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List of abbreviations/Concepts/Terms 

AGI: Artificial General Intelligence 

AI: artificial intelligence 

ANN: Artificial Neural Network 

API: application programming interface 

BP: Back Propagation 

CNN: Convolutional Neural Network. 

FCN: Fully Connected Network 

Framework: a tool that provides ready-made components or customised solutions to 

GAN: Generative adversarial network. 

GUI: graphical user interface 

LLM: Large Language Model 

NLP: Natural Language Processing. 

OCR: Optical Character Recognition 

RNN: Recurrent Neural Network. 

ReLU: Rectified Linear Unit 

SAI: Super Artificial Intelligence 

SDK: Software Development Kit 

SGD: Stochastic Gradient Descent 

SVM: Support Vector Machine 

Script: programs or sequences of instructions that are interpreted and used to automatise 

tasks 

TF: TensorFlow 

TFLite: TensorFlow Lite 

UI: user interface 

WYSIWYG: What You See Is What You Get 
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1 Introduction 

Undoubtedly, technology has been one of the driving forces in the last centuries, redefining 

and shaping how we live, work, and interact with the world. It has dramatically improved the 

quality of life we enjoy today, has significantly enhanced our quality of life, and has led to 

remarkable breakthroughs in almost every field of human knowledge. Time and time again 

humanity has defied the odds with incredible discoveries. 

AI has taken the headlines of the world in the last few years. It is no surprise that AI has 

taken the center stage, with new technologies capable of doing seemingly impossible things 

being developed every few weeks. The advancements in this field have been so rapid that 

professionals often struggle to keep up. 

Learning a new language can be challenging, especially if it involves non-Latin scripts, like 

the Japanese language. One of the most challenging aspects of learning Japanese is mem-

orizing the kanji characters, ideographic characters used in the Japanese writing system. 

There are over 2,000 regular-use kanji characters, each with its own meaning and pronun-

ciation. Learning to recognize and read them can be overwhelming for learners.  

This thesis aims to explore how the use of AI can help in recognizing such characters, in 

order to provide an efficient way to look up kanji characters without drawing or searching 

for radicals, which are the components that made up a kanji character. This way, the thesis 

hopes to facilitate the learning process and help learners improve their reading and writing 

skills in Japanese. 
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2 The Japanese language 

2.1 About the Japanese language 

Japanese is the mother tongue for almost all Japanese citizens, numbering around 128 

million in 2011, making it the ninth largest native-speaking population globally. Additionally, 

as of November 2011, approximately 128,000 individuals in Japan were non-native speak-

ers studying Japanese as a foreign language. Beyond Japan, around 3.65 million people 

across 133 countries were learning Japanese in 2009. (Hasegawa, Y. 2014.) 

Japanese employ two scripts known as kana, namely hiragana and katakana, which depict 

the same set of phonetic sounds in different forms. Hiragana and katakana encompass 

nearly 50 characters, derived from simplified Chinese characters adopted for phonetic rep-

resentation. Additionally, Japanese employs kanji or Chinese characters extensively in writ-

ing, with over 40,000 characters existing, though a learner must master around 2,000 "joyo" 

(official everyday use) kanji to be functionally literate in the language, as these kanjis con-

stitute most of the written text. Kanji is crucial for distinguishing between words in the ab-

sence of spaces and for disambiguating homophones, a common occurrence due to the 

language's limited distinct sounds. The use of these three scripts can be seen in Figure 1. 

(Kim, T. 2012.) 

Hiragana primarily serves grammatical functions, representing challenging kanji, colloquial-

isms, and onomatopoeias. It is also commonly used by beginner Japanese learners and 

children in place of unfamiliar kanji. Conversely, while representing the same sounds as 

hiragana, katakana is primarily employed for loanwords from Western languages, lacking 

associated kanji. (Kim, T. 2012.) 

 

Figure 1. Hiragana, katakana and kanji used together in a sentence (NihongoShark) 
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2.2 Introduction to Kanji 

During the 5th century, Japanese Buddhist monks introduced Chinese texts written in Chi-

nese to Japan. As Japanese lacked a written form at that time, they adopted Chinese char-

acters, known as kanji or “漢字”. Initially, these texts would have been read following the 

Chinese language. Even documents written by Japanese scholars were essentially imita-

tions of Chinese texts in terms of grammar, morphology, and syntax, despite the vast lin-

guistic differences between Chinese and Japanese. (Beermann, R. E. 2006.) 

In Japanese, nouns, adjective stems, and verbs are predominantly written in kanji, neces-

sitating knowledge of Chinese characters for comprehending most words. However, not all 

words use kanji; for instance, verbs like "to do" are consistently written in hiragana. (Kim, T. 

2012.) 

One of the challenges about learning kanji, is that each kanji character typically possesses 

two readings: on'yomi, taken from Chinese, and kun'yomi, the native Japanese reading. 

Compound words generally use on'yomi readings, while single kanji characters often utilize 

kun'yomi. Some characters, especially prevalent ones, may have multiple readings. More-

over, certain compound words may have unique readings requiring individual memorization. 

(Kim, T. 2012.) 

Kun'yomi is also prevalent in adjectives and verbs, often accompanied by kana strings 

known as okurigana, to maintain pronunciation consistency during conjugation. Further-

more, kanji readings may undergo slight alterations in compound words for ease of pronun-

ciation, such as changes from /h/ to /b/ or /p/ sounds. (Kim, T. 2012.) 

Another intriguing and challenging aspect of kanji is the existence of synonyms with similar 

readings but nuanced differences in meaning, exemplified by pairs like “聞く” (“kiku”) and “

聴く” (“kiku”), where the latter implies a deeper level of attention. In most cases, when it 

comes to listening to music, the verb “聴く” is more commonly used than “聞く”. Similarly, 

slight variations in kanji can alter the meaning, as seen in “書く” (“kaku”) meaning "to write," 

contrasting with "描く" (“kaku”) meaning "to draw," but assuming the reading “egaku” when 

describing abstract imagery, such as a scene on a book. Also, some kanji have multiple 

readings, like “今日” (“kyō”), (“konjitsu”), or (“kon ni chi”), with preferred readings varying by 

context. (Kim, T. 2012.) 
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2.3 The prevalence of kanji 

One might question why the Japanese did not switch from Chinese characters to romaji 

(Roman alphabet) to simplify the learning process. After all, Korea successfully streamlined 

its written language by adopting its own alphabet. However, when converting typed hira-

gana into kanji, one is often faced with multiple choices (homophones), sometimes up to 

ten, due to the limited number of distinct sounds in Japanese. This stands in contrast to the 

Korean alphabet, which comprises 14 consonants and 10 vowels, allowing for a much wider 

array of sounds. Additionally, Korean allows for the attachment of a third or even fourth 

consonant to create a single letter, resulting in a theoretically vast number of possible 

sounds. (Kim, T. 2012.) 

As reading speed typically outpaces speaking pace, visual cues are crucial for swiftly iden-

tifying words. English achieves this through the varied shapes of words, even when mis-

spelled. Korean employs a similar strategy, thanks to its ample characters capable of cre-

ating words with distinct shapes. However, spaces must be added to remove ambiguities, 

presenting challenges regarding their placement. Kanji resolves many of these issues by 

eliminating the need for spaces and largely mitigating problems with homophones. Without 

kanji, even with added spaces, the lack of visual cues and resulting ambiguities would sig-

nificantly hinder the readability of Japanese text. (Kim, T. 2012.) 
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3 Fundamentals of AI 

3.1 Introduction to AI 

Before talking about artificial intelligence, it is convenient to first talk about intelligence. In-

telligence, while a common word in the dictionaries of many languages, does not have an 

agreed-upon definition. Philosophers, psychologists, scientists, and engineers all have dif-

ferent answers about the definition of this word and how intelligence came to be. In their 

2007 work on AI research, Legg and Hutter consolidated various definitions from existing 

literature into one single definition: Intelligence measures an agent’s ability to achieve goals 

in a wide range of environments. (Chollet, F 2019.) 

In general, autonomy and adaptiveness are signs of intelligence; autonomy is the lack of 

need for constant instructions, and adaptiveness is the ability to change behaviour depend-

ing on the environment or problem space. The problem is that, in any scientific and techno-

logical field, it is mandatory to have formal measuring methods. Therefore, AI will not mature 

until a formal and global method for measuring intelligence is developed. (Linares 2021a.) 

Looking at this definition, one can reason that associating intelligence only with human be-

ings seems reasonable. But as shown in Figure 2, this anthropocentric vision does not con-

sider that human intelligence is actually a subset of natural intelligence, and AI overlaps 

with both human and natural intelligence. (rodrivers 2019.) 

 

Figure 2. Intelligence Landscape (rodrivers 2019) 

Like intelligence, AI also has multiple definitions to choose from. Elaine Rich and Kevin 

Knight defined it in their book Artificial Intelligence as the study of how to make computers 

do things at which, at the moment, people are better. (Rich and Knight 1991.) 

The concept of Artificial Intelligence has been a subject of fascination and curiosity for many 

years, placing itself as a crucial research area in academia and industry, which is currently 

undergoing a significant bottleneck due to its exponential growth in the last few years. AI 
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has evolved into a vast discipline in recent decades, drawing upon computer science, math-

ematics, linguistics, and many others. (Shao Z et al. 2022.) 

Even though AI has become the new playing field for scientific and technological innovation 

as well as industrial transformation, to the point that it established itself as the so-called 

fourth industrial revolution, its development has been far from smooth. AI's history wit-

nessed several ups and downs throughout its lifetime. (Shao Z et al. 2022.) 

3.2 Overview of AI 

Isaac Asimov's science fiction novel Runaround published in 1942 is considered to be the 

origin of AI. During the 1940s and 1950s, researchers from diverse disciplines such as 

mathematics, psychology, and engineering began to explore the concept of an artificial 

brain. This idea was influenced by neurological research indicating that the brain functioned 

as a network of neurons emitting pulses. In 1943, neurologist Warren McCulloch and math-

ematician Walter Pitts collaborated on a book that merged mathematics with algorithms. 

This work paved the way for the development of neural networks and the mathematical 

modelling of artificial neural networks. (Shao, Z et al. 2022.)  

In his publication Computing Machinery and Intelligence, Turing detailed the process of 

assessing a machine's intelligence. The Turing Test, a recognized benchmark for determin-

ing the intelligence of a machine, was introduced in the same publication, and is still widely 

utilized today. Figure 3 illustrates the Turing test, which involves a human evaluator as-

sessing conversations between a human and a machine programmed to imitate human 

responses. All participants in the test are isolated from each other. The evaluator knows 

that one of the conversational partners is a machine. The machine is considered to have 

passed the test if the evaluator cannot consistently tell it apart from a human. The outcome 

of the test does not depend on the correctness of the machine's responses, but on how 

indistinguishable they are from responses a human might provide. (Shao, Z et al. 2022; 

Wikipedia contributors 2024d.) 
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Figure 3. Turing test (Wikipedia contributors 2024d) 

The formal proposal of artificial intelligence as a concept was made by John McCarthy in 

1956 during a seminar at Dartmouth. This event is considered the official birth of AI. The 

seminar focused extensively on the possibility of using machines to mimic human intelli-

gence. Many of the attendees of this conference subsequently became significant contrib-

utors to the development of AI over the next several decades. (Shao, Z et al. 2022.) 

During the 1960s, the field of AI had its first significant breakthrough, thanks to the devel-

opment of symbolic logic, which helped to solve various joint problems. One of the signifi-

cant events in the history of AI was the development of a system called STUDENT by Daniel 

Bonrow in 1964. The system was written in Lisp and could understand natural language 

input and solve algebraic word problems. Around this period, it seemed that AI development 

would only accelerate. Some even made bold predictions, such as in twenty years, ma-

chines will be able to do all the work that humans do. These high expectations for AI devel-

opment soon proved unrealistic, as researchers underestimated the complexity of their field. 

Also, in the 1970s, AI faced difficulties that could not be overcome at the time. The limited 

memory and processing power of computers hindered the progress of practical AI problems. 

This made the research progress come to a halt, marking the start of the first "AI winter". 

(Shao, Z et al. 2022.) 

It was not until ten years later that AI entered its second climax, thanks to the adoption of 

expert systems by worldwide companies. These systems imitate the decision-making pro-

cess of humans and give suggestions to non-experts. The first expert system, DENDRAL 
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was proposed by Edward Feigenbaum. Nevertheless, the maintenance and upgrading of 

these systems was complex. This fact led to what is referred to as the second "AI winter" in 

the history of artificial intelligence. Until then, AI had relied on models of reasoning that 

attempted to replicate human intelligence, such as planning, reasoning, and decision-mak-

ing, using knowledge and experience. A prominent example of such an AI system was IBM's 

Deep Blue, the chess program that famously beat the world chess champion in 1997. (Shao, 

Z et al. 2022.) 

The field of AI, now more than half a century old, saw its third wave of success with the 

appearance of deep learning. Without a doubt, 2012 is a year that rings the bell in the mind 

of any AI professional, given that this marks the beginning of the deep modern learning era 

through an enormous breakthrough in solving the challenges of ImageNet. (Shao, Z et al. 

2022.) 

The prosperity AI enjoys today can be summarized in three significant facts: 

1. New meaningful learning algorithms start emerging, such as Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), Transfer Learning, etc. 

2. The advancements in computer hardware and software allow AI to overcome prob-

lems that could not be solved, especially in computer vision and Neuro-linguistic 

Programming (NLP). 

3. AI has been integrated into people's daily life, such as self-driving cars, virtual as-

sistants, recommendation engines, spam filters, etc. 

4. The development of several optimization methods for neural networks, like Batch 

Normalization, Layer Normalization, Dropout, Gradient Descent method, etc. 

(Shao, Z et al. 2022.) 

A whole summary of the history of AI can be seen in Figure 4. 
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Figure 4. Chronology of AI (Linares 2021a) 

Bo Zhang suggested that the evolution of AI could be segmented into three distinct phases: 

1. Symbolic AI, often referred to as the knowledge-driven approach. 

2. The data-driven approach, which relies on deep learning. 

3. The Third Generation AI, which is a theory that integrates both previous approaches. 

(Shao, Z et al. 2022.) 

3.3 Types of AI 

The most common way to classify the types of AI is by weak, general, or super AI. Weak or 

narrow AI attempts to model the human mind, like how weather conditions, climate change, 

or other natural phenomena are modelled, to focus on a specific problem domain, like cars, 

face recognition, spam filters, etc. On the other hand, general or strong AI actually seeks to 

reproduce the human mind, in the sense that it exhibits intelligence in a broad range of 

tasks. A major example of strong AI is Artificial General Intelligence (AGI). Lastly, super AI 

(SAI) is defined by Nick Bostrom as an intellect that is much smarter than the human mind 

in every field. Looking at how humanity still has not been able to achieve true AGI, although 

Microsoft researchers claim GPT-4 to be the first “sparks,” SAI will be contained to science 

fiction for the foreseeable future. (Flowers, J.C. 2019;  Linares 2021a; Bubeck, S et al. 

2023.) 
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3.4 AI in fiction media 

The growing popularity of artificial intelligence has led to mixed feelings of both excitement 

and fear in popular discourse. AI is widely regarded as a significant technological field rap-

idly advancing and shaping the future. Thus, futuristic concepts involving AI are becoming 

more common in popular media. (Goode, L. 2018.)  

Since the early 20th century, scenarios in which AI surpasses human intelligence have fre-

quently appeared in science fiction. These narratives often unfold in dystopian settings 

marked by machine rebellions. In 1921, Karel Capek's play "RUR" (Rossum's Universal 

Robots) became the first science fiction work to depict a revolt by humanoid robots against 

their human oppressor, introducing the term "robot" to both the literary and scientific com-

munities. The concept of threatening machine intelligence has persisted in science fiction, 

reflecting societal fears as advancements in digital technology accelerate. However, there 

are notable exceptions that feature compassionate AI, such as Wall-E (2008), Data from 

"Star Trek: The Next Generation" (1987-1994), Robby from "Lost in Space" (1965-1968), 

and TARS from "Interstellar" (2014). Isaac Asimov's mid-20th-century robot stories, partic-

ularly "I, Robot" which was adapted into a film, significantly shaped public views on AI or 

machine intelligence. Asimov introduced what he called the "Frankenstein complex", which 

is the notion that despite implanting AI with safety protocols to prevent danger or rebellion, 

the underlying fear that it could ultimately turn against us still remains. However, in most 

cases, Japanese fiction is known for representing AI as a friend or tool. Mighty Atom, known 

as Astroboy in English, was the friendly protagonist of a manga series that ran from 1952 

to 1968. Doraemon was also a manga series first serialized in 1969, in which a podgy, 

friendly, blue robot cat from the future aids a boy named Nobita Nobi. (Cave, S et al. 2018; 

Goode, L. 2018; Wikipedia contributors 2024b; Wikipedia contributors 2024c; Wikipedia 

contributors 2024d.)  

Another significant entry in Japanese fiction is "Sword Art Online: Alicization" (2018-2020), 

a part of the larger "Sword Art Online" series that explores the theme of sentient artificial 

intelligence. In this storyline, the Soul Translator is introduced as an advanced full-dive in-

terface created by the private institute Rath. Unlike traditional methods that send signals 

directly to the brain, the Soul Translator interacts with the user's Fluctlight, which is the 

technological counterpart to the human soul. This device creates a virtual realm known as 

the Underworld. The series eventually reveals that the primary goal of this technology is to 

develop a new, more sophisticated form of AI. In this virtual world, a human civilization with 

human emotions is presented. Later in the show, Alice, one of the inhabitants of the Under-

world and the main protagonist, is introduced as the first autonomous Artificial Intelligence 
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(Figure 5) by implanting her Fluctlight into an artificial body. In the Underworld, the lines 

between reality and virtual existence become blurred, offering a profound exploration of the 

ethical, moral, and existential questions surrounding sentient AI. (Myanimelist.net; Wikipe-

dia contributors 2023a). 

 

Figure 5. Alice being presented as the first autonomous Artificial Intelligence (SAO: Aliciza-
tion 2018) 

3.5 The two schools of AI 

Since its birth, AI was divided into two schools of thought: The symbolic, or top-down ap-

proach, which relies on explicit rules and representations; and the connectionist, or bottom-

up approach, which makes use of neural networks and focuses on learning from data and 

patterns. (Linares 2021a.) 

3.5.1 Symbolic approach 

The symbolic, or top-down approach, was the first school of AI that originated, and in the 

early days of AI, most of the efforts were focused on this approach for many years. This 

classical approach relies on encoding a model of the problem by programming a set of 

predefined rules and logical principles and asking the system to process the input data 

under this model so that a solution can be provided. This set of rules and logic represents 

knowledge provided by experts, allowing for the creation of expert and decision-support 

systems. Systems in this category employ deductive reasoning, logical inference, and some 
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type of search algorithm that finds a solution within the constraints of the problem. (Bajada, 

J., 2019; Linares 2021a.) 

One of the advantages of this approach include its high interpretability, as one can easily 

trace the reasoning process back to the logical rules that were applied and the ease of 

updating the system's rules as new information becomes available. (Bajada, J. 2019.) 

3.5.2 Connectionist approach 

The connectionist, or bottom-up approach, was also one of the first approaches to AI, but it 

failed to maintain relevancy due to hardware, data, and theoretical limitations at the time. 

The names come from the network topology that characterizes the algorithms in this class. 

Researchers akin to this school thought that AI should be inspired by biology (the brain), in 

the fact that it learns from observation and experience. Convolutional Neural Networks 

(CNN), the main focus of this thesis, fall into this category. What differentiates this approach 

from the previous one is that the rules and logic of the domain being modelled do not need 

to be specified. The network learns these rules by itself from training data. Neural Networks 

do not require a model of the world; instead, they rely on substantial training data from which 

a model of the world can be statistically inferred. While this is the strongest point going for 

this approach, it is also a double-edged sword. If the training data is biased, has data with 

little to do with the problem trying to be solved, or is insufficient, connectionist algorithms 

will perform poorly. In fact, the lack of data was a massive constraint at the time and 

prompted the connectionism approach to fall out of relevance compared to the symbolic 

approach. (Bajada, J. 2019; Linares 2021a.) 
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4 Fundamentals of Machine Learning 

4.1 Introduction to Machine Learning 

Machine Learning, a subset of artificial intelligence and computer science, focuses on how 

computers can learn from experience without explicit programming. It resides at the nexus 

of computer science and statistics, forming the foundation of artificial intelligence and data 

science. Advancements in machine learning have been propelled by new algorithms and 

theories, the thriving availability of data online, and affordable computing resources. Cur-

rently, machine learning techniques, which are data-intensive, are increasingly utilized 

across diverse sectors including healthcare, manufacturing, education, financial services, 

law enforcement, and marketing, facilitating decisions based on data. (Jordan, M.I., & Mitch-

ell, T. 2015.) 

In the past twenty years, machine learning has transitioned from a theoretical idea to a 

fundamental technology with widespread practical and commercial uses. It has emerged as 

the preferred method in AI for addressing challenges in fields such as computer vision, 

speech recognition, and natural language processing. AI developers have discovered that 

training systems with examples of desired outcomes is often simpler than programming 

them to anticipate responses for every conceivable input. This shift has significantly influ-

enced industries that handle complex systems such as diagnostics or logistics. Additionally, 

machine learning's efficacy in analysing large volumes of experimental data has made it 

valuable in empirical sciences like biology, cosmology, and even social science. (Jordan, 

M.I., & Mitchell, T. 2015.) 

As with intelligence, there is no common agreement on what learning is. Yet, regarding 

humans, learning can be defined as changes in behaviour that result from experience or 

mechanistically as changes in the organism that result from experience. Since computers 

are mathematical machines, learning in computers involves programmatic changes. Figure 

6 contrasts traditional programming, where the program dictates outputs from given inputs, 

with machine learning, which involves determining a suitable model from a set of inputs and 

outputs. This model, once trained, can then generate new outputs for new inputs. (Duarte, 

D., & Ståhl, N. 2018.) 
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Figure 6. Traditional programming (a) vs Machine Learning (b) (Duarte, D., & Ståhl, N. 2018) 

Tom M. Mitchell provides a formal definition of machine learning, stating that a computer 

program learns from experience (𝐸) concerning a specific task (𝑇) and performance meas-

ure (𝑃) if its performance at 𝑇, as evaluated by 𝑃, improves with experience 𝐸. For example, 

to develop a model that classifies emails as spam or not spam, one might start with a set of 

emails (𝑆𝑒) divided into spam (𝑆𝑠𝑒) and not spam (𝑆𝑛𝑠𝑒). This dataset serves as the expe-

rience (𝐸) for the model, which then classifies new emails based on this training. The effec-

tiveness of the model, or performance (𝑃), is contingent upon the quality of the input dataset 

(𝑆𝑒), with better data potentially leading to more accurate classifications. (Duarte, D., & 

Ståhl, N. 2018.) 

4.2 Growth of Machine Learning 

The so-called Big Data is a phenomenon that describes how, in the past decade, computers 

and networked systems have significantly improved their ability to gather and transport huge 

amounts of data. Machine learning has emerged as a powerful tool for scientists and engi-

neers, enabling them to derive meaningful insights and predictions from vast amounts of 

data. The significant rise of machine learning can be attributed to advancements in mobile 

and embedded systems, which now have the capability to collect extensive data about in-

dividuals. This data collection facilitates the development of personalized services aimed at 

individual needs. Across diverse sectors, including commerce, science, and government, 

the accumulation of large datasets is being used to improve services and productivity. In 

the medical field, for instance, historical patient records are analysed to identify the most 

suitable treatments for individual patients, traffic control and congestion reduction are being 

improved with the help of historical traffic data, historical crime data is being utilized to as-

sign local police to particular locations at specific times. (Jordan, M.I., & Mitchell, T. 2015.) 

Even so, it must be considered that machine learning is not a magic formula capable of 

solving every problem. Machine learning works best when 

• a task is too hard to be programmed 

• the problem involves a large search space 
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• adaptivity is essential 

• a large enough data set is available. 

(Linares 2021c.) 

4.3 Types of Machine Learning 

When solving a machine learning problem, the first step to address is which machine learn-

ing algorithm to use. This is quite challenging as there are already many options to choose 

from, and each year, another hundred are proposed. The hypothesis space is the collection 

of potential learning algorithms that can be used for a specific machine learning problem. 

To decrease this hypothesis space, the learning components of a problem can be catego-

rized into three distinct groups: 

1. Representation: By understanding the type of learning to be accomplished, the hy-

pothesis space can be reduced since the task needs to be represented by a partic-

ular algorithm. 

2. Evaluation: It's necessary to evaluate the effectiveness of the chosen algorithm by 

assessing its predicted outputs. 

3. Optimization: Based on the evaluation results, subsequent optimization is required. 

The learning algorithm should aim to enhance a specific performance metric. 

(Duarte, D., & Ståhl, N. 2018.) 

Machine learning can be broadly classified as supervised, and unsupervised learning. (Li-

nares 2021c.) 

4.3.1 Supervised learning 

Supervised learning is applied when the dataset includes labels for each example, referred 

to as the ground truth. Consequently, the dataset is split into two parts: the features of the 

examples, represented as 𝑋, and the labels, denoted as 𝑦. Supervised learning tries to 

create a model that receives a vector of features and generates an output. Broadly speak-

ing, a supervised learning model aims to generalize outputs in front of non-observed input 

data, using the knowledge acquired by previous examples. Mathematically, supervised 

learning systems typically generate their predictions by means of a learned mapping func-

tion 𝑓(𝑥), which provides an output 𝑦 for each input 𝑥 (or a probability distribution over 𝑦 

given 𝑥). There are numerous mapping methods for 𝑓, such as decision trees, logistic re-

gression, support vector machines, neural networks, and Bayesian classifiers. Additionally, 
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general techniques like boosting and multiple kernel learning exist to combine the outputs 

from several learning algorithms. (Jordan, M.I., & Mitchell, T. 2015; Duarte, D., & Ståhl, N. 

2018; Linares 2021c). 

The model’s output can be discrete (classes) or continuous (numeric values). If the output 

is a class or a label, the model is said to be a classifier, whereas if the output is a continuous 

value, the model is a regressor. (Duarte, D., & Ståhl, N. 2018; Linares 2021c). 

Regression 

Regression is a supervised learning technique with the goal of predicting a numeric value 

from new input elements. Estimating the future price of a house, predicting currency ex-

change rates, or weather prediction are all examples of regression. The most common type 

of regression is linear regression, although there are other types beyond this paper’s scope. 

(Duarte, D., & Ståhl, N. 2018; Linares 2021c). 

Linear regression can be defined mathematically as in Equation 1: 

ℎ!(𝑋) = 	𝜃" +	𝜃# ×	𝑥#
(%) +⋯+	𝜃' ×	𝑥'

(%) (1) 

where 𝜃! are weights (𝜃" is the bias, and 𝜃# is the weight for the 𝑘th feature of 𝑥(%), 1	 ≤
	𝑘	 ≤ 	𝑚), and 𝑥!

(%) is the 𝑗th feature of the 𝑖th example in 𝑋 (dataset). The weights indicate 
how important each feature is for the output of the model. (Duarte, D., & Ståhl, N. 2018.) 
 
Classification 
 

On the other hand, classification tries to infer a label from the input vector by choosing 

among several categories or classes. Taking this into account, a regression problem can 

be transformed into a classification problem by discretizing the continuous values, that is, 

grouping them into classes. Table 1 is an example of a model that classifies a given sample 

of wind and temperature into a pace. (Duarte, D., & Ståhl, N. 2018; Linares 2021c): 

Table 1. Data set with two features (wind speed and temperature) with their predicted class 
(fast or normal) (Duarte, D., & Ståhl, N. 2018) 

Wind speed (km/h) Temperature (ºC) Pace # Class 

10.5 12.3 Fast 0 

8.9 15.4 Fast 0 

20.2 13.7 Normal 1 

5.10 3.1 Normal 1 
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Classes may be binary like Table 1 or multiclass. Classifying emails between spam and not 

spam would be an example of binary classification, while a medical diagnosis from a vector 

of features (sex, blood pressure, cholesterol, etc.) would be an example of multiclass clas-

sification. As with regression, a multiclass problem can be translated into a binary classifi-

cation problem using one versus all classifications. (Duarte, D., & Ståhl, N. 2018; Linares 

2021c.) 

Supervised learning can be divided into two phases (Figure 7): 

• Training process: A selection of pertinent features is identified from the input data. 

These features are extracted using methods like Exploratory Data Analysis (EDA), 

which enables data scientists to examine and explore data sets in order to summa-

rize their key attributes, frequently making use of data visualization techniques. 

However, data scientists must be careful to avoid “the curse of dimensionality”, 

which means worse results as the number of features increases. 

• Prediction process: A set of the same features from new data are fed into the trained 

model to make a prediction. 

(Linares 2021c.) 

 

Figure 7. Supervised learning pipeline (Linares 2021c) 
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4.3.2 Unsupervised learning 

Unsupervised learning is involved when the dataset has no labels (examples are not pre-

classified). The goal here is to deduce classes without the ground truth. Since this approach 

is less objective than supervised learning, understanding the dataset's domain is crucial for 

building effective models; otherwise, the results may not be comprehensible. Even though 

at first glance this technique might seem less relevant than supervised learning, its im-

portance prevails in the fact that there are more unlabelled than labelled datasets. Moreo-

ver, many mainstream problems like recommendation systems, classification of user’s be-

haviour on a website, or market segmentation are closely related to unsupervised learning. 

By far, the most popular technique for unsupervised learning is clustering. (Duarte, D., & 

Ståhl, N. 2018.) 

Clustering refers to the process of identifying related groups within datasets that lack any 

labelling. This technique has proven useful in detecting anomalies, assessing the similarity 

between organisms, and identifying meaningful features, among other applications. K-

means is one of the most popular clustering algorithms, and one of the easiest to compre-

hend. The fundamental concept revolves around defining 𝑘 centroids utilized to form the 

clusters. For each example present in the dataset, there is a corresponding association with 

one of the 𝑘	centroids. The dataset is considered a collection of points on a plane, and the 

algorithm seeks to group these points into clusters by measuring the distance between a 

given data point and a centroid. (Duarte, D., & Ståhl, N. 2018.) 

There are other techniques such as supervised learning, or techniques that combine super-

vised and unsupervised learning, like semi-supervised or self-supervised learning, but these 

go beyond the scope of the paper. (Linares 2021c.) 

4.4 Error metrics 

When working with machine learning models, measuring how well a given model is behav-

ing is critical. For that reason, many error metrics have been developed in order to gauge 

the performance of machine learning models. There are different metrics for supervised and 

unsupervised learning. In particular, for supervised learning, a training set taken from the 

dataset is used to see how well the model is learning. It is not a good idea, however, to rely 

only on the metrics the model produces over the training set, as this does not guarantee 

the model will accurately predict results for previously unseen inputs. That is why it is com-

mon practice to use a technique called hold-out, where a test set is used for evaluating the 

model in data it has not seen in the training process. The overall goal of a machine learning 

model is to be able to generalize, i.e., producing good results in front of unseen data. Hence, 
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introducing two concepts referring to the generalization of a model is necessary: overfitting 

and underfitting. An underfitting model performs poorly on both the training and testing da-

tasets, whereas an overfitting model performs exceptionally well in the training dataset but 

poorly on the test data set. (Linares 2021c.) 

4.4.1 Overfitting 

Overfitting happens when a model has become too specialized in the training set. This can 

happen either because the model was overtrained, or because that it has learned the noise 

and details of the dataset. This negatively affects the model's generalization ability, as noise 

is specific to each training sample and does not apply as a general pattern to recognize 

new data. There are several techniques to prevent overfitting, such as: 

• Cross-validation: It is a systematic repetition of the hold-out technique that gives 

more statistically accurate metrics. 

• Regularization: It involves penalizing the learning process to prevent the model from 

learning the training set too well. 

• More data: Having a more extensive dataset will help prevent overfitting, although 

the data quality is more important than the quantity. 

• Ensembling: It is a set of techniques that combine predictions from multiple algo-

rithms together. The most famous examples are Bagging and Boosting. 

(Narayan, S., & Tagliarini, G.A. 2005; Linares 2021c.) 

4.4.2 Underfitting 

Underfitting occurs when a model cannot learn the training data nor generalize it to new 

data. This issue is often disregarded because it is easy to detect and can be resolved by 

switching to different machine learning algorithms or enhancing the quantity or quality of the 

data. Contrarily, overfitting is a more complex problem and is more common in the field. 

(Narayan, S., & Tagliarini, G.A. 2005; Linares 2021c.) 

In Figure 8, an example of both underfitting an overfitting can be seen. 
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Figure 8. Overfitting and underfitting (The 365 team 2023) 

Despite being commercially successful, machine learning is still a young field with numer-

ous research opportunities yet to be explored. Unfortunately, there are still challenges to 

overcome, such as the fact that much of the data required for these opportunities is privately 

held and owned. Despite the challenges, the potential and ongoing developments indicate 

that machine learning will probably be one of the most transformative technologies of the 

21st century. (Jordan, M.I., & Mitchell, T. 2015.) 
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5 Neural Networks and Deep Learning 

5.1 Introduction to Deep Learning 

Deep learning is a branch of machine learning algorithms where machines autonomously 

develop internal representations from raw data to perform tasks such as regression or clas-

sification. Deep learning models are made in a layer-wise structure, with each layer learning 

hidden representations often too obscure for human observers to comprehend. These rep-

resentations are nonlinear compositions of the previous layer's representations, enabling 

the model to progress from simple to increasingly complex and abstract features in each 

layer. For example, deep learning models in image processing often begin by identifying 

fundamental features like edges and strokes. These basic features are then integrated to 

form basic objects, and as the model progresses through subsequent layers, these basic 

objects are further combined to create more intricate and complex structures. These algo-

rithms can be used in supervised or unsupervised training for applications in pattern analy-

sis (unsupervised) and classification (supervised). The rapid growth of deep learning has 

been driven by three key factors: extensive data availability, powerful computational capa-

bilities, and innovative algorithms. (Duarte, D., & Ståhl, N. 2018; Xia, Z. 2019.) 

Deep learning, while a recent advancement in technology, has a substantial history that 

dates back 50 years. It originated in the 1940s with the development of artificial neural net-

works (ANNs). The initial models of these ANNs were simple linear models that linked input 

𝑥 to output 𝑦. In the mid-1980s, the introduction of the backpropagation (BP) algorithm 

marked a significant leap in learning the parameters of artificial networks, sparking a resur-

gence in statistical model-based machine learning. With the BP algorithm, these artificial 

networks are capable of learning statistical rules from extensive datasets and predicting 

outcomes for new cases. For this reason, neural networks are excellent for tackling complex 

learning problems. In 2012, with the breakthrough in image recognition during ImageNet, 

the world realized the true potential of neural networks. Here, AlexNet managed to improve 

performance by 20%. (Xia, Z. 2019.) 

At the moment, deep learning is considered the most advanced machine learning tech-

nique. However, it may not always be the best option, especially for structured data. More 

traditional machine learning algorithms can deliver excellent results in such cases. Some-

times, even better results can be obtained from small datasets using options like XGBT 

(Extreme Gradient Boosting), which the winners of Kaggle contests often prefer. However, 

for unstructured data, such as images, videos, text, and graphs, deep learning undoubtedly 

provides the best results, provided that the dataset is large enough. (Linares 2021c.) 
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5.2 Representation learning 

A key factor that has contributed to the growth of deep learning is representation learning. 

In the past, researchers have relied on their expertise to determine which attributes in the 

data were most important for a particular task. These attributes, also known as features, 

are validated through the performance of learning tasks like clustering or classification. 

However, feature engineering can be challenging, particularly when the raw data is unstruc-

tured and high-dimensional. In representation learning, as Figure 9 shows, the model does 

not just learn; it also decides which are the best set of features and patterns to pay attention. 

This automatic learning of the data representation, i.e., the ability to find this embedding 

automatically, makes deep learning much more powerful than other techniques. (Moyano, 

L.G. 2017.) 

 

Figure 9. In representation learning, the model performs the feature extraction (Robinson, 
S. 2020) 

5.3 Basics of Neural Networks 

Informally, a function is a system of outputs and inputs, as shown in Equation 2: 

𝑥 → 𝑓(𝑥) → 𝑦 (2) 
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A function takes an input, makes some kind of processing, and gives an output as a result. 

All the possible values for 𝑥 and 𝑦 can be drawn in a graph to obtain a line. Thus, if the 

function is known, the correct output (𝑦) can always be calculated for any given input (𝑥). 

But what happens when a function is not known but only some values for 𝑥 and 𝑦? If there 

was some way to reverse engineer such function, obtaining the 𝑦 value from a given 𝑥 value 

that was not originally in the data set could be possible. Even with some amount of noise in 

the data set, by capturing the general pattern of the data, values for 𝑦 can be produced. 

These values for 𝑦 would not be perfect, but close enough to the real ones to be useful. 

Therefore, what is needed is a function approximator, as Equation 3 describes. (Emergent 

Gardena 2022.) 

𝑓(𝑥) ≈ 𝑇(𝑥) (3) 

An artificial neuron itself is just a function that can take any number of inputs and produces 

an output. Each input is multiplied by a weight and added up, plus a bias, as shown in 

Equation 4. Weights are real numbers that represent how important is a given input to the 

output. These values (weights and biases) are the parameters of the neuron, which can 

change while the neuron learns. One of the first type of artificial neurons that originated was 

the perceptron. It was developed in 1958 by psychologist Frank Rosenblatt, inspired by the 

works of McCulloch and Pitts. Even though today it is more common to use other types of 

artificial neurons, it serves as the basis for understanding neural networks. A perceptron 

takes several inputs 𝑥',	𝑥), …, and produces a single output, as depicted in Figure 10. (Niel-

sen, M. 2019; Emergent Garden 2022) 
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Figure 10. Graphical representation of a perceptron (Duarte, D., & Ståhl, N. 2018) 

𝑦 = (∑ 𝑥% ∗ 𝑤%'
%(# ) + 𝑏 (4) 

Where 𝑥% is a given input, 𝑤% is the weight of that respective input, 𝑚 is the number of 

inputs to the perceptron, and 𝑏 is a bias. Conceptually, a perceptron is a device that makes 

decisions weighting up evidence. (Duarte, D., & Ståhl, N. 2018; Nielsen, M. 2019.) 

By this logic, it seems reasonable that more complex problems can be modelled by com-

bining multiple perceptrons. This is where neural networks come into play. (Emergent Gar-

den 2022.) 

5.4 Deep Neural Networks 

A neural network is just a collection of neurons connected through various layers. Generally, 

when talking about neural networks, what is being referred to is one of their main types: a 

fully connected feedforward neural network. A feedforward neural network is a type of arti-

ficial neural network that allows information to flow in only one direction. This means that 

feedforward networks do not contain loops and are, therefore, acyclical. Figure 11 depicts 

the typical layout of a feedforward network. A standard multilayer architecture for feedfor-

ward networks involves interconnecting multiple neurons in layers. In every layer, apart from 

the final output layer, each neuron is directly connected to all neurons in the next layer. A 
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network containing more than one hidden layer is known as a deep neural network or a 

multilayer perceptron. Similar to a perceptron, the output of each neuron that is passed to 

the following layer is the weighted sum of all inputs plus a bias. The fundamental concept 

of deep learning is depicted through this propagation: building increasingly complex repre-

sentations using simpler, foundational concepts. (Duarte, D., & Ståhl, N. 2018.) 

 

Figure 11. Layout of a deep neural network with two hidden layers, 5 neurons each (Duarte, 
D., & Ståhl, N. 2018) 

5.5 Activation Functions 

As stated in section 4.3, it seems logical that combining multiple neurons would allow to 

model more complex problems. However, as seen in Equation 4, a neuron is just a linear 

function. Combining several linear functions only results in another linear function. Thus, as 

seen in Figure 12, if the problem is nonlinear, like in most cases, a neural network will still 

perform as badly. That is why activation functions were developed. Activation functions pro-

vide the network with the necessary non-linearity for learning complex representations. 

(Emergent Garden 2022.)  

Therefore, the mathematical definition of a neuron needs to be updated as Equation 5 

shows: 

𝑦 = 𝑓((∑ 𝑥% ∗ 𝑤%'
%(# ) + 𝑏) (5) 

Where 𝑓 is the activation function. 
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Figure 12. In red the function to be approximated, and in blue the output of the network 
(Emergent Garden 2022) 

5.5.1 Sigmoid activation function 

Initially, the Sigmoid function was the preferred activation function in neural networks. How-

ever, researchers soon discovered that its small derivative could cause the vanishing gra-

dient problem. This led to the adoption of the Rectified Linear Unit (ReLU) as a more effec-

tive activation function. Consequently, ReLU has become the most widely used activation 

function in neural networks today. Despite considerable efforts to find an activation function 

that outperforms ReLU, none have matched its popularity, largely because of ReLU's sim-

plicity. (Rasamoelina, A.D. et al 2020.) 

The Sigmoid activation function is a nonlinear function that transforms inputs ranging from 

(-∞, +∞) to an output range of [0, 1]. This squashing of the output can lead to a vanishing 

gradient issue, particularly in deep networks. The gradient, a crucial mathematical tool used 

by neural networks to adjust and learn, becomes increasingly small, which complicates the 

optimization process. Consequently, learning becomes extremely challenging, and at times, 

nearly unfeasible as the network depth increases. The cause is the saturation of a sigmoid 

unit. As seen in Figure 13, when the function approaches 0 or 1, changes on the input 
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variable does not change the output, causing the saturation of the sigmoid unit. Another 

disadvantage is that the computation of 𝑒)* can be expensive. Also, since the output is not 

cantered in 0, the function always outputs positive values, which causes inefficiencies on 

the training. (Rasamoelina, A.D. et al. 2020; Linares 2021d.) 

 

Figure 13. Output landscape of the sigmoid activation function (Pant, A. 2021) 

The Sigmoid or Logistic Activation function is defined in Equation 6: 

𝜎(𝑧) 	= 	 #
#+	-*+

 (6) 

5.5.2 Rectified Linear Unit (ReLU) 

ReLU (Rectified Linear Unit) is the activation function preferred by deep learning research-

ers. Its popularity stems from its ability to outperform other activation functions in terms of 

training efficiency. (Rasamoelina, A.D. et al. 2020.) 

The ReLU function is defined as Equation 7: 

𝑅𝑒𝐿𝑈(𝑥) 	= 	𝑚𝑎𝑥(0, 𝑥) (7) 

Figure 14 depicts the plotting of the ReLU equation into a graph. 
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Figure 14. Output landscape of the ReLU activation function (Kathuria, A. 2018) 

As shown in Equation 7 and Figure 14, ReLU is linear for positive values and outputs zero 

for negative values. Thus, the output values range from zero to infinity. This activation func-

tion is very efficient and do not saturate with positive values like the sigmoid function. Even 

so, it is still centered in 0, and sometimes can kill neurons during training. This issue arises 

because negative values are mapped to zero, resulting in every negative unit outputting 

zero. Once a neuron becomes negative, it is unlikely to recover. This however can be fixed 

by using a small learning rate, or using some variations of the ReLU function that were 

developed to address this problem. (Rasamoelina, A.D. et al. 2020; Linares 2021d.) 

5.5.3 Softmax activation function 

While the sigmoid function is suitable for binary classification, it is not appropriate for multi-

class classification. The reason being that sigmoid outputs isolated probabilities. This works 

for binary classification, but in multi-class classification problems, this results in an output 

vector where the elements do not add up to 1, as seen on Figure 15. (Furnieles, G 2022.)  
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Figure 15. Sigmoid does not outputs a probability distribution because the components do 
not add up to 1 (Furnieles, G. 2022) 

Instead, a probability distribution across all predicted classes is necessary. The softmax 

function serves this purpose effectively. It accepts a vector of real numbers as input and 

outputs another vector with the same dimensions, where each value lies between 0 and 1. 

Each element of this output vector represents the probability that the input corresponds to 

a particular class. (Furnieles, G. 2022.) 

The softmax function is defined as Equation 8 indicates: 

𝑃(𝑦 = 𝑖) = -+,
∑ -+-.
-/0

 (8) 

𝑃(𝑦 = 𝑖) represents the probability that the input falls into a specific class, with 𝑧% 	being the 

raw score associated with that class. The denominator, which is the sum of exponentiated 

logits for all classes, ensures that the output forms a valid probability distribution. (Nik. 

2023.) 

5.6 Universal approximation theorem 

George Cybenko (1989) proved that neural networks can approximate everything that can 

be represented as a continuous function. So, in theory, as long as the data can be codified 

in numbers, and the processing to be done over this data can be represented as a function, 

a neural network can approximate it. As such, neural networks are considered the most 

powerful machine learning technique, although depending on the context, other techniques 

may be applied. (Emergent Garden 2022.) 

Of course, many limitations can prevent neural networks from learning in specific problem 

domains: 
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• The number of neurons cannot be infinite. This limits the network’s size and what it 

can model. 

• The search for the best hyperparameters of the network also puts limitations on what 

can be learned. 

• If there is insufficient data, it does not matter how complex the model is; the approx-

imation will be poor. 

• Other limitations such as overfitting. 

(Emergent Garden, 2022.) 

Even so, neural networks have proven helpful in problems that would be hard to solve with 

conventional algorithms, as these problems may require some degree of intuition and con-

fusing logic. (Emergent Garden, 2022.) 

5.7 Training Neural Networks 

As mentioned in section 4.3.1, supervised learning first entails a training phase, where the 

model parameters are tuned so it can learn the given dataset. In this process, it is said that 

the model "fits" to the dataset. In the case of neural networks, these parameters are the 

weights and biases, as seen in Equation 4 for a single neuron.  

5.7.1 The cost function 

The main goal of the training is to seek a set of values for the weights and biases that better 

approximates the function 𝑓(𝑥) for all the values 𝑥, as said in section 5.3. Therefore, meas-

uring how well the neural network approximated 𝑓(𝑥) is essential. To achieve this, a cost 

function can be defined as in Equation 9, where 𝑎 represents the output of the network, 𝑛 

signifies the total number of samples in our training dataset, and 𝑤 and 𝑏 encompass all the 

parameters of the neural network, with the summation of 𝑥 representing the sum of all train-

ing samples. While various formulas can be utilized to compute the cost function, the most 

common one is Mean Squared Error (MSE), which is the one used in this case. (Linares 

2021e.) 

𝐸(𝑤, 𝑏) = 	 #
/0
∑ ‖𝑓(𝑥) − 𝑎‖/⬚
2  (9) 

By defining this cost function, the objective of the training is to determine the set of values 

for 𝑤 and 𝑏 that minimize 𝐸(𝑤, 𝑏). Geometrically, the cost function can be visualized as an 

error surface over the weight space, as depicted in Figure 16. The problem of minimizing 
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the cost function thus involves seeking the minimum of this error surface. An absolute min-

imum of the cost function, called a global minimum, corresponds to the weight vector 𝑤1. 

However, other local minima may exist, such as those corresponding to the weight vector 

𝑤2 . (Bishop, C. M. 1994; Linares 2021e.) 

 

Figure 16. The cost function E(w) seen as a surface over weight space (the space spanned 
by the values of the weight and bias parameters 𝑤 = {𝑤_1,… ,𝑤_𝑙}) (Bishop, C. M. 1994). 

For single-layer networks with linear activation functions, the cost function lacks local min-

ima, allowing for a straightforward finding of its global minimum through solving a set of 

linear equations by analytically using the derivative: 𝐶′(𝑣) 	= 	0. In Figure 16 it is easy to 

locate these minimums because it is a three-dimensional function, where the network only 

has two parameters: 𝑤' and 𝑤). But for multilayer networks, the error function is highly 

nonlinear and highly dimensional regarding the weights, so calculating the derivative in this 

way is infeasible. Consequently, the search for the minimum typically proceeds iteratively, 

starting from a randomly chosen point in weight space. This random initialization is not trivial 

since if all weights are set to the same value, like zero or one, every hidden neuron will 

receive identical signals. This means that each unit in the hidden layer will be the same, 

regardless of the input. This hinders the learning process because most basic training al-

gorithms are greedy, meaning they do not search for the global optimum but the "nearest" 

local solution. As a result, any fixed initialization will bias the solution towards a particular 

set of weights. To avoid the learning process getting stuck in some strange part of the error 

surface, the weights are randomly initialized. In machine learning terminology, this is re-

ferred to as "breaking the symmetry". (Bishop, C. M. 1994; Shayan RC 2013; Linares 

2021e.) 
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While some algorithms converge to the nearest local minimum, others can escape local 

minima, potentially reaching a global minimum. Generally, the cost function surface is ex-

ceedingly complex, and achieving a good local minimum may suffice for many practical 

applications. (Bishop, C. M. 1994.) 

5.7.2 Gradient Descent Algorithm 

As stated before, traditional calculus methods are not applicable to multilayer perceptrons. 

Fortunately, there is an elegant analogy that proposes a rather effective algorithm. If one 

glance at the Figure 16, it is possible to picture the cost function surface as a valley. Now, 

if a ball was rolling down the slope of this valley, common experience suggests that the ball 

will eventually settle at the bottom. Could this concept be used to locate a minimum for the 

function? One might start by selecting a random starting point for an imaginary ball and then 

simulate its motion as it rolls down to the valley's bottom. This simulation could be accom-

plished by computing derivatives (and possibly some second derivatives) of the cost func-

tion. These derivatives would provide insight into the local "shape" of the valley and guide 

the ball's motion. So, what laws could be imposed to ensure it always rolled to the valley's 

bottom? To refine that question, it is necessary to define what the gradient is. The gradient, 

symbolized as ∇, is a vector whose components are the function's first-order partial deriva-

tives with respect to its variables. The gradient vector provides directional guidance toward 

the most rapid increase in a function's value. Essentially, it acts as a compass, indicating 

the direction of maximum growth. This gradient vector is marked as ∇𝐸 in Figure 16. (Niel-

sen, M. 2019; The Math Sorcerer, 2020.) 

Therefore, the gradient for the cost function in Figure 16 would be defined as Equation 10 

shows:  

∇𝐸 ≡ ( 34
350

, 34
353

	)(10) 

But because the aim is to minimize 𝐸, what is interesting is the negative of the gradient, 

which would indicate the direction of minimum growth. By defining 𝛥𝑤 to be the vector of 

changes in 𝑤, 𝛥𝑤 ≡ (𝛥𝑤', 𝛥𝑤)), and transposing both this vector and Equation 10, it is 

possible get a new 𝛥𝑤 that further minimizes 𝐸 using Equation 11: 

𝛥𝑤 = −𝜂∇𝐸 (11) 

Where 𝜂 is a small, positive number known as the learning rate. This Equation 11 can then 

be used to update the parameters of the network as shown in Equation 12: 
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𝑤 → 𝑤′ = 𝑤 − 𝜂∇𝐸 (12) 

If this update rule is used iteratively, 𝐸 will keep decreasing until, hopefully, reaching a local 

or global minimum. This is the gradient descent algorithm. To put it briefly, the gradient 

descent algorithm operates by calculating the gradient 𝛻𝐸 multiple times and then going in 

the opposite direction. This results in "falling down" the slope of the valley. (Nielsen, M. 

2019.) 

To ensure gradient descent to function properly, a small enough learning rate must be se-

lected. At the same time, 𝜂 should not be too small, as this would cause the changes Δw to 

be insignificant, slowing down the gradient descent algorithm. In practice, the value of 𝜂 

may be varied while the network is learning to achieve a good approximation without caus-

ing the algorithm to be too slow. (Nielsen, M. 2019.) 

Several challenges appear when applying the gradient descent rule. To understand one of 

these issues, revisiting the quadratic cost outlined in Equation 9 is crucial. This cost repre-

sents an average over costs for individual training examples. In practical terms, computing 

the gradient 𝛻𝐸 requires computing the gradients 𝛻𝐸4 separately for each training input, 𝑥, 

and then averaging them. Unfortunately, when dealing with a large number of training in-

puts, this process can be computationally expensive, leading to slow learning. To speed up 

learning, an approach known as stochastic gradient descent can be employed. This method 

estimates the gradient by computing 𝛻𝐸4	 for a small sample of randomly selected training 

inputs. A reliable estimate of the true gradient 𝛻𝐸4	 can be obtained by averaging over this 

sample, facilitating a faster gradient descent, and learning. (Nielsen, M. 2019.) 

To elaborate further, stochastic gradient descent operates by randomly selecting a small 

number 𝑚 of training inputs, forming what is called a mini-batch. Training proceeds by se-

lecting and utilizing a randomly chosen mini-batch of training inputs, and repeating this pro-

cess until all training inputs have been exhausted, completing an epoch of training. Subse-

quently, a new training epoch starts. (Nielsen, M. 2019.) 

5.7.3 Backpropagation Algorithm 

However, how the actual gradient of the cost function is calculated is still to be explained, 

and this is not a trivial matter. The algorithm that does such a calculation is called back-

propagation. While the backpropagation algorithm was initially introduced in the 1970s, its 

significance was not fully recognized until the publication of a renowned paper in 1986 by 

David Rumelhart, Geoffrey Hinton, and Ronald Williams. This paper presents various neural 
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networks where backpropagation significantly outperforms earlier learning approaches, en-

abling the solution of previously unsolvable problems using neural networks. Currently, the 

backpropagation algorithm is the cornerstone of learning in neural networks. At the core of 

backpropagation lies an expression for the partial derivative ∂E/∂w of the cost function 𝐸 

concerning any weight 𝑤 (or bias 𝑏) in the network. This expression gives information about 

the rate at which the cost changes when modifying the weights and biases. The algorithm 

applies a concept in calculous called the chain rule, propagating the gradient recursively 

and backwards through the network, giving the algorithm its name. (Nielsen, M. 2019; Lina-

res 2021e.) 

5.8 Convolutional Neural Networks (CNNs) 

CNNs or Convolutional Neural Networks are similar to traditional ANNs as they consist of 

self-optimizing neurons that learn through experience. However, CNNs are primarily used 

to recognize patterns within images. One significant difference between the two is that the 

layers within the CNN are made up of neurons organized into three dimensions, including 

height, width, and depth. There are three types of layers within a CNN: convolutional, pool-

ing, and fully connected. (O'Shea, Keiron & Nash, Ryan 2015.) 

5.8.1 Convolutional layer 

The convolutional layer plays a vital role in the functioning of Convolutional Neural Networks 

(CNNs), as indicated by the network's name. During a convolution process, a filter moves 

over the image's pixels to identify and capture specific features. (O'Shea, Keiron & Nash, 

Ryan 2015; Bisong, E. 2019.) 

To understand the convolution layer, it is important to define what convolution means. Con-

volution is a technique for extracting specific information from a matrix by applying a function 

to it. The function operates as a sliding window moving across the matrix and is often re-

ferred to as either a convolutional filter or a kernel, with both terms being used interchange-

ably in research. In Figure 17, the process is illustrated with a filter sliding through the matrix 

to extract information. (Bisong, E. 2019.) 
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Figure 17. An illustration of a convolutional layer. The input vector is covered by the kernel's 
central element, and a weighted sum of the nearby pixels and itself is calculated and re-
placed (O'Shea, Keiron & Nash, Ryan 2015) 

Filters in a convolutional layer function as neurons and are allocated specific weights. As 

previously mentioned, they operate through a sliding window mechanism. The result of ap-

plying a filter is known as a feature map. These filters also serve as neurons and include a 

non-linear activation function. The input to a filter might either be the pixel matrix of an image 

at the input layer or the feature maps from an earlier convolutional layer when the filter is 

employed in deeper layers of the network. (Bisong, E. 2019.) 

Filters are designed with a predefined square input size, often a 3 x 3 size, which corre-

sponds to their local receptive field. Usually, researches use a larger number of filters in the 

deeper layers of the network while limiting their number at the input layer. Each cell within 

the filter has a specific weight, and these weights are used to multiply the corresponding 

pixel intensities of the input. The products of these multiplications are then summed to pop-

ulate the appropriate cell in the convolutional output. The configuration of these weights 

dictates the operation of the filter and, as a result, the type of features that are extracted. 

Various filters specialize in different functions, such as detecting edges and lines. (Bisong, 

E. 2019.) 

Key considerations to make when designing a convolutional layer are 

• the filter size 

• the stride of the filter 

• the padding for the layer input. 

(Bisong, E. 2019.) 

The filter's stride specifies the number of pixels the filter moves from one image activation 

to the next. Using a stride of 1 is common, but it can be increased for large images. When 

the filter size and stride are chosen, they may not evenly divide the input's size. To prevent 
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the loss of pixel information, zero padding is used to add a layer of zeros to the image pixels' 

borders. This includes the zeros in the convolution and enables the filter to move evenly 

through all pixels in the image. (Bisong, E. 2019.) 

Feature maps represent the outputs produced by filters in a convolutional layer, highlighting 

specific patterns within the input image, such as horizontal lines, vertical lines, and edges. 

These feature maps, when combined from various neurons, constitute a convolutional neu-

ral layer. This configuration allows the layer to recognize and learn complex patterns and 

features within an image. (Bisong, E. 2019.) 

5.8.2 Pooling layer 

Pooling layers are typically placed after one or more convolutional layers. Their primary role 

is to reduce or downsample the feature map produced by the convolutional layer. This 

downsampling is a form of summarization of the image features captured in earlier layers 

of the network, which contributes to preventing overfitting. Moreover, by reducing the input 

size, pooling layers help to lower processing and memory demands during network training. 

Essentially, a pooling layer acts as an aggregation function that compiles and extract key 

features from previous layers. In contrast to convolutional layers, pooling layers do not per-

form any multiplicative transformations on the input feature maps. Common aggregation 

functions used in pooling include max, sum, and average, with max pooling being the most 

frequently utilized in practice. (Bisong, E. 2019.) 

The aggregation functions in the pooling layer function similarly to filters, like those in con-

volutional layers. They operate within a receptive field, which is generally smaller than that 

of the convolutional layer, and use a defined stride width. However, unlike convolutional 

filters, the filters in the pooling layer, also viewed as neurons, do not possess any weights 

or biases. (Bisong, E. 2019.) 

5.8.3 Fully connected layer 

The layer performs the same tasks as those found in standard NNs, trying to generate class 

scores based on the activations, which can be used for classification purposes. (O'Shea, 

Keiron & Nash, Ryan 2015.) 

To input an image into the fully connected network (FCN), the image matrix needs to be 

flattened. For instance, an image matrix sized at 28 x 28 x 3 would be converted into 2352 

input weights, with an additional bias value of 1, before being fed into the FCN. (Bisong, E. 

2019.) 



38 

 

5.8.4 Advantages of CNNs 

When using a standard neural network, there must be as many input neurons as the image's 

pixels, flattening the image into a one-dimensional array of pixels. Therefore, if the input 

images were 300 by 300 pixels, with three channels (RGB), the neural network would need 

270000 input neurons. That means that each neuron in the second layer, would have 

270001 parameters that must be trained. (Linares 2021b.) 

However, in CNNs, the number of parameters does not scale with the input's spatial dimen-

sions (𝑥 and 𝑦). This occurs because the parameters of the convolutional layers, which are 

the kernels or filters, typically maintain fixed dimensions and can be applied to inputs with 

varying spatial dimensions by using appropriate padding. It is important to note that padding 

may enlarge feature maps, but these maps are not the parameters of the neural network; 

rather, they are the outputs of the convolutional layers. This might be the source of confu-

sion when observing a CNN diagram, as larger feature maps may suggest an increase in 

parameter count. (nbro, 2020.) 
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6 Optical Character Recognition  

6.1 Introduction to OCR 

Whenever encountering the term Handwritten Character Recognition, the first concept that 

typically comes to mind is OCR, short for Optical Character Recognition. OCR is a technol-

ogy that decodes characters and translates them into a format machines can understand. 

(Beohar, D., & Rasool, A., 2021.) 

Recognizing isolated handwritten digits has been a longstanding area of research, yet it 

remains a focal point both academically and in commercial settings. This interest stems 

from its practical applications such as automated form processing and handwritten postal 

code identification. Recognition systems' effectiveness heavily depends on the classifica-

tion methods employed, given that writings vary across languages and scripts. Therefore, 

developing these systems was particularly challenging before modern AI technologies. Pre-

viously, designing a classifier required manual feature extraction, and machines made de-

cisions based on the programmed features. However, technological advancements have 

led to the emergence of powerful deep learning algorithms such as Artificial Neural Net-

works, Convolutional Neural Networks, and Recurrent Neural Networks, which now deliver 

exceptional results. (Daniel Keysers, 2007; Beohar, D., & Rasool, A., 2021.) 

6.2 Stages of OCR 

OCR involves a five-stage process: Image Acquisition, Pre-processing, Segmentation, Fea-

ture Extraction, and Classification, with each stage playing a critical role: 

• Image Acquisition: This initial stage focuses on collecting, filtering, and cleaning im-

ages before further processing. 

• Pre-Processing: This crucial step involves cleaning images to minimize noise and 

eliminate unwanted data. It optimizes images by filling gaps and straightening lines 

and includes algorithms for correcting skew. The outcome of this stage is a binary 

image achieved through binarization and texture filtering. 

• Segmentation: This involves breaking down an image into smaller segments. Seg-

mentation can be categorized into line, word, and character types. Line segmenta-

tion splits an image into individual lines, word segmentation breaks it into words, 

and character segmentation divides words into characters. 
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• Feature Extraction: An essential part of dimensionality reduction, this stage simpli-

fies data for easier processing. For large datasets like MNIST, it enhances the effi-

ciency of the recognition process by removing redundant data while preserving es-

sential features. As said in section 5.2, this process is carried out automatically by 

deep learning models. 

• Classification: The final decision-making stage in the recognition process, where the 

output from feature extraction is classified. 

(Beohar, D., & Rasool, A., 2021.) 

6.3 The MNIST dataset 

The MNIST dataset is an excellent instance of the problem of handwritten digit classifica-

tion. Created by the National Institute of Standards and Technology (NIST), this dataset 

includes 60,000 training images and 10,000 test patterns, each 28x28 pixels with 256 gray 

levels. The challenge of recognizing these digits is generally not considered 'difficult' be-

cause the human error rate is low, around 0.2%, and the large volume of training data helps 

machine learning models to generalize effectively. Some examples from the MNIST dataset 

can be seen on Figure 18. (Daniel Keysers, 2007; Beohar, D., & Rasool, A., 2021.) 

 

Figure 18. Samples from the MNIST dataset (Daniel Keysers, 2007) 
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7 Common tools for AI applications 

7.1 Programming languages used in AI 

Python is a top choice for data science in various industries mainly due to its straightforward 

syntax and abundant machine learning/deep learning libraries written for this language. 

These libraries facilitate the development of data science solutions without the need to learn 

the intricacies of specific algorithms or techniques. With a vast community of developers, 

these packages are continually enhanced and maintained through collaborative efforts. (Bi-

song, E 2019.) 

Java is a powerful programming language extensively used in various software develop-

ment contexts, especially notable in the mobile app sector. It is preferred by AI developers 

for several reasons, including its ease of debugging, user-friendliness, and maintainability. 

Its compatibility across different platforms ensures that AI-driven projects can be imple-

mented on multiple devices. A key example of an AI project using Java is Deeplearning4j 

(DL4J), a leading open-source deep learning library. (Anoriega 2022.) 

C++, on the other hand, is a programming language celebrated for its speed and efficiency, 

qualities that make it ideal for machine learning and neural network projects where perfor-

mance is crucial. Although it may be more complex to program in than some other lan-

guages, C++'s execution speed makes it well-suited for performance-intensive applications. 

It is often used alongside other languages to create AI-focused software. A prominent ex-

ample of a tool that integrates C++ for AI applications is OpenCV. This library is among the 

most complete collections of machine learning and computer vision algorithms available, 

enabling capabilities such as object identification, face recognition, 3D scanning of objects, 

and more through its advanced computer vision algorithms. (Anoriega 2022.) 

JavaScript is the most popular programming language globally, according to GitHub rank-

ings. This status is hardly surprising given its significant role in shaping the modern web, 

facilitating much of the interactivity prevalent in everyday websites. JavaScript is a good 

choice for artificial intelligence due to its array of high-level tools and libraries for machine 

learning tasks. Notably, TensorFlow.js is an exemplary tool capable of running directly 

within the browser. This capability opens up many possibilities for web developers, enabling 

the creation of browser-based AI applications. (Anoriega 2022.) 

Numerous programming applications demand the integration of two or more programming 

languages, typically pairing one with high performance, like C++, and another that simplifies 

programming complexities, such as Python. While this approach proves functional, it often 

creates a conflict between performance and ease of use. Conceived at MIT in 2009, Julia 
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sought to address some of these challenges. Julia stands out in AI programming due to its 

built-in package manager and strong support for parallel and distributed computing. It is 

especially valuable for scientific computing and data analysis. Its parallelism capabilities, 

which enable multiple processes to run concurrently, are highly relevant for machine learn-

ing and AI applications. As a result, Julia's significance in the field is expected to increase. 

(Anoriega 2022.) 

7.2 Python libraries for AI applications 

NumPy is an open-source Python library created in 2005 tuned for numerical computations. 

It closely resembles MATLAB in its functionality and power, especially when paired with 

complementary packages like SciPy for scientific operations, Matplotlib for visualizations, 

and Pandas for data analysis. Abbreviated as "numerical python," NumPy excels in its ca-

pacity to handle and manipulate n-dimensional arrays, a crucial feature for developing ma-

chine learning and deep learning models. Since data is commonly structured as a matrix-

like grid with rows representing observations and columns indicating variables or features, 

NumPy's 2-D array perfectly accommodates the storage and manipulation of datasets. 

(NumPy - About us; Bisong, E 2019.) 

Pandas is a specialized Python library for data analysis, particularly excelling with large 

datasets. It was created in 2008 at AQR Capital Management. It offers user-friendly features 

for handling tasks such as data reading and writing, managing missing data, reshaping da-

tasets, and manipulating data through slicing, indexing, inserting, and deleting variables 

and records. In summary, Pandas is the essential tool for data cleaning and exploration 

tasks. (pandas - Python Data Analysis Library; Bisong, E 2019.) 

Before applying a machine learning algorithm or any other analytical technique, it is crucial 

to make observations of the variables within a dataset. Data visualization is a fundamental 

tool for comprehending the dataset and extracting insights into its underlying structure. 

These insights help scientists to determine suitable statistical analyses or choose the most 

appropriate learning algorithms for the dataset. Additionally, visualization offers valuable 

insights into potential transformations that could enhance the dataset. Matplotlib is a funda-

mental graphics package for data visualization within Python, playing a central role in the 

Python data science ecosystem and seamlessly integrating with NumPy and Pandas. Its 

pyplot module closely mirrors MATLAB's plotting commands, facilitating a smooth transition 

to Python-based plotting for MATLAB users. (Bisong, E 2019.) 
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In contrast, Seaborn extends the capabilities of Matplotlib, offering a simpler set of methods 

for generating visually appealing graphics in Python. Seaborn is particularly well-suited for 

working with Pandas DataFrames, providing enhanced integration. (Bisong, E 2019.) 

7.3 Machine Learning libraries for Python 

TensorFlow (TF) is an open-source library created by Google in 2015, specialized numerical 

computation intended for machine learning applications. It has garnered widespread adop-

tion among machine learning researchers and industry professionals for its efficacy in de-

veloping deep learning models and architectures. It is the preferred tool for deploying 

trained models into production servers and software products. TensorFlow functions as an 

interface for designing machine learning algorithms and as an implementation tool for exe-

cuting them efficiently. It provides exceptional versatility, enabling computations defined in 

TensorFlow to run on a wide range of systems, from mobile devices like phones and tablets 

to large-scale distributed systems consisting of hundreds of machines and thousands of 

computing devices. TensorFlow has proven invaluable for both research and production 

deployment of machine learning systems across many fields, such as speech recognition, 

computer vision, robotics, information retrieval, natural language processing, geographic 

information extraction, and computational drug discovery. TensorFlow essentially lets users 

create mathematical functions on tensors (hence the name), which are multidimensional 

arrays of numbers akin to matrices or vectors but extending to any number of dimensions. 

It does this using computational graphs, allowing users to define and compute gradients of 

these functions. Regarding capabilities, TensorFlow offers what NumPy does, but with the 

added advantage of GPU acceleration and automatic differentiation. TensorFlow Lite 

(TFLite) is a library that allows developers to implement on-device machine learning across 

mobile, embedded, and IoT devices through a comprehensive set of tools. Optimized for 

on-device machine learning, its key features prioritize latency, privacy, connectivity, and 

power consumption. The framework supports various platforms, including Android and iOS 

devices, embedded Linux, and microcontrollers. Additionally, TensorFlow Lite offers built-

in support for multiple programming languages such as Java, Swift, Objective-C, C++, and 

Python. (Martín Abadi et al. 2015; Bisong, E, 2019; Ketkar, N.S. 2021; Seeed Studio Wiki 

2023.)   

Keras is a deep learning API initially operated independently from TensorFlow, serving as 

an interface for model creation with TensorFlow as one of its backend frameworks. How-

ever, with the release of TensorFlow 2.0, Keras became a built-in part of the TensorFlow 

codebase, now the favored high-level API for deep learning tasks. (Bisong, E 2019.) 



44 

PyTorch is a relatively new addition in the deep learning framework landscape. It provides 

a Python interface to the Torch engine, originally based on Lua, to define mathematical 

functions and compute their gradients. Unlike frameworks like TensorFlow that follow a de-

fine-compile-run model (where users write mathematical expressions in a computational 

graph format that gets compiled for execution), PyTorch adopts a define-by-run approach. 

This dynamic nature eliminates the need for compilation, allowing users to define expres-

sions and compute gradients directly. Pytorch code often appears more intuitive and closely 

resembles the mathematical descriptions of the network compared to TensorFlow. Debug-

ging is also more straightforward with PyTorch due to its dynamic structure. In contrast, 

debugging in TensorFlow requires navigating two layers of abstraction: the Python code for 

building the computational graph and the compiled graph itself. However, it's worth noting 

that TensorFlow's define-compile-run paradigm enables greater optimization of underlying 

computations. (Ketkar, N.S. 2021). 

7.4 Frontend 

In web development, the frontend comprises all technologies that run on the client side. 

However, it does not imply ignorance of Backend workings (server-side), as understanding 

the backend is necessary for consuming data and structuring the UI layouts effectively for 

user comfort. Frontend is responsible for styling the page so that it can present information 

in a user-friendly manner. The frontend developer must be acquainted with user experience 

techniques to enhance interaction between the user and the visited page and also possess 

knowledge of interaction design to position elements for quick and comfortable user navi-

gation. Numerous technologies must be known to the frontend developer. For instance, 

JavaScript has frameworks like Angular and React Native. For other languages, Flutter or 

Pynecone are some notable examples. (Pérez Ibarra, S. G et al. 2021.) 

React Native 

Developed by Facebook, React Native originated from an internal hackathon aimed at 

streamlining iOS and Android development processes. Initially introduced in 2015, React 

Native has evolved into an open-source framework, with contributions not only from Face-

book but also from individual developers and notable companies like Samsung and Mi-

crosoft. Categorized as an interpreted cross-platform framework, React Native employs the 

standard native rendering API of the target platform to render UI components. Utilizing Ja-

vaScript interfaces, React Native applications can access platform-specific features such 

as the phone's microphone or camera. Built upon Facebook's React JavaScript library for 

building user interfaces, React Native applications, like React applications, are written using 

a combination of JavaScript and JSX. The primary distinction between React Native and 
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React is their target platforms, with React Native focusing on mobile platforms rather than 

browsers. (Hjort, E. 2020.) 

Flutter 

Flutter is a cross-platform framework designed for the development of mobile applications. 

Google publicly introduced Flutter in 2016, and it stands out as Google's chosen application-

level framework for its Android OS. What sets Flutter apart is its reliance on the device's 

widgets instead of utilizing web views. Utilizing its own high-performance rendering engine, 

Flutter renders each view component independently, offering the potential to create appli-

cations with performance levels comparable to native ones. In Flutter, every application is 

developed using Dart, a programming language developed and maintained by Google. Dart 

is extensively utilized within Google and has demonstrated its capability in building large-

scale web applications like AdWords. Originally intended to replace JavaScript, Dart incor-

porates many key features of JavaScript, including the "async" and "await" keywords. How-

ever, Dart adopts a syntax reminiscent of Java to appeal to developers unfamiliar with Ja-

vaScript. In terms of architecture, during compilation, Dart code is transformed into native 

code. Flutter's hot reload feature, known as stateful hot reload, significantly enhances the 

development cycle by allowing developers to make changes and instantly see them re-

flected without altering the application's structure. This is achieved by sending updated 

source code to the running Dart Virtual Machine (Dart VM), ensuring that the application's 

transitions and actions remain intact after reloading. Flutter applications refresh the view 

tree with each new frame, a process distinct from many other systems that utilize reactive 

views. While this approach ensures consistency, it presents a drawback: numerous objects, 

even those needed for a single frame, are created. Even though, with Dart's modern design, 

Flutter optimizes memory management through "Generational Garbage Collection" to han-

dle such scenarios efficiently at the memory level. (Tashildar, A., et al. 2020.) 

7.5 Back end 

The backend refers to the data access layer of a software inaccessible to the end-user, 

housing the application logic for handling data. The backend developer operates on the 

server side and must be skilled in web application or cross-platform application develop-

ment. They must understand interactions with different databases, discerning the differ-

ences and qualities of commonly used ones. This does not mean that a backend developer 

should completely disregard frontend work but rather possess the necessary knowledge for 

effective teamwork, as both roles complement each other. The backend developer needs 

expertise, depending on their workplace, in server-side languages like Java, C#, PHP, 
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Node.JS, among others, as well as those interacting with databases such as MySQL, Post-

greSQL, SQLServer, MongoDB, and others. Some backend technologies include Next.JS 

for Javascript, or Flask and FastAPI for Python. (Pérez Ibarra, S. G et al. 2021.) 

Flask 

Flask is a WYSIWYG (what you see is what you get) web application framework renowned 

for its simplicity and ease of use while still capable of handling complex applications. Initially 

conceived as a modest wrapper around Werkzeug and Jinja, it has evolved into one of the 

most sought-after Python web application frameworks. One of Flask's notable characteris-

tics is its non-intrusive approach. While it offers recommendations, it refrains from imposing 

specific dependencies or project structures on developers. Instead, it empowers developers 

to handpick the tools and libraries that best suit their needs. Additionally, the Flask commu-

nity provides many extensions, simplifying the process of incorporating new functionalities 

into applications. (Pallets.) 

FastAPI 

FastAPI is as a web framework aimed at crafting APIs using Python 3.8 and above. Note-

worthy among its attributes is its remarkable speed, a trait comparable to industry bench-

marks like NodeJS and Go, facilitated by the integration of Starlette and Pydantic. Ease of 

use remains a fundamental aspect of FastAPI's philosophy, highlighted by its user-friendly 

design and minimal learning curve. By prioritizing simplicity, developers can focus more on 

actual implementation than navigating extensive documentation. Furthermore, its concise 

syntax mitigates code duplication, maximizing efficiency and minimizing the likelihood of 

bugs. (Tiangolo.) 
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8 Practical case: Kanji recognition mobile app 

8.1 Introduction 

Now that I have established some of the foundational concepts, I will describe the develop-

ment of a practical case study that focuses on a mobile application that recognizes kanji 

characters through the integration of AI techniques.  

The idea of the practical case came to me when I first started learning Japanese. Searching 

information for specific characters when I did not have the option to copy and paste them 

into the search bar was difficult. For example, in Jishoo.org, a common Japanese dictionary, 

you either have to search by radicals or by drawing. If I was walking around Japan, for 

example, and I saw a character I did not know, it would be convenient to have a way to 

search for information about that character quickly. Thus, the main objective of the practical 

case is having a quick way to get relevant information about these characters without going 

through all the troubles of searching for them in conventional Japanese dictionaries. 

The use of AI for this case is justified because recognizing these characters in images is 

infeasible through conventional programming. As I said in section 2.1, there are over 2000 

daily-use characters. How can someone, using regular logic and programming constructs, 

develop an algorithm to differentiate between all of them? It is not viable. This is where AI 

comes into play. As said in the theoretical case, AI, particularly deep learning, works very 

well for tasks that are hard to program and with unstructured data such as images. 

8.2 The model 

My first step in developing the practical case was to search for a model trained to recognize 

kanji. Nowadays, there is almost an AI model for everything, so I preferred to get a working 

app as fast as possible by looking for a pre-trained model instead of reinventing the wheel 

and training one by myself. My search concluded with two possible candidates: 

• manga-ocr by kha-white. 

• DaKanji-Single-Kanji-Recognition by CaptainDario. 

Manga-ocr is an optical character recognition for Japanese text, with the main focus being 

Japanese manga. The first version of the backend was actually developed with this model, 

and it worked well. As the repo says, the model focuses on recognizing text from manga, 

but it performed well in most cases with pictures of street signs, which is the primary cause 

I thought for my application. However, I also wanted my application to recognize handwritten 

text, and the repo itself states that it probably won't be able to handle handwritten text 
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though. This was one of the reasons why I discarded this model, but the other reason was 

that this model uses a Transformer. Transformers is one of the most powerful AI techniques 

nowadays, and it is actually what the famous ChatGPT uses under the hood (Toews, R. 

2024). The problem was that because Transformers are complex models, I would have had 

a hard time understanding them and explaining them in the theoretical case. Therefore, I 

decided to use the second model. (Kha-White.) 

DaKanji-Single-Kanji-Recognition by CaptainDario is a model for recognizing single kanji 

characters. It is less powerful than the other model in that sense, as manga-orc could rec-

ognize entire lines of text at once. Regardless, the use case of my app was to provide 

information about a single kanji Character, so DaKanji still fitted my needs. The biggest 

advantage was that DaKanji is a CNN, so I could understand how it worked. In fact, because 

the repo provided the code used to train the model, one can notice that it is using a network 

architecture called EfficientNetLite, as seen on Figure 19. (CaptainDario.) 

 

Figure 19.  DaKanji uses the EfficientNet architecture (CaptainDario) 

EfficientNet is a convolutional neural network architecture designed specifically for image 

recognition and is currently regarded as one of the leading frameworks in this field. Devel-

oped by Mingxing Tan and Quoc V, this architecture is the product of several years of com-

prehensive research and incorporates multiple innovative techniques. At its core, Efficient-

Net utilizes inverted residual blocks from the MobileNetV2 architecture along with the 

MnasNet search strategy. Although these smaller blocks were not present when MnasNet 

was initially designed, their incorporation has significantly enhanced the performance of the 

network models derived from this research. (Tan, M., & Le, Q. 2019; Koonce, B., & Koonce, 

B. 2021.) 
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Testing the model 

Before doing any serious work, I set up this simple Google Collab notebook for testing the 

model and seeing how it performs with some images of my own. As said in section 4.3.1, 

when doing predictions, is necessary to feed the model the same features it was trained on. 

Looking at the Python notebook the author used to train the model, it looks like he used 64 

by 64 grayscale images of the characters over a black background (CaptainDario). So, be-

fore feeding my own images into the model, I had to write code in order to apply the same 

effects to my images, as seen on Figure 20. In this piece of code, I first resize the image to 

be 64 by 64 and then I normalize the pixel values to be between 0 and 1. Normalizing the 

input values fed into the network is important because when a feature within a dataset sig-

nificantly outweighs others in scale, it can become dominant and influence the predictions 

made by a neural network, leading to inaccuracies. Also, as explained in section 5.3, during 

forward propagation, neural networks compute outputs by taking the dot product of weights 

with input features. When input values are excessively high, calculating the output requires 

considerable computation time and memory resources. By normalizing inputs, neural net-

works can operate more efficiently, leading to faster convergence and improved prediction 

accuracy. The rest of the lines just reshape the image to a suiting shape for feeding into the 

model. (user11530462 2020.) 

 

Figure 20. Python function for pre-processing images before feeding them into the model 

However, this function was not enough to achieve good results. With this version, the model 

did not work at all. I had to apply three fixes to get a reasonable accuracy. The first fix, seen 

in Figure 21, was introducing code to decide whether the image should be inverted or not, 

so I did not have to do this manually. This fix was more of a quality-of-life improvement than 

something to improve accuracy. This function takes an image as input along with optional 

parameters for border size and a threshold value. It decides whether the image should be 

https://colab.research.google.com/drive/1an0WVQW4v6sHhyVN7yjbXzhbrxo3J5Wp?usp=sharing
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inverted or not based on the average pixel intensity of its borders. The second fix was the 

most impactful of all. I noticed that after inverting the images, some grey pixels were still left 

on the background of the images. I figured this could be confusing the model, so I coded a 

function for cleaning the image and left the background of the images completely black. The 

function applies a threshold to the input image, converting it into a binary mask where pixels 

with intensity values greater than or equal to 128 are set to 255 (white), and pixels with 

intensity values less than 128 are set to 0 (black). Next, it applies the binary mask to the 

inverted input image using bitwise AND operation, effectively removing the parts of the im-

age where the binary mask is black. Finally, I applied a sharpen filter over the image to help 

the neural network. With all these fixes, I managed to have a relatively good working model, 

as seen in Figure 22. 

 

Figure 21. Python functions used in the pre-processing of the images 
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Figure 22. The model can be seen to be working correctly 

8.3 Making a test application 

Now that I know the model works, it is time to integrate it into a mobile application. Of course, 

I needed some kind of framework for developing mobile applications. In this case, I decided 

to use Flutter as I had already developed Flutter applications before, and it allowed me to 

develop mobile applications with little difficulty. In all my projects, I always start with some-

thing small that I can build upon after things start to work, so I started developing a very 

basic application. For this first version, I placed a button in the middle of the screen to select 

a picture to send to the backend so a prediction can be made. After the app gets back the 

result, it displays it in a text below the button, as seen in Figure 23. For the backend, I chose 

Python as the server programming language. It was the easiest option for loading and using 

the model in an API. Furthermore, using FastAPI, getting an API working to make predic-

tions only took a couple of hours. The functionality is straightforward and can also be seen 

on Figure 23 as a flowchart. The server receives an image over the network as a request, 

pre-processes the image, makes a prediction, and returns the resulting character. 
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Figure 23. First version of the app alongside the backend code flowchart. In the app, the 
user can select a picture and see the predicted character as a text 

Now, because this backend was running on my laptop, my phone needed to be on the same 

network as my MacBook for my phone and my laptop to communicate the requests and 

responses back to each other. However, the requests on my phone did not seem to reach 

my laptop for some reason. The first culprit that came to my mind was the MacBook’s fire-

wall blocking the HTTP request because pings did work, but even after disabling the firewall 

on the settings page, requests still did not work. I discarded my phone as the problem, as I 

could see with Wireshark, a program to sniff network traffic, that the requests were being 

sent. After much searching, I discovered a question on StackExchange.com with a user 

experiencing a similar problem. It turns out there was another application firewall running 

called socketfilterfw. After turning it off by issuing the command seen in Figure 24, every-

thing worked as it should. 

 

Figure 24. Command to disable macOS’s application firewall blocking the requests 

8.4 Using TensorFlow Lite 

Before enhancing the application, I wanted to avoid depending on my laptop to have the 

backend running. This added freedom would make testing my application by other users 

easier, and it would also greatly enhance the app's further development. My first idea was 
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to run the machine learning model on the device itself instead of an external server. Be-

cause portable devices cannot really run standard TensorFlow models, Google developed 

TensorFlow Lite as mentioned in section 6.3. Luckily, CaptainDario offered a TensorFlow 

Lite version of the model, so it was a matter of looking at how to integrate it with Flutter. 

This is where problems started to arise because out of the bad, there were three different 

libraries for TensorFlow Lite in pub.dev (official package repository for Dart and Flutter 

apps): tflite, tflite_v2, and tflite_flutter. This last one is the official package developed by the 

TensorFlow team, so this was the reasonable package to choose. However, because I did 

not understand the instructions entirely, I decided to go with tflite_v2 since it seemed easier 

to use. After following the instructions to install it, I could not build the application, as it would 

always throw an error. After some searching, I found no successful answer, so I decided to 

use tfile_flutter and try to get it working. After following the install instructions, I got another 

error, shown in Figure 25. In this error output, Flutter suggested that I change the minimum 

SDK (software development kit) version of the project to 26, and so I did. With this change, 

the app finally built correctly. 

 

Figure 25. Error thrown by my code editor after installing tflite_flutter in the Flutter project 

Despite this, I still had to tackle another problem: the pre-processing of the images. Going 

serverless meant I also needed to move the pre-processing logic to the device. This im-

posed a problem because, although there is a package of OpenCV for Flutter called 

opencv_dart in pub.dev, there is no equivalent of NumPy for Dart, which is an issue as my 

pre-processing code uses some of NumPy functions. After much trial and error, I could not 

get this logic to work and even if I kept trying and managed to make it work, the code would 

have ended up too convoluted and difficult to read. 
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Since, at this point, I knew going serverless would not be worth the trouble, I thought that 

finding some sort of hosting server that allowed me to run the prediction script of Figure 23 

on the cloud would be good enough. It is not serverless, but I would not have to run the 

server on my laptop, meaning I could use the application everywhere and anytime as long 

as I had internet access, and the hosting service was up. I considered several alternatives, 

like AWS, Google Cloud, Heroku, PythonAnywhere, and Render. Google Cloud and Heroku 

were discarded quickly as none offered a free tier. AWS did offer a free tier, but it had trouble 

with the prediction script's dependencies. 

On the other hand, PythonAnywhere was also free but did not work correctly, and the func-

tionality and interface were strange. In the end I went with Render. Render allows the con-

nection of a GitLab repository and automatically deploys the application after a commit is 

made to the repository. This requires some configuring, and I had trouble with the depend-

encies, especially with OpenCV. After fixing that, the application would have deployed cor-

rectly if something had not slipped my mind. I forgot that the free tier of Render only allowed 

the use of a total of 512 MB of RAM. The standard TensorFlow Model that I was using 

consumed more than this, causing the deployments to fail. I was about to give up the idea 

and just continue using my laptop as the server when I realized I could just use the TFLite 

model on the server, as that would consume much less RAM. Indeed, the deployment was 

successful after modifying the code to use the TFLite model instead. As seen in the Figure 

26, the process if a bit different when using a TFLite model instead of a regular TF model. I 

finally had my application backend running on the cloud at https://kanji-lens-backend-

mtsr.onrender.com/. Note that accessing this URL will not return anything as there is no 

route defined on the API for that. An image must be sent to https://kanji-lens-backend-

mtsr.onrender.com/perform_orc for the prediction to work. 

https://kanji-lens-backend-mtsr.onrender.com/
https://kanji-lens-backend-mtsr.onrender.com/
https://kanji-lens-backend-mtsr.onrender.com/perform_orc
https://kanji-lens-backend-mtsr.onrender.com/perform_orc
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Figure 26. Modified backend flowchart that uses TFLite on the Render cloud 

8.5 Final application 

Once I had my backend running in the cloud, I continued developing the rest of the appli-

cation. First, I tried to improve the interface by adding two big buttons, one for taking a 

picture with the camera and another for selecting a picture from the phone's camera. Addi-

tionally, since the whole point of the application was to display information about a specific 

kanji, I added a page to display the following information (Figure 27): 

• Diagram of the kanji: Kanji have a specific stroke order in which they must be drawn 

in order for them to look balanced. In code, this diagram is a package called 

"kanji_drawing_animation" found in pub.dev. It is helpful as it allows one to see an 

animation showing how to draw the kanji following its stroke order. 

• JLPT Level: Since 1984, the Japanese-Language Proficiency Test (JLPT) has been 

offered by the Japan Foundation and Japan Educational Exchanges and Services 

as a method for assessing and accrediting the Japanese language skills of non-

native speakers. The JLPT has five levels: N1, N2, N3, N4 and N5. N5 is the most 
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basic level, whereas N1 is the most difficult. This field indicates at which level the 

kanji would appear in a JLPT test. (JLPT  Japanese-Language Proficiency Test.) 

• Frequency: This field indicates the frequency with which this particular kanji appears 

in Japanese newspapers. This serves as a reference of how much the user would 

expect to see this kanji while reading Japanese texts or strolling through Japan. 

• Number of strokes: The number of individual strokes it takes to draw the kanji on 

paper. 

• Meaning: different meanings of the kanji. 

• On'yomi: On'yomi reading of the kanji, indicated by “音”. 

• Kun'yomi: Kun'yomi reading of the kanji, indicated by “訓”. 

• Example phrases: This field is self-explanatory. It helps the user see how the kanji 

is used in a phrase and the different readings it can take. 

The data on these fields are fetched from Jishoo.org, through an API also available in 

pub.dev called “unofficial_jisho_api”.  
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Figure 27. Final look of the application 

If one takes a closer look at the Japanese text in the examples, one can see tiny characters 

on top of the kanji characters. These are furigana, small kana placed adjacent to kanji as a 

reading aid on how the kanji is pronounced in that particular context (Bullock, B). My first 

version of the app did not have this, and implementing it was a bit of a challenge. For im-

plementing furigana, I used another package available in pub.dev called “ruby text”. The 

difficulty was that I had to modify a lot of the logic that fetches the examples and makes it 

available to the frontend, because instead of plain string of text, I now had to have a list of 

RubyText widgets, which itself needs a list of RubyTextData that contains the actual text 

string, as seen on Figure 27. I am not going to get into more detail, but in Figure 27 the 
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difference in the implementation between the version of the app without furigana on the left, 

and the app with furigana on the right, can be seen. 

 

Figure 28. Comparison of the application code that prepares the examples for the frontend, 
before implementing furigana (left) and after implementing furigana (right) 

As seen on Figure 29, I also implemented a functionality where the user can bookmark a 

kanji after recognizing it, so it can be checked later through a menu, indicating the kanji, the 

image taken, and when it was recognized. When pressing these items, a menu with the 

same page as Figure 27 pops up from the bottom. Implementing this also took a lot of 

refactoring since I wanted to avoid copying and pasting the same code from the UI in Figure 

27. The problem was that the code from Figure 26 contained the button and code to book-

mark the kanji but having that on the page in Figure 28 did not make sense. So, after some 

fighting with Dart and moving things around, I managed to get this working with somewhat 

good-quality code. The rest of the development involved refactoring code and making it 

more readable and portable. I especially struggled when trying to separate the UI code from 

the prediction logic, mainly because of problems with Dart's asynchronous programming, 

which is mandatory when fetching data from the internet. Nevertheless, I stopped my code 

editor from complaining after playing around a little bit. 
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Figure 29. The user can bookmark kanjis and look at them later 

8.6 Conclusion 

In the end, I got a working application that can recognize kanji correctly most of the time, 

as seen on Figure 30. So, I can say the objective of the case has been met successfully. 

Nevertheless, there is a lot of room for improvement. This research had several significant 

limitations. Mainly the dataset restrictions and the intrinsic complexities introduced by kanji. 

As I said in my introduction to Japanese, there are around 2000 daily-use kanjis. Training 

a model that can differentiate between such a number of kanjis is not trivial at all, as this 

exacerbates any issue the dataset might have, such as class imbalance. Because of this, 

the model is not as accurate as I would like. Also, it looks like the CNN was trained with a 

dataset that only contained hand-written kanjis, so it might have problems generalizing to 
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kanjis in street signs, for example. I tried other approaches, like training an open-source 

LLM like LLaVA with the same data the CNN was trained on or using another model called 

Kindai-OCR that I found on GitHub, but neither gave any results. Extracting the data Cap-

tainDario used for training the CNN was not possible in Collab due to the free plan limita-

tions, and even if I managed to re-train LLaVA and the model worked better, which is already 

an optimistic outcome, each call to LLaVA would have cost me some money. This last thing 

was a big deal for me as I wanted the application to be open-source while being uploaded 

to several app stores, and I was not willing to run the app at a loss. As for Kindai-OCR, it 

looks like the code provided in the actual version does not work, and although I tried to fix 

it by myself, I concluded that the effort required to fix all the code was not worth it, consid-

ering my time constraints. (DeepAps91; Liu, H., et al. 2023.) 

 

Figure 30. Results of the model in a small test dataset 
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Furthermore, because the model expects a single kanji, the user needs to crop the picture 

to center the desired character. This is rather inconvenient for the user, but I could not think 

of a better approach. I tried segmenting the kanjis using a conventional vision algorithm with 

OpenCV, but I did not manage to get this working successfully. Getting around this problem 

and providing the user with a smoother and more direct experience in this aspect would 

significantly improve the application. 

Another improvement I would like to pursue is integrating the model into the user’s device. 

As I said in section 8.3, this approach seemed complicated, but I think achieving this would 

be possible and worth it with more time and effort. I did not mention in the previous section 

that the free tier of Render makes the server go down after a short period of inactivity. This 

results in a considerable delay in the first request done to the server after a while. This is 

such a huge inconvenience that I cannot afford to publish the app on any app store, making 

debugging and development difficult. 
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9 Summary 

This thesis has looked into the development and implications of an AI mobile application for 

kanji recognition. What is important in this work is that it can help when learning kanji, which 

is an inherent part of the Japanese language and famous for its complexity. This paper 

proposes a practical solution in kanji learning by benefiting from AI techniques, specifically 

convolutional neural networks. 

I started by doing an introduction to the Japanese language and kanji, trying to highlight 

why it can be hard to learn. Afterward, I did a general introduction to AI, emphasizing in 

machine learning and deep learning, especially in neural networks and convolutional neural 

networks, which are pillars of these disciplines. Finally, I summarized some tools used in 

the field of AI and finished by describing the development process of my practical case. 

In my practical case, I developed an application for recognizing kanjis in images using a 

convolutional neural network and providing information about such kanjis. During the devel-

opment, I faced many programming challenges. Some of them I solved, but others made 

me change my approach. 

Overall, despite the problems, I think I was able to develop a helpful app that can be handy 

for Japanese learners, and I also exercised my problem-solving skills and became more 

confident in my ability to face problems and find solutions. 

All the code for the application, as well as releases, is available at my GitLab as open source 

for everyone to see, modify and improve. 

https://gitlab.com/rinuxu/kanji-lens
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