainties within the hyper-logistic model, formulated as a RDE.
Under this approach, all model inputs, including the initial condition and equation coefficients, are treated as random
variables, resulting in a stochastic process for the solution. This stochastic modeling approach enhances realism in appli-
cations, as it considers uncertainties inherent to the studied phenomenon's complexity and measurement errors in sample
data. Theoretical findings in this paper address these crucial aspects by deriving the 1-PDF of the solution to the ran-
domized hyper-logistic model in terms of the density functions of model inputs. Our theoretical findings have broad
applicability, as demonstrated through a comprehensive example that utilizes real-world data. Within this application,
we discuss the critical task of assigning appropriate probability distributions to model inputs, exploring two approaches
that yield consistent results while highlighting pertinent considerations for using the random hyper-logistic model. This
underscores this open question within uncertainty quantification, which certainly is problem dependent. Through our
present study, we aim to advance the field of differential equations with uncertainties, particularly in the mathematical
modeling of growth phenomena, which finds extensive application across disciplines such as Biology, Ecology, Medicine,
Economics, and beyond.
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APPENDIX A: DATA

TABLE A1 The data consist of 45 observations corresponding to the mean volume (109 μm3) of 50 individual
multicellular tumor spheroids at different time instants (days).

Time 3.68304 4.75446 5.55804 6.76339 7.70089 8.50446 9.50893 10.4464 11.317
Volume 0.0136799 0.0273598 0.0136799 0.0410397 0.0957592 0.109439 0.136799 0.218878 0.341997
Time 12.5223 13.5938 15.2679 16.2723 17.2768 18.4152 19.2188 21.3616 24.442
Volume 0.533516 0.629275 0.861833 1.24487 1.43639 2.32558 2.55814 3.05062 3.24213
Time 22.0982 26.5848 25.7143 27.5893 30.6696 31.4732 28.5938 35.2902 32.4777
Volume 3.44733 4.40492 4.58276 5.18468 4.93844 5.11628 5.56772 6.03283 6.21067
Time 33.0134 36.4955 37.2991 38.6384 39.7768 41.5179 42.6563 46.3393 45.4018
Volume 6.92202 6.73051 6.67579 6.94938 7.33242 7.29138 6.94938 7.26402 8.13953
Time 49.2188 48.2813 50.2232 51.0268 52.1652 53.9063 56.3839 59.2634 57.1875
Volume 7.5513 7.12722 7.0725 6.75787 7.11354 7.15458 7.1409 7.29138 8.11218

Source: Marusic et al. [3].
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22 CORTÉS ET AL.

APPENDIX B: RESULTS OBTAINED FOR FIXED V0, FIRST APPROACH (BAYES)

FIGURE B1 First chart of the MCMC trace plots (left column) and marginal posterior distributions of the model parameters (right
column), obtained using the Bayesian approach and considering v0 as a deterministic constant.

TABLE B1 Statistical characteristics such as the mean and
standard error of the marginal posterior density functions of the
random variables of the model defined in (9), except v0, which is
considered deterministic.

b deviance k p 𝝈

Estimate 0.1786 39.71 7.62 0.1944 0.4017
Standard error 0.01549 3.308 0.1809 0.03176 0.04364

TABLE B2 Statistical characteristics, such as the mean, variance, and CrIs, of the 1-PDF obtained using the Bayes approach, whose
graphical representation is shown on the left side of Figure 5.

1-PDF
characteristics t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 50 t = 55 t = 60
E[v(t, 𝜔)] 0.273301 1.05565 2.49032 4.13588 5.46967 6.34385 6.86133 7.15839 7.33023 7.43207 7.49433
V[v(t, 𝜔)] 0.010187 0.1475 0.484507 0.60241 0.410351 0.209336 0.103581 0.060179 0.043734 0.037545 0.035127
95% CrI,
lower limit 0.13 0.5 1.3 2.6 4 5.4 6.1 6.6 6.9 7.1 7.2
95% CrI,
upper limit 0.52 1.9 3.8 5.6 6.4 7 7.4 7.6 7.7 7.8 7.9
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CORTÉS ET AL. 23

FIGURE B2 Second chart of the MCMC trace plots (left column) and marginal posterior distributions of the model parameters (right
column), obtained using the Bayesian approach and considering v0 as a deterministic constant.

FIGURE B3 Plot illustrating the Gelman–Rubin diagnostic tool, used to evaluate the convergence of the three chains in the Bayesian
approach, considering v0 as a deterministic constant. The shrink factor compares the variance within each chain to the variance between
chains. [Colour figure can be viewed at wileyonlinelibrary.com]

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.10206 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [31/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


24 CORTÉS ET AL.

TABLE B3 Statistical characteristics, such as the mean and variance, of the time PDF obtained by the Bayesian
approach, whose plot is shown on the left side of Figure 6.

PDF features v = 0.027359 v = 0.218878 v = 1.24487 v = 3.24213 v = 5.11628 v = 6.73051 v = 7.15458
E[t(v, 𝜔)] 4.65729 9.62562 16.1362 22.3953 28.3725 38.2585 45.2899
V[t(v, 𝜔)] 0.0416408 1.10746 3.34223 5.49184 7.72859 13.9343 45.2849

FIGURE B4 Image depicting the correlation matrix of the MCMC samples, generated from the Bayesian approach by combining the three
chains. The columns represent the model parameters, and v0 is assumed to be a deterministic constant. [Colour figure can be viewed at
wileyonlinelibrary.com]

APPENDIX C: RESULTS OBTAINED WITH THE SECOND APPROACH (RLMS)

TABLE C1 Point estimates of model parameters defined in (5),
together with their respective standard errors, derived from the
nonlinear fit.

b k p v0

Estimate 0.178912 7.60358 0.192177 0.0160808
Standard error 0.0162014 0.219763 0.0935527 0.0348665

TABLE C2 Statistical characteristics of the probability distributions
proposed for the RLMS approach, utilizing the optimal parameters obtained
from the optimization program given in (23).

b k p
Mean 0.18875 7.52543 0.173828
Variance 0.000273417 0.0507045 0.000194585
Standard error 0.0165353 0.225177 0.0139494

TABLE C3 Statistical properties, including mean, variance, and 95% PIs, of the 1-PDF derived from the RLMS approach, the graph of
which is shown on the right side of Figure 5.

1-PDF
characteristics t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45 t = 50 t = 55 t = 60
E[v(t, 𝜔)] 0.241276 0.973678 2.43736 4.17358 5.54882 6.40668 6.8888 7.15319 7.30015 7.38428 7.434
V[v(t, 𝜔)] 0.003141 0.067132 0.303296 0.438285 0.316627 0.172637 0.097491 0.067408 0.056449 0.052633 0.051463
95% CI, 0.15 0.6 1.5 2.8 4.4 5.5 6.2 6.6 6.8 6.9 7
lower limit
95% CI, 0.37 1.6 3.6 5.4 6.6 7.1 7.4 7.6 7.8 7.8 7.9
upper limit
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TABLE C4 Statistical characteristics, such as mean and variance, of the time PDF acquired through the RLMS
approach, the graph of which is shown on the right side of Figure 6.

PDF features v = 0.027359 v = 0.218878 v = 1.24487 v = 3.24213 v = 5.11628 v = 6.73051 v = 7.15458
E[t(v, 𝜔)] 4.71208 9.83904 16.3363 22.4222 28.1917 38.066 43.9726
V[t(v, 𝜔)] 0.0104762 0.464555 1.66117 3.31346 5.48689 16.3314 166.013
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