

Kanji Recognition with AI

LAB University of Applied Sciences
Bachelor Degree in Information and communication technology (ICT)
2024
Rafael José Rodríguez Badas

 Abstract

Author(s)

Rodríguez Badas, Rafael José

Publication type

Thesis, UAS

Completion year

2024
Number of pages

62

Title of the thesis

Kanji Recognition with AI

Degree, Field of Study

Bachelor’s degree in information and communication technology (ICT)
 Name, title and organisation of the client

Ismo Jakonen, Senior Lecturer, Media Technology

Abstract

This thesis explores the development of a mobile application for recognizing Kanji characters
using artificial intelligence (AI) techniques. Beginning with an introduction to the Japanese
language and an overview of Kanji, the thesis continues with the fundamentals of AI, includ-
ing its types and applications in various domains. It discusses machine learning principles, fo-
cusing on supervised and unsupervised learning, along with error metrics such as overfitting
and underfitting. The thesis then delves into deep learning concepts, including neural net-
works, activation functions, and training methodologies. Special attention is given to convolu-
tional neural networks (CNNs) due to their efficacy in image recognition tasks. Moreover, it
examines standard tools used in AI applications, particularly Python programming language
and associated libraries. The thesis culminates in designing and implementing a Japanese
kanji Recognition mobile app, detailing its frontend and backend components.

Keywords: Kanji recognition, Mobile application, Artificial intelligence (AI), Japanese language,
Machine learning, Deep learning, Neural networks, Convolutional neural networks (CNNs),
Language learning tools, Image recognition

Contents

List of abbreviations/Concepts/Terms ... 1

1 Introduction ... 2

2 The Japanese language ... 3

2.1 About the Japanese language ... 3
2.2 Introduction to Kanji ... 4
2.3 The prevalence of kanji .. 5

3 Fundamentals of AI .. 6

3.1 Introduction to AI .. 6
3.2 Overview of AI .. 7
3.3 Types of AI ... 10
3.4 AI in fiction media ... 11
3.5 The two schools of AI ... 12

3.5.1 Symbolic approach .. 12
3.5.2 Connectionist approach ... 13

4 Fundamentals of Machine Learning ... 14

4.1 Introduction to Machine Learning ... 14
4.2 Growth of Machine Learning .. 15
4.3 Types of Machine Learning .. 16

4.3.1 Supervised learning ... 16
4.3.2 Unsupervised learning ... 19

4.4 Error metrics .. 19
4.4.1 Overfitting ... 20
4.4.2 Underfitting ... 20

5 Neural Networks and Deep Learning ... 22

5.1 Introduction to Deep Learning .. 22
5.2 Representation learning ... 23
5.3 Basics of Neural Networks ... 23
5.4 Deep Neural Networks ... 25
5.5 Activation Functions ... 26

5.5.1 Sigmoid activation function .. 27
5.5.2 Rectified Linear Unit (ReLU) .. 28
5.5.3 Softmax activation function .. 29

5.6 Universal approximation theorem .. 30
5.7 Training Neural Networks .. 31

5.7.1 The cost function .. 31
5.7.2 Gradient Descent Algorithm ... 33
5.7.3 Backpropagation Algorithm .. 34

5.8 Convolutional Neural Networks (CNNs) ... 35
5.8.1 Convolutional layer .. 35
5.8.2 Pooling layer .. 37
5.8.3 Fully connected layer ... 37
5.8.4 Advantages of CNNs ... 38

6 Optical Character Recognition ... 39

6.1 Introduction to OCR ... 39
6.2 Stages of OCR ... 39
6.3 The MNIST dataset .. 40

7 Common tools for AI applications ... 41

7.1 Programming languages used in AI ... 41
7.2 Python libraries for AI applications ... 42
7.3 Machine Learning libraries for Python ... 43
7.4 Frontend ... 44
7.5 Back end .. 45

8 Practical case: Kanji recognition mobile app .. 47

8.1 Introduction .. 47
8.2 The model .. 47
8.3 Making a test application ... 51
8.4 Using TensorFlow Lite ... 52
8.5 Final application ... 55
8.6 Conclusion ... 59

9 Summary .. 62

References .. 63

1

List of abbreviations/Concepts/Terms

AGI: Artificial General Intelligence

AI: artificial intelligence

ANN: Artificial Neural Network

API: application programming interface

BP: Back Propagation

CNN: Convolutional Neural Network.

FCN: Fully Connected Network

Framework: a tool that provides ready-made components or customised solutions to

GAN: Generative adversarial network.

GUI: graphical user interface

LLM: Large Language Model

NLP: Natural Language Processing.

OCR: Optical Character Recognition

RNN: Recurrent Neural Network.

ReLU: Rectified Linear Unit

SAI: Super Artificial Intelligence

SDK: Software Development Kit

SGD: Stochastic Gradient Descent

SVM: Support Vector Machine

Script: programs or sequences of instructions that are interpreted and used to automatise

tasks

TF: TensorFlow

TFLite: TensorFlow Lite

UI: user interface

WYSIWYG: What You See Is What You Get

2

1 Introduction

Undoubtedly, technology has been one of the driving forces in the last centuries, redefining

and shaping how we live, work, and interact with the world. It has dramatically improved the

quality of life we enjoy today, has significantly enhanced our quality of life, and has led to

remarkable breakthroughs in almost every field of human knowledge. Time and time again

humanity has defied the odds with incredible discoveries.

AI has taken the headlines of the world in the last few years. It is no surprise that AI has

taken the center stage, with new technologies capable of doing seemingly impossible things

being developed every few weeks. The advancements in this field have been so rapid that

professionals often struggle to keep up.

Learning a new language can be challenging, especially if it involves non-Latin scripts, like

the Japanese language. One of the most challenging aspects of learning Japanese is mem-

orizing the kanji characters, ideographic characters used in the Japanese writing system.

There are over 2,000 regular-use kanji characters, each with its own meaning and pronun-

ciation. Learning to recognize and read them can be overwhelming for learners.

This thesis aims to explore how the use of AI can help in recognizing such characters, in

order to provide an efficient way to look up kanji characters without drawing or searching

for radicals, which are the components that made up a kanji character. This way, the thesis

hopes to facilitate the learning process and help learners improve their reading and writing

skills in Japanese.

3

2 The Japanese language

2.1 About the Japanese language

Japanese is the mother tongue for almost all Japanese citizens, numbering around 128

million in 2011, making it the ninth largest native-speaking population globally. Additionally,

as of November 2011, approximately 128,000 individuals in Japan were non-native speak-

ers studying Japanese as a foreign language. Beyond Japan, around 3.65 million people

across 133 countries were learning Japanese in 2009. (Hasegawa, Y. 2014.)

Japanese employ two scripts known as kana, namely hiragana and katakana, which depict

the same set of phonetic sounds in different forms. Hiragana and katakana encompass

nearly 50 characters, derived from simplified Chinese characters adopted for phonetic rep-

resentation. Additionally, Japanese employs kanji or Chinese characters extensively in writ-

ing, with over 40,000 characters existing, though a learner must master around 2,000 "joyo"

(official everyday use) kanji to be functionally literate in the language, as these kanjis con-

stitute most of the written text. Kanji is crucial for distinguishing between words in the ab-

sence of spaces and for disambiguating homophones, a common occurrence due to the

language's limited distinct sounds. The use of these three scripts can be seen in Figure 1.

(Kim, T. 2012.)

Hiragana primarily serves grammatical functions, representing challenging kanji, colloquial-

isms, and onomatopoeias. It is also commonly used by beginner Japanese learners and

children in place of unfamiliar kanji. Conversely, while representing the same sounds as

hiragana, katakana is primarily employed for loanwords from Western languages, lacking

associated kanji. (Kim, T. 2012.)

Figure 1. Hiragana, katakana and kanji used together in a sentence (NihongoShark)

4

2.2 Introduction to Kanji

During the 5th century, Japanese Buddhist monks introduced Chinese texts written in Chi-

nese to Japan. As Japanese lacked a written form at that time, they adopted Chinese char-

acters, known as kanji or “漢字”. Initially, these texts would have been read following the

Chinese language. Even documents written by Japanese scholars were essentially imita-

tions of Chinese texts in terms of grammar, morphology, and syntax, despite the vast lin-

guistic differences between Chinese and Japanese. (Beermann, R. E. 2006.)

In Japanese, nouns, adjective stems, and verbs are predominantly written in kanji, neces-

sitating knowledge of Chinese characters for comprehending most words. However, not all

words use kanji; for instance, verbs like "to do" are consistently written in hiragana. (Kim, T.

2012.)

One of the challenges about learning kanji, is that each kanji character typically possesses

two readings: on'yomi, taken from Chinese, and kun'yomi, the native Japanese reading.

Compound words generally use on'yomi readings, while single kanji characters often utilize

kun'yomi. Some characters, especially prevalent ones, may have multiple readings. More-

over, certain compound words may have unique readings requiring individual memorization.

(Kim, T. 2012.)

Kun'yomi is also prevalent in adjectives and verbs, often accompanied by kana strings

known as okurigana, to maintain pronunciation consistency during conjugation. Further-

more, kanji readings may undergo slight alterations in compound words for ease of pronun-

ciation, such as changes from /h/ to /b/ or /p/ sounds. (Kim, T. 2012.)

Another intriguing and challenging aspect of kanji is the existence of synonyms with similar

readings but nuanced differences in meaning, exemplified by pairs like “聞く” (“kiku”) and “

聴く” (“kiku”), where the latter implies a deeper level of attention. In most cases, when it

comes to listening to music, the verb “聴く” is more commonly used than “聞く”. Similarly,

slight variations in kanji can alter the meaning, as seen in “書く” (“kaku”) meaning "to write,"

contrasting with "描く" (“kaku”) meaning "to draw," but assuming the reading “egaku” when

describing abstract imagery, such as a scene on a book. Also, some kanji have multiple

readings, like “今日” (“kyō”), (“konjitsu”), or (“kon ni chi”), with preferred readings varying by

context. (Kim, T. 2012.)

5

2.3 The prevalence of kanji

One might question why the Japanese did not switch from Chinese characters to romaji

(Roman alphabet) to simplify the learning process. After all, Korea successfully streamlined

its written language by adopting its own alphabet. However, when converting typed hira-

gana into kanji, one is often faced with multiple choices (homophones), sometimes up to

ten, due to the limited number of distinct sounds in Japanese. This stands in contrast to the

Korean alphabet, which comprises 14 consonants and 10 vowels, allowing for a much wider

array of sounds. Additionally, Korean allows for the attachment of a third or even fourth

consonant to create a single letter, resulting in a theoretically vast number of possible

sounds. (Kim, T. 2012.)

As reading speed typically outpaces speaking pace, visual cues are crucial for swiftly iden-

tifying words. English achieves this through the varied shapes of words, even when mis-

spelled. Korean employs a similar strategy, thanks to its ample characters capable of cre-

ating words with distinct shapes. However, spaces must be added to remove ambiguities,

presenting challenges regarding their placement. Kanji resolves many of these issues by

eliminating the need for spaces and largely mitigating problems with homophones. Without

kanji, even with added spaces, the lack of visual cues and resulting ambiguities would sig-

nificantly hinder the readability of Japanese text. (Kim, T. 2012.)

6

3 Fundamentals of AI

3.1 Introduction to AI

Before talking about artificial intelligence, it is convenient to first talk about intelligence. In-

telligence, while a common word in the dictionaries of many languages, does not have an

agreed-upon definition. Philosophers, psychologists, scientists, and engineers all have dif-

ferent answers about the definition of this word and how intelligence came to be. In their

2007 work on AI research, Legg and Hutter consolidated various definitions from existing

literature into one single definition: Intelligence measures an agent’s ability to achieve goals

in a wide range of environments. (Chollet, F 2019.)

In general, autonomy and adaptiveness are signs of intelligence; autonomy is the lack of

need for constant instructions, and adaptiveness is the ability to change behaviour depend-

ing on the environment or problem space. The problem is that, in any scientific and techno-

logical field, it is mandatory to have formal measuring methods. Therefore, AI will not mature

until a formal and global method for measuring intelligence is developed. (Linares 2021a.)

Looking at this definition, one can reason that associating intelligence only with human be-

ings seems reasonable. But as shown in Figure 2, this anthropocentric vision does not con-

sider that human intelligence is actually a subset of natural intelligence, and AI overlaps

with both human and natural intelligence. (rodrivers 2019.)

Figure 2. Intelligence Landscape (rodrivers 2019)

Like intelligence, AI also has multiple definitions to choose from. Elaine Rich and Kevin

Knight defined it in their book Artificial Intelligence as the study of how to make computers

do things at which, at the moment, people are better. (Rich and Knight 1991.)

The concept of Artificial Intelligence has been a subject of fascination and curiosity for many

years, placing itself as a crucial research area in academia and industry, which is currently

undergoing a significant bottleneck due to its exponential growth in the last few years. AI

7

has evolved into a vast discipline in recent decades, drawing upon computer science, math-

ematics, linguistics, and many others. (Shao Z et al. 2022.)

Even though AI has become the new playing field for scientific and technological innovation

as well as industrial transformation, to the point that it established itself as the so-called

fourth industrial revolution, its development has been far from smooth. AI's history wit-

nessed several ups and downs throughout its lifetime. (Shao Z et al. 2022.)

3.2 Overview of AI

Isaac Asimov's science fiction novel Runaround published in 1942 is considered to be the

origin of AI. During the 1940s and 1950s, researchers from diverse disciplines such as

mathematics, psychology, and engineering began to explore the concept of an artificial

brain. This idea was influenced by neurological research indicating that the brain functioned

as a network of neurons emitting pulses. In 1943, neurologist Warren McCulloch and math-

ematician Walter Pitts collaborated on a book that merged mathematics with algorithms.

This work paved the way for the development of neural networks and the mathematical

modelling of artificial neural networks. (Shao, Z et al. 2022.)

In his publication Computing Machinery and Intelligence, Turing detailed the process of

assessing a machine's intelligence. The Turing Test, a recognized benchmark for determin-

ing the intelligence of a machine, was introduced in the same publication, and is still widely

utilized today. Figure 3 illustrates the Turing test, which involves a human evaluator as-

sessing conversations between a human and a machine programmed to imitate human

responses. All participants in the test are isolated from each other. The evaluator knows

that one of the conversational partners is a machine. The machine is considered to have

passed the test if the evaluator cannot consistently tell it apart from a human. The outcome

of the test does not depend on the correctness of the machine's responses, but on how

indistinguishable they are from responses a human might provide. (Shao, Z et al. 2022;

Wikipedia contributors 2024d.)

8

Figure 3. Turing test (Wikipedia contributors 2024d)

The formal proposal of artificial intelligence as a concept was made by John McCarthy in

1956 during a seminar at Dartmouth. This event is considered the official birth of AI. The

seminar focused extensively on the possibility of using machines to mimic human intelli-

gence. Many of the attendees of this conference subsequently became significant contrib-

utors to the development of AI over the next several decades. (Shao, Z et al. 2022.)

During the 1960s, the field of AI had its first significant breakthrough, thanks to the devel-

opment of symbolic logic, which helped to solve various joint problems. One of the signifi-

cant events in the history of AI was the development of a system called STUDENT by Daniel

Bonrow in 1964. The system was written in Lisp and could understand natural language

input and solve algebraic word problems. Around this period, it seemed that AI development

would only accelerate. Some even made bold predictions, such as in twenty years, ma-

chines will be able to do all the work that humans do. These high expectations for AI devel-

opment soon proved unrealistic, as researchers underestimated the complexity of their field.

Also, in the 1970s, AI faced difficulties that could not be overcome at the time. The limited

memory and processing power of computers hindered the progress of practical AI problems.

This made the research progress come to a halt, marking the start of the first "AI winter".

(Shao, Z et al. 2022.)

It was not until ten years later that AI entered its second climax, thanks to the adoption of

expert systems by worldwide companies. These systems imitate the decision-making pro-

cess of humans and give suggestions to non-experts. The first expert system, DENDRAL

9

was proposed by Edward Feigenbaum. Nevertheless, the maintenance and upgrading of

these systems was complex. This fact led to what is referred to as the second "AI winter" in

the history of artificial intelligence. Until then, AI had relied on models of reasoning that

attempted to replicate human intelligence, such as planning, reasoning, and decision-mak-

ing, using knowledge and experience. A prominent example of such an AI system was IBM's

Deep Blue, the chess program that famously beat the world chess champion in 1997. (Shao,

Z et al. 2022.)

The field of AI, now more than half a century old, saw its third wave of success with the

appearance of deep learning. Without a doubt, 2012 is a year that rings the bell in the mind

of any AI professional, given that this marks the beginning of the deep modern learning era

through an enormous breakthrough in solving the challenges of ImageNet. (Shao, Z et al.

2022.)

The prosperity AI enjoys today can be summarized in three significant facts:

1. New meaningful learning algorithms start emerging, such as Convolutional Neural

Networks (CNN), Recurrent Neural Networks (RNN), Transfer Learning, etc.

2. The advancements in computer hardware and software allow AI to overcome prob-

lems that could not be solved, especially in computer vision and Neuro-linguistic

Programming (NLP).

3. AI has been integrated into people's daily life, such as self-driving cars, virtual as-

sistants, recommendation engines, spam filters, etc.

4. The development of several optimization methods for neural networks, like Batch

Normalization, Layer Normalization, Dropout, Gradient Descent method, etc.

(Shao, Z et al. 2022.)

A whole summary of the history of AI can be seen in Figure 4.

10

Figure 4. Chronology of AI (Linares 2021a)

Bo Zhang suggested that the evolution of AI could be segmented into three distinct phases:

1. Symbolic AI, often referred to as the knowledge-driven approach.

2. The data-driven approach, which relies on deep learning.

3. The Third Generation AI, which is a theory that integrates both previous approaches.

(Shao, Z et al. 2022.)

3.3 Types of AI

The most common way to classify the types of AI is by weak, general, or super AI. Weak or

narrow AI attempts to model the human mind, like how weather conditions, climate change,

or other natural phenomena are modelled, to focus on a specific problem domain, like cars,

face recognition, spam filters, etc. On the other hand, general or strong AI actually seeks to

reproduce the human mind, in the sense that it exhibits intelligence in a broad range of

tasks. A major example of strong AI is Artificial General Intelligence (AGI). Lastly, super AI

(SAI) is defined by Nick Bostrom as an intellect that is much smarter than the human mind

in every field. Looking at how humanity still has not been able to achieve true AGI, although

Microsoft researchers claim GPT-4 to be the first “sparks,” SAI will be contained to science

fiction for the foreseeable future. (Flowers, J.C. 2019; Linares 2021a; Bubeck, S et al.

2023.)

11

3.4 AI in fiction media

The growing popularity of artificial intelligence has led to mixed feelings of both excitement

and fear in popular discourse. AI is widely regarded as a significant technological field rap-

idly advancing and shaping the future. Thus, futuristic concepts involving AI are becoming

more common in popular media. (Goode, L. 2018.)

Since the early 20th century, scenarios in which AI surpasses human intelligence have fre-

quently appeared in science fiction. These narratives often unfold in dystopian settings

marked by machine rebellions. In 1921, Karel Capek's play "RUR" (Rossum's Universal

Robots) became the first science fiction work to depict a revolt by humanoid robots against

their human oppressor, introducing the term "robot" to both the literary and scientific com-

munities. The concept of threatening machine intelligence has persisted in science fiction,

reflecting societal fears as advancements in digital technology accelerate. However, there

are notable exceptions that feature compassionate AI, such as Wall-E (2008), Data from

"Star Trek: The Next Generation" (1987-1994), Robby from "Lost in Space" (1965-1968),

and TARS from "Interstellar" (2014). Isaac Asimov's mid-20th-century robot stories, partic-

ularly "I, Robot" which was adapted into a film, significantly shaped public views on AI or

machine intelligence. Asimov introduced what he called the "Frankenstein complex", which

is the notion that despite implanting AI with safety protocols to prevent danger or rebellion,

the underlying fear that it could ultimately turn against us still remains. However, in most

cases, Japanese fiction is known for representing AI as a friend or tool. Mighty Atom, known

as Astroboy in English, was the friendly protagonist of a manga series that ran from 1952

to 1968. Doraemon was also a manga series first serialized in 1969, in which a podgy,

friendly, blue robot cat from the future aids a boy named Nobita Nobi. (Cave, S et al. 2018;

Goode, L. 2018; Wikipedia contributors 2024b; Wikipedia contributors 2024c; Wikipedia

contributors 2024d.)

Another significant entry in Japanese fiction is "Sword Art Online: Alicization" (2018-2020),

a part of the larger "Sword Art Online" series that explores the theme of sentient artificial

intelligence. In this storyline, the Soul Translator is introduced as an advanced full-dive in-

terface created by the private institute Rath. Unlike traditional methods that send signals

directly to the brain, the Soul Translator interacts with the user's Fluctlight, which is the

technological counterpart to the human soul. This device creates a virtual realm known as

the Underworld. The series eventually reveals that the primary goal of this technology is to

develop a new, more sophisticated form of AI. In this virtual world, a human civilization with

human emotions is presented. Later in the show, Alice, one of the inhabitants of the Under-

world and the main protagonist, is introduced as the first autonomous Artificial Intelligence

12

(Figure 5) by implanting her Fluctlight into an artificial body. In the Underworld, the lines

between reality and virtual existence become blurred, offering a profound exploration of the

ethical, moral, and existential questions surrounding sentient AI. (Myanimelist.net; Wikipe-

dia contributors 2023a).

Figure 5. Alice being presented as the first autonomous Artificial Intelligence (SAO: Aliciza-
tion 2018)

3.5 The two schools of AI

Since its birth, AI was divided into two schools of thought: The symbolic, or top-down ap-

proach, which relies on explicit rules and representations; and the connectionist, or bottom-

up approach, which makes use of neural networks and focuses on learning from data and

patterns. (Linares 2021a.)

3.5.1 Symbolic approach

The symbolic, or top-down approach, was the first school of AI that originated, and in the

early days of AI, most of the efforts were focused on this approach for many years. This

classical approach relies on encoding a model of the problem by programming a set of

predefined rules and logical principles and asking the system to process the input data

under this model so that a solution can be provided. This set of rules and logic represents

knowledge provided by experts, allowing for the creation of expert and decision-support

systems. Systems in this category employ deductive reasoning, logical inference, and some

13

type of search algorithm that finds a solution within the constraints of the problem. (Bajada,

J., 2019; Linares 2021a.)

One of the advantages of this approach include its high interpretability, as one can easily

trace the reasoning process back to the logical rules that were applied and the ease of

updating the system's rules as new information becomes available. (Bajada, J. 2019.)

3.5.2 Connectionist approach

The connectionist, or bottom-up approach, was also one of the first approaches to AI, but it

failed to maintain relevancy due to hardware, data, and theoretical limitations at the time.

The names come from the network topology that characterizes the algorithms in this class.

Researchers akin to this school thought that AI should be inspired by biology (the brain), in

the fact that it learns from observation and experience. Convolutional Neural Networks

(CNN), the main focus of this thesis, fall into this category. What differentiates this approach

from the previous one is that the rules and logic of the domain being modelled do not need

to be specified. The network learns these rules by itself from training data. Neural Networks

do not require a model of the world; instead, they rely on substantial training data from which

a model of the world can be statistically inferred. While this is the strongest point going for

this approach, it is also a double-edged sword. If the training data is biased, has data with

little to do with the problem trying to be solved, or is insufficient, connectionist algorithms

will perform poorly. In fact, the lack of data was a massive constraint at the time and

prompted the connectionism approach to fall out of relevance compared to the symbolic

approach. (Bajada, J. 2019; Linares 2021a.)

14

4 Fundamentals of Machine Learning

4.1 Introduction to Machine Learning

Machine Learning, a subset of artificial intelligence and computer science, focuses on how

computers can learn from experience without explicit programming. It resides at the nexus

of computer science and statistics, forming the foundation of artificial intelligence and data

science. Advancements in machine learning have been propelled by new algorithms and

theories, the thriving availability of data online, and affordable computing resources. Cur-

rently, machine learning techniques, which are data-intensive, are increasingly utilized

across diverse sectors including healthcare, manufacturing, education, financial services,

law enforcement, and marketing, facilitating decisions based on data. (Jordan, M.I., & Mitch-

ell, T. 2015.)

In the past twenty years, machine learning has transitioned from a theoretical idea to a

fundamental technology with widespread practical and commercial uses. It has emerged as

the preferred method in AI for addressing challenges in fields such as computer vision,

speech recognition, and natural language processing. AI developers have discovered that

training systems with examples of desired outcomes is often simpler than programming

them to anticipate responses for every conceivable input. This shift has significantly influ-

enced industries that handle complex systems such as diagnostics or logistics. Additionally,

machine learning's efficacy in analysing large volumes of experimental data has made it

valuable in empirical sciences like biology, cosmology, and even social science. (Jordan,

M.I., & Mitchell, T. 2015.)

As with intelligence, there is no common agreement on what learning is. Yet, regarding

humans, learning can be defined as changes in behaviour that result from experience or

mechanistically as changes in the organism that result from experience. Since computers

are mathematical machines, learning in computers involves programmatic changes. Figure

6 contrasts traditional programming, where the program dictates outputs from given inputs,

with machine learning, which involves determining a suitable model from a set of inputs and

outputs. This model, once trained, can then generate new outputs for new inputs. (Duarte,

D., & Ståhl, N. 2018.)

15

Figure 6. Traditional programming (a) vs Machine Learning (b) (Duarte, D., & Ståhl, N. 2018)

Tom M. Mitchell provides a formal definition of machine learning, stating that a computer

program learns from experience (𝐸) concerning a specific task (𝑇) and performance meas-

ure (𝑃) if its performance at 𝑇, as evaluated by 𝑃, improves with experience 𝐸. For example,

to develop a model that classifies emails as spam or not spam, one might start with a set of

emails (𝑆𝑒) divided into spam (𝑆𝑠𝑒) and not spam (𝑆𝑛𝑠𝑒). This dataset serves as the expe-

rience (𝐸) for the model, which then classifies new emails based on this training. The effec-

tiveness of the model, or performance (𝑃), is contingent upon the quality of the input dataset

(𝑆𝑒), with better data potentially leading to more accurate classifications. (Duarte, D., &

Ståhl, N. 2018.)

4.2 Growth of Machine Learning

The so-called Big Data is a phenomenon that describes how, in the past decade, computers

and networked systems have significantly improved their ability to gather and transport huge

amounts of data. Machine learning has emerged as a powerful tool for scientists and engi-

neers, enabling them to derive meaningful insights and predictions from vast amounts of

data. The significant rise of machine learning can be attributed to advancements in mobile

and embedded systems, which now have the capability to collect extensive data about in-

dividuals. This data collection facilitates the development of personalized services aimed at

individual needs. Across diverse sectors, including commerce, science, and government,

the accumulation of large datasets is being used to improve services and productivity. In

the medical field, for instance, historical patient records are analysed to identify the most

suitable treatments for individual patients, traffic control and congestion reduction are being

improved with the help of historical traffic data, historical crime data is being utilized to as-

sign local police to particular locations at specific times. (Jordan, M.I., & Mitchell, T. 2015.)

Even so, it must be considered that machine learning is not a magic formula capable of

solving every problem. Machine learning works best when

• a task is too hard to be programmed

• the problem involves a large search space

16

• adaptivity is essential

• a large enough data set is available.

(Linares 2021c.)

4.3 Types of Machine Learning

When solving a machine learning problem, the first step to address is which machine learn-

ing algorithm to use. This is quite challenging as there are already many options to choose

from, and each year, another hundred are proposed. The hypothesis space is the collection

of potential learning algorithms that can be used for a specific machine learning problem.

To decrease this hypothesis space, the learning components of a problem can be catego-

rized into three distinct groups:

1. Representation: By understanding the type of learning to be accomplished, the hy-

pothesis space can be reduced since the task needs to be represented by a partic-

ular algorithm.

2. Evaluation: It's necessary to evaluate the effectiveness of the chosen algorithm by

assessing its predicted outputs.

3. Optimization: Based on the evaluation results, subsequent optimization is required.

The learning algorithm should aim to enhance a specific performance metric.

(Duarte, D., & Ståhl, N. 2018.)

Machine learning can be broadly classified as supervised, and unsupervised learning. (Li-

nares 2021c.)

4.3.1 Supervised learning

Supervised learning is applied when the dataset includes labels for each example, referred

to as the ground truth. Consequently, the dataset is split into two parts: the features of the

examples, represented as 𝑋, and the labels, denoted as 𝑦. Supervised learning tries to

create a model that receives a vector of features and generates an output. Broadly speak-

ing, a supervised learning model aims to generalize outputs in front of non-observed input

data, using the knowledge acquired by previous examples. Mathematically, supervised

learning systems typically generate their predictions by means of a learned mapping func-

tion 𝑓(𝑥), which provides an output 𝑦 for each input 𝑥 (or a probability distribution over 𝑦

given 𝑥). There are numerous mapping methods for 𝑓, such as decision trees, logistic re-

gression, support vector machines, neural networks, and Bayesian classifiers. Additionally,

17

general techniques like boosting and multiple kernel learning exist to combine the outputs

from several learning algorithms. (Jordan, M.I., & Mitchell, T. 2015; Duarte, D., & Ståhl, N.

2018; Linares 2021c).

The model’s output can be discrete (classes) or continuous (numeric values). If the output

is a class or a label, the model is said to be a classifier, whereas if the output is a continuous

value, the model is a regressor. (Duarte, D., & Ståhl, N. 2018; Linares 2021c).

Regression

Regression is a supervised learning technique with the goal of predicting a numeric value

from new input elements. Estimating the future price of a house, predicting currency ex-

change rates, or weather prediction are all examples of regression. The most common type

of regression is linear regression, although there are other types beyond this paper’s scope.

(Duarte, D., & Ståhl, N. 2018; Linares 2021c).

Linear regression can be defined mathematically as in Equation 1:

ℎ!(𝑋) = 	𝜃" +	𝜃# ×	𝑥#
(%) +⋯+	𝜃' ×	𝑥'

(%) (1)

where 𝜃! are weights (𝜃" is the bias, and 𝜃# is the weight for the 𝑘th feature of 𝑥(%), 1	 ≤
	𝑘	 ≤ 	𝑚), and 𝑥!

(%) is the 𝑗th feature of the 𝑖th example in 𝑋 (dataset). The weights indicate
how important each feature is for the output of the model. (Duarte, D., & Ståhl, N. 2018.)

Classification

On the other hand, classification tries to infer a label from the input vector by choosing

among several categories or classes. Taking this into account, a regression problem can

be transformed into a classification problem by discretizing the continuous values, that is,

grouping them into classes. Table 1 is an example of a model that classifies a given sample

of wind and temperature into a pace. (Duarte, D., & Ståhl, N. 2018; Linares 2021c):

Table 1. Data set with two features (wind speed and temperature) with their predicted class
(fast or normal) (Duarte, D., & Ståhl, N. 2018)

Wind speed (km/h) Temperature (ºC) Pace # Class

10.5 12.3 Fast 0

8.9 15.4 Fast 0

20.2 13.7 Normal 1

5.10 3.1 Normal 1

18

Classes may be binary like Table 1 or multiclass. Classifying emails between spam and not

spam would be an example of binary classification, while a medical diagnosis from a vector

of features (sex, blood pressure, cholesterol, etc.) would be an example of multiclass clas-

sification. As with regression, a multiclass problem can be translated into a binary classifi-

cation problem using one versus all classifications. (Duarte, D., & Ståhl, N. 2018; Linares

2021c.)

Supervised learning can be divided into two phases (Figure 7):

• Training process: A selection of pertinent features is identified from the input data.

These features are extracted using methods like Exploratory Data Analysis (EDA),

which enables data scientists to examine and explore data sets in order to summa-

rize their key attributes, frequently making use of data visualization techniques.

However, data scientists must be careful to avoid “the curse of dimensionality”,

which means worse results as the number of features increases.

• Prediction process: A set of the same features from new data are fed into the trained

model to make a prediction.

(Linares 2021c.)

Figure 7. Supervised learning pipeline (Linares 2021c)

19

4.3.2 Unsupervised learning

Unsupervised learning is involved when the dataset has no labels (examples are not pre-

classified). The goal here is to deduce classes without the ground truth. Since this approach

is less objective than supervised learning, understanding the dataset's domain is crucial for

building effective models; otherwise, the results may not be comprehensible. Even though

at first glance this technique might seem less relevant than supervised learning, its im-

portance prevails in the fact that there are more unlabelled than labelled datasets. Moreo-

ver, many mainstream problems like recommendation systems, classification of user’s be-

haviour on a website, or market segmentation are closely related to unsupervised learning.

By far, the most popular technique for unsupervised learning is clustering. (Duarte, D., &

Ståhl, N. 2018.)

Clustering refers to the process of identifying related groups within datasets that lack any

labelling. This technique has proven useful in detecting anomalies, assessing the similarity

between organisms, and identifying meaningful features, among other applications. K-

means is one of the most popular clustering algorithms, and one of the easiest to compre-

hend. The fundamental concept revolves around defining 𝑘 centroids utilized to form the

clusters. For each example present in the dataset, there is a corresponding association with

one of the 𝑘	centroids. The dataset is considered a collection of points on a plane, and the

algorithm seeks to group these points into clusters by measuring the distance between a

given data point and a centroid. (Duarte, D., & Ståhl, N. 2018.)

There are other techniques such as supervised learning, or techniques that combine super-

vised and unsupervised learning, like semi-supervised or self-supervised learning, but these

go beyond the scope of the paper. (Linares 2021c.)

4.4 Error metrics

When working with machine learning models, measuring how well a given model is behav-

ing is critical. For that reason, many error metrics have been developed in order to gauge

the performance of machine learning models. There are different metrics for supervised and

unsupervised learning. In particular, for supervised learning, a training set taken from the

dataset is used to see how well the model is learning. It is not a good idea, however, to rely

only on the metrics the model produces over the training set, as this does not guarantee

the model will accurately predict results for previously unseen inputs. That is why it is com-

mon practice to use a technique called hold-out, where a test set is used for evaluating the

model in data it has not seen in the training process. The overall goal of a machine learning

model is to be able to generalize, i.e., producing good results in front of unseen data. Hence,

20

introducing two concepts referring to the generalization of a model is necessary: overfitting

and underfitting. An underfitting model performs poorly on both the training and testing da-

tasets, whereas an overfitting model performs exceptionally well in the training dataset but

poorly on the test data set. (Linares 2021c.)

4.4.1 Overfitting

Overfitting happens when a model has become too specialized in the training set. This can

happen either because the model was overtrained, or because that it has learned the noise

and details of the dataset. This negatively affects the model's generalization ability, as noise

is specific to each training sample and does not apply as a general pattern to recognize

new data. There are several techniques to prevent overfitting, such as:

• Cross-validation: It is a systematic repetition of the hold-out technique that gives

more statistically accurate metrics.

• Regularization: It involves penalizing the learning process to prevent the model from

learning the training set too well.

• More data: Having a more extensive dataset will help prevent overfitting, although

the data quality is more important than the quantity.

• Ensembling: It is a set of techniques that combine predictions from multiple algo-

rithms together. The most famous examples are Bagging and Boosting.

(Narayan, S., & Tagliarini, G.A. 2005; Linares 2021c.)

4.4.2 Underfitting

Underfitting occurs when a model cannot learn the training data nor generalize it to new

data. This issue is often disregarded because it is easy to detect and can be resolved by

switching to different machine learning algorithms or enhancing the quantity or quality of the

data. Contrarily, overfitting is a more complex problem and is more common in the field.

(Narayan, S., & Tagliarini, G.A. 2005; Linares 2021c.)

In Figure 8, an example of both underfitting an overfitting can be seen.

21

Figure 8. Overfitting and underfitting (The 365 team 2023)

Despite being commercially successful, machine learning is still a young field with numer-

ous research opportunities yet to be explored. Unfortunately, there are still challenges to

overcome, such as the fact that much of the data required for these opportunities is privately

held and owned. Despite the challenges, the potential and ongoing developments indicate

that machine learning will probably be one of the most transformative technologies of the

21st century. (Jordan, M.I., & Mitchell, T. 2015.)

22

5 Neural Networks and Deep Learning

5.1 Introduction to Deep Learning

Deep learning is a branch of machine learning algorithms where machines autonomously

develop internal representations from raw data to perform tasks such as regression or clas-

sification. Deep learning models are made in a layer-wise structure, with each layer learning

hidden representations often too obscure for human observers to comprehend. These rep-

resentations are nonlinear compositions of the previous layer's representations, enabling

the model to progress from simple to increasingly complex and abstract features in each

layer. For example, deep learning models in image processing often begin by identifying

fundamental features like edges and strokes. These basic features are then integrated to

form basic objects, and as the model progresses through subsequent layers, these basic

objects are further combined to create more intricate and complex structures. These algo-

rithms can be used in supervised or unsupervised training for applications in pattern analy-

sis (unsupervised) and classification (supervised). The rapid growth of deep learning has

been driven by three key factors: extensive data availability, powerful computational capa-

bilities, and innovative algorithms. (Duarte, D., & Ståhl, N. 2018; Xia, Z. 2019.)

Deep learning, while a recent advancement in technology, has a substantial history that

dates back 50 years. It originated in the 1940s with the development of artificial neural net-

works (ANNs). The initial models of these ANNs were simple linear models that linked input

𝑥 to output 𝑦. In the mid-1980s, the introduction of the backpropagation (BP) algorithm

marked a significant leap in learning the parameters of artificial networks, sparking a resur-

gence in statistical model-based machine learning. With the BP algorithm, these artificial

networks are capable of learning statistical rules from extensive datasets and predicting

outcomes for new cases. For this reason, neural networks are excellent for tackling complex

learning problems. In 2012, with the breakthrough in image recognition during ImageNet,

the world realized the true potential of neural networks. Here, AlexNet managed to improve

performance by 20%. (Xia, Z. 2019.)

At the moment, deep learning is considered the most advanced machine learning tech-

nique. However, it may not always be the best option, especially for structured data. More

traditional machine learning algorithms can deliver excellent results in such cases. Some-

times, even better results can be obtained from small datasets using options like XGBT

(Extreme Gradient Boosting), which the winners of Kaggle contests often prefer. However,

for unstructured data, such as images, videos, text, and graphs, deep learning undoubtedly

provides the best results, provided that the dataset is large enough. (Linares 2021c.)

23

5.2 Representation learning

A key factor that has contributed to the growth of deep learning is representation learning.

In the past, researchers have relied on their expertise to determine which attributes in the

data were most important for a particular task. These attributes, also known as features,

are validated through the performance of learning tasks like clustering or classification.

However, feature engineering can be challenging, particularly when the raw data is unstruc-

tured and high-dimensional. In representation learning, as Figure 9 shows, the model does

not just learn; it also decides which are the best set of features and patterns to pay attention.

This automatic learning of the data representation, i.e., the ability to find this embedding

automatically, makes deep learning much more powerful than other techniques. (Moyano,

L.G. 2017.)

Figure 9. In representation learning, the model performs the feature extraction (Robinson,
S. 2020)

5.3 Basics of Neural Networks

Informally, a function is a system of outputs and inputs, as shown in Equation 2:

𝑥 → 𝑓(𝑥) → 𝑦 (2)

24

A function takes an input, makes some kind of processing, and gives an output as a result.

All the possible values for 𝑥 and 𝑦 can be drawn in a graph to obtain a line. Thus, if the

function is known, the correct output (𝑦) can always be calculated for any given input (𝑥).

But what happens when a function is not known but only some values for 𝑥 and 𝑦? If there

was some way to reverse engineer such function, obtaining the 𝑦 value from a given 𝑥 value

that was not originally in the data set could be possible. Even with some amount of noise in

the data set, by capturing the general pattern of the data, values for 𝑦 can be produced.

These values for 𝑦 would not be perfect, but close enough to the real ones to be useful.

Therefore, what is needed is a function approximator, as Equation 3 describes. (Emergent

Gardena 2022.)

𝑓(𝑥) ≈ 𝑇(𝑥) (3)

An artificial neuron itself is just a function that can take any number of inputs and produces

an output. Each input is multiplied by a weight and added up, plus a bias, as shown in

Equation 4. Weights are real numbers that represent how important is a given input to the

output. These values (weights and biases) are the parameters of the neuron, which can

change while the neuron learns. One of the first type of artificial neurons that originated was

the perceptron. It was developed in 1958 by psychologist Frank Rosenblatt, inspired by the

works of McCulloch and Pitts. Even though today it is more common to use other types of

artificial neurons, it serves as the basis for understanding neural networks. A perceptron

takes several inputs 𝑥',	𝑥), …, and produces a single output, as depicted in Figure 10. (Niel-

sen, M. 2019; Emergent Garden 2022)

25

Figure 10. Graphical representation of a perceptron (Duarte, D., & Ståhl, N. 2018)

𝑦 = (∑ 𝑥% ∗ 𝑤%'
%(#) + 𝑏 (4)

Where 𝑥% is a given input, 𝑤% is the weight of that respective input, 𝑚 is the number of

inputs to the perceptron, and 𝑏 is a bias. Conceptually, a perceptron is a device that makes

decisions weighting up evidence. (Duarte, D., & Ståhl, N. 2018; Nielsen, M. 2019.)

By this logic, it seems reasonable that more complex problems can be modelled by com-

bining multiple perceptrons. This is where neural networks come into play. (Emergent Gar-

den 2022.)

5.4 Deep Neural Networks

A neural network is just a collection of neurons connected through various layers. Generally,

when talking about neural networks, what is being referred to is one of their main types: a

fully connected feedforward neural network. A feedforward neural network is a type of arti-

ficial neural network that allows information to flow in only one direction. This means that

feedforward networks do not contain loops and are, therefore, acyclical. Figure 11 depicts

the typical layout of a feedforward network. A standard multilayer architecture for feedfor-

ward networks involves interconnecting multiple neurons in layers. In every layer, apart from

the final output layer, each neuron is directly connected to all neurons in the next layer. A

26

network containing more than one hidden layer is known as a deep neural network or a

multilayer perceptron. Similar to a perceptron, the output of each neuron that is passed to

the following layer is the weighted sum of all inputs plus a bias. The fundamental concept

of deep learning is depicted through this propagation: building increasingly complex repre-

sentations using simpler, foundational concepts. (Duarte, D., & Ståhl, N. 2018.)

Figure 11. Layout of a deep neural network with two hidden layers, 5 neurons each (Duarte,
D., & Ståhl, N. 2018)

5.5 Activation Functions

As stated in section 4.3, it seems logical that combining multiple neurons would allow to

model more complex problems. However, as seen in Equation 4, a neuron is just a linear

function. Combining several linear functions only results in another linear function. Thus, as

seen in Figure 12, if the problem is nonlinear, like in most cases, a neural network will still

perform as badly. That is why activation functions were developed. Activation functions pro-

vide the network with the necessary non-linearity for learning complex representations.

(Emergent Garden 2022.)

Therefore, the mathematical definition of a neuron needs to be updated as Equation 5

shows:

𝑦 = 𝑓((∑ 𝑥% ∗ 𝑤%'
%(#) + 𝑏) (5)

Where 𝑓 is the activation function.

27

Figure 12. In red the function to be approximated, and in blue the output of the network
(Emergent Garden 2022)

5.5.1 Sigmoid activation function

Initially, the Sigmoid function was the preferred activation function in neural networks. How-

ever, researchers soon discovered that its small derivative could cause the vanishing gra-

dient problem. This led to the adoption of the Rectified Linear Unit (ReLU) as a more effec-

tive activation function. Consequently, ReLU has become the most widely used activation

function in neural networks today. Despite considerable efforts to find an activation function

that outperforms ReLU, none have matched its popularity, largely because of ReLU's sim-

plicity. (Rasamoelina, A.D. et al 2020.)

The Sigmoid activation function is a nonlinear function that transforms inputs ranging from

(-∞, +∞) to an output range of [0, 1]. This squashing of the output can lead to a vanishing

gradient issue, particularly in deep networks. The gradient, a crucial mathematical tool used

by neural networks to adjust and learn, becomes increasingly small, which complicates the

optimization process. Consequently, learning becomes extremely challenging, and at times,

nearly unfeasible as the network depth increases. The cause is the saturation of a sigmoid

unit. As seen in Figure 13, when the function approaches 0 or 1, changes on the input

28

variable does not change the output, causing the saturation of the sigmoid unit. Another

disadvantage is that the computation of 𝑒)* can be expensive. Also, since the output is not

cantered in 0, the function always outputs positive values, which causes inefficiencies on

the training. (Rasamoelina, A.D. et al. 2020; Linares 2021d.)

Figure 13. Output landscape of the sigmoid activation function (Pant, A. 2021)

The Sigmoid or Logistic Activation function is defined in Equation 6:

𝜎(𝑧) 	= 	 #
#+	-*+

 (6)

5.5.2 Rectified Linear Unit (ReLU)

ReLU (Rectified Linear Unit) is the activation function preferred by deep learning research-

ers. Its popularity stems from its ability to outperform other activation functions in terms of

training efficiency. (Rasamoelina, A.D. et al. 2020.)

The ReLU function is defined as Equation 7:

𝑅𝑒𝐿𝑈(𝑥) 	= 	𝑚𝑎𝑥(0, 𝑥) (7)

Figure 14 depicts the plotting of the ReLU equation into a graph.

29

Figure 14. Output landscape of the ReLU activation function (Kathuria, A. 2018)

As shown in Equation 7 and Figure 14, ReLU is linear for positive values and outputs zero

for negative values. Thus, the output values range from zero to infinity. This activation func-

tion is very efficient and do not saturate with positive values like the sigmoid function. Even

so, it is still centered in 0, and sometimes can kill neurons during training. This issue arises

because negative values are mapped to zero, resulting in every negative unit outputting

zero. Once a neuron becomes negative, it is unlikely to recover. This however can be fixed

by using a small learning rate, or using some variations of the ReLU function that were

developed to address this problem. (Rasamoelina, A.D. et al. 2020; Linares 2021d.)

5.5.3 Softmax activation function

While the sigmoid function is suitable for binary classification, it is not appropriate for multi-

class classification. The reason being that sigmoid outputs isolated probabilities. This works

for binary classification, but in multi-class classification problems, this results in an output

vector where the elements do not add up to 1, as seen on Figure 15. (Furnieles, G 2022.)

30

Figure 15. Sigmoid does not outputs a probability distribution because the components do
not add up to 1 (Furnieles, G. 2022)

Instead, a probability distribution across all predicted classes is necessary. The softmax

function serves this purpose effectively. It accepts a vector of real numbers as input and

outputs another vector with the same dimensions, where each value lies between 0 and 1.

Each element of this output vector represents the probability that the input corresponds to

a particular class. (Furnieles, G. 2022.)

The softmax function is defined as Equation 8 indicates:

𝑃(𝑦 = 𝑖) = -+,
∑ -+-.
-/0

 (8)

𝑃(𝑦 = 𝑖) represents the probability that the input falls into a specific class, with 𝑧% 	being the

raw score associated with that class. The denominator, which is the sum of exponentiated

logits for all classes, ensures that the output forms a valid probability distribution. (Nik.

2023.)

5.6 Universal approximation theorem

George Cybenko (1989) proved that neural networks can approximate everything that can

be represented as a continuous function. So, in theory, as long as the data can be codified

in numbers, and the processing to be done over this data can be represented as a function,

a neural network can approximate it. As such, neural networks are considered the most

powerful machine learning technique, although depending on the context, other techniques

may be applied. (Emergent Garden 2022.)

Of course, many limitations can prevent neural networks from learning in specific problem

domains:

31

• The number of neurons cannot be infinite. This limits the network’s size and what it

can model.

• The search for the best hyperparameters of the network also puts limitations on what

can be learned.

• If there is insufficient data, it does not matter how complex the model is; the approx-

imation will be poor.

• Other limitations such as overfitting.

(Emergent Garden, 2022.)

Even so, neural networks have proven helpful in problems that would be hard to solve with

conventional algorithms, as these problems may require some degree of intuition and con-

fusing logic. (Emergent Garden, 2022.)

5.7 Training Neural Networks

As mentioned in section 4.3.1, supervised learning first entails a training phase, where the

model parameters are tuned so it can learn the given dataset. In this process, it is said that

the model "fits" to the dataset. In the case of neural networks, these parameters are the

weights and biases, as seen in Equation 4 for a single neuron.

5.7.1 The cost function

The main goal of the training is to seek a set of values for the weights and biases that better

approximates the function 𝑓(𝑥) for all the values 𝑥, as said in section 5.3. Therefore, meas-

uring how well the neural network approximated 𝑓(𝑥) is essential. To achieve this, a cost

function can be defined as in Equation 9, where 𝑎 represents the output of the network, 𝑛

signifies the total number of samples in our training dataset, and 𝑤 and 𝑏 encompass all the

parameters of the neural network, with the summation of 𝑥 representing the sum of all train-

ing samples. While various formulas can be utilized to compute the cost function, the most

common one is Mean Squared Error (MSE), which is the one used in this case. (Linares

2021e.)

𝐸(𝑤, 𝑏) = 	 #
/0
∑ ‖𝑓(𝑥) − 𝑎‖/⬚
2 (9)

By defining this cost function, the objective of the training is to determine the set of values

for 𝑤 and 𝑏 that minimize 𝐸(𝑤, 𝑏). Geometrically, the cost function can be visualized as an

error surface over the weight space, as depicted in Figure 16. The problem of minimizing

32

the cost function thus involves seeking the minimum of this error surface. An absolute min-

imum of the cost function, called a global minimum, corresponds to the weight vector 𝑤1.

However, other local minima may exist, such as those corresponding to the weight vector

𝑤2 . (Bishop, C. M. 1994; Linares 2021e.)

Figure 16. The cost function E(w) seen as a surface over weight space (the space spanned
by the values of the weight and bias parameters 𝑤 = {𝑤_1,… ,𝑤_𝑙}) (Bishop, C. M. 1994).

For single-layer networks with linear activation functions, the cost function lacks local min-

ima, allowing for a straightforward finding of its global minimum through solving a set of

linear equations by analytically using the derivative: 𝐶′(𝑣) 	= 	0. In Figure 16 it is easy to

locate these minimums because it is a three-dimensional function, where the network only

has two parameters: 𝑤' and 𝑤). But for multilayer networks, the error function is highly

nonlinear and highly dimensional regarding the weights, so calculating the derivative in this

way is infeasible. Consequently, the search for the minimum typically proceeds iteratively,

starting from a randomly chosen point in weight space. This random initialization is not trivial

since if all weights are set to the same value, like zero or one, every hidden neuron will

receive identical signals. This means that each unit in the hidden layer will be the same,

regardless of the input. This hinders the learning process because most basic training al-

gorithms are greedy, meaning they do not search for the global optimum but the "nearest"

local solution. As a result, any fixed initialization will bias the solution towards a particular

set of weights. To avoid the learning process getting stuck in some strange part of the error

surface, the weights are randomly initialized. In machine learning terminology, this is re-

ferred to as "breaking the symmetry". (Bishop, C. M. 1994; Shayan RC 2013; Linares

2021e.)

33

While some algorithms converge to the nearest local minimum, others can escape local

minima, potentially reaching a global minimum. Generally, the cost function surface is ex-

ceedingly complex, and achieving a good local minimum may suffice for many practical

applications. (Bishop, C. M. 1994.)

5.7.2 Gradient Descent Algorithm

As stated before, traditional calculus methods are not applicable to multilayer perceptrons.

Fortunately, there is an elegant analogy that proposes a rather effective algorithm. If one

glance at the Figure 16, it is possible to picture the cost function surface as a valley. Now,

if a ball was rolling down the slope of this valley, common experience suggests that the ball

will eventually settle at the bottom. Could this concept be used to locate a minimum for the

function? One might start by selecting a random starting point for an imaginary ball and then

simulate its motion as it rolls down to the valley's bottom. This simulation could be accom-

plished by computing derivatives (and possibly some second derivatives) of the cost func-

tion. These derivatives would provide insight into the local "shape" of the valley and guide

the ball's motion. So, what laws could be imposed to ensure it always rolled to the valley's

bottom? To refine that question, it is necessary to define what the gradient is. The gradient,

symbolized as ∇, is a vector whose components are the function's first-order partial deriva-

tives with respect to its variables. The gradient vector provides directional guidance toward

the most rapid increase in a function's value. Essentially, it acts as a compass, indicating

the direction of maximum growth. This gradient vector is marked as ∇𝐸 in Figure 16. (Niel-

sen, M. 2019; The Math Sorcerer, 2020.)

Therefore, the gradient for the cost function in Figure 16 would be defined as Equation 10

shows:

∇𝐸 ≡ (34
350

, 34
353

)(10)

But because the aim is to minimize 𝐸, what is interesting is the negative of the gradient,

which would indicate the direction of minimum growth. By defining 𝛥𝑤 to be the vector of

changes in 𝑤, 𝛥𝑤 ≡ (𝛥𝑤', 𝛥𝑤)), and transposing both this vector and Equation 10, it is

possible get a new 𝛥𝑤 that further minimizes 𝐸 using Equation 11:

𝛥𝑤 = −𝜂∇𝐸 (11)

Where 𝜂 is a small, positive number known as the learning rate. This Equation 11 can then

be used to update the parameters of the network as shown in Equation 12:

34

𝑤 → 𝑤′ = 𝑤 − 𝜂∇𝐸 (12)

If this update rule is used iteratively, 𝐸 will keep decreasing until, hopefully, reaching a local

or global minimum. This is the gradient descent algorithm. To put it briefly, the gradient

descent algorithm operates by calculating the gradient 𝛻𝐸 multiple times and then going in

the opposite direction. This results in "falling down" the slope of the valley. (Nielsen, M.

2019.)

To ensure gradient descent to function properly, a small enough learning rate must be se-

lected. At the same time, 𝜂 should not be too small, as this would cause the changes Δw to

be insignificant, slowing down the gradient descent algorithm. In practice, the value of 𝜂

may be varied while the network is learning to achieve a good approximation without caus-

ing the algorithm to be too slow. (Nielsen, M. 2019.)

Several challenges appear when applying the gradient descent rule. To understand one of

these issues, revisiting the quadratic cost outlined in Equation 9 is crucial. This cost repre-

sents an average over costs for individual training examples. In practical terms, computing

the gradient 𝛻𝐸 requires computing the gradients 𝛻𝐸4 separately for each training input, 𝑥,

and then averaging them. Unfortunately, when dealing with a large number of training in-

puts, this process can be computationally expensive, leading to slow learning. To speed up

learning, an approach known as stochastic gradient descent can be employed. This method

estimates the gradient by computing 𝛻𝐸4	 for a small sample of randomly selected training

inputs. A reliable estimate of the true gradient 𝛻𝐸4	 can be obtained by averaging over this

sample, facilitating a faster gradient descent, and learning. (Nielsen, M. 2019.)

To elaborate further, stochastic gradient descent operates by randomly selecting a small

number 𝑚 of training inputs, forming what is called a mini-batch. Training proceeds by se-

lecting and utilizing a randomly chosen mini-batch of training inputs, and repeating this pro-

cess until all training inputs have been exhausted, completing an epoch of training. Subse-

quently, a new training epoch starts. (Nielsen, M. 2019.)

5.7.3 Backpropagation Algorithm

However, how the actual gradient of the cost function is calculated is still to be explained,

and this is not a trivial matter. The algorithm that does such a calculation is called back-

propagation. While the backpropagation algorithm was initially introduced in the 1970s, its

significance was not fully recognized until the publication of a renowned paper in 1986 by

David Rumelhart, Geoffrey Hinton, and Ronald Williams. This paper presents various neural

35

networks where backpropagation significantly outperforms earlier learning approaches, en-

abling the solution of previously unsolvable problems using neural networks. Currently, the

backpropagation algorithm is the cornerstone of learning in neural networks. At the core of

backpropagation lies an expression for the partial derivative ∂E/∂w of the cost function 𝐸

concerning any weight 𝑤 (or bias 𝑏) in the network. This expression gives information about

the rate at which the cost changes when modifying the weights and biases. The algorithm

applies a concept in calculous called the chain rule, propagating the gradient recursively

and backwards through the network, giving the algorithm its name. (Nielsen, M. 2019; Lina-

res 2021e.)

5.8 Convolutional Neural Networks (CNNs)

CNNs or Convolutional Neural Networks are similar to traditional ANNs as they consist of

self-optimizing neurons that learn through experience. However, CNNs are primarily used

to recognize patterns within images. One significant difference between the two is that the

layers within the CNN are made up of neurons organized into three dimensions, including

height, width, and depth. There are three types of layers within a CNN: convolutional, pool-

ing, and fully connected. (O'Shea, Keiron & Nash, Ryan 2015.)

5.8.1 Convolutional layer

The convolutional layer plays a vital role in the functioning of Convolutional Neural Networks

(CNNs), as indicated by the network's name. During a convolution process, a filter moves

over the image's pixels to identify and capture specific features. (O'Shea, Keiron & Nash,

Ryan 2015; Bisong, E. 2019.)

To understand the convolution layer, it is important to define what convolution means. Con-

volution is a technique for extracting specific information from a matrix by applying a function

to it. The function operates as a sliding window moving across the matrix and is often re-

ferred to as either a convolutional filter or a kernel, with both terms being used interchange-

ably in research. In Figure 17, the process is illustrated with a filter sliding through the matrix

to extract information. (Bisong, E. 2019.)

36

Figure 17. An illustration of a convolutional layer. The input vector is covered by the kernel's
central element, and a weighted sum of the nearby pixels and itself is calculated and re-
placed (O'Shea, Keiron & Nash, Ryan 2015)

Filters in a convolutional layer function as neurons and are allocated specific weights. As

previously mentioned, they operate through a sliding window mechanism. The result of ap-

plying a filter is known as a feature map. These filters also serve as neurons and include a

non-linear activation function. The input to a filter might either be the pixel matrix of an image

at the input layer or the feature maps from an earlier convolutional layer when the filter is

employed in deeper layers of the network. (Bisong, E. 2019.)

Filters are designed with a predefined square input size, often a 3 x 3 size, which corre-

sponds to their local receptive field. Usually, researches use a larger number of filters in the

deeper layers of the network while limiting their number at the input layer. Each cell within

the filter has a specific weight, and these weights are used to multiply the corresponding

pixel intensities of the input. The products of these multiplications are then summed to pop-

ulate the appropriate cell in the convolutional output. The configuration of these weights

dictates the operation of the filter and, as a result, the type of features that are extracted.

Various filters specialize in different functions, such as detecting edges and lines. (Bisong,

E. 2019.)

Key considerations to make when designing a convolutional layer are

• the filter size

• the stride of the filter

• the padding for the layer input.

(Bisong, E. 2019.)

The filter's stride specifies the number of pixels the filter moves from one image activation

to the next. Using a stride of 1 is common, but it can be increased for large images. When

the filter size and stride are chosen, they may not evenly divide the input's size. To prevent

37

the loss of pixel information, zero padding is used to add a layer of zeros to the image pixels'

borders. This includes the zeros in the convolution and enables the filter to move evenly

through all pixels in the image. (Bisong, E. 2019.)

Feature maps represent the outputs produced by filters in a convolutional layer, highlighting

specific patterns within the input image, such as horizontal lines, vertical lines, and edges.

These feature maps, when combined from various neurons, constitute a convolutional neu-

ral layer. This configuration allows the layer to recognize and learn complex patterns and

features within an image. (Bisong, E. 2019.)

5.8.2 Pooling layer

Pooling layers are typically placed after one or more convolutional layers. Their primary role

is to reduce or downsample the feature map produced by the convolutional layer. This

downsampling is a form of summarization of the image features captured in earlier layers

of the network, which contributes to preventing overfitting. Moreover, by reducing the input

size, pooling layers help to lower processing and memory demands during network training.

Essentially, a pooling layer acts as an aggregation function that compiles and extract key

features from previous layers. In contrast to convolutional layers, pooling layers do not per-

form any multiplicative transformations on the input feature maps. Common aggregation

functions used in pooling include max, sum, and average, with max pooling being the most

frequently utilized in practice. (Bisong, E. 2019.)

The aggregation functions in the pooling layer function similarly to filters, like those in con-

volutional layers. They operate within a receptive field, which is generally smaller than that

of the convolutional layer, and use a defined stride width. However, unlike convolutional

filters, the filters in the pooling layer, also viewed as neurons, do not possess any weights

or biases. (Bisong, E. 2019.)

5.8.3 Fully connected layer

The layer performs the same tasks as those found in standard NNs, trying to generate class

scores based on the activations, which can be used for classification purposes. (O'Shea,

Keiron & Nash, Ryan 2015.)

To input an image into the fully connected network (FCN), the image matrix needs to be

flattened. For instance, an image matrix sized at 28 x 28 x 3 would be converted into 2352

input weights, with an additional bias value of 1, before being fed into the FCN. (Bisong, E.

2019.)

38

5.8.4 Advantages of CNNs

When using a standard neural network, there must be as many input neurons as the image's

pixels, flattening the image into a one-dimensional array of pixels. Therefore, if the input

images were 300 by 300 pixels, with three channels (RGB), the neural network would need

270000 input neurons. That means that each neuron in the second layer, would have

270001 parameters that must be trained. (Linares 2021b.)

However, in CNNs, the number of parameters does not scale with the input's spatial dimen-

sions (𝑥 and 𝑦). This occurs because the parameters of the convolutional layers, which are

the kernels or filters, typically maintain fixed dimensions and can be applied to inputs with

varying spatial dimensions by using appropriate padding. It is important to note that padding

may enlarge feature maps, but these maps are not the parameters of the neural network;

rather, they are the outputs of the convolutional layers. This might be the source of confu-

sion when observing a CNN diagram, as larger feature maps may suggest an increase in

parameter count. (nbro, 2020.)

39

6 Optical Character Recognition

6.1 Introduction to OCR

Whenever encountering the term Handwritten Character Recognition, the first concept that

typically comes to mind is OCR, short for Optical Character Recognition. OCR is a technol-

ogy that decodes characters and translates them into a format machines can understand.

(Beohar, D., & Rasool, A., 2021.)

Recognizing isolated handwritten digits has been a longstanding area of research, yet it

remains a focal point both academically and in commercial settings. This interest stems

from its practical applications such as automated form processing and handwritten postal

code identification. Recognition systems' effectiveness heavily depends on the classifica-

tion methods employed, given that writings vary across languages and scripts. Therefore,

developing these systems was particularly challenging before modern AI technologies. Pre-

viously, designing a classifier required manual feature extraction, and machines made de-

cisions based on the programmed features. However, technological advancements have

led to the emergence of powerful deep learning algorithms such as Artificial Neural Net-

works, Convolutional Neural Networks, and Recurrent Neural Networks, which now deliver

exceptional results. (Daniel Keysers, 2007; Beohar, D., & Rasool, A., 2021.)

6.2 Stages of OCR

OCR involves a five-stage process: Image Acquisition, Pre-processing, Segmentation, Fea-

ture Extraction, and Classification, with each stage playing a critical role:

• Image Acquisition: This initial stage focuses on collecting, filtering, and cleaning im-

ages before further processing.

• Pre-Processing: This crucial step involves cleaning images to minimize noise and

eliminate unwanted data. It optimizes images by filling gaps and straightening lines

and includes algorithms for correcting skew. The outcome of this stage is a binary

image achieved through binarization and texture filtering.

• Segmentation: This involves breaking down an image into smaller segments. Seg-

mentation can be categorized into line, word, and character types. Line segmenta-

tion splits an image into individual lines, word segmentation breaks it into words,

and character segmentation divides words into characters.

40

• Feature Extraction: An essential part of dimensionality reduction, this stage simpli-

fies data for easier processing. For large datasets like MNIST, it enhances the effi-

ciency of the recognition process by removing redundant data while preserving es-

sential features. As said in section 5.2, this process is carried out automatically by

deep learning models.

• Classification: The final decision-making stage in the recognition process, where the

output from feature extraction is classified.

(Beohar, D., & Rasool, A., 2021.)

6.3 The MNIST dataset

The MNIST dataset is an excellent instance of the problem of handwritten digit classifica-

tion. Created by the National Institute of Standards and Technology (NIST), this dataset

includes 60,000 training images and 10,000 test patterns, each 28x28 pixels with 256 gray

levels. The challenge of recognizing these digits is generally not considered 'difficult' be-

cause the human error rate is low, around 0.2%, and the large volume of training data helps

machine learning models to generalize effectively. Some examples from the MNIST dataset

can be seen on Figure 18. (Daniel Keysers, 2007; Beohar, D., & Rasool, A., 2021.)

Figure 18. Samples from the MNIST dataset (Daniel Keysers, 2007)

41

7 Common tools for AI applications

7.1 Programming languages used in AI

Python is a top choice for data science in various industries mainly due to its straightforward

syntax and abundant machine learning/deep learning libraries written for this language.

These libraries facilitate the development of data science solutions without the need to learn

the intricacies of specific algorithms or techniques. With a vast community of developers,

these packages are continually enhanced and maintained through collaborative efforts. (Bi-

song, E 2019.)

Java is a powerful programming language extensively used in various software develop-

ment contexts, especially notable in the mobile app sector. It is preferred by AI developers

for several reasons, including its ease of debugging, user-friendliness, and maintainability.

Its compatibility across different platforms ensures that AI-driven projects can be imple-

mented on multiple devices. A key example of an AI project using Java is Deeplearning4j

(DL4J), a leading open-source deep learning library. (Anoriega 2022.)

C++, on the other hand, is a programming language celebrated for its speed and efficiency,

qualities that make it ideal for machine learning and neural network projects where perfor-

mance is crucial. Although it may be more complex to program in than some other lan-

guages, C++'s execution speed makes it well-suited for performance-intensive applications.

It is often used alongside other languages to create AI-focused software. A prominent ex-

ample of a tool that integrates C++ for AI applications is OpenCV. This library is among the

most complete collections of machine learning and computer vision algorithms available,

enabling capabilities such as object identification, face recognition, 3D scanning of objects,

and more through its advanced computer vision algorithms. (Anoriega 2022.)

JavaScript is the most popular programming language globally, according to GitHub rank-

ings. This status is hardly surprising given its significant role in shaping the modern web,

facilitating much of the interactivity prevalent in everyday websites. JavaScript is a good

choice for artificial intelligence due to its array of high-level tools and libraries for machine

learning tasks. Notably, TensorFlow.js is an exemplary tool capable of running directly

within the browser. This capability opens up many possibilities for web developers, enabling

the creation of browser-based AI applications. (Anoriega 2022.)

Numerous programming applications demand the integration of two or more programming

languages, typically pairing one with high performance, like C++, and another that simplifies

programming complexities, such as Python. While this approach proves functional, it often

creates a conflict between performance and ease of use. Conceived at MIT in 2009, Julia

42

sought to address some of these challenges. Julia stands out in AI programming due to its

built-in package manager and strong support for parallel and distributed computing. It is

especially valuable for scientific computing and data analysis. Its parallelism capabilities,

which enable multiple processes to run concurrently, are highly relevant for machine learn-

ing and AI applications. As a result, Julia's significance in the field is expected to increase.

(Anoriega 2022.)

7.2 Python libraries for AI applications

NumPy is an open-source Python library created in 2005 tuned for numerical computations.

It closely resembles MATLAB in its functionality and power, especially when paired with

complementary packages like SciPy for scientific operations, Matplotlib for visualizations,

and Pandas for data analysis. Abbreviated as "numerical python," NumPy excels in its ca-

pacity to handle and manipulate n-dimensional arrays, a crucial feature for developing ma-

chine learning and deep learning models. Since data is commonly structured as a matrix-

like grid with rows representing observations and columns indicating variables or features,

NumPy's 2-D array perfectly accommodates the storage and manipulation of datasets.

(NumPy - About us; Bisong, E 2019.)

Pandas is a specialized Python library for data analysis, particularly excelling with large

datasets. It was created in 2008 at AQR Capital Management. It offers user-friendly features

for handling tasks such as data reading and writing, managing missing data, reshaping da-

tasets, and manipulating data through slicing, indexing, inserting, and deleting variables

and records. In summary, Pandas is the essential tool for data cleaning and exploration

tasks. (pandas - Python Data Analysis Library; Bisong, E 2019.)

Before applying a machine learning algorithm or any other analytical technique, it is crucial

to make observations of the variables within a dataset. Data visualization is a fundamental

tool for comprehending the dataset and extracting insights into its underlying structure.

These insights help scientists to determine suitable statistical analyses or choose the most

appropriate learning algorithms for the dataset. Additionally, visualization offers valuable

insights into potential transformations that could enhance the dataset. Matplotlib is a funda-

mental graphics package for data visualization within Python, playing a central role in the

Python data science ecosystem and seamlessly integrating with NumPy and Pandas. Its

pyplot module closely mirrors MATLAB's plotting commands, facilitating a smooth transition

to Python-based plotting for MATLAB users. (Bisong, E 2019.)

43

In contrast, Seaborn extends the capabilities of Matplotlib, offering a simpler set of methods

for generating visually appealing graphics in Python. Seaborn is particularly well-suited for

working with Pandas DataFrames, providing enhanced integration. (Bisong, E 2019.)

7.3 Machine Learning libraries for Python

TensorFlow (TF) is an open-source library created by Google in 2015, specialized numerical

computation intended for machine learning applications. It has garnered widespread adop-

tion among machine learning researchers and industry professionals for its efficacy in de-

veloping deep learning models and architectures. It is the preferred tool for deploying

trained models into production servers and software products. TensorFlow functions as an

interface for designing machine learning algorithms and as an implementation tool for exe-

cuting them efficiently. It provides exceptional versatility, enabling computations defined in

TensorFlow to run on a wide range of systems, from mobile devices like phones and tablets

to large-scale distributed systems consisting of hundreds of machines and thousands of

computing devices. TensorFlow has proven invaluable for both research and production

deployment of machine learning systems across many fields, such as speech recognition,

computer vision, robotics, information retrieval, natural language processing, geographic

information extraction, and computational drug discovery. TensorFlow essentially lets users

create mathematical functions on tensors (hence the name), which are multidimensional

arrays of numbers akin to matrices or vectors but extending to any number of dimensions.

It does this using computational graphs, allowing users to define and compute gradients of

these functions. Regarding capabilities, TensorFlow offers what NumPy does, but with the

added advantage of GPU acceleration and automatic differentiation. TensorFlow Lite

(TFLite) is a library that allows developers to implement on-device machine learning across

mobile, embedded, and IoT devices through a comprehensive set of tools. Optimized for

on-device machine learning, its key features prioritize latency, privacy, connectivity, and

power consumption. The framework supports various platforms, including Android and iOS

devices, embedded Linux, and microcontrollers. Additionally, TensorFlow Lite offers built-

in support for multiple programming languages such as Java, Swift, Objective-C, C++, and

Python. (Martín Abadi et al. 2015; Bisong, E, 2019; Ketkar, N.S. 2021; Seeed Studio Wiki

2023.)

Keras is a deep learning API initially operated independently from TensorFlow, serving as

an interface for model creation with TensorFlow as one of its backend frameworks. How-

ever, with the release of TensorFlow 2.0, Keras became a built-in part of the TensorFlow

codebase, now the favored high-level API for deep learning tasks. (Bisong, E 2019.)

44

PyTorch is a relatively new addition in the deep learning framework landscape. It provides

a Python interface to the Torch engine, originally based on Lua, to define mathematical

functions and compute their gradients. Unlike frameworks like TensorFlow that follow a de-

fine-compile-run model (where users write mathematical expressions in a computational

graph format that gets compiled for execution), PyTorch adopts a define-by-run approach.

This dynamic nature eliminates the need for compilation, allowing users to define expres-

sions and compute gradients directly. Pytorch code often appears more intuitive and closely

resembles the mathematical descriptions of the network compared to TensorFlow. Debug-

ging is also more straightforward with PyTorch due to its dynamic structure. In contrast,

debugging in TensorFlow requires navigating two layers of abstraction: the Python code for

building the computational graph and the compiled graph itself. However, it's worth noting

that TensorFlow's define-compile-run paradigm enables greater optimization of underlying

computations. (Ketkar, N.S. 2021).

7.4 Frontend

In web development, the frontend comprises all technologies that run on the client side.

However, it does not imply ignorance of Backend workings (server-side), as understanding

the backend is necessary for consuming data and structuring the UI layouts effectively for

user comfort. Frontend is responsible for styling the page so that it can present information

in a user-friendly manner. The frontend developer must be acquainted with user experience

techniques to enhance interaction between the user and the visited page and also possess

knowledge of interaction design to position elements for quick and comfortable user navi-

gation. Numerous technologies must be known to the frontend developer. For instance,

JavaScript has frameworks like Angular and React Native. For other languages, Flutter or

Pynecone are some notable examples. (Pérez Ibarra, S. G et al. 2021.)

React Native

Developed by Facebook, React Native originated from an internal hackathon aimed at

streamlining iOS and Android development processes. Initially introduced in 2015, React

Native has evolved into an open-source framework, with contributions not only from Face-

book but also from individual developers and notable companies like Samsung and Mi-

crosoft. Categorized as an interpreted cross-platform framework, React Native employs the

standard native rendering API of the target platform to render UI components. Utilizing Ja-

vaScript interfaces, React Native applications can access platform-specific features such

as the phone's microphone or camera. Built upon Facebook's React JavaScript library for

building user interfaces, React Native applications, like React applications, are written using

a combination of JavaScript and JSX. The primary distinction between React Native and

45

React is their target platforms, with React Native focusing on mobile platforms rather than

browsers. (Hjort, E. 2020.)

Flutter

Flutter is a cross-platform framework designed for the development of mobile applications.

Google publicly introduced Flutter in 2016, and it stands out as Google's chosen application-

level framework for its Android OS. What sets Flutter apart is its reliance on the device's

widgets instead of utilizing web views. Utilizing its own high-performance rendering engine,

Flutter renders each view component independently, offering the potential to create appli-

cations with performance levels comparable to native ones. In Flutter, every application is

developed using Dart, a programming language developed and maintained by Google. Dart

is extensively utilized within Google and has demonstrated its capability in building large-

scale web applications like AdWords. Originally intended to replace JavaScript, Dart incor-

porates many key features of JavaScript, including the "async" and "await" keywords. How-

ever, Dart adopts a syntax reminiscent of Java to appeal to developers unfamiliar with Ja-

vaScript. In terms of architecture, during compilation, Dart code is transformed into native

code. Flutter's hot reload feature, known as stateful hot reload, significantly enhances the

development cycle by allowing developers to make changes and instantly see them re-

flected without altering the application's structure. This is achieved by sending updated

source code to the running Dart Virtual Machine (Dart VM), ensuring that the application's

transitions and actions remain intact after reloading. Flutter applications refresh the view

tree with each new frame, a process distinct from many other systems that utilize reactive

views. While this approach ensures consistency, it presents a drawback: numerous objects,

even those needed for a single frame, are created. Even though, with Dart's modern design,

Flutter optimizes memory management through "Generational Garbage Collection" to han-

dle such scenarios efficiently at the memory level. (Tashildar, A., et al. 2020.)

7.5 Back end

The backend refers to the data access layer of a software inaccessible to the end-user,

housing the application logic for handling data. The backend developer operates on the

server side and must be skilled in web application or cross-platform application develop-

ment. They must understand interactions with different databases, discerning the differ-

ences and qualities of commonly used ones. This does not mean that a backend developer

should completely disregard frontend work but rather possess the necessary knowledge for

effective teamwork, as both roles complement each other. The backend developer needs

expertise, depending on their workplace, in server-side languages like Java, C#, PHP,

46

Node.JS, among others, as well as those interacting with databases such as MySQL, Post-

greSQL, SQLServer, MongoDB, and others. Some backend technologies include Next.JS

for Javascript, or Flask and FastAPI for Python. (Pérez Ibarra, S. G et al. 2021.)

Flask

Flask is a WYSIWYG (what you see is what you get) web application framework renowned

for its simplicity and ease of use while still capable of handling complex applications. Initially

conceived as a modest wrapper around Werkzeug and Jinja, it has evolved into one of the

most sought-after Python web application frameworks. One of Flask's notable characteris-

tics is its non-intrusive approach. While it offers recommendations, it refrains from imposing

specific dependencies or project structures on developers. Instead, it empowers developers

to handpick the tools and libraries that best suit their needs. Additionally, the Flask commu-

nity provides many extensions, simplifying the process of incorporating new functionalities

into applications. (Pallets.)

FastAPI

FastAPI is as a web framework aimed at crafting APIs using Python 3.8 and above. Note-

worthy among its attributes is its remarkable speed, a trait comparable to industry bench-

marks like NodeJS and Go, facilitated by the integration of Starlette and Pydantic. Ease of

use remains a fundamental aspect of FastAPI's philosophy, highlighted by its user-friendly

design and minimal learning curve. By prioritizing simplicity, developers can focus more on

actual implementation than navigating extensive documentation. Furthermore, its concise

syntax mitigates code duplication, maximizing efficiency and minimizing the likelihood of

bugs. (Tiangolo.)

47

8 Practical case: Kanji recognition mobile app

8.1 Introduction

Now that I have established some of the foundational concepts, I will describe the develop-

ment of a practical case study that focuses on a mobile application that recognizes kanji

characters through the integration of AI techniques.

The idea of the practical case came to me when I first started learning Japanese. Searching

information for specific characters when I did not have the option to copy and paste them

into the search bar was difficult. For example, in Jishoo.org, a common Japanese dictionary,

you either have to search by radicals or by drawing. If I was walking around Japan, for

example, and I saw a character I did not know, it would be convenient to have a way to

search for information about that character quickly. Thus, the main objective of the practical

case is having a quick way to get relevant information about these characters without going

through all the troubles of searching for them in conventional Japanese dictionaries.

The use of AI for this case is justified because recognizing these characters in images is

infeasible through conventional programming. As I said in section 2.1, there are over 2000

daily-use characters. How can someone, using regular logic and programming constructs,

develop an algorithm to differentiate between all of them? It is not viable. This is where AI

comes into play. As said in the theoretical case, AI, particularly deep learning, works very

well for tasks that are hard to program and with unstructured data such as images.

8.2 The model

My first step in developing the practical case was to search for a model trained to recognize

kanji. Nowadays, there is almost an AI model for everything, so I preferred to get a working

app as fast as possible by looking for a pre-trained model instead of reinventing the wheel

and training one by myself. My search concluded with two possible candidates:

• manga-ocr by kha-white.

• DaKanji-Single-Kanji-Recognition by CaptainDario.

Manga-ocr is an optical character recognition for Japanese text, with the main focus being

Japanese manga. The first version of the backend was actually developed with this model,

and it worked well. As the repo says, the model focuses on recognizing text from manga,

but it performed well in most cases with pictures of street signs, which is the primary cause

I thought for my application. However, I also wanted my application to recognize handwritten

text, and the repo itself states that it probably won't be able to handle handwritten text

48

though. This was one of the reasons why I discarded this model, but the other reason was

that this model uses a Transformer. Transformers is one of the most powerful AI techniques

nowadays, and it is actually what the famous ChatGPT uses under the hood (Toews, R.

2024). The problem was that because Transformers are complex models, I would have had

a hard time understanding them and explaining them in the theoretical case. Therefore, I

decided to use the second model. (Kha-White.)

DaKanji-Single-Kanji-Recognition by CaptainDario is a model for recognizing single kanji

characters. It is less powerful than the other model in that sense, as manga-orc could rec-

ognize entire lines of text at once. Regardless, the use case of my app was to provide

information about a single kanji Character, so DaKanji still fitted my needs. The biggest

advantage was that DaKanji is a CNN, so I could understand how it worked. In fact, because

the repo provided the code used to train the model, one can notice that it is using a network

architecture called EfficientNetLite, as seen on Figure 19. (CaptainDario.)

Figure 19. DaKanji uses the EfficientNet architecture (CaptainDario)

EfficientNet is a convolutional neural network architecture designed specifically for image

recognition and is currently regarded as one of the leading frameworks in this field. Devel-

oped by Mingxing Tan and Quoc V, this architecture is the product of several years of com-

prehensive research and incorporates multiple innovative techniques. At its core, Efficient-

Net utilizes inverted residual blocks from the MobileNetV2 architecture along with the

MnasNet search strategy. Although these smaller blocks were not present when MnasNet

was initially designed, their incorporation has significantly enhanced the performance of the

network models derived from this research. (Tan, M., & Le, Q. 2019; Koonce, B., & Koonce,

B. 2021.)

49

Testing the model

Before doing any serious work, I set up this simple Google Collab notebook for testing the

model and seeing how it performs with some images of my own. As said in section 4.3.1,

when doing predictions, is necessary to feed the model the same features it was trained on.

Looking at the Python notebook the author used to train the model, it looks like he used 64

by 64 grayscale images of the characters over a black background (CaptainDario). So, be-

fore feeding my own images into the model, I had to write code in order to apply the same

effects to my images, as seen on Figure 20. In this piece of code, I first resize the image to

be 64 by 64 and then I normalize the pixel values to be between 0 and 1. Normalizing the

input values fed into the network is important because when a feature within a dataset sig-

nificantly outweighs others in scale, it can become dominant and influence the predictions

made by a neural network, leading to inaccuracies. Also, as explained in section 5.3, during

forward propagation, neural networks compute outputs by taking the dot product of weights

with input features. When input values are excessively high, calculating the output requires

considerable computation time and memory resources. By normalizing inputs, neural net-

works can operate more efficiently, leading to faster convergence and improved prediction

accuracy. The rest of the lines just reshape the image to a suiting shape for feeding into the

model. (user11530462 2020.)

Figure 20. Python function for pre-processing images before feeding them into the model

However, this function was not enough to achieve good results. With this version, the model

did not work at all. I had to apply three fixes to get a reasonable accuracy. The first fix, seen

in Figure 21, was introducing code to decide whether the image should be inverted or not,

so I did not have to do this manually. This fix was more of a quality-of-life improvement than

something to improve accuracy. This function takes an image as input along with optional

parameters for border size and a threshold value. It decides whether the image should be

https://colab.research.google.com/drive/1an0WVQW4v6sHhyVN7yjbXzhbrxo3J5Wp?usp=sharing

50

inverted or not based on the average pixel intensity of its borders. The second fix was the

most impactful of all. I noticed that after inverting the images, some grey pixels were still left

on the background of the images. I figured this could be confusing the model, so I coded a

function for cleaning the image and left the background of the images completely black. The

function applies a threshold to the input image, converting it into a binary mask where pixels

with intensity values greater than or equal to 128 are set to 255 (white), and pixels with

intensity values less than 128 are set to 0 (black). Next, it applies the binary mask to the

inverted input image using bitwise AND operation, effectively removing the parts of the im-

age where the binary mask is black. Finally, I applied a sharpen filter over the image to help

the neural network. With all these fixes, I managed to have a relatively good working model,

as seen in Figure 22.

Figure 21. Python functions used in the pre-processing of the images

51

Figure 22. The model can be seen to be working correctly

8.3 Making a test application

Now that I know the model works, it is time to integrate it into a mobile application. Of course,

I needed some kind of framework for developing mobile applications. In this case, I decided

to use Flutter as I had already developed Flutter applications before, and it allowed me to

develop mobile applications with little difficulty. In all my projects, I always start with some-

thing small that I can build upon after things start to work, so I started developing a very

basic application. For this first version, I placed a button in the middle of the screen to select

a picture to send to the backend so a prediction can be made. After the app gets back the

result, it displays it in a text below the button, as seen in Figure 23. For the backend, I chose

Python as the server programming language. It was the easiest option for loading and using

the model in an API. Furthermore, using FastAPI, getting an API working to make predic-

tions only took a couple of hours. The functionality is straightforward and can also be seen

on Figure 23 as a flowchart. The server receives an image over the network as a request,

pre-processes the image, makes a prediction, and returns the resulting character.

52

Figure 23. First version of the app alongside the backend code flowchart. In the app, the
user can select a picture and see the predicted character as a text

Now, because this backend was running on my laptop, my phone needed to be on the same

network as my MacBook for my phone and my laptop to communicate the requests and

responses back to each other. However, the requests on my phone did not seem to reach

my laptop for some reason. The first culprit that came to my mind was the MacBook’s fire-

wall blocking the HTTP request because pings did work, but even after disabling the firewall

on the settings page, requests still did not work. I discarded my phone as the problem, as I

could see with Wireshark, a program to sniff network traffic, that the requests were being

sent. After much searching, I discovered a question on StackExchange.com with a user

experiencing a similar problem. It turns out there was another application firewall running

called socketfilterfw. After turning it off by issuing the command seen in Figure 24, every-

thing worked as it should.

Figure 24. Command to disable macOS’s application firewall blocking the requests

8.4 Using TensorFlow Lite

Before enhancing the application, I wanted to avoid depending on my laptop to have the

backend running. This added freedom would make testing my application by other users

easier, and it would also greatly enhance the app's further development. My first idea was

53

to run the machine learning model on the device itself instead of an external server. Be-

cause portable devices cannot really run standard TensorFlow models, Google developed

TensorFlow Lite as mentioned in section 6.3. Luckily, CaptainDario offered a TensorFlow

Lite version of the model, so it was a matter of looking at how to integrate it with Flutter.

This is where problems started to arise because out of the bad, there were three different

libraries for TensorFlow Lite in pub.dev (official package repository for Dart and Flutter

apps): tflite, tflite_v2, and tflite_flutter. This last one is the official package developed by the

TensorFlow team, so this was the reasonable package to choose. However, because I did

not understand the instructions entirely, I decided to go with tflite_v2 since it seemed easier

to use. After following the instructions to install it, I could not build the application, as it would

always throw an error. After some searching, I found no successful answer, so I decided to

use tfile_flutter and try to get it working. After following the install instructions, I got another

error, shown in Figure 25. In this error output, Flutter suggested that I change the minimum

SDK (software development kit) version of the project to 26, and so I did. With this change,

the app finally built correctly.

Figure 25. Error thrown by my code editor after installing tflite_flutter in the Flutter project

Despite this, I still had to tackle another problem: the pre-processing of the images. Going

serverless meant I also needed to move the pre-processing logic to the device. This im-

posed a problem because, although there is a package of OpenCV for Flutter called

opencv_dart in pub.dev, there is no equivalent of NumPy for Dart, which is an issue as my

pre-processing code uses some of NumPy functions. After much trial and error, I could not

get this logic to work and even if I kept trying and managed to make it work, the code would

have ended up too convoluted and difficult to read.

54

Since, at this point, I knew going serverless would not be worth the trouble, I thought that

finding some sort of hosting server that allowed me to run the prediction script of Figure 23

on the cloud would be good enough. It is not serverless, but I would not have to run the

server on my laptop, meaning I could use the application everywhere and anytime as long

as I had internet access, and the hosting service was up. I considered several alternatives,

like AWS, Google Cloud, Heroku, PythonAnywhere, and Render. Google Cloud and Heroku

were discarded quickly as none offered a free tier. AWS did offer a free tier, but it had trouble

with the prediction script's dependencies.

On the other hand, PythonAnywhere was also free but did not work correctly, and the func-

tionality and interface were strange. In the end I went with Render. Render allows the con-

nection of a GitLab repository and automatically deploys the application after a commit is

made to the repository. This requires some configuring, and I had trouble with the depend-

encies, especially with OpenCV. After fixing that, the application would have deployed cor-

rectly if something had not slipped my mind. I forgot that the free tier of Render only allowed

the use of a total of 512 MB of RAM. The standard TensorFlow Model that I was using

consumed more than this, causing the deployments to fail. I was about to give up the idea

and just continue using my laptop as the server when I realized I could just use the TFLite

model on the server, as that would consume much less RAM. Indeed, the deployment was

successful after modifying the code to use the TFLite model instead. As seen in the Figure

26, the process if a bit different when using a TFLite model instead of a regular TF model. I

finally had my application backend running on the cloud at https://kanji-lens-backend-

mtsr.onrender.com/. Note that accessing this URL will not return anything as there is no

route defined on the API for that. An image must be sent to https://kanji-lens-backend-

mtsr.onrender.com/perform_orc for the prediction to work.

https://kanji-lens-backend-mtsr.onrender.com/
https://kanji-lens-backend-mtsr.onrender.com/
https://kanji-lens-backend-mtsr.onrender.com/perform_orc
https://kanji-lens-backend-mtsr.onrender.com/perform_orc

55

Figure 26. Modified backend flowchart that uses TFLite on the Render cloud

8.5 Final application

Once I had my backend running in the cloud, I continued developing the rest of the appli-

cation. First, I tried to improve the interface by adding two big buttons, one for taking a

picture with the camera and another for selecting a picture from the phone's camera. Addi-

tionally, since the whole point of the application was to display information about a specific

kanji, I added a page to display the following information (Figure 27):

• Diagram of the kanji: Kanji have a specific stroke order in which they must be drawn

in order for them to look balanced. In code, this diagram is a package called

"kanji_drawing_animation" found in pub.dev. It is helpful as it allows one to see an

animation showing how to draw the kanji following its stroke order.

• JLPT Level: Since 1984, the Japanese-Language Proficiency Test (JLPT) has been

offered by the Japan Foundation and Japan Educational Exchanges and Services

as a method for assessing and accrediting the Japanese language skills of non-

native speakers. The JLPT has five levels: N1, N2, N3, N4 and N5. N5 is the most

56

basic level, whereas N1 is the most difficult. This field indicates at which level the

kanji would appear in a JLPT test. (JLPT Japanese-Language Proficiency Test.)

• Frequency: This field indicates the frequency with which this particular kanji appears

in Japanese newspapers. This serves as a reference of how much the user would

expect to see this kanji while reading Japanese texts or strolling through Japan.

• Number of strokes: The number of individual strokes it takes to draw the kanji on

paper.

• Meaning: different meanings of the kanji.

• On'yomi: On'yomi reading of the kanji, indicated by “音”.

• Kun'yomi: Kun'yomi reading of the kanji, indicated by “訓”.

• Example phrases: This field is self-explanatory. It helps the user see how the kanji

is used in a phrase and the different readings it can take.

The data on these fields are fetched from Jishoo.org, through an API also available in

pub.dev called “unofficial_jisho_api”.

57

Figure 27. Final look of the application

If one takes a closer look at the Japanese text in the examples, one can see tiny characters

on top of the kanji characters. These are furigana, small kana placed adjacent to kanji as a

reading aid on how the kanji is pronounced in that particular context (Bullock, B). My first

version of the app did not have this, and implementing it was a bit of a challenge. For im-

plementing furigana, I used another package available in pub.dev called “ruby text”. The

difficulty was that I had to modify a lot of the logic that fetches the examples and makes it

available to the frontend, because instead of plain string of text, I now had to have a list of

RubyText widgets, which itself needs a list of RubyTextData that contains the actual text

string, as seen on Figure 27. I am not going to get into more detail, but in Figure 27 the

58

difference in the implementation between the version of the app without furigana on the left,

and the app with furigana on the right, can be seen.

Figure 28. Comparison of the application code that prepares the examples for the frontend,
before implementing furigana (left) and after implementing furigana (right)

As seen on Figure 29, I also implemented a functionality where the user can bookmark a

kanji after recognizing it, so it can be checked later through a menu, indicating the kanji, the

image taken, and when it was recognized. When pressing these items, a menu with the

same page as Figure 27 pops up from the bottom. Implementing this also took a lot of

refactoring since I wanted to avoid copying and pasting the same code from the UI in Figure

27. The problem was that the code from Figure 26 contained the button and code to book-

mark the kanji but having that on the page in Figure 28 did not make sense. So, after some

fighting with Dart and moving things around, I managed to get this working with somewhat

good-quality code. The rest of the development involved refactoring code and making it

more readable and portable. I especially struggled when trying to separate the UI code from

the prediction logic, mainly because of problems with Dart's asynchronous programming,

which is mandatory when fetching data from the internet. Nevertheless, I stopped my code

editor from complaining after playing around a little bit.

59

Figure 29. The user can bookmark kanjis and look at them later

8.6 Conclusion

In the end, I got a working application that can recognize kanji correctly most of the time,

as seen on Figure 30. So, I can say the objective of the case has been met successfully.

Nevertheless, there is a lot of room for improvement. This research had several significant

limitations. Mainly the dataset restrictions and the intrinsic complexities introduced by kanji.

As I said in my introduction to Japanese, there are around 2000 daily-use kanjis. Training

a model that can differentiate between such a number of kanjis is not trivial at all, as this

exacerbates any issue the dataset might have, such as class imbalance. Because of this,

the model is not as accurate as I would like. Also, it looks like the CNN was trained with a

dataset that only contained hand-written kanjis, so it might have problems generalizing to

60

kanjis in street signs, for example. I tried other approaches, like training an open-source

LLM like LLaVA with the same data the CNN was trained on or using another model called

Kindai-OCR that I found on GitHub, but neither gave any results. Extracting the data Cap-

tainDario used for training the CNN was not possible in Collab due to the free plan limita-

tions, and even if I managed to re-train LLaVA and the model worked better, which is already

an optimistic outcome, each call to LLaVA would have cost me some money. This last thing

was a big deal for me as I wanted the application to be open-source while being uploaded

to several app stores, and I was not willing to run the app at a loss. As for Kindai-OCR, it

looks like the code provided in the actual version does not work, and although I tried to fix

it by myself, I concluded that the effort required to fix all the code was not worth it, consid-

ering my time constraints. (DeepAps91; Liu, H., et al. 2023.)

Figure 30. Results of the model in a small test dataset

61

Furthermore, because the model expects a single kanji, the user needs to crop the picture

to center the desired character. This is rather inconvenient for the user, but I could not think

of a better approach. I tried segmenting the kanjis using a conventional vision algorithm with

OpenCV, but I did not manage to get this working successfully. Getting around this problem

and providing the user with a smoother and more direct experience in this aspect would

significantly improve the application.

Another improvement I would like to pursue is integrating the model into the user’s device.

As I said in section 8.3, this approach seemed complicated, but I think achieving this would

be possible and worth it with more time and effort. I did not mention in the previous section

that the free tier of Render makes the server go down after a short period of inactivity. This

results in a considerable delay in the first request done to the server after a while. This is

such a huge inconvenience that I cannot afford to publish the app on any app store, making

debugging and development difficult.

62

9 Summary

This thesis has looked into the development and implications of an AI mobile application for

kanji recognition. What is important in this work is that it can help when learning kanji, which

is an inherent part of the Japanese language and famous for its complexity. This paper

proposes a practical solution in kanji learning by benefiting from AI techniques, specifically

convolutional neural networks.

I started by doing an introduction to the Japanese language and kanji, trying to highlight

why it can be hard to learn. Afterward, I did a general introduction to AI, emphasizing in

machine learning and deep learning, especially in neural networks and convolutional neural

networks, which are pillars of these disciplines. Finally, I summarized some tools used in

the field of AI and finished by describing the development process of my practical case.

In my practical case, I developed an application for recognizing kanjis in images using a

convolutional neural network and providing information about such kanjis. During the devel-

opment, I faced many programming challenges. Some of them I solved, but others made

me change my approach.

Overall, despite the problems, I think I was able to develop a helpful app that can be handy

for Japanese learners, and I also exercised my problem-solving skills and became more

confident in my ability to face problems and find solutions.

All the code for the application, as well as releases, is available at my GitLab as open source

for everyone to see, modify and improve.

https://gitlab.com/rinuxu/kanji-lens

63

References

Anoriega. (2022). Top 6 AI programming Languages to learn in 2023 | Berkeley Boot

Camps. Berkeley Boot Camps. Retrieved March 18, 2024. Available at

https://bootcamp.berkeley.edu/blog/ai-programming-languages/

Bajada, J. (2019). Symbolic vs Connectionist A.I. Medium. Retrieved January 25, 2024 from

https://towardsdatascience.com/symbolic-vs-connectionist-a-i-8cf6b656927

Beermann, R. E. (2006). Introduction to the Japanese Writing System. Retrieved March 9,

2024. Available at https://www.uni-due.de/imperia/md/content/japan/introduc-

tion_to_kanji.pdf

Beohar, D., & Rasool, A. (2021). Handwritten Digit Recognition of MNIST dataset using
Deep Learning state-of-the-art Artificial Neural Network (ANN) and Convolutional Neural
Network (CNN). Retrieved May 1, 2024. Limited availability at https://ieeex-
plore.ieee.org/document/9396870

Bishop, C. M. (1994). Neural networks and their applications. Review of scientific instru-

ments, 65(6), 1803-1832. Retrieved March 11, 2024. Available at http://www.stat.pur-

due.edu/~zdaye/Readings/Neural_Networks_and_Their_Applications.pdf

Bisong, E. (2019). Building Machine Learning and Deep Learning Models on Google Cloud

Platform. Retrieved March 11, 2024. Available at https://link.springer.com/con-

tent/pdf/10.1007/978-1-4842-4470-8.pdf

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee,

Y. T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks

of Artificial General Intelligence: Early experiments with GPT-4. arXiv preprint

arXiv:2303.12712. Retrieved January 26, 2024. Available at

https://arxiv.org/abs/2303.12712

Bullock, B. (n.d.). What is furigana? Retrieved April 18, 2024. Available at

https://www.sljfaq.org/afaq/furigana.html

CaptainDario. CaptainDario/DaKanji-Single-Kanji-Recognition: A machine learning model

to recognize Japanese characters (Kanji, Katakana, Hiragana). GitHub. Retrieved March

27, 2024. Available at https://github.com/CaptainDario/DaKanji-Single-Kanji-Recognition

Cave, S., Craig, C., Dihal, K., Dillon, S., Montgomery, J.A., Singler, B., & Taylor, L.C. (2018).

Portrayals and perceptions of AI and why they matter. Retrieved January 29, 2024. Availa-

ble at https://royalsociety.org/~/media/policy/projects/ai-narratives/AI-narratives-workshop-

findings.pdf

https://bootcamp.berkeley.edu/blog/ai-programming-languages/
https://towardsdatascience.com/symbolic-vs-connectionist-a-i-8cf6b656927
https://www.uni-due.de/imperia/md/content/japan/introduction_to_kanji.pdf
https://www.uni-due.de/imperia/md/content/japan/introduction_to_kanji.pdf
https://ieeexplore.ieee.org/document/9396870
https://ieeexplore.ieee.org/document/9396870
http://www.stat.purdue.edu/~zdaye/Readings/Neural_Networks_and_Their_Applications.pdf
http://www.stat.purdue.edu/~zdaye/Readings/Neural_Networks_and_Their_Applications.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4842-4470-8.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4842-4470-8.pdf
https://arxiv.org/abs/2303.12712
https://www.sljfaq.org/afaq/furigana.html
https://github.com/CaptainDario/DaKanji-Single-Kanji-Recognition
https://royalsociety.org/~/media/policy/projects/ai-narratives/AI-narratives-workshop-findings.pdf
https://royalsociety.org/~/media/policy/projects/ai-narratives/AI-narratives-workshop-findings.pdf

64

Chollet, F. (2019). On the Measure of Intelligence. arXiv preprint arXiv:1911.01547. Re-

trieved January 24, 2024. Available at https://arxiv.org/abs/1911.01547

Cybenko, G.V. (1989). Approximation by superpositions of a sigmoidal function. Mathemat-

ics of Control, Signals and Systems, 2, 303-314. Retrieved February 22, 2024. Available at

https://hal.science/hal-03753170/file/Cybenko1989.pdf

Daniel Keysers. (2007). Comparison and Combination of State-of-the-art Techniques for
Handwritten Character Recognition: Topping the MNIST Benchmark. Retrieved May 1,
2024. Available at https://arxiv.org/pdf/0710.2231

DeepAps91. DeepApps91/Kindai-OCR: OCR system for recognizing modern Japanese

magazines. GitHub. Retrieved April 18, 2024. Available at

https://github.com/DeepApps91/Kindai-OCR

Duarte, D., & Ståhl, N. (2018). Machine Learning: A Concise Overview. Data Science in

Practice. Retrieved January 27, 2024. Limited availability at https://link.springer.com/chap-

ter/10.1007/978-3-319-97556-6_3

Emergent Garden. (2022). Youtube Video. Retrieved February 1, 2024. Available at

https://www.youtube.com/watch?v=0QczhVg5HaI&t=394s

Flowers, J.C. (2019). Strong and Weak AI: Deweyan Considerations. AAAI Spring Sympo-

sium: Towards Conscious AI Systems. Retrieved January 26, 2024. Available at

https://ceur-ws.org/Vol-2287/paper34.pdf

Francis from ResponseBase (2019). Figuring out what is blocking HTTP request on macOS

Mojave? Online forum post. Stack Exchange. Retrieved March 29, 2024. Available at

https://apple.stackexchange.com/questions/362416/figuring-out-what-is-blocking-http-re-

quest-on-macos-mojave

Furnieles, G. (2022). Sigmoid and SoftMax Functions in 5 minutes - Towards Data Science.

Medium. Retrieved February 29, 2024. Available at https://towardsdatascience.com/sig-

moid-and-softmax-functions-in-5-minutes-f516c80ea1f9

Getting started with TensorFlow Lite | Seeed Studio Wiki. (2023). Retrieved March 22, 2024.

Available at https://wiki.seeedstudio.com/reTerminal_ML_TFLite/

Goode, L. (2018). Life, but not as we know it: A.I. and the popular imagination. Culture Un-

bound, 10(2), 185–207. Retrieved January 29, 2024. Available at

https://doi.org/10.3384/cu.2000.1525.2018102185

Hasegawa, Y. (2014). Japanese: A linguistic introduction. Cambridge University Press. Re-

trieved March 9, 2024. Available at

https://arxiv.org/abs/1911.01547
https://hal.science/hal-03753170/file/Cybenko1989.pdf
https://arxiv.org/pdf/0710.2231
https://github.com/DeepApps91/Kindai-OCR
https://link.springer.com/chapter/10.1007/978-3-319-97556-6_3
https://link.springer.com/chapter/10.1007/978-3-319-97556-6_3
https://www.youtube.com/watch?v=0QczhVg5HaI&t=394s
https://ceur-ws.org/Vol-2287/paper34.pdf
https://apple.stackexchange.com/questions/362416/figuring-out-what-is-blocking-http-request-on-macos-mojave
https://apple.stackexchange.com/questions/362416/figuring-out-what-is-blocking-http-request-on-macos-mojave
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9
https://towardsdatascience.com/sigmoid-and-softmax-functions-in-5-minutes-f516c80ea1f9
https://wiki.seeedstudio.com/reTerminal_ML_TFLite/
https://doi.org/10.3384/cu.2000.1525.2018102185

65

https://books.google.fi/books?id=6S_CBQAAQBAJ&lpg=PR15&ots=PhZi4c5R-

i&lr&hl=es&pg=PA4#v=onepage&q&f=false

Hjort, E. (2020). Evaluation of React Native and Flutter for cross-platform mobile application

development. Retrieved March 18, 2024. Available at https://www.doria.fi/bitstream/han-

dle/10024/180002/hjort_elin.pdf?sequence=2

Jordan, M.I., & Mitchell, T. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349, 255 - 260. Retrieved January 27, 2024. Available at

https://www.cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf

Kathuria, A. (2018). How to chose an activation function for your network. Paperspace Blog.

Referenced on February 22, 2024. Available at https://blog.paperspace.com/vanishing-gra-

dients-activation-function/

Ketkar, N.S. (2021). Deep Learning with Python. Retrieved March 18, 2024. Available at

https://link.springer.com/content/pdf/10.1007/978-1-4842-2766-4.pdf

Kha-White. kha-white/manga-ocr: Optical character recognition for Japanese text, with the

main focus being Japanese manga. GitHub. Retrieved March 27, 2024. Available at

https://github.com/kha-white/manga-ocr

Kim, T. (2012). Japanese Grammar Guide. Retrieved March 9, 2024. Available at

https://www.guidetojapanese.org/grammar_guide.pdf

Koonce, B., & Koonce, B. (2021). EfficientNet. Convolutional neural networks with swift for

Tensorflow: image recognition and dataset categorization. Retrieved March 27, 2024. Avail-

able at https://link.springer.com/content/pdf/10.1007/978-1-4842-6168-2.pdf

Liu, H., Li, C., Li, Y., & Lee, Y. J. (2023). Improved baselines with visual instruction tuning.

arXiv preprint arXiv:2310.03744. Retrieved April 18, 2024. Available at

https://arxiv.org/abs/2310.03744

Linares Pellicer, J. (2021)a. Introduction AI. In Universitat Politècnica de València. Re-

trieved, January 24, 2024. Limited availability at https://poliformat.upv.es/access/con-

tent/group/GRA_14411_2020/Basic%20slides/10%20-%20Introduction%20to%20AI.pdf

Linares Pellicer, J. (2021)b. Introduction to CNNs. In Universitat Politècnica de València.

Retrieved April 18, 2024. Limited availability https://poliformat.upv.es/access/con-

tent/group/GRA_14411_2020/Basic%20slides/10%20-%20Introduc-

tion%20to%20CNNs.pdf

https://books.google.fi/books?id=6S_CBQAAQBAJ&lpg=PR15&ots=PhZi4c5R-i&lr&hl=es&pg=PA4#v=onepage&q&f=false
https://books.google.fi/books?id=6S_CBQAAQBAJ&lpg=PR15&ots=PhZi4c5R-i&lr&hl=es&pg=PA4#v=onepage&q&f=false
https://www.doria.fi/bitstream/handle/10024/180002/hjort_elin.pdf?sequence=2
https://www.doria.fi/bitstream/handle/10024/180002/hjort_elin.pdf?sequence=2
https://www.cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf
https://blog.paperspace.com/vanishing-gradients-activation-function/
https://blog.paperspace.com/vanishing-gradients-activation-function/
https://link.springer.com/content/pdf/10.1007/978-1-4842-2766-4.pdf
https://github.com/kha-white/manga-ocr
https://www.guidetojapanese.org/grammar_guide.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4842-6168-2.pdf
https://arxiv.org/abs/2310.03744

66

Linares Pellicer, J. (2021)c. Introduction to Machine Learning. In Universitat Politècnica de

València. Retrieved, January 27, 2024. Limited availability https://poliformat.upv.es/ac-

cess/content/group/GRA_14411_2020/Basic%20slides/10%20-%20Introduc-

tion%20to%20Machine%20Learning.pdf

Linares Pellicer, J. (2021)d. Regularization and optimization in deep learning. In Universitat

Politècnica de València. Retrieved, January 27, 2024. Limited availability https://polifor-

mat.upv.es/access/content/group/GRA_14411_2020/Basic%20slides/10%20-%20Regu-

larization%20and%20optimization%20in%20deep%20learning.pdf

Linares Pellicer, J. (2021)e. Training deep neural networks. In Universitat Politècnica de

València. Retrieved March 11, 2024. Limited availability https://poliformat.upv.es/ac-

cess/content/group/GRA_14411_2020/Basic%20slides/10%20-%20Train-

ing%20deep%20neural%20networks.pdf

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Mon-ga,

Sherry Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng

(2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved

March 18, 2024. Available at https://static.googleusercontent.com/media/re-

search.google.com/en//pubs/archive/45166.pdf

Moyano, L.G. (2017). Learning network representations. The European Physical Journal

Special Topics, 226, 499-518. Retrieved February 20, 2024. Available at

https://link.springer.com/content/pdf/10.1140/epjst/e2016-60266-2.pdf

Narayan, S., & Tagliarini, G.A. (2005). An analysis of underfitting in MLP networks. Pro-

ceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., 2, 984-988

vol. 2. Retrieved February 20, 2024. Limited availability at https://ieeex-

plore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1555986

Nielsen, M. (2019). Neural Networks and Deep Learning. Retrieved, February 1, 2024.

Available at http://neuralnetworksanddeeplearning.com/

NihongoShark. The Japanese Writing System. Referenced on March 9, 2024. Available at

https://www.nihongoshark.com/post/the-japanese-writing-system

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
https://link.springer.com/content/pdf/10.1140/epjst/e2016-60266-2.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1555986
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1555986
http://neuralnetworksanddeeplearning.com/
https://www.nihongoshark.com/post/the-japanese-writing-system

67

Nik. (2023). Softmax Activation Function for Deep Learning: A complete guide. Datagy. Re-

trieved February 29, 2024. Available at https://datagy.io/softmax-activation-function/

NumPy - About us. Retrieved March 17, 2024. Available at https://NumPy.org/about/

O'Shea, Keiron & Nash, Ryan. (2015). An Introduction to Convolutional Neural Networks.

ArXiv e-prints. Retrieved March 11, 2024. Available at https://arxiv.org/pdf/1511.08458.pdf

Pallets. pallets/flask: The Python micro framework for building web applications. GitHub.

Retrieved March 22, 2024. Available https://github.com/pallets/flask

Pant, A. (2021). Introduction to Logistic Regression - towards data science. Medium. Ref-

erenced on February 20, 2024. Available at https://towardsdatascience.com/introduction-

to-logistic-regression-66248243c148

Pérez Ibarra, S. G., Quispe, J. R., Mullicundo, F. F., & Lamas, D. A. (2021). Herramientas

y tecnologías para el desarrollo web desde el FrontEnd al BackEnd. In XXIII Workshop de

Investigadores en Ciencias de la Computación (WICC 2021, Chilecito, La Rioja). Retrieved

March 18, 2024. Available at https://sedici.unlp.edu.ar/bitstream/handle/10915/120476/Po-

nencia.pdf-PDFA.pdf?sequence=1

Rasamoelina, A.D., Adjailia, F., & Sinčák, P.J. (2020). A Review of Activation Function for

Artificial Neural Network. 2020 IEEE 18th World Symposium on Applied Machine Intelli-

gence and Informatics (SAMI), 281-286. Retrieved February 20, 2024. Limited availability

at https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9108717

Rich, E. and Knight, K. (1991) Artificial Intelligence. McGraw-Hill, New York. Retrieved, Jan-

uary 24, 2024.

Robinson, S. (2020). Understanding how deep learning black box training creates bias. En-

terprise AI. Referenced on February 20, 2024. Available at https://www.tech-

target.com/searchenterpriseai/feature/Understanding-how-deep-learning-black-box-train-

ing-creates-bias

Shao, Z., Zhao, R., Yuan, S., Ding, M., & Wang, Y. (2022). Tracing the evolution of AI in

the past decade and forecasting the emerging trends. Expert Systems with Applications,

118221. Retrieved, January 24, 2024. Available at https://www.sciencedirect.com/sci-

ence/article/am/pii/S0957417422013732

Shayan RC (2013). Why should weights of neural networks be initialized to random num-

bers? Online forum post. Stack Overflow. Retrieved March 11, 2024. Available at

https://stackoverflow.com/questions/20027598/why-should-weights-of-neural-networks-

be-initialized-to-random-numbers

https://datagy.io/softmax-activation-function/
https://numpy.org/about/
https://arxiv.org/pdf/1511.08458.pdf
https://github.com/pallets/flask
https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148
https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148
https://sedici.unlp.edu.ar/bitstream/handle/10915/120476/Ponencia.pdf-PDFA.pdf?sequence=1
https://sedici.unlp.edu.ar/bitstream/handle/10915/120476/Ponencia.pdf-PDFA.pdf?sequence=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9108717
https://www.techtarget.com/searchenterpriseai/feature/Understanding-how-deep-learning-black-box-training-creates-bias
https://www.techtarget.com/searchenterpriseai/feature/Understanding-how-deep-learning-black-box-training-creates-bias
https://www.techtarget.com/searchenterpriseai/feature/Understanding-how-deep-learning-black-box-training-creates-bias
https://www.sciencedirect.com/science/article/am/pii/S0957417422013732
https://www.sciencedirect.com/science/article/am/pii/S0957417422013732
https://stackoverflow.com/questions/20027598/why-should-weights-of-neural-networks-be-initialized-to-random-numbers
https://stackoverflow.com/questions/20027598/why-should-weights-of-neural-networks-be-initialized-to-random-numbers

68

Sword Art Online: Alicization. Myanimelist.net. Retrieved January 29, 2024. Available at

https://myanimelist.net/anime/36474/Sword_Art_Online__Alicization

Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural

networks. In International conference on machine learning (pp. 6105-6114). PMLR. Re-

trieved March 27, 2024. Available at https://proceedings.mlr.press/v97/tan19a/tan19a.pdf

Tashildar, A., Shah, N., Gala, R., Giri, T., & Chavhan, P. (2020). Application development

using flutter. International Research Journal of Modernization in Engineering Technology

and Science, 2(8), 1262-1266. Retrieved March 18, 2024. Available at https://www.irj-

mets.com/uploadedfiles/paper/volume2/issue_8_august_2020/3180/1628083124.pdf

The 365 team (2023). Overfitting vs. Underfitting: What Is the Difference? 365 Data Sci-

ence. Referenced on February 20, 2024. Available at https://365datascience.com/tutori-

als/machine-learning-tutorials/overfitting-underfitting/

The Math Sorcerer. (2020). Youtube Video. Retrieved March 12, 2024. Available at

https://www.youtube.com/watch?v=H1DJjyDFalw

Tiangolo. tiangolo/fastapi: FastAPI framework, high performance, easy to learn, fast to

code, ready for production. GitHub. Retrieved March 22, 2024. Available at

https://github.com/tiangolo/fastapi

Toews, R. (2024). Transformers revolutionized AI. What will replace them? Forbes. Re-

trieved March 27, 2024. Available at https://www.forbes.com/sites/rob-

toews/2023/09/03/transformers-revolutionized-ai-what-will-replace-

them/?sh=58de18799c1f

What is the Japanese-Language Proficiency Test? JLPT Japanese-Language Proficiency

Test. Retrieved April 8, 2024. Available at https://www.jlpt.jp/e/about/index.html

Wikipedia contributors. (2023)a. Sword Art Online: Alicization. In Wikipedia, The Free En-

cyclopedia. Retrieved January 29, 2024. Available at https://en.wikipedia.org/w/in-

dex.php?title=Sword_Art_Online:_Alicization&oldid=1188577949

Wikipedia contributors. (2024)b. Doraemon. In Wikipedia, The Free Encyclopedia. Re-

trieved January 29, 2024. Available at https://en.wikipedia.org/w/index.php?ti-

tle=Doraemon&oldid=1200039528

Wikipedia contributors. (2024)c. Interstellar (film). In Wikipedia, The Free Encyclopedia. Re-

trieved January 29, 2024. Available at https://en.wikipedia.org/w/index.php?title=Interstel-

lar_(film)&oldid=1200075060

https://myanimelist.net/anime/36474/Sword_Art_Online__Alicization
https://proceedings.mlr.press/v97/tan19a/tan19a.pdf
https://www.irjmets.com/uploadedfiles/paper/volume2/issue_8_august_2020/3180/1628083124.pdf
https://www.irjmets.com/uploadedfiles/paper/volume2/issue_8_august_2020/3180/1628083124.pdf
https://365datascience.com/tutorials/machine-learning-tutorials/overfitting-underfitting/
https://365datascience.com/tutorials/machine-learning-tutorials/overfitting-underfitting/
https://www.youtube.com/watch?v=H1DJjyDFalw
https://github.com/tiangolo/fastapi
https://www.forbes.com/sites/robtoews/2023/09/03/transformers-revolutionized-ai-what-will-replace-them/?sh=58de18799c1f
https://www.forbes.com/sites/robtoews/2023/09/03/transformers-revolutionized-ai-what-will-replace-them/?sh=58de18799c1f
https://www.forbes.com/sites/robtoews/2023/09/03/transformers-revolutionized-ai-what-will-replace-them/?sh=58de18799c1f
https://www.jlpt.jp/e/about/index.html
https://en.wikipedia.org/w/index.php?title=Sword_Art_Online:_Alicization&oldid=1188577949
https://en.wikipedia.org/w/index.php?title=Sword_Art_Online:_Alicization&oldid=1188577949
https://en.wikipedia.org/w/index.php?title=Doraemon&oldid=1200039528
https://en.wikipedia.org/w/index.php?title=Doraemon&oldid=1200039528
https://en.wikipedia.org/w/index.php?title=Interstellar_(film)&oldid=1200075060
https://en.wikipedia.org/w/index.php?title=Interstellar_(film)&oldid=1200075060

69

Wikipedia contributors. (2024)d. Turing test. In Wikipedia, The Free Encyclopedia. Re-

trieved, January 24, 2024. Available at https://en.wikipedia.org/w/index.php?title=Tu-

ring_test&oldid=1194139533

Xia, Z. (2019). An Overview of Deep Learning. Deep Learning in Object Detection and

Recognition. Retrieved, February 1, 2024. Available at https://link.springer.com/con-

tent/pdf/10.1007/978-981-10-5152-4_1.pdf?pdf=inline%20link

nbro (2020). Does the number of parameters in a convolutional neuronal network increase

if the input dimension increases? Online forum post. Stack Exchange. Retrieved April 18,

2024. Available at https://ai.stackexchange.com/questions/22075/does-the-number-of-pa-

rameters-in-a-convolutional-neuronal-network-increase-if-th

pandas - Python Data Analysis Library. (n.d.). Retrieved March 17, 2024, 2024. Available

at https://pandas.pydata.org/about/

rodrivers. (2019). - AI: Measures, Maps and Taxonomies. AIethics.AI - Artificial Intelligence

and Robot Ethics. Retrieved, January 24, 2024. Available at https://robotethics.co.uk/ai-

measures-maps-and-taxonomies/

user11530462 (2020). Why do we have to normalize the input for an artificial neural net-

work? Online forum post. Stack Overflow. Retrieved March 28, 2024. Available at

https://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-

an-artificial-neural-network

https://en.wikipedia.org/w/index.php?title=Turing_test&oldid=1194139533
https://en.wikipedia.org/w/index.php?title=Turing_test&oldid=1194139533
https://link.springer.com/content/pdf/10.1007/978-981-10-5152-4_1.pdf?pdf=inline%20link
https://link.springer.com/content/pdf/10.1007/978-981-10-5152-4_1.pdf?pdf=inline%20link
https://ai.stackexchange.com/questions/22075/does-the-number-of-parameters-in-a-convolutional-neuronal-network-increase-if-th
https://ai.stackexchange.com/questions/22075/does-the-number-of-parameters-in-a-convolutional-neuronal-network-increase-if-th
https://pandas.pydata.org/about/
https://robotethics.co.uk/ai-measures-maps-and-taxonomies/
https://robotethics.co.uk/ai-measures-maps-and-taxonomies/
https://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artificial-neural-network
https://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artificial-neural-network

