
Computer Standards & Interfaces 92 (2025) 103925

A
0

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Delta GUI change detection using inferred models
Fernando Pastor Ricós a,∗, Beatriz Marín a, Tanja E.J. Vos a,b, Rick Neeft b, Pekka Aho b

a Universitat Politècnica de València, València, Spain
b Open Universiteit, The Netherlands

A R T I C L E I N F O

Keywords:
Delta validation
GUI change detection
Scriptless testing
State model inference
Systematic mapping

A B S T R A C T

Recent software development methodologies emphasize iterative and incremental evolution to align with
stakeholders’ needs. This perpetual and rapid software evolution demands ongoing research into verification
practices and technologies that ensure swift responsiveness and effective management of software delta
increments. Strategies such as code review have been widely adopted for development and verification,
ensuring readability and consistency in the delta increments of software projects. However, the integration
of techniques to detect and visually report delta changes within the Graphical User Interface (GUI) software
applications remains an underutilized process. In this paper, we set out to achieve two objectives. First, we aim
to conduct a comprehensive review of existing studies concerning GUI change detection in desktop, web, and
mobile applications to recognize common practices. Second, we introduce a novel change detection tool capable
of highlighting delta GUI changes for this diverse range of applications. To accomplish our first objective, we
performed a systematic mapping of the literature using the Scopus database. To address the second objective,
we designed and developed a GUI change detection tool. This tool simultaneously transits and compares state
models inferred by a scriptless testing tool, enabling the detection and highlighting of GUI changes to detect
the widgets or functionalities that have been added, removed, or modified. Our study reveals the existence of a
multitude of techniques for change detection in specific GUI systems with different objectives. However, there
is no widely adopted technique suitable for the diverse range of existing desktop, web, and mobile applications.
Our tool and findings demonstrate the effectiveness of using inferred state models to highlight between 8 and
20 GUI changes in software delta increments containing a large number of changes over months and between
4 and 6 GUI changes in delta increments of small iterations performed over multiple weeks. Moreover, some
of these changes were recognized by the software developers as GUI failures that required a fix. Finally, we
expose the motivation for using this technique to help developers and testers analyze GUI changes to validate
delta increments and detect potential GUI failures, thereby fostering knowledge dissemination and paving the
way to standard practices.
1. Introduction

In recent decades, iterative and incremental software development
methodologies have gained widespread acceptance in a diversity of
projects ranging from small and large industries to personal and re-
search projects. The broad adoption of these methodologies, such as
agile practices, arises from their pivotal role in accelerating the dy-
namic and rapid evolution of software [1–3]. As the needs and ex-
pectations of software stakeholders continue to evolve, there is an
increased emphasis on continuous development and rigorous verifi-
cation as fundamental tasks. Consequently, it becomes imperative to
embrace practices, values, and principles that facilitate swift respon-
siveness to software changes, whether they stem from the environment,
user requirements, or delivery constraints [4].

∗ Corresponding author.
E-mail address: fpastor@pros.upv.es (F. Pastor Ricós).

In rapidly iterative and incremental software development projects,
there is a high emphasis on facilitating the seamless integration of
developers’ changes into shared software repositories. These integrated
repositories serve as a foundation for building every commit, running
tests, documenting requirements, and evaluating the overall quality of
the source code [5].

The concept of delta change within software development projects
generally refers to any modification or update from one software
version to the subsequent one [6]. This incremental change, known
as delta increment, can encompass a wide range of modifications,
regardless of their scale. For instance, it might involve preparing a new
software delta version, wherein multiple delta increments occur, such
as the development of new functionalities, bug resolution, integration
of unit tests, or updating documentation.
https://doi.org/10.1016/j.csi.2024.103925
Received 28 March 2024; Received in revised form 3 July 2024; Accepted 2 Septem
vailable online 3 September 2024
920-5489/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
ber 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/csi
https://www.elsevier.com/locate/csi
mailto:fpastor@pros.upv.es
https://doi.org/10.1016/j.csi.2024.103925
https://doi.org/10.1016/j.csi.2024.103925
http://creativecommons.org/licenses/by/4.0/

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 1. Overview of a delta testing process in software projects.
In software projects characterized by frequent delta increments
that bring changes in the software product, it is of paramount im-
portance to implement testing processes that streamline the analysis
and verification of these increments. The diverse delta developments,
whether introducing, removing, updating, or refactoring internal soft-
ware functionalities, may unintentionally introduce failures not only
in the implemented methods but also in the dependencies of classes
and libraries. The testing process should focus on detecting, controlling,
and minimizing these potential failures. Moreover, while human testers’
expertise and tacit knowledge are essential for testing and analyz-
ing results [7], human time is limited, especially in rapidly evolving
projects. Therefore, it is necessary to implement tools that automate
and complement the human efforts [8].

Depending on the size of the delta increment, the testing process
may require different types of analyses and verification techniques (see
Fig. 1). Minor delta increments, which involve small changes in code
methods, may be adequately validated through software compilation
and unit testing. On the other hand, larger increments, such as new
delta versions of a software product, demand additional analysis and
verification by multiple collaborators and techniques on the project,
including usability, functional, and security testing.

As code undergoes continuous evolution via delta increments, spe-
cific techniques, such as code reviews, have emerged as critical strate-
gies for development and verification, ensuring readability and consis-
tency in software projects [9]. This review process not only enhances
code quality but also stands as one of the most effective means to
uncover bugs and drive continuous improvements within the code-
base [10].

Recognizing delta changes within software code and performing
code peer reviews has become standard practice in software projects
[11]. However, the analysis and validation of delta changes within the
Graphical User Interface (GUI) remains an underutilized process across
desktop, web, and mobile applications. This oversight is unfortunate,
given that the GUI serves as the primary point of contact between users
and the software system, making it a crucial component for ensuring
usability, functionality, security, performance, and more. Overlooking
GUI delta changes neglects a fundamental aspect of software quality,
potentially impacting the user experience and the overall effectiveness
of the application.

We consider that integrating delta change detection techniques to
visualize, analyze, and review GUI delta changes stands as a significant
2
step towards comprehensive software quality assurance. By automat-
ing this approach, developers, testers, and other project contributors
can streamline their efforts in identifying functionalities that have
been removed, added, or modified. The information provided by the
automated technique serves as a validation step, ensuring that the
implemented code adequately reflects the intended GUI changes or
uncovers unexpected GUI modifications that can be considered bugs.

For a deeper understanding of the GUI change detection practices,
we have performed a systematic mapping of the literature to shed
light on the current state of knowledge in the field. After that, we
developed a novel tool to detect and highlight delta GUI changes of
one desktop, web, and Android open-source applications. Therefore, the
main contributions of this paper are:

• A systematic mapping of the literature that studies the funda-
mental concepts, methods, and technologies associated with GUI
change detection.

• A GUI change detection tool that compares and highlights the GUI
changes between different versions of desktop, web, and Android
GUI systems.

The significance of these contributions extends to both academic
and industrial practitioners. Firstly, the systematic mapping of the liter-
ature collects and provides insights into the state-of-the-art of delta GUI
change detection techniques. Secondly, the designed GUI change de-
tection tool can motivate practitioners to integrate this technique into
their software projects or encourage them to enhance this innovative
technique with further research.

This paper is structured as follows. Section 2 presents the systematic
mapping of the literature of the field of GUI change detection. Section 3
describes the GUI State Model inference process. Section 4 presents
the GUI change detection tool. Section 5 details the empirical study to
evaluate the GUI change detection approach. Section 6 shows the re-
sults obtained. Section 7 describes the threats to the validity. Section 8
presents a discussion that analyzes the empirical findings and suggests
further research directions. Finally, Section 9 exposes our conclusions
and future work.

2. Literature review

In [12], we describe a first proof-of-concept of our Delta GUI Change

Detection approach. However, the continuous evolution of concepts and

F. Pastor Ricós et al.

t
s
a
g
w

2

i
S
s
F
s
a

t
e
H
w
d
t
r
n
a

Computer Standards & Interfaces 92 (2025) 103925
Fig. 2. Search query to embrace diverse terminology for GUI delta changes.
,

erminologies within GUI testing, demand for a comprehensive under-
tanding of the existing research literature. To this end, we conducted
systematic mapping of the literature following the methodological

uidelines of Kitchenham et al. [13,14]. In order to guide this study,
e have formulated the following research question:

• RQ1: What techniques are employed for delta GUI change detec-
tion, and for which type of systems?

.1. Methodology

We have chosen Scopus as our primary database choice. In compar-
son with other scientific repositories, such as Web of Science (WoS),
copus offers broader and more inclusive content coverage [15], en-
uring that we can access an extensive range of relevant research.
urthermore, Scopus provides robust impact indicators that are less
usceptible to manipulation and are available for all serial sources in
ll disciplines [16].

Initially, we established the formulation of a search query to retrieve
he studies related to the delta GUI change detection approach, which
ncompass the initial terms delta, GUI, change, and detection.
owever, based on insights gained from our previous research [12],
e recognized the limitation of these terms as other studies employ
ifferent terminology to disseminate the use of GUI change detection
echniques. For this reason, we decided to extend the query by incorpo-
ating the term evolve to capture descriptions of releasing changes as
ew application versions, report to signify the process of informing
nd presenting change results, and difference to address methods

capable of identifying and detecting changes. Moreover, recognizing
these terms can be combined with versatile interrelationships, we opted
to use multiple OR disjunction combinations to ensure a comprehensive
search. The final search query formula is shown in Fig. 2:

• The Scopus operator TITLE-ABS-KEY specifies that the terms in
the query should appear in the title, abstract, or keywords of the
scientific publication.

• The term gui is expanded to include ui, graphical user
interface, and user interface in order to encompass all
references to the system’s user interface.

• The term evolve is expanded to include evolution.
• The wildcard character * is used for the terms detect*, chang*
evolv*, evolut*, report*, and differen*, allowing for
variations in word endings and enhancing the search’s inclusivity.

• This query generates multiple combinations of terms to explore
versatile interrelationships between them, reducing the likelihood
of missing relevant papers.

• The W/2 operator sets the minimum distance between related
terms to 2 words, ensuring a reasonably close relationship be-

tween them in the document.

3
• The query restricts results to publications in the English lan-
guage.

• The scope focuses on publications in the subject areas of Com-
puter Science (COMP) and Engineering (ENGI).

We decided not to limit the search to specific years in order to
retrieve all existing studies. The Scopus search retrieved a total of 820
papers in the range from 1985 to September 2023. Then, with the aim
to identify relevant research papers within the field of GUI software
testing, more specifically about GUI change detection approaches, we
established an iterative exclusion process that is depicted in Fig. 3 and
explained below.

(1) Exclusion Based on Field Relevance (Abstract): In the first
step of the exclusion criteria, we read the abstracts to remove
papers not directly related to the GUI software testing field. This
meant excluding papers that fell into other domains, such as
topology, physics, structural engineering, or medical research.
Furthermore, we excluded publications that are not conference,
workshop, journal publications, or book chapters. After this
initial exclusion, 132 papers remained out of the original 820.

(2) Exclusion Based on GUI Change Detection (Abstract): The
second step involved refining the selection, focusing on papers
abstracts related to the detection of GUI changes. This refine-
ment process entailed excluding papers that primarily discussed
topics such as identifying GUI state elements or analyzing the
aesthetic aspects of GUIs without comparing version changes.
As a result, 41 papers were retained from the subset of 132,
ensuring a more targeted set of research papers aligned with the
study’s objectives.

(3) Paper selection based on Report GUI delta changes: In the
third step, we conducted a comprehensive reading of the 41
papers. The focus was on identifying papers that specifically
addressed the creation of textual or visual reports to inform
about the GUI delta changes between different versions of the
System Under Test (SUT). Furthermore, those studies must con-
tain an empirical evaluation that experiments and validates
the proposed technique. Papers that exemplify the technique
description but do not indicate any evaluation are discarded. As
a result, 6 papers, without considering our previous work, were
finally selected from the 41 GUI change detection papers of the
original group of 820 queried papers.
As an example of an excluded paper, the study by Bures [17]
proposes an approach designed to track delta UI changes in
software development projects, providing valuable information
for test designers. For instance, this information can be employed
in the maintenance of test scripts. However, the way in which
this information is reported to stakeholders remains unspecified.

Furthermore, the simulations or experiments mentioned appear

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 3. Overview of the process for the systematic mapping literature review.
more as a prospective estimation of the proposal rather than an
empirical evaluation.

(4) Snowball paper selection on Report GUI delta changes: The
final step consists of applying one level of backward and forward
snowballing process [18]. Since we consider that relevant GUI
change detection techniques can be related to the subset of
41 papers, we applied the snowball process in all this subset
instead of only the 6 selected ones. The snowball inclusion
criteria remain the same as the third step: papers that focus
on the creation of textual or visual reports to inform about the
GUI delta changes between different versions of the SUT, and
that must contain some empirical evaluation that experiments
and validates the proposed technique. This snowballing process
included 16 additional research papers, which made up a total
of 22 GUI change detection papers.
In this snowball process, we found GUI change detection re-
search that does not specifically mention or exemplify how
changes are reported to users. As an example, the study by
Grechanik et al. [19] presents a tool called GUIDE that allows
users to differentiate the GUIs of evolving GUI-based applica-
tion versions. Nonetheless, because the study seems focused on
presenting the algorithm improvement, there is a lack of infor-
mation that indicates how the differencing results are reported
to the users.

2.2. Data collection

For each selected paper, we read the whole paper and extracted the
following information in an Excel file:

• Type of SUT: Identification of the SUT type for which the tech-
nique is implemented (desktop, web, mobile, image-based).

• Change Detection Technique/Algorithm: Summary of the tech-
nique or algorithm employed for GUI change detection (Web
Document Object Model (DOM) tree or XPath comparison, Hash
calculations and comparison, Visual recognition and comparison
techniques, etc.).

• GUI Data Extraction: Description of how the GUI information is
extracted or utilized to apply the change detection technique or
algorithm (Web URL, HTML document, XML data, State screen-
shot, etc.).

• Type of Report: Indication about how the detected changes are
reported and/or highlighted to the user.

• Empirical Evaluation: Insight into how the evaluation of the
technique or algorithm was conducted.
4
• Open Source Availability: Indication of whether the technique
or algorithm is available as open source. Nonetheless, this is
complementary and not considered for the exclusion criteria.

2.3. Data results

The predominant area of research in detecting delta GUI changes,
accounting for 59% (13 out of 22) of total papers, is aligned with
Change Detection and Notification (CDN) systems or tools for moni-
toring web applications. These systems initiate a crawling process on
a set of web pages specified by the user. Subsequently, a comparison
method or algorithm is applied to identify the values of diverse prop-
erties associated with Document Object Model (DOM) elements that
have changed. Alternatively, these systems may use visual comparison
techniques to compare the web states for detecting changes. Finally,
the identified changes are notified to users and exposed through reports
that incorporate textual and visual information.

Research on regression testing, with a focus on automatic detection
and reporting of delta GUI changes, accounts for 32% (7 out of 22) of
total papers and encompasses diverse approaches. First, web regression
testing studies from Raina et al. [20] and Walsh et al. [21] employ
similar DOM comparison techniques related to CDN systems. Second,
regression testing studies that delve into the automatic inference of
event graphs for web systems (Roest et al. [22]) or desktop systems
(Gao et al. [23]) emphasize the reuse of event graphs for different sys-
tem versions to identify state changes. Third, another research strand
consisting of multiple studies (Tanno et al. [24]; Adachi et al. [25])
introduces image-based methods, potentially integrable with other GUI
testing tools that compare screenshots of application states between
two versions to detect differences. Fourth, a study focusing on Android
systems (Xiong et al. [26]) employs random GUI testing on an applica-
tion version, repeating the same actions on the second version to detect
widget inconsistencies.

Lastly, other papers account for 9% (2 out of 22) and describe
tools with the capability of reporting GUI delta changes. TAO [27] is
a GUI testing toolset that, in addition to including an automatic test
generator and static binary analysis, includes a UI-Diff tool to track GUI
changes on desktop applications. GCAT [28] is a tool with the objective
of detecting and summarizing delta GUI changes during the evolution
of mobile apps.

The scientific publications resulting from the systematic mapping of
the literature are shown in Table 1.

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Table 1
GUI Change Detection research papers obtained from the systematic mapping of the literature.

Year Title SUT Group Summary

2001 Monitoring Web information changes [29] Web CDN A system called CDWeb that allows users to monitor a
whole web document or specific portions of their interest.

2001 WebSCAN: Discovering and Notifying Important
Changes of Web Sites [30]

Web CDN A system called WebSCAN that monitors and analyzes the
change of pre-registered Web sites and notifies important
changes to users.

2001 Perception of content, structure, and presentation
changes in Web-based hypertext [31]

Web CDN A study about how users perceive web changes and
which changes they consider relevant. Then, the
observations of the study were used to guide the design
and development of Walden’s Paths Path Manager tool.

2001 Managing change on the web [32] Web CDN A detailed description of the Walden’s Paths Path
Manager tool used to assist maintainers in discovering
when relevant changes occur to linked web resources.

2002 Information Monitoring on the Web: A Scalable
Solution [33]

Web CDN A tool called WebCQ designed to discover and detect
changes on web pages and notify users about interesting
changes with personalized messages.

2004 The eShopmonitor: A comprehensive data
extraction tool for monitoring Web sites [34]

Web CDN The eShopmonitor is a tool that allows users to monitor
data of interest that has changed on commercial websites.

2004 Managing distributed collections: Evaluating Web
page changes, movement, and replacement [35]

Web CDN The Walden’s Paths Path Manager is a tool that allows
users to monitor whether any page in a collection of web
pages has changed.

2005 CX-DIFF: a change detection algorithm for XML
content and change visualization for WebVigiL
[36]

Web CDN A system called WebVigil that allows users to specify,
manage, receive notifications, and view customized web
page changes.

2009 TAO project: An intuitive application UI test
toolset [27]

Desktop Other A GUI testing toolset called TAO that contains a UI-diff
tool that allows to automatically track GUI changes.

2009 Changing how people view changes on the web
[37]

Web CDN An Internet Explorer browser plugin that compares the
previous cached page with the current page to highlight
the way a page has changed when the user returns to it.

2009 Browsing Assistant for Changing Pages [38] Web CDN A framework that provides continuous assistance to users
browsing the Web regarding its temporal context.

2010 A novel approach for web page change detection
system [39]

Web CDN A system that compares old and modified web pages to
find and highlight the changes to the users.

2010 Vi-DIFF: Understanding Web Pages Changes [40] Web CDN An approach called Vi-DIFF that detects content and
structural changes in the visual representation of web
pages.

2010 Regression Testing Ajax Applications: Coping with
Dynamism [22]

Web Regression Crawljax is a tool that can automatically infer web
state-flow graphs. Re-using information from previous
web version graphs allows performing regression testing
to view the added and removed states in each crawl
session.

2013 An automated tool for regression testing in web
applications [20]

Web Regression An automated tool for regression testing that can identify
and report the changes in web applications.

2015 Pushing the limits on automation in GUI
regression testing [23]

Desktop Regression GUITAR is a tool that can automatically infer event flow
graphs. Re-using information from previous SUT version
graphs allows performing regression testing to report
widget and state mismatches.

2018 Detecting and summarizing GUI changes in
evolving mobile apps [28]

Mobile Other A tool called GCAT for detecting and summarizing GUI
changes during the evolution of mobile apps.

2020 Region-based detection of essential differences in
image-based visual regression testing [24]

Image based Regression A visual regression testing method called ReBDiff that
detects differences in the state images of two versions of
an application.

2020 A Method to Mask Dynamic Content Areas Based
on Positional Relationship of Screen Elements for
Visual Regression Testing [25]

Image based Regression A visual regression testing method that allows the
masking of dynamic state content when detecting
differences in the state images of two versions of an
application.

2020 Automatically identifying potential regressions in
the layout of responsive web pages [21]

Web Regression A tool called REDECHECK that extracts the responsive
layout of two versions of a web page and compares
them, alerting developers to the differences in layout that
they may wish to investigate further.

2021 WebEvo: taming web application evolution via
detecting semantic structure changes [41]

Web CDN A tool called WebEvo for monitoring web element
changes considering text and image content.

2023 An empirical study of functional bugs in Android
apps [26]

Mobile Regression A tool called RegDroid that generates random GUI tests
on two app versions and checks whether the GUI states
of versions A and B contain similar widgets. If not, the
inconsistency is reported as a bug.
5

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
2.4. Other interesting related work topics

Although we made the decision to exclude certain studies due to
their lack of specific focus on reporting textual or visual GUI changes
in delta versions, it is relevant to acknowledge and discuss research that
employs GUI change detection techniques for diverse and important
objectives within software testing:

2.4.1. Repair test scripts
Within the realm of research dedicated to detecting GUI changes

to automatically repair or provide information to repair scripts, certain
studies offer direct relevance. Determining its inclusion as directly or
indirectly related work is a nuanced distinction.

Grechanik et al. [42] research combines a GUI diff-tree tool with
a script analyzer tool. This combination aims to generate informative
messages for test engineers, aiding them in the maintenance and evolu-
tion of GUI-directed test scripts that may break when GUIs are modified
between successive releases of GUI-based applications.

Zhang et al. [43] introduce FlowFixer, a tool for Java Swing desk-
top applications. FlowFixer instruments the old application version by
recording user actions and instruments the new application version by
executing random UI actions. The objective is to identify instrumented
method matches and, consequently, automatically repair broken work-
flows in evolving GUI applications. Gao et al. [44] evaluate the SITAR
technique with Java desktop applications. SITAR utilizes GUI ripping to
obtain an event flow graph that represents the GUI event interactions of
a new application version. In cases where a test script cannot complete
a path of events for execution, SITAR leverages information from the
event flow graph to calculate multiple alternative repairing paths.
Human testers are then notified about these alternatives to manually
confirm how to repair broken scripts.

In the realm of web systems, several studies delve into strategies
for repairing test scripts between two versions of websites. Choudhary
et al. [45] introduce the tool WATER, which compares the behavior
of test cases across successive releases of a web application to suggest
repairs for broken tests. Hammoudi et al. [46] present WATERFALL,
an approach that enhances the effectiveness of WATER by employing
a fine-grained approach applied to the iterative versions/commits of
web applications. Stocco et al. [47] propose a test repair technique that
employs visual analysis implemented in a tool named VISTA. Kirinuki
et al. [48] introduce the COLOR approach, which utilizes various web
properties to support repairing broken locators in test scripts. Nass
et al. [49] present the Similo approach, leveraging information from
multiple web element locator parameters to identify the web element
with the highest similarity.

In the domain of mobile systems, various studies explore methods
to repair test scripts. Li et al. [50] introduce the ATOM approach,
incorporating semi-automatic mechanisms to calculate delta event se-
quence models. These models capture changes introduced by new
application versions, facilitating the maintenance of GUI test scripts.
Song et al. [51] present an XPath-based approach that enables the
repair and reuse of test scripts for subsequent app versions, particularly
when alterations occur in the locations, names, or property values of
UI controls. Chang et al. [52] propose the CHATEM approach, which
involves the semi-automatic construction of event sequence models of
evolving mobile apps to maintain and generate new test scripts. Pan
et al. [53] develop the METER approach, leveraging computer vision
techniques to execute test script actions in the next application version.
This process allows the construction of the replacement of test actions
to repair broken scripts. Extending the METER approach, Xu et al. [54]
present GUIDER, which incorporates structural information of app GUIs
to enhance the effectiveness of repairing test scripts.
6
2.4.2. Cross-browser and cross-device testing
While studies focused on testing GUI cross-browser compatibility for

web applications or GUI cross-device compatibility for mobile systems
do not directly employ GUI change detection for delta versions, we find
it pertinent to mention certain tools and techniques that offer valuable
insights for their potential usage.

Mesbah et al. [55] introduce an automated cross-browser com-
patibility testing approach in a tool called CrossT, an extension of
the web crawler Crawljax. Initially, the web application is crawled
in each desired browser to infer a navigation model. Subsequently, a
pair-wise comparison is performed on the generated models to report
discrepancies. Tanaka et al. [56,57] present the web application com-
patibility testing tool X-Brot, encompassing both functional and visual
compatibility testing. The functional approach examines whether the
same UI action on a web page results in a compatible action on each
browser. Simultaneously, the visual technique checks whether the same
web page displays a similar view on each browser. Ren et al. [58]
propose CdDiff, an image-based method that helps to visualize the
results of mobile application compatibility testing for different devices,
operative system versions, or resolutions.

2.5. Actionable insights obtained from the systematic mapping of the liter-
ature

The systematic mapping of the literature process, conducted to
answer RQ1, has yielded insights leading to conclusions about the
research fields covered by GUI change detection techniques and their
mode of dissemination:

(1) Software testing change detection techniques for desktop, web,
and mobile systems are frequently applied for purposes beyond
specifically highlighting GUI delta changes.

(2) The terminology used to describe GUI change detection ap-
proaches is diverse across existing software testing studies, with
varying adoption trends over the years.

(3) Research papers often lack explicit information about whether or
how detected GUI changes are reported to users, such as script
repair suggestions, bug change reports, or event flow graph
models.

(4) Studies with ambiguous abstracts, inadequate summarization
of content, or non-uniform terminology necessitate an in-depth
snowball process for discovery.

(5) This field of research requires standardization by cataloging the
objectives, terminology, practices, and challenges of delta GUI
change detection.

The analysis of existing studies has allowed us to identify which
technical implementations are valuable in preparing a change detection
process. At the same time, it has helped us to uncover gaps in the
current state-of-the-art, outlining the steps that require research and
implementation efforts:

(1) State models or event flow graphs serve as conceptual artifacts to
represent application state–action transitions. These models are
valuable for implementing system-independent GUI change de-
tection techniques. Additionally, they facilitate the visualization
of action transitions, not solely focusing on states. This infor-
mation can help developers and testers visualize the pathways
leading to the changed GUI states.

(2) The report should be easy to understand for various users, as
well as help visually by highlighting changes without using a
large number of colors in an intrusive way.

(3) There are image comparison techniques that can potentially be
used on diverse GUI systems. However, to the best of our knowl-
edge, there is no proposal has been evaluated on GUI state–
action transitions in three different systems, such as desktop,
web, and mobile applications.

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 4. Representation of a GUI state model of a desktop application that contains 7 states and 11 action transitions.
3. GUI state model inference

The Graphical User Interfaces (GUI) of desktop, web, and mobile
applications consist of a set of widgets w. Each widget possesses a set
of properties like its GUI position, a user-readable title, a role specifying
whether it is a button, text field, or scroll bar, and its color for aesthetic
visualization, among others. Furthermore, these widgets are commonly
linked in a hierarchical structure known as widget tree. The widget tree,
including all widget properties, determines the GUI state s.

While certain widgets are solely dedicated to presenting informa-
tion to users, other widgets are interactive, enabling users to perform
actions a. For example, actions on button widgets allow to trigger click
events, text field widgets are typeable, and scroll bar widgets permit to
slide dynamic panels, thus showing or hiding other widgets.

The state model inference process consists of automating the explo-
ration of GUI systems by connecting to the System Under Test (SUT),
detecting the state s, deriving all the possible actions to execute, and
selecting and executing the action a in the origin state s to reach a
target state s’. The entire set of discovered states s, derived actions a,
and executed transition s → a → s’ constitutes the state model. Fig. 4
represents a GUI state model that contains 7 discovered states and 11
action transitions that connect them.

3.1. TESTAR tool for state model inference

TESTAR is an open-source scriptless tool that infers a state model
while exploring and testing the SUT [59]. The tool employs various
APIs and automation frameworks to connect and interact with different
types of systems. Windows Automation API and Java access bridge
are used for desktop applications [60], Selenium WebDriver for web
pages [61], Appium for mobile applications [62], and external plugins
such as iv4XR can be used for eXtended Reality (XR) systems [63,64].

We selected TESTAR to perform the GUI change detection research
using inferred models because (1) the tool and the OrientDB graph
database used to store the state model are open-source, (2) it supports
the state model inference of diverse systems, (3) it has been evaluated
with industrial and complex open-source applications [8,62,65], (4)
is actively maintained, and, as we explain in the following sections,
(5) it offers a set of Java protocols and settings files that allow defin-
ing an abstraction and inference strategy to deal with dynamism,
non-determinism, and state space explosion challenges [60,61].
7
3.2. State model abstraction strategy

TESTAR uses the properties of the GUI widgets to identify concrete
and abstract states in the state model inference process.

The concrete state identifier is calculated based on all the properties
of all the widgets in the GUI. If any value of one of the widgets’ proper-
ties changes, TESTAR identifies and stores a new concrete state in the
model. This concrete technique allows precise detection and mapping
of any changes in the GUI. However, for real and complex systems,
the dynamic and highly modifiable properties of widgets make the
concrete identifier a technique that generates extensive combinations
of concrete states. For instance, Fig. 5 shows an example of widgets
that dynamically alter their volume level, recording time, or CPU
consumption properties to provide real-time information to users. Con-
sequently, attempting a concrete identification of these states would
result in an immense model with a prohibitive number of concrete
states. This uncontrolled growth of models is known as a state space
explosion [60,66].

To effectively manage state identification during the inference of
complex systems, TESTAR calculates an abstract state identifier de-
termined by a selected subset of the GUI widgets’ properties. It is
important to consider that TESTAR users need to define a suitable
abstraction strategy to decide which widgets’ properties should be in-
cluded in the abstract state identifier. This abstraction strategy aims
to try to encapsulate the fundamental variations in GUI states without
succumbing to the intricacies introduced by their dynamic behaviors.
Following the previous example in Fig. 5, an appropriate abstraction
strategy could consist of considering the existence of the volume level,
recording time, and CPU consumption widgets while ignoring their
dynamic numerical values.

A similar technique is required for GUI actions. The concrete action
identifier is calculated based on the concrete state on which the action
was executed, the screen coordinates of the interacted widget, the role
of the action (i.e., click or type), and the specific text if the action
includes typing. In contrast, the abstract action identifier is calculated
based on the abstract state and abstract identifier of the interacted
widget, and the role of the action without considering the typed text.

3.3. State model inference strategy

When inferring a GUI state model, the idealistic goal could be
to define an abstraction strategy capable of adequately identifying

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 5. Dynamic widgets properties present in a GUI state.
all the states and actions within a system, representing the complete
logic of transitions for a SUT. Nonetheless, achieving this goal proves
unrealistic when applying GUI inference techniques to real systems. The
extensive number of states and actions in large and complex systems
and their intrinsic dynamic behavior pose a significant obstacle to
inferring a complete model. It is essential to design an inference strategy
that aligns with a manageable objective for state model inference.

In this research, we aim to infer various GUI state models for
each delta version of the same application for subsequent GUI change
detection analysis. Nevertheless, attempting to infer a complete model
for a large and complex system is neither efficient nor realistic due to
the essentials of the state explosion challenge [66]. Any technical miti-
gation or advanced solution that requires implementing an abstraction
technique [67] or a test-driven strategy [68] may lack the inference
of part of the SUT functionality. Therefore, we propose a solution that
aims to balance the completeness of the inferred model while dealing
with large models.

To accomplish our delta GUI change detection goal, we need a
model that encapsulates all existing state–action transition function-
alities. If some of these transitions are not inferred in the model,
the detection of changes will provide false positives and negatives
due to the lack of modeled GUI information. However, due to large
and complex systems having the essential state explosion challenge,
we assume the need to restrict the search space of the model to a
manageable size. To achieve this objective, we infer a partially complete
model. This partially complete model entails a limited set of actions
with a restricted depth of state–action transitions.

For instance, Fig. 6 represents how the inference process of the
model is restricted to a limited depth, represented as the encapsulated
state–action transitions in the center of the image. The external states
outside the partially complete model (i.e., the grayed state and action
transitions outside the central encapsulated model) are also functional
parts of the SUT that may require a high-depth exploration to be dis-
covered and inferred in the model. The main objective of the inference
strategy is to allow users to customize this limited set of actions with
a restricted depth depending on the size and complexity of the model
being created from the SUT.

3.4. State model abstraction and inference challenges

Defining the abstraction and inference strategies is an intricate
task that requires a thorough understanding of two main challenges
that affect the state model inference process: dynamism and non-
determinism [61,66].

Dynamism poses challenges not only in handling the dynamic val-
ues of widget properties but also in addressing the presence of widgets
that can be dynamically added or removed from the application’s
states. Interacting with these dynamic widgets can be important for
verifying their correct functionality. However, attempting to capture
the diversity of states and the combination of actions, as mentioned
earlier, would lead to a state space explosion.
8
Fig. 7 illustrates a dynamism challenge on which widgets to add and
remove scenes and recording sources alter the application states. First,
this dynamic behavior provokes a state space explosion, generating
new states and actions. This is because TESTAR continuously identifies
new states due to the presence of newly introduced widgets. Second,
if the inference process involves opening and closing the application
to infer the state model, the resulting model would encompass a
substantial number of initial states, representing the combinations of
added/removed widgets.

Non-determinism presents another challenge that requires consider-
ation during state model inference. A scenario is deemed deterministic
when a specific action executed in a particular state consistently creates
a transition to the same target state. However, an abstraction strategy
that cannot track the dynamic widget behavior, lacks information in
the GUI, or can be affected by external system factors may lead to an
action transitioning to a different target state.

For instance, Fig. 8 illustrates a dynamic behavior that could induce
non-determinism. Initially, a click action on the Stream widget in the
General settings panel transits to the Twitch service panel.
However, if an action changes the service to Youtube, a posterior
click action on the Stream widget in the General settings panel
will transit to the Youtube service panel instead of the Twitch
service panel.

4. GUI change detection tool

The ChangeDetection tool1 compares two inferred GUI state models
from distinct software versions to detect and highlight GUI changes
[12]. At first, a change detection algorithm simultaneously transits
the corresponding states and actions of both state models to detect
and mark the states that have been changed, added, or removed.
Subsequently, a merged graph technique is employed to visualize the
changed states, as well as the added and removed transitions. Fig. 9
shows two partial state models, 𝑆𝑀𝑛𝑒𝑤 (v30.0.2) and 𝑆𝑀𝑜𝑙𝑑 (v29.1.3),
of two different versions of the OBS open-source desktop application.2

4.1. Change detection algorithm

The underlying idea of the ChangeDetection algorithm 1 is to re-
cursively traverse transitions s → a → s’ in both 𝑆𝑀𝑛𝑒𝑤 and 𝑆𝑀𝑜𝑙𝑑
models while comparing the properties of the target states s’. As the
identification of states and actions in the model relies on the chosen
abstraction, the initial step in the algorithm validates that the models
to be compared utilize the same abstraction properties (line 1). It is
then that the algorithm finds the initial states of the models, establishes
the initial corresponding state associations for the 𝑛𝑒𝑤𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒 and

1 https://github.com/TESTARtool/ChangeDetection.NET
2 https://github.com/obsproject/obs-studio

https://github.com/TESTARtool/ChangeDetection.NET
https://github.com/obsproject/obs-studio

F. Pastor Ricós et al.

Fig. 6. Partially complete model inferred due to a limited set of actions with a restricted depth.

Fig. 7. Widgets that can be dynamically added or removed from the state.

Fig. 8. Potential non-deterministic behavior clicking the same widget, as different stream options may exist.

Computer Standards & Interfaces 92 (2025) 103925

9

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 9. OBS partial inferred state model from 𝑆𝑀𝑛𝑒𝑤 (v30.0.2) and 𝑆𝑀𝑜𝑙𝑑 (v29.1.3).
𝑛

𝑜𝑙𝑑𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒 (line 2), and starts to recursively transit the 𝑆𝑀𝑛𝑒𝑤 and
𝑆𝑀𝑜𝑙𝑑 models by invoking the CompareStates procedure (line 3).

The CompareStates procedure takes the corresponding 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒
and 𝑜𝑙𝑑𝑆𝑡𝑎𝑡𝑒 as parameters for comparison (line 4). To prevent infinite
recursion during model comparison, both corresponding states are
marked as Handled (line 5). Then, the algorithm compares the state
abstract identifiers of the corresponding states to detect whether the
state has changed between versions (line 6). To continue traversing the
model, the algorithm extracts a 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 of unhandled actions
for 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 (line 7) and a 𝑜𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 of unhandled actions for
𝑜𝑙𝑑𝑆𝑡𝑎𝑡𝑒 (line 8). For each 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 in the 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 (line 9),
the CompareActions procedure is invoked (line 10).

The CompareActions procedure takes a 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 from 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒
and the 𝑜𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 of the corresponding 𝑜𝑙𝑑𝑆𝑡𝑎𝑡𝑒 as parameters
(line 13). Similar to the CompareStates procedure, the 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛
is marked as Handled to prevent infinite model recursion (line 14).
First, the algorithm checks if the 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 has a corresponding
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛 in the 𝑜𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 (line 15). If
𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛 is null (line 16), indicating the absence of a
corresponding action in 𝑆𝑀𝑜𝑙𝑑 , the algorithm marks 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 as a
new model transition and finishes the recursive comparison in this
part of the model (line 17). Conversely, if a 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛 is
found, the algorithm marks 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 as a matched transition (line 19)
and marks 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛 as Handled (line 20). To continue
traversing the model, the algorithm retrieves the 𝑛𝑒𝑤𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒 of the
𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 (line 21) and the 𝑜𝑙𝑑𝑇 𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒 of the 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜
(line 22). Finally, if the subsequent 𝑛𝑒𝑤𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒 and 𝑜𝑙𝑑𝑇 𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒
have not been handled yet (line 23), the CompareStates procedure
is invoked to continue the recursive model comparison (line 24). If
the subsequent states have already been compared and handled, the
recursive comparison concludes in this part of the model.

The ChangeDetection algorithm 1 traversed the models, comparing
the identifiers of corresponding states and actions and marking them as
matched or new. However, certain states and actions from both 𝑆𝑀𝑛𝑒𝑤
and 𝑆𝑀𝑜𝑙𝑑 models may remain uncompared due to the difference in the
abstract identifiers within the model paths. In the subsequent merge
graph technique, the remaining states and actions from 𝑆𝑀𝑛𝑒𝑤 that
were not compared are considered as new, while those from 𝑆𝑀𝑜𝑙𝑑 that
were not compared are designated as removed.
10
4.2. Merge graph technique

The merge graph technique allows two graphs to be merged into one
graph for further visualization and analysis [69]. After the ChangeDe-
tection algorithm has transited the corresponding states and actions of
both 𝑆𝑀𝑛𝑒𝑤 and 𝑆𝑀𝑜𝑙𝑑 models, this technique creates a merged graph
model 𝑆𝑀𝑚𝑒𝑟𝑔𝑒𝑑 and executes two merging steps that can be visualized
in Fig. 10:

(1) Add all states and actions from 𝑆𝑀𝑛𝑒𝑤.
The model 𝑆𝑀𝑛𝑒𝑤 contains three possible categories of states
after the execution of the ChangeDetection algorithm.
First, the corresponding states remain identical in both delta
versions (e.g., Initial, File Menu, and Settings Panel).
These identical states are visualized with opaque circles.
Second, the corresponding states contain changes between delta
versions (e.g., View Menu). These changed states are visualized
with a dashed linear border.
Third, there are state-transitions that existed in 𝑆𝑀𝑛𝑒𝑤 and in
which the ChangeDetection algorithm has not found a corre-
sponding state in 𝑆𝑀𝑜𝑙𝑑 (e.g., Full-screen Menu - new and
Scene List Menu). These are newly added state-transitions
visualized with a green star.

(2) Add non-matching states from 𝑆𝑀𝑜𝑙𝑑 and wire actions.
The state-transitions that were not handled in 𝑆𝑀𝑜𝑙𝑑 during
the ChangeDetection algorithm are state-transitions that do not
exist in 𝑆𝑀𝑛𝑒𝑤. Hence, these are removed state-transitions be-
tween delta versions (e.g., Full-screen Menu - old and
Scene/Source State). These are old removed state-trans-
itions visualized with a red triangle.

The 𝑆𝑀𝑚𝑒𝑟𝑔𝑒𝑑 serves as an interactive model, enabling users to
choose specific states and actions for visualization and analysis of
change detection results. Green stars and red triangles show screenshots
of the newly added or old removed states, respectively. Circle states,
which indicate identical abstract states, display two screenshots—one
for the new state and one for the old state. Finally, changed states
represented by dashed linear borders, in addition to the two screenshots

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Algorithm 1 ChangeDetectionAlgorithm
Require: 𝑆𝑀𝑛𝑒𝑤 ⊳ The inferred state model from the new application version
Require: 𝑆𝑀𝑜𝑙𝑑 ⊳ The inferred state model from the old application version
1: CheckEqualAbstractAttributes(𝑆𝑀𝑛𝑒𝑤, 𝑆𝑀𝑜𝑙𝑑) ⊳ Both state models must be using the same abstract properties
2: (𝑛𝑒𝑤𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒, 𝑜𝑙𝑑𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒) = FindInitialStates(𝑆𝑀𝑛𝑒𝑤 , 𝑆𝑀𝑜𝑙𝑑) ⊳ Initialize corresponding states
3: CompareStates(𝑛𝑒𝑤𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒, 𝑜𝑙𝑑𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒) ⊳ Invoke the state comparison procedure
4: procedure CompareStates(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑜𝑙𝑑𝑆𝑡𝑎𝑡𝑒)
5: MarkHandledStates(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑜𝑙𝑑𝑆𝑡𝑎𝑡𝑒) ⊳ Mark states as handled
6: CompareStateIdentifiers(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒, 𝑜𝑙𝑑𝑆𝑡𝑎𝑡𝑒) ⊳ Compare state identifiers to detect changes
7: 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 = FindUnhandledActions(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒) ⊳ Retrieve the actions for the new state
8: 𝑜𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 = FindUnhandledActions(𝑜𝑙𝑑𝑆𝑡𝑎𝑡𝑒) ⊳ Retrieve the actions for the old state
9: for 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 ∈ 𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡 do ⊳ Iterate through each new action to

10: CompareActions(𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛, 𝑜𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡) ⊳ Invoke the actions comparison procedure
11: end for
12: end procedure
13: procedure CompareActions(𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛, 𝑜𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡)
14: MarkHandledAction(𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛) ⊳ Mark the new action as handled
15: 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛 = FindCorrespondingAction(𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛 , 𝑜𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝐿𝑖𝑠𝑡) ⊳ Find the corresponding action
16: if 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛 is NULL then ⊳ If there is not a corresponding action in the old model
17: SetTransitionAsNew(𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛) ⊳ The new action is a new transition
18: else ⊳ If a corresponding action exists in the old model
19: SetTransitionAsMatch(𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛) ⊳ The new action is an existing matched transition
20: MarkHandledAction(𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛) ⊳ Mark the corresponding old action as handled
21: 𝑛𝑒𝑤𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒 = GetState(𝑛𝑒𝑤𝐴𝑐𝑡𝑖𝑜𝑛) ⊳ Get the target state of the transited new action
22: 𝑜𝑙𝑑𝑇 𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒 = GetState(𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑑𝑖𝑛𝑔𝑂𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛) ⊳ Get the target state of the transited old action
23: if NotHandledStates(𝑛𝑒𝑤𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒, 𝑜𝑙𝑑𝑇 𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒) then ⊳ If those states were not handled
24: CompareStates(𝑛𝑒𝑤𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒, 𝑜𝑙𝑑𝑇 𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒) ⊳ Invoke the next states comparison procedure
25: end if
26: end if
27: end procedure
Fig. 10. Merge graph technique for visual graph comparison with OBS partial inferred state models.
of the new and old states, generate a third screenshot created using a
pixelmatch library3 to highlight the GUI changes (see Fig. 11).

4.3. Configurable action abstraction identifiers

In the merged model from Fig. 12-A, the transition to the Full-
screen Menu state is detected at the same time as added and removed
state-transitions. This is provoked because the abstraction strategy for
identifying actions relies on the abstract identifier of the origin View
Menu state, which has undergone changes.

3 https://github.com/mapbox/pixelmatch
11
In our prior research [12], we observed that this behavior may
not only result in a visually confusing representation for users but
can also impede the effectiveness of the ChangeDetection approach. If
the corresponding state associations disappear due to a state-transition
originating from a changed state, all subsequent transitions from the
Full-screen Menu state will be incorrectly regarded as entirely
newly added or removed.

State models can employ descriptions to identify action transitions
s → a → s’ (e.g., Left click at ’Click Full-screen’). This action description
can remain consistent even if the abstract identifiers of the origin states
have changed between versions. For this reason, we opted to extend the
ChangeDetection tool with a configurable option that enables users to
decide if the tool needs to use the action abstract identifier or the action
description.

https://github.com/mapbox/pixelmatch

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 11. Visual representation of changed states.
Fig. 12. Merge graph technique comparison using state and action abstract identifier vs. action description.
Fig. 12-B illustrates this configurable alternative for the same merged
model. In this case, the tool detects that the action description of Left
click at ’Click Full-screen’ remains consistent across both OBS versions.
As a result, the Full-screen Menu is marked as a changed state. This
involves considering the Full-screen Menu state as correspond-
ing states in the traverse algorithm, potentially enabling subsequent
transitions to be compared.

5. Empirical study

The objective of this study is to evaluate the importance of using
a GUI change detection approach to facilitate the identification and
visualization of delta GUI changes. This will help to validate that
the GUI changes have occurred as intended or to reveal unforeseen
GUI modifications. To achieve this, we intend to verify whether the
automated utilization of state model inference through a scriptless tool,
followed by the application of the ChangeDetection tool, effectively
highlights changed, added, and removed states in delta changes of
software projects.

In order to guide the study, we have formulated the following
research question:

• RQ2: Does the ChangeDetection tool detect delta GUI changes
when using inferred state models?

To answer RQ2, we designed a controlled experiment following
the guidelines proposed by Wohlin et al. [70] and aligned with a
methodological framework specifically built to evaluate software test-
ing techniques [71]. For the purpose of validating the tool with diverse
12
application systems and disseminating the results, we have opted to
select one desktop, one web, and one mobile open-source system.

This experiment entails the inference of multiple GUI state models
from iterative versions of the same system, followed by the application
of the ChangeDetection tool to each pair of model versions within the
same system. For each ChangeDetection comparison between version
pairs, we quantify and verify the number of detected GUI changes.

To analyze the change detection results and be able to answer the
research questions, we defined the following null hypothesis:

• 𝐻0: The ChangeDetection tool does not detect delta GUI changes
using inferred state models.

5.1. SUT objects

The SUTs selected for this experiment, suitable for the change
detection approach, must be published under an open-source license to
allow software analysis and facilitate the replication of the experiments.
Moreover, the TESTAR tool should be able to connect and detect the
GUI widgets in order to infer a state model. Based on these open-source
requirements, we selected the following SUTs:

• OBS Studio [72] is an open-source desktop application designed
for capturing, recording, and streaming video content. At the
end of 2023, it is the 6th most-starred C code software project
on GitHub. It is widely known by various categories of users
(e.g., teachers, event organizers, streamers, etc.) and is actively
under development and maintenance.

F. Pastor Ricós et al.

a
G
s
a
e
v
e

i
i
t
o

Computer Standards & Interfaces 92 (2025) 103925
Table 2
Details of the selected SUT Objects.

Metric OBS-Studio Calibre-Web MyExpenses

SUT type Desktop Web Android

GitHub Stars 52,700 10,600 630
GitHub Issues 3,300 2,300 1,100
Contributors 575 198 56
LOC 647,352 270,920 249,021

SUT Versions v27.2.4 (Mar 30, 2022) v0.6.18 - Suleika (Apr 3, 2022) v3.6.6 - r657 (Oct 30, 2023)
v28.1.2 (Nov 5, 2022) v0.6.19 - Daria (Jul 31, 2022) v3.6.7 - r665 (Nov 13, 2023)
v29.1.3 (Jun 19, 2023) v0.6.20 - Ella (Mar 27, 2023) v3.6.8 - r671 (Nov 21, 2023)
v30.0.2 (Dec 10, 2023) v0.6.21 - Romesa (Oct 21, 2023) v3.6.9 - r678 (Dec 4, 2023)
(
a
i
t
c

O
i
a
i
n

s
T
e
a

5

t
a
a
b
C

i

• Calibre-Web [73] is an open-source web application that offers
a clean and intuitive interface for browsing, reading, and down-
loading eBooks. It is also a widely known application and is
actively under development and maintenance.

• MyExpenses [74] is an open-source mobile Android application
designed to keep track of user expenses and incomes and to export
them in different file formats. Even though it is the least GitHub-
starred of the three systems, the application has been in active
development and maintenance for more than 10 years.

The details obtained at the end of 2023 regarding the selected SUTs
re presented in Table 2. The lines of code (LLOC), together with the
itHub stars, issues, and contributors, indicate that these are not toy

oftware projects, i.e., they are representative SUTs of real and widely
dopted applications. For each SUT, we selected 4 recent versions to
valuate the change detection approach. We consider the first selected
ersion the control baseline, and the following versions will be used to
valuate the detect GUI delta changes [70].

The TESTAR tool can be employed for testing purposes through the
mplementation of diverse oracles that verify the presence of failures
n the system’s GUI. However, given that this study does not focus on
he validation of the scriptless technique for fault detection, we have
pted to apply the blocking principle [70] to disable TESTAR oracles.

5.2. Independent variables: Inference strategy

The objective of this study is to validate if the ChangeDetection tool
is capable of detecting and reporting changes between SUT versions.
To accomplish this objective, it is necessary to infer a partially but
complete state model that represents all the existing GUI transitions
of a section of the SUT. If the inference process is not restricted and
controlled, the obtained state model may result too big and complex,
potentially inducing a wide variety of dynamism, non-determinism,
and state explosion challenges. For this reason, we defined a set of
independent variables regarding the inference depth limit and the
actions to derive and execute in the inference process.

First, we designed a similar sequences inference strategy (see
Table 3) based on re-launching the SUT Objects multiple times and
limiting the maximum depth of the models. Running a large number of
sequences of 3 action lengths reduces the number of discovered states
but facilitates the inference of the partially but complete state model.
Additionally, it mitigates abstraction challenges that may arise and
makes it easier for users to define an appropriate abstraction strategy.

Another important inference factor to consider is the time duration
given to the actions to execute the GUI-events interactions and the
time to wait between the execution of actions. The action duration
of 0 s, indicates the TESTAR tool that it is mandatory to teleport the
mouse to the interactable widget coordinates and perform the GUI-
event interaction. This is important in the inference process of desktop
and web GUI systems since mouse movements instead of mouse teleport
can trigger mouse-over GUI events and provoke unintentional GUI
alterations. Finally, because applications require time to load widgets
completely in the GUI, we decided to give all of them 2 s after each

action execution.

13
Table 3
Independent variables for sequences inference strategy.

Depth limit Action duration Wait after action

OBS-Studio 3 actions 0 s 2 s
Calibre-Web 3 actions 0 s 2 s
MyExpenses 3 actions 0 s 2 s

Second, we configured an action derivation strategy (see Table 4)
aiming to control the execution of actions and potentially reduce the
abstraction inference challenges:

• Force actions are specific step-by-step actions necessary to start
the SUT in the initial desired state.

• Click actions indicate with which type of widgets we focus on
click-interacting in the model inference process.

• Filter actions are used to ignore widgets that open external system
processes, ignore dynamic or high-combinatorial widgets that
increase the state model size, and ignore detected widgets that
create non-deterministic transitions.

• Kill actions are intended to detect and close web browser and file
explorer processes that appear during the inference process. These
are implemented explicitly for the OBS desktop SUT because it
is a widely used functionality in various widgets, and defining
rules to filter all these widgets would require a lot of effort and
maintenance over versions.

The Force actions executed to start the model in the initial state
e.g., login, close update initial panel) are not inferred in the model and
re not considered part of the maximum depth limit. However, this is an
nference disadvantage in this study, since states forced before reaching
he desired initial state are not tracked in the model for subsequent
hange detection.

Typing actions are essential to interact with the SUT and manage
BS scenes, Calibre books, or money Expenses. Nevertheless, since the

nference strategy focused on clicking to discover existing menus, lists,
nd configuration panels already provide sufficient states and actions
n the models to perform the change detection evaluation, we decided
ot to derive typing actions.

Sliding actions are challenging for the state model inference process
ince they change the visible and interactable widgets in the GUI.
his affects the abstract strategy and increases the complexity of the
xploration space. For this reason, we decided not to derive sliding
ctions.

.3. Independent variables: Abstraction strategy

The abstraction strategy consists of implementing a main abstrac-
ion mechanism and a set of sub-strategies. The main abstraction mech-
nism uses widget properties with the objective of distinguishing the
bstract states and actions in the state model that represents the SUT
ehavior. Table 5 shows the widget properties used for OBS-Studio,
alibre-Web, and MyExpenses.

Customizing the depth limitations and action derivation in the
nference strategy reduces the inference complexity and the need to

F. Pastor Ricós et al.

t
d
s
t
w
E
a
t
a
s

c
t

5

t

Computer Standards & Interfaces 92 (2025) 103925
Table 4
Independent variables for action derivation strategy.

OBS-Studio (Force) Close the update panel that appears in the GUI when a new version is available to be installed
(Click) Focus on MenuItem and ListItem widgets to infer a partially complete model of the configuration menus. This also prevents interacting with
dynamic widget-icons (see Fig. 7)
(Click) Close or Cancel buttons if there are no MenuItem and ListItem widgets in the state
(Filter) Widgets that open the update version panel and widgets that, in a non-deterministic amount of seconds, verify the integrity of the files
(Kill) Web Browser and File Explorer processes that are invoked when interacting with video and audio management widgets

Calibre-Web (Force) Login with valid credentials to start in the initial GUI state as an admin user
(Click) All the various types of clickable web widgets in this SUT (hyperlinks, buttons, checkboxes)
(Filter) One specific List-grid widget that provoked non-determinism when transiting again to the state (similar to Fig. 8)
(Filter) Widgets that logout, and widgets that save or download files

MyExpenses (Force) Skip the initial configuration and focus on opening the wallet, plus another action that opens the manage accounts menu
(Click) All widgets with enabled and clickable Android attributes
(Filter) Menu widgets in the initial state that can be shown/hidden. This provokes non-determinism and, trying to address it, a significant increase in the
size of the model
(Filter) Widgets that open states with completely dynamic date and hours information
(Filter) Widgets with enabled and disabled switch functionality that increase the size of the model due to the combinatorial possibilities
(Filter) Tell-a-friend widget that opens an Android system menu trying to send an email
Table 5
Independent variables for the main abstraction mechanism.

OBS-Studio

State Path, ControlType
Action OriginState + OriginWidget + ActionRole

Calibre-Web

State WebId, WebTextContent
Action OriginState + OriginWidget + ActionRole

MyExpenses

State AndroidXPath, AndroidText, AndroidClassName
Action OriginState + OriginWidget + ActionRole

deal with abstraction challenges. Even so, in complex systems, it can be
necessary to design a set of abstraction sub-strategies that complement
the main abstraction mechanism to enhance the abstract states and
actions identification or to deal with dynamism and non-determinism.

Table 6 shows the following implemented types of abstraction sub-
strategies:

• Added properties of specific widgets to the main abstraction
mechanism. This is necessary if the default property values are
not enough to differentiate widgets from each other.

• Ignore widgets that can be dynamically added or removed from
the state during the inference or dynamic properties of specific
widgets.

• Event SUT behaviors that may provoke non-determinism in the
model during the inference process need to be addressed with
special triggered actions.

The OBS-Studio and MyExpenses SUT objects are distinguished in
heir inverse abstraction strategies. In the case of OBS-Studio, we
ecided to omit the Title property in the main abstraction mechanism
ince various widgets have dynamic Title values. Then, we incorporated
he Title property of MenuItem, ListItem, CheckBox, and ComboBox
idgets as an abstraction sub-strategy. Conversely, in the case of My-
xpenses, we decided to include the AndroidText property in the main
bstraction mechanism and custom abstraction sub-strategies to ignore
he dynamic widgets. Both options can be valid to implement, and they
lso depend on the depth limit and derived action from the inference
trategy, or the complexity of the functionalities of the SUT.

Caliber-Web did not require various abstraction sub-strategies be-
ause the combination of the inference strategy and the main abstrac-
ion mechanism was adequate.

.4. Effort time for independent variables

Deploying and analyzing the versions of the SUT objects to cus-
om these independent variables requires effort to identify, configure,
14
and validate their adequacy. The proficiency obtained from previous
research in learning to design inference and abstraction strategies for
desktop and web systems allowed us to reduce the effort time in
this study. Principally, it helped the decision to prepare an inference
strategy that restricts the depth to infer the partially complete mod-
els [12]. Table 7 contains an approximation of the times required to
manually configure and refine the inference and abstraction strategies,
as well as the automated pre-execution time it took to infer state models
from different versions to validate the partially complete models where
inferred adequately.

OBS-Studio required approximately 10 h of manual analysis com-
bined with 8 h of automated pre-executions to obtain the appropriate
configuration. Most of the effort was invested in determining the best
action derivation and abstraction sub-strategy to deal with the opening
of the web browser and file explorer and deciding to completely ignore
the dynamic stats widgets.

Calibre-Web required approximately 6 h of manual analysis com-
bined with 4 h of automated pre-executions to obtain the appropriate
configuration. In the initial analysis, we recognized the robust im-
plementation of the WebId property along the different versions of
the SUT. The widget that provoked non-deterministic was the unique
encounter challenge we decided to filter within the action derivation
strategy.

MyExpenses required approximately 15 h of manual analysis and
25 h of automated model inference pre-executions to decide about an
appropriate configuration. In this SUT, it was necessary to perform
more preliminary experiments to find an appropriate balance with the
inference and abstraction strategies to control the size of a deterministic
model.

5.5. Dependent variables

To answer RQ2:, we performed a qualitative evaluation [71]. This
evaluation is manually performed by an expert in GUI testing with
more than five years of experience, which aims to validate whether
the detected states marked as changed indeed contain GUI changes.
Subsequently, we need to check if certain SUT functionalities or dis-
played GUI changes do not correspond with the delta SUT version
changes. Finally, it is important to examine the results obtained from
these complex SUTs to refine the process for further improvements. To
accomplish this, we analyze the detected delta GUI changes with the
related open-source software versions. In this way, we will evaluate the
following:

(1) True positives change results: The state model inference and the
change detection process correctly detect GUI changes that align
with software delta version changes.

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 13. Architecture of GUI delta change detection experiments.
Table 6
Independent variables for abstraction sub-strategies.

OBS-Studio (Added) The Title property for MenuItem, ListItem, CheckBox, and ComboBox widgets since these widgets are not dynamic with a depth limit of 3
actions. Moreover, we aim to detect if those Title properties have changed between SUT versions
(Added) The identifier of the origin state on which the (Kill) Web Browser and File Explorer actions are performed
(Ignore) All dynamic widgets from the below usage status bar and from the panels that show the usage CPU and MEM stats
(Event) Force a teleport of the mouse to the top-left coordinates of the screen (1) at the beginning of each sequence or (2) if, after executing an action,
the mouse coordinates over a widget triggers a pop-up tooltip message that remains around 10 s

Calibre-Web (Event) Force a teleport of the mouse to the top-left coordinates of the screen at the beginning of each sequence

MyExpenses (Added) The Checked property of CheckedTextView widgets to prevent non-determinism when validating a form and transit to a destination state
(Ignore) The dynamic AndroidText property of widgets that contain a date (HH:MM AM/PM) or hours (DD/MM/YY) patterns
(Ignore) The dynamic AndroidText property of widgets from a Calculator
(Ignore) The dynamic AndroidText of dropdown spinner widgets when they are closed, as they can create a high combination of possibilities. These
dropdown spinners are not (Filter) such as the switch widgets, because we want to detect changes in the values when they are open.
(Event) Wait 10 s if, after executing an action, the state contains a temporal snackbar message widget that remains around 5 s. In this system, it is not
possible to just move the mouse away.
Table 7
Effort time to design the independent variables and run pre-executions.

OBS-Studio Calibre-Web MyExpenses

(Manual) Strategies configuration 10 h 6 h 15 h
(Automated) Pre-executions 8 h 4 h 25 h

(2) Challenging results: The state model inference and the change
detection process indicate the detection of GUI changes that do
not align with the expected results.

(3) Further improvements: The state model inference and the change
detection process require improvements to detect and highlight
delta GUI changes with complex SUTs.

5.6. Design of the experiments

We use the TESTAR tool with the independent variables configu-
rations to infer a state model for each delta version of a SUT. This
inference outputs 4 state models for each SUT. Then, we apply the
ChangeDetection tool with the pairs of delta state models of the same
SUT. This change detection comparison reports 3 merged state models
with detected changes for each SUT.
15
Fig. 13 shows the overview of the architecture. The inference pro-
cess is similar for all SUTs, but because each system is inherently
different, we explain their distinction execution below:

• OBS-Studio: This SUT is a portable Desktop application that does
not require any installation process in a Windows environment.
When TESTAR is launched (1), an intermediate batch script
(2.a) changes to the specific OBS directory and launches the
application executable (2.b). Then, TESTAR is able to connect
to the OBS process (2.c) and automatically explore the SUT
to infer the state model (3). The resolution in the Windows 10
machine that renders the GUI is 1200 × 800.

• Calibre-Web: This SUT is a Web application that can be deployed
using a Docker version image. Before launching TESTAR, it is
necessary to configure a Calibre database to store the user books.
In our experimentation, we deployed the Docker image in an
Ubuntu environment and manually selected the Calibre database
offered in the GitHub repository (DB). Then, when indicating the
web URL to TESTAR (1), the tool is able to connect to the SUT
(2), and automatically explore the SUT to infer the state model
(3). The resolution in the Windows 10 machine that renders the
GUI is 1200 × 800.

• MyExpenses: This SUT requires an Android system to be de-
ployed. We created an Android 9.0 virtual device in a VMware

F. Pastor Ricós et al.

d
o
O
t
r
t
a

6

t
a
i
f
t
G
a

6

e
c
a
e
o
i
o
a
w
M
n
a
s

h

t
d
o

6

r
m
s
s
u
a
w
C
r
i
G

t
d
m
d
c
v
n

O
t
d
a

6

M
d
v
i

f
d
c
T
c

6

t
u
t
t
e
i
w
w
a

p
d
b
t
c
t

Computer Standards & Interfaces 92 (2025) 103925
Table 8
state model inference results.

State model Abstract states Abstract actions Inference time

OBS-Studio v27.2.4 132 319 2 h 5 m
OBS-Studio v28.1.2 132 265 1 h 40 m
OBS-Studio v29.1.3 132 198 1 h 10 m
OBS-Studio v30.0.2 134 206 1 h 10 m

Calibre-Web v0.6.18 25 436 1 h 25 min
Calibre-Web v0.6.19 35 499 1 h 50 min
Calibre-Web v0.6.20 37 499 1 h 50 min
Calibre-Web v0.6.21 37 499 1 h 50 min

MyExpenses v3.6.6 123 243 1 h 50 min
MyExpenses v3.6.7 125 246 1 h 55 min
MyExpenses v3.6.8 124 248 2 h
MyExpenses v3.6.9 125 248 2 h

environment and connected it with the Windows 10 host that
contains TESTAR by creating an adb bridge.4 When TESTAR is
launched (1), the Appium5 server detects the connected device
and acts as middleware to obtain the state information (2). This
permits TESTAR to automatically explore the SUT to infer the
state model (3). The resolution of the Android 9.0 virtual device
that renders the GUI is 1024 × 720.

At the end of the GUI state model inference processes, users can
eploy the ChangeDetection tool using one Docker server image and
ne Docker client image. By specifying the IP and port address of
rientDB, users can inspect the state models individually and execute

he comparison feature to perform the ChangeDetection algorithm. The
esults of the algorithm are automatically used by the merge graph
echnique, providing users with visualization, manual interaction, and
nalysis of GUI change detection results.

. Results

This section presents the state model inference and change de-
ection approach results. First, we summarize the inference process
nd size of the obtained GUI state models using the aforementioned
ndependent variables configurations. Second, we present and discuss,
or each SUT object, the results of comparing each delta version with
he corresponding baseline to examine the qualitative evaluation for
UI change detection. The replication package with the state models
nd a complete document with visual results can be found here6.

.1. State model inference

Table 8 presents an overview of the inferred GUI state models,
mphasizing the size in terms of discovered abstract states and exe-
uted abstract actions. Additionally, we provide information about the
pproximate time it took to infer the partially complete models for
ach SUT. The size of the models varies depending on the depth limit
f the inference strategy and the properties information customized
n the abstraction strategy. The inference time may vary depending
n the action duration, wait after action, and force login or starting
ctions adopted in the inference strategy (i.e., TESTAR waits 10 s
hen starting OBS, and TESTAR takes around 10 s to perform the
yExpenses login). Although the model size and inference time are

ot directly related to the delta GUI change detection evaluation, these
re essential aspects when considering techniques for evaluating rapid
oftware delta increments.

For each SUT object, the same independent variables configuration
as been used to infer the delta GUI state models. The inference and

4 https://developer.android.com/studio/command-line/adb
5 https://appium.io/
6
 https://doi.org/10.5281/zenodo.13712379

16
abstraction strategies for the GUI state models inference have remained
resilient, requiring no adjustments to be adapted to the appearance of
new dynamic widgets or those inducing non-deterministic behaviors.
Nonetheless, as we mention in the following change detection results,
the appearance of new widgets disrupts with noise the change detection
echnique. This noise is produced when widgets are either newly intro-
uced, removed, or changed within the main static menus and panels
f the SUT.

.2. OBS-studio results

Fig. 14 shows an overview of how the OBS merged results are
eported to users through an interactive web interface. This merged
odel includes distinct visual elements. Opaque green circle states

ignify OBS states that persist unchanged across delta versions. Dashed
tates that contain small images are changed states from OBS that have
ndergone GUI modifications. Red triangle transitions represent states
nd actions that have been removed in the delta software increment,
hile green star transitions highlight newly added states and actions.
licking on any of these elements displays an informative panel on the
ight side of the web interface, presenting detailed images and textual
nformation that users can use for the analysis and understanding of
UI changes.

Table 9 summarizes the change detection results. The change de-
ection algorithm for OBS-Studio has been executed using the action
escription. The states that have not been reached due to state
odel inference restrictions (action derivation and filters strategy, or
epth limit) are not included in the table. Furthermore, the states that
ontain changes ignored by the abstraction mechanism, such as the
ersion and contributors texts changed in the About panel, are also
ot included in the table.

Based on the evaluation of the results obtained with this complex
BS-Studio desktop application, we can consider the challenging func-

ionalities that negatively affect the state model inference and change
etection process, as well as the further improvement ideas for the
nalysis of the detected changes.

.2.1. OBS-studio challenging results
In the delta version from v27.2.4 to v28.1.2, the main Audio

ixer and Scene Transitions dock panels affect the change
etection process of all the SUT states. Similarly, this occurs in the delta
ersion from v28.1.2 to v29.1.3 with the new Open Scene Filters
con-button added in the Scenes dock panel.

These new widgets introduced in the main static panels do not inter-
ere with the state model inference process itself but introduce change
etection noise in all the states of the merged model (see Fig. 15). This
hange detection noise implies that all states will be marked as changed.
hen, the user needs to analyze all states to determine if there are
hanges or not.

.2.2. OBS-studio further improvements ideas based on results
Given alterations in GUI style, menus, and panel dimensions, using

he pixelmatch technique proves insufficient in effectively assisting
sers in visualizing specific GUI changes. For instance, as illustrated in
he previous Fig. 11, the pixelmatch technique highlights changes when
he GUI widget coordinates have a slight deviation due to style changes,
ven if the widgets are the same with identical properties. A visual
mprovement can consist of comparing the abstraction identifier of the
idgets of the two changing states, specifically detecting discordant
idgets and using their position on the screen to highlight them with
rectangle.

In the delta version from v29.1.3 to v30.0.2, the Settings-Advanced
anel contains a new IP Family change in the widget-tree that is not
irectly visible to the user when inspecting the merged graph. It has
een necessary a complementary GUI and code user analysis to validate
he existence of this delta change. A descriptive message indicating the
hanged widget together with the visual screenshot, could help users
o recognize the changes easily.

https://developer.android.com/studio/command-line/adb
https://appium.io/
https://doi.org/10.5281/zenodo.13712379

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Fig. 14. Interactive web interface of the GUI change tool that creates a merged partially complete model from the OBS 𝑆𝑀𝑛𝑒𝑤 (v30.0.2) and 𝑆𝑀𝑜𝑙𝑑 (v29.1.3) versions with a
depth of 3 actions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Static widget changes challenge: The new Open Scene Filters icon-button added in the Scenes dock panel from v28.1.2 to v29.1.3 introduces noise in all states
since they are all marked as changed.
6.3. Calibre-web results

Table 10 summarizes the change detection results. The change de-
tection algorithm for Calibre-Web has been executed using the action
description. The states that have not been reached due to state
model inference restrictions (action derivation and filters strategy, or
depth limit) are not included in the table.

Based on the evaluation of the results obtained with this complex
Calibre web application, we can consider the challenging functionalities
that negatively affect the state model inference and change detection
process, and the further improvement ideas for the analysis of the
detected changes. We observe that some results share similarities with
the OBS-Studio application regardless of being different systems.

6.3.1. Calibre challenging results
In the delta version from v0.6.18 to v0.6.19, the static left menu

of the web application has changed with a new Downloaded Books
17
item. Similar to the OBS-Studio results, this change in the static menu
does not interfere with the state model inference process itself but
introduces change detection noise in all the states of the merged model.
This change detection noise implies that all states will be marked as
changed. Then, the user needs to analyze all states to determine if there
are changes or not.

Also, in the delta version from v0.6.18 to v0.6.19, we found a chal-
lenge with the UI, Basic, and Database Configuration panels. Due to
environment resolution and visibility of web application widgets, the
inference process with v0.6.18 was not able to discover 10 states that
were discovered in the incremental version v0.6.19.

6.3.2. Calibre further improvements ideas based on results
In the delta version from v0.6.20 to v0.6.21, the inclusion of the

Português option as a language is not directly visible to the user
when inspecting the merged graph. It has been necessary a com-
plementary DOM analysis to validate the existence of this change.

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Table 9
OBS-Studio change detection qualitative results.

OBS-Studio Summary of detected changes

v27.2.4 to v28.1.2 - ALL states: The main Audio Mixer and Scene Transitions dock panels, on the bottom side of the application, contain new
icon-buttons. This provokes the change detection algorithm to detect that all states have changed.
- Help menu: contains the new menu item Check File Integrity
- Crash Reports menu item: contains a changed text from Upload Last Crash Report to Upload Previous Crash Report
- Log File menu item: contains a changed text from Upload Last Log File to Upload Previous Log File
- Add Profile panel: title has changed compared to the previous Add Scene Collection title
- Tools menu: has removed Declink Captions and Declink Output menu items and added a new obs-websocket Settings item
- Declink Output panel: has been removed
- Declink Captions panel: has been removed
- obs-websocket Settings panel: has been added
- Advanced Audio Properties panel: has changed with new audio values
- Transform menu item: includes new special shortcut texts for the Copy Transform and Paste Transform
- File menu: has changed by removing the menu item Always on top
- Docks menu: has changed the Lock UI and Reset UI menu items to Lock Docks and Reset Docks
- View menu: has changed by adding the menu items to Reset UI and Always on top. Moreover, the menu items text has changed from
Multiview and Fullscreen to Multi-view and Full-screen
- Multi-view (Windowed) panel: has been added compared to the previously removed Multiview (Windowed) panel
- Settings panel: has changed with the new option Accessibility
- Settings-Hotkeys panel: has changed with a new filter by the hotkey list option Split Recording File
- Settings-Output panel: has changed with a new dropdown option Encoder Preset
- Settings-Advanced panel: has changed with new dropdown options SDR White Level and HDR Nominal Peak Level
- Settings-Accessibility panel: is new in the Settings panel

v28.1.2 to v29.1.3 - ALL states: The main Scenes dock panel, on the bottom-left side of the application, contains a new Open Scene Filters icon-button.
This provokes the change detection algorithm to detect that all states have changed.
- Help menu: contains a new menu item What is New
- Tools menu: has changed by renaming the menu item obs-websocket Settings to WebSocket Server Settings
- WebSocket Server Settings panel: has been added compared to the previously removed obs-websocket Settings panel
- Multi-View (Full-screen) menu item: has changed to indicate the naming of the DISPLAY. This affects the subsequent action transition
- Settings-General panel: has changed due to moving the general checkbox Automatically check for updates at startup to a new
Updates subpanel
- Settings-Accessibility panel: has changed the checkbox text Colors to Colours
- Settings-Output panel: has changed due to renaming the dropdown Encoder to Video Encoder and adding a new Audio Encoder
dropdown. Moreover, has added an Audio Track option to the Recording subpanel
- QComboBox Collapsed attribute has been changed in the Qt implementation. This provokes combo box items not to be displayed and
clickable until the combo box is expanded

v29.1.3 to - Docks menu: contains a new menu item Full-Height Docks
v30.0.2 - Help menu: contains two new menu items Restart in Safe Mode and Release Notes

- Restart panel: has been added to the new SUT version
- View menu: has changed by removing the menu item Scene/Source List Buttons and adding two new menu items Scene List
Mode and Dock Toolbars. This affects the subsequent action transition
- Scene List Mode menu item: has been added to the new SUT version
- Settings-Hotkeys panel: has changed the hotkey list option Studio Mode into two list options Enable Studio Mode and Disable
Studio Mode
- Settings-Output panel: has indirectly changed due to moving the settings warnings float at the bottom of the page. This change is not
visual in the state but exists as a widget-tree change, and it has been detected by the change detection algorithm
- Settings-Advanced panel: has changed by adding a new IP Family option to the Network section. This change is not visual in the state
but exists as a widget-tree change, and it has been detected by the change detection algorithm
a
w
d
c

6

As mentioned for OBS-Studio, a descriptive message indicating the
changed widget could help users recognize the changes easily.

The pixelmatch technique for highlighting GUI changes has had
better results than for OBS. Nonetheless, in some states with tables, the
pixel comparison results do not adequately assist the user in visualizing
the specific GUI changes. Highlighting the widget’s position on the
screen with a rectangle can help the visual comparison.

In all delta versions, the Allowed Tags row element action has
been tracked as added and removed state instead of changed because
the action description remains empty. It is necessary to improve the
state model inference process to use other web widget identifiers to be
included in the description of actions.

6.4. Myexpenses results

Table 11 summarizes the change detection results. The change de-
tection algorithm for MyExpenses has been executed using the state
+ action identifier. The states that have not been reached due to
state model inference restrictions (action derivation and filters strategy,
or depth limit) are not included in the table.

Based on the evaluation of the results obtained with this complex
MyExpenses Android application, we can consider the challenging func-

tionalities that negatively affect the state model inference and change c

18
detection process, and the further improvement ideas for the analysis
of the detected changes.

6.4.1. Myexpenses challenging results
In all versions, the hierarchical composition of some GUI elements

was made up of multiple widgets. For instance, a button was composed
of a clickable LinearLayout, a non-clickable RelativeLayout child, and
a non-clickable TextView grandchild that contains the widget descrip-
tion. This causes some actions to have empty descriptions and cannot
be used as action identifiers.

As observed in OBS and Calibre systems, using the action
description for GUI change detection is a necessary approach when
a delta increment affects a lot of states since it is not dependent on
origin state changes. Although the state + action identifier is

valid approach for MyExpenses because the system versions evolve
ith many small delta increments, it will be beneficial to extract the
escription of the widget child during the model inference when a
lickable Android element does not contain any description.

.4.2. Myexpenses further improvements ideas based on results
Similar to Calibre, the pixelmatch technique for highlighting GUI
hanges has had better results than OBS. Nonetheless, in some states

F. Pastor Ricós et al.

G

t

e

Computer Standards & Interfaces 92 (2025) 103925
Table 10
Calibre-Web change detection qualitative results.

Calibre-Web Summary of detected changes

v0.6.18 to - ALL states: The static left menu has changed with a new Downloaded Books item
v0.6.19 - Edit E-mail Server Settings form: has changed the default email mail.example.com to mail.example.org

- Tasks table: has changed with a new Actions row
- Edit User admin form: has changed the Kindle text to E-Reader
- admin’s profile form: has changed the Kindle text to E-Reader
- Add new user form: has changed the Kindle text to E-Reader
- Edit Users table: has changed the Kindle text to E-Reader. This change is also detected when the table elements are selected
- Users table and E-mail Server Settings panel: has changed the Kindle text to E-Reader. Moreover, the E-mail Server Settings panel has
changed with less text information
- Allowed Tags row element: In the Edit Users table, after clicking the Allowed Tags row element, the Change Detection algorithm detects
a state as added and removed instead of changed. This occurs because this table element does not contain an action description, and actions are
not detected as corresponding actions.
- UI, Basic, and Database Configuration panels: are included as new states in the model because the E-mail Server Settings panel has
changed with less text information. This is indirectly provoked because the resolution and the number of visible elements affect the state model
inference process

v0.6.19 to v0.6.20 - Add New User form: has capitalized the page title, has changed the E-Reader text to eReader, and has changed the E-mail text to Email
- admin’s Profile form: has capitalized the page title, has changed the E-Reader text to eReader, has changed the E-mail text to Email,
and has added admin@example.org as default email
- Edit User admin form: has changed the E-Reader text to eReader, has changed the E-mail text to Email, and has added
admin@example.org as default email
- Edit Users table: has changed the E-Reader text to eReader, has changed the E-mail text to Email address, and has added
admin@example.org as default email. This change is also detected when the table elements are selected. Moreover, the new email
admin@example.org is now clickable and editable in a new SUT state
- Users table and Email Server Settings panel: has changed the E-Reader text to eReader, has changed the E-mail text to Email, and has
added admin@example.org as default email
- Default Visibilities for New Users configuration: has changed by capitalizing the checkbox text options
- Default Settings for New Users configuration: has changed by capitalizing the checkbox text options. This change is not visual in the state
but exists at the DOM level
- Basic Configuration panel: has changed with a new ‘‘Securitiy settings’’ option. This change is detected in 4 subsequent states
- Securitiy settings option panel: has been added to the new SUT version
- Edit Email Server Settings form: has changed the E-mail text to Email. Due to the change in the action description, the state is detected as
added and removed instead of changed.
- Allowed Tags row element: In the Edit Users table, after clicking the Allowed Tags row element, the Change Detection algorithm detects
a state as added and removed instead of changed. This occurs because this table element does not contain an action description, and actions are
not detected as corresponding actions.

v0.6.20 to v0.6.21 - Basic Configuration panel: has fixed a typo text from Securitiy settings to Security settings. This change is detected in 4
subsequent states. This GUI typo issue was reported and fixed by the project contributorsa

- Security settings option panel: is detected as added and removed due to the change in the action description
- LogFile Configuration dropdown: adds the new default value /config/access.log for the logfile location
- Feature Configuration dropdown: changes the checkbox text option Please ensure that users also have upload permissions
- Edit User admin form: has changed by updating the dropdown Language to include the Português option. This change is not visual in the
state but exists at the DOM level
- admin’s Profile form: has changed by updating the dropdown Language to include the Português option. This change is not visual in the
state but exists at the DOM level
- Add New User form: has changed by updating the dropdown Language to include the Português option. This change is not visual in the
state but exists at the DOM level
- Default Settings for New Users configuration: has changed by updating the dropdown Default Language to include the Português
option. This change is not visual in the state but exists at the DOM level
- Edit Users table: has changed by updating the select Language to include the Português option. This change is not visual in the state but
exists at the DOM level. This change is also detected when the table elements are selected
- Users table page: contains a non-visible widget that contains a system version change. This change exists and has been detected at the DOM
level
- Allowed Tags row element: In the Edit Users table, after clicking the Allowed Tags row element, the Change Detection algorithm detects
a state as added and removed instead of changed. This occurs because this table element does not contain an action description, and actions are
not detected as corresponding actions

a https://github.com/janeczku/calibre-web/issues/2811.
with a lot of text, the pixel comparison results do not adequately assist
the user in visualizing the specific GUI changes.

6.5. Answer to the research question

In order to answer RQ2: Does the ChangeDetection tool detect delta
UI changes when using inferred state models?, we conducted a manual

qualitative evaluation of detected GUI delta changes with the OBS-
Studio, Calibre-Web, and MyExpenses applications. Our results have
demonstrated positive GUI change detection results and the potential to
uncover GUI failures. Consequently, we reject 𝐻0: The ChangeDetection
ool does not detect delta GUI changes using inferred state models.

Our proposed approach of using inferred state models addresses

xisting state-of-the-art limitations in GUI change detection to detect

19
and highlight GUI change transitions for a diverse range of desktop,
web, and mobile systems. Moreover, our tool provides an interactive
interface with a merged model that users can easily use to visually
analyze GUI changes. These ideas could help to pave the way to a delta
GUI change detection standard that streamlines the efforts of develop-
ers, testers, and other project contributors in identifying functionalities
that have been removed, added, or modified.

Nonetheless, as a result of novel research, our findings with complex
GUI applications also expose challenges we will need to address in
the future to improve the delta GUI change detection technique using
inferred state models.

https://github.com/janeczku/calibre-web/issues/2811

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
Table 11
MyExpenses change detection qualitative results.

MyExpenses Summary of detected changes

v3.6.6 to - Settings Data panel: has changed by adding a new Unmapped Transactions option
v3.6.7 - Parties panel: has changed by removing the merge option that should only be shown if there are at least two parties

- Select Category panel: has changed with two new Expense and Income filter options
- New Main Category panel: has changed with two new Expense and Income filter options
- Select Category-Help panel: has changed with a new Expense/Income FAQ option
- Discard confirmation panel: has been detected as added when the user does not complete the creation of a new transaction template. Although there
exist code changes that modify the back behavior and discard panel, we consider this detected change a false positive because we were not able to
reproduce this functionality

v3.6.7 to - Premium feature - Split transaction panel: has changed with a new radio button option
v3.6.8 - Premium feature - FinTS panel: has changed with a new radio button option

- Premium feature - Budgeting panel: has changed with a new radio button option
- Premium feature - Scan receipt panel: has changed with a new radio button option
- Backup folder dialog: has changed because it shows a Java object string instead of the backup folder directory. We reported this bug in the project
repository, which was resolved by the project developera

- False positive - Typing Date: The dynamic date text detects a change due to an inadequate abstraction that does not match the additional after text

v3.6.8 to - Categories panel: has changed the button Setup default categories to Transfer
v3.6.9 - Select Category panel: has changed the button Setup default categories to Transfer

- Select Category unselected checkbox: now transits to a newly added state with the Transfer button
- Backup folder dialog: continues showing another Java object string instead of the backup folder directory

a https://github.com/mtotschnig/MyExpenses/issues/1378.
7. Threats to validity

This section mentions some threats that could affect the validity of
our study [70,75,76].

• Construct validity (Systematic mapping): The decision on
exclusion and inclusion criteria during the systematic mapping of
the literature may be unintentionally biased by the researchers’
knowledge and judgment. This is mainly because some techniques
reported in studies that aim at repairing test scripts or detecting
cross-browser and cross-device differences are strongly connected
to the delta GUI change detection topic. Moreover, in other stud-
ies, it is not clear how changes are reported with textual or visual
information. To mitigate this threat, we have documented and
shared the process results, as well as reported other interesting
related work studies.

• Construct validity (Change Detection tool): The state model
inference was limited to 3 click-action lengths to control the
number of discovered states and allow the inference of a partial
but complete state model. However, this causes certain internal
states of the application to not be inferred in the model, and the
change detection approach will not be able to detect and highlight
changes in these states.

• Content validity (ChangeDetection tool): The qualitative eval-
uation to determine the accuracy of the detected GUI changes
was performed manually by inspecting the diverse SUT versions
from the open-source software repositories. Although the results
are described in a complete document, human error is possible in
determining these results.

• Internal validity (Systematic mapping): The results of the
systematic mapping of the literature search query may not re-
trieve all the relevant research works related to the GUI change
detection topic. To mitigate this threat, we used Scopus, the
largest database of peer-reviewed scientific literature, and we
validated the employed terminology with a small set of relevant
works found during our previous research [12].

• Internal validity (ChangeDetection tool): A unique researcher,
with experience in the TESTAR state model inference, config-
ured the abstraction strategy of the SUT objects. This introduces
subjectivity and potential bias based on their tacit knowledge
and decisions. Different researchers may consider that using a
different abstraction strategy is more adequate.

• External validity (ChangeDetection tool): We use one open-

source Desktop, Web, and Android application to conduct the

20
study. We have demonstrated the potential of integrating the
change detection approach to detect and highlight GUI changes
between delta versions. Moreover, we mentioned diverse infer-
ence and abstraction challenges that affect this delta GUI change
detection approach. Nevertheless, it is necessary to extend the
research with diverse types of applications to be able to generalize
the results.
As an additional external validity threat, all the state models used
in this study are inferred using the TESTAR tool. For this reason, it
is necessary to investigate other state models of event flow graph
tools to extend and improve the ChangeDetection tool.

8. Discussion

In today’s software projects, where development methodologies em-
phasize rapid and iterative updates with frequent delta increments, it is
crucial to integrate techniques that can automatically detect and verify
the correctness of software changes. These techniques are essential to
support developers and testers by providing them with analytics and
visual results. While code review has emerged and been embraced as
a key strategy to ensure readability, consistency, and correctness in all
software projects, our systematic mapping of the literature indicates
that despite the existence of state-of-the-art delta GUI change detection
techniques, their ideas and implementations remain scattered depend-
ing on the type of system or are not used for the main purpose of
detecting and highlighting changes. We provide a new delta GUI change
detection approach using inferred models to tackle this limitation.

This study presents how the automated inference of GUI models,
in conjunction with change detection algorithms for model transitions,
provides an interactive model that automatically highlights delta GUI
changes. This interactive model can be useful for developers, testers,
and other project contributors to detect added, removed, and changed
functionalities. Furthermore, the empirical evaluation demonstrates the
versatility of the state model inference technique, showcasing its appli-
cability to a diverse range of systems like desktop, web, and mobile
applications.

Analyzing real and complex open-source systems reveals both the
benefits and challenges of employing inferred models for delta GUI
change detection. The technique automatically identifies and highlights
GUI states changed between versions, which can support developers
and testers in validating changes and uncovering potential issues. No-
table examples include the detected Calibre web state that contains a

typo issue that was already reported and fixed by their community and

https://github.com/mtotschnig/MyExpenses/issues/1378

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
the successful detection of a Java object display issue reported by our
team to the MyExpenses mobile software project.

Nevertheless, the complexity of GUI systems, characterized by a
multitude of states with dynamic behaviors, poses significant chal-
lenges that require extensive research and knowledge in inference and
abstraction strategies when inferring state models. An inadequate infer-
ence or abstraction strategy can lead to erroneous change detection due
to a lack of inferred GUI transitions if the model is not partially com-
plete or due to dynamic alterations and nondeterministic behaviors.
It is worth mentioning that the implementation of a Domain Specific
Language (DSL) that allows the configurable level of abstraction and
inference strategies could help to deal with the intrinsic state explosion,
dynamism, and non-determinism challenges of complex GUI systems
that will remain.

Other challenges, such as the model traverse or the existence of
noise, arise when comparing these models to detect changes. Introduc-
ing the capability for users to configure and utilize action descriptions
during model comparison has proven to enhance the traversal of mod-
els by facilitating the comparison of subsequent transitions. Hence,
in further implementations, integrating configuration functions or DSL
instructions that allow users to ignore specific widgets (e.g., the static
widgets from the OBS panel or the Calibre menu) could mitigate the
propagation of change detection noise across the states of the merged
model.

When it comes to empirically evaluating the accuracy and inaccu-
racy of the delta GUI change detection technique, it becomes crucial
to extend the assessment by incorporating metrics for false and true
positives and negatives, accompanied by statistical analysis. However,
conducting such evaluations demands a substantial understanding of
the SUT to correlate the GUI with the underlying classes and code.
Moreover, in certain systems like OBS desktop and Calibre web, where
there are numerous commits and code changes between release ver-
sions, the manual inspection becomes impractical due to the sheer
volume of changes. For this reason, the empirical evaluation review for
these systems should involve a developer or tester expert in the SUT,
or this evaluation should be performed on smaller SUT delta commit
increments.

Additionally, obtaining feedback on the perception of the effec-
tiveness, efficiency, usability, and challenges of our proposal is of
significant importance. Under the European Innovation Alliance for
Testing Education (ENACTEST) project, which aims to identify and
design seamless teaching materials for testing that align with industry
and learning needs [77], we conducted a preliminary evaluation of
our change detection approach and the interactive web interface. This
experimental evaluation involved six master’s students enrolled in a
software testing course.

The experiment simulated a pull request with several commits rep-
resenting a new delta version of a web SUT. The students individually
verified whether changes at the code level resulted in changes at
the GUI level using the change detection tool. They were asked to
determine if the changes indicated by the tool were correct GUI changes
or if the commit changes introduced GUI failures. Usability evalu-
ation methods included a cognitive walkthrough to understand the
tool’s learnability for new users, Likert-scale questionnaires to gather
qualitative and quantitative information about the user experience,
and a final group interview to capture the students’ experiences and
impressions [78–81].

Feedback from this preliminary evaluation indicates that the change
detection approach can help project newcomers, such as developers,
testers, or other collaborators, to visualize and understand the software.
It can reveal how code and GUI are related when the change detection
models are reviewed during delta pull requests. Additionally, this eval-
uation results also pointed to technical aspects for visual improvements,
like the need to highlight changes at the DOM level, even if the GUI
visuals remain the same.
21
This feedback motivates us to continue improving the change de-
tection approach and the interactive web interface. For a broader
generalization of the cognitive and usability results, we plan to con-
tinue the evaluation under the ENACTEST project. We expect to gather
feedback from industrial partners and conduct further experiment eval-
uations with bachelor’s and master’s students. Future experiments aim
to evaluate individual and collaborative cognitive and usability percep-
tions of the change detection tool. Following ENACTEST principles, we
will conduct formal experiments by recording and analyzing videos of
user actions [82], studying the constructive interaction of two users
discovering the tool’s characteristics together [83], continuing with in-
dividual and group interviews, and formalizing the results by analyzing
and publishing the evaluation outcomes.

We advocate this approach can provide the beginning of a path
toward standardizing the use of inferred models to help detect GUI
changes across diverse systems encompassing desktop, web, and mo-
bile applications commonly used by most users in their daily activi-
ties. Adopting this practice will streamline the work of the develop-
ers, testers, and other stakeholders involved in software development
projects, improving quality standards and enhancing user software
usage experiences. As with code-level change detection and reporting
practices, this approach requires future research, dealing with chal-
lenges and decisions that will increasingly standardize this practice
in software system projects. Since the developed tool and replication
data are open-source, we hope other researchers continue with future
empirical studies or compare our tool with other GUI change detection
techniques.

9. Conclusions and future work

This paper presents a delta GUI change detection approach that
utilizes automated inferred state models to identify and highlight differ-
ences in the GUI between different SUT versions. Through a literature
review process, we have identified a gap in existing techniques or tools
capable of automatically detecting and highlighting delta GUI changes
for a diverse range of applications in desktop, web, and mobile systems.
Furthermore, our examination indicates that outside web systems, delta
GUI change detection techniques are mainly researched in regression
testing studies that lack emphasis on reporting textual or visual GUI
changes to end-users.

Takeaway: In the state-of-the-art, there is a gap in existing tech-
niques or tools capable of automatically detecting and highlighting
delta GUI changes for a diverse range of desktop, web, and mobile
applications, regardless of the internal architecture of the software.

Recognizing the significance of integrating a delta GUI change
detection technique into software repositories for software quality as-
surance, we provide a novel open-source tool to improve a GUI change
detection approach that can detect and highlight GUI changes from
3 different software systems. The GUI change detection approach
recursively compares two inferred state models from distinct software
versions to mark the states and actions that have been changed, added,
or removed. Subsequently, a merged graph technique allows the visual-
ization of these changes in an interactive web interface. To substantiate
our approach and contribute valuable insights into the software testing
field, we have conducted an empirical evaluation using representative
SUTs from real and widely adopted applications.

Takeaway: A novel delta change detection open-source tool that
uses inferred GUI models from an automated scriptless testing
tool can automatically detect and offer the visualization of GUI
changes.

The empirical evaluation results demonstrate the feasibility of em-
ploying automatic inferred GUI state models for executing an algorithm

F. Pastor Ricós et al.

d
d
s
a

t
c
(
G
r
a
t
o

r
n
o
c
s
D

r
a
a
a
t
t
e

a
i
o
T
w
t
e
t
s
F
p
d
p

Computer Standards & Interfaces 92 (2025) 103925
that detects GUI changes, complemented by a merge graph technique
that highlights these changes to end-users. These techniques are de-
veloped in a dedicated ChangeDetection tool, designed to operate
independently with respect to the specific SUT technical requirements.
Nevertheless, it is important to note that, similar to any technique that
relies on model inference, the efficacy of the ChangeDetection tool
depends on the design of adequate inference and abstraction strategies.

Takeaway: An empirical evaluation, performed with real and
widely adopted GUI applications, demonstrates the feasibility of
using the change detection approach for detecting and highlighting
GUI changes.

Takeaway: The efficacy of the GUI change detection approach
depends on the design of adequate inference and abstraction
strategies.

Finally, we conducted a preliminary experiment with master’s stu-
ents to obtain cognitive and usability feedback on how the change
etection approach can help newcomers visualize and understand a
oftware project. Additionally, this experiment also pointed to technical
spects for future visual improvement.

Takeaway: The change detection approach can help newcomers
visualize and understand the changes in different versions of a
software project.

Future work will encompass several objectives aimed at enhancing
he efficacy and usability of our GUI change detection tool. The in-
lusion of configurable abstraction identifiers for state model actions
see 4.3) has proven to enhance the detection and highlighting of
UI changes even if the origin state identifier has changed. For this

eason, we plan to study the feasibility of introducing new configurable
bstraction options that allow ignoring certain widgets from the widget
ree, such as static menu or panel widgets, to prevent the propagation
f change detection noise.

For web applications, we detected that the change detection algo-
ithm effectively detects DOM changes of existing elements that are
ot visible in the GUI. Future work aims to extend the visualization
f the changed state with a textual description that summarizes these
hanges. For example, integrating Artificial Intelligence (AI) techniques
uch as Natural Language (NL) comments generation [84] adapted to
OM properties.

In terms of experimentation, we will delve into change detection
esearch with state models that rely on typing and scroll actions,
ddressing more complex user GUI interactions. These interactions
re essential to our future planning of using scriptless model inference
nd change detection with software from industry partners. Moreover,
echnical enhancements will aim to optimize memory management for
he tool when comparing large models, ensuring efficient performance
ven in resource-intensive scenarios.

For future evaluation, we plan to continue validating the cognitive
nd usability aspects of the change detection approach and the web
nterface tool in collaboration with industry and academic partners
f the ENACTEST project, as well as other interested stakeholders.
hese evaluations will help determine the preliminary feedback on
hether the GUI change detection approach helps to overcome the

echnical knowledge challenges faced by software project newcom-
rs [85]. Additional evaluation, improvements, and documentation of
his open-source change detection software project will require con-
idering regional diversity to empower worldwide contributions [86].
urthermore, to continue the way to standardize this technique, we
lan to conduct interviews with experts in the GUI testing field and
evelopers and testers involved in complex GUI systems to obtain the
erception of effectiveness, efficiency, and challenges of our proposal.
22
CRediT authorship contribution statement

Fernando Pastor Ricós: Writing – review & editing, Writing – orig-
inal draft, Validation, Software, Methodology, Investigation, Formal
analysis, Conceptualization. Beatriz Marín: Writing – review & edit-
ing, Writing – original draft, Validation, Methodology, Investigation,
Conceptualization. Tanja E.J. Vos: Writing – review & editing, Writing
– original draft, Methodology, Investigation, Conceptualization. Rick
Neeft: Software, Methodology, Investigation, Conceptualization. Pekka
Aho: Software, Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Fernando Pastor Ricos reports financial support was provided by Eras-
mus. Beatriz Marin reports financial support was provided by Erasmus.
Tanja E.J. Vos reports financial support was provided by Erasmus.
If there are other authors they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

The research article contains references to the software code and
evaluation data.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the author(s) used ChatGPT
and Grammarly in order to improve the grammar and syntax of the
content. After using this tool/service, the author(s) reviewed and edited
the content as needed and take(s) full responsibility for the content of
the publication.

Acknowledgment

This research has been funded by the project European Innova-
tion Alliance for Testing Education (ENACTEST), ERASMUS+ number
101055874,2022–2025.

References

[1] J. Pantiuchina, M. Mondini, D. Khanna, X. Wang, P. Abrahamsson, Are software
startups applying agile practices? The state of the practice from a large
survey, in: Agile Processes in Software Engineering and Extreme Programming:
18th International Conference, XP 2017, Cologne, Germany, May 22-26, 2017,
Proceedings 18, Springer International Publishing, 2017, pp. 167–183.

[2] R. Hoda, N. Salleh, J. Grundy, The rise and evolution of agile software
development, IEEE Softw. 35 (5) (2018) 58–63.

[3] G. Giachetti, J.L. de la Vara, B. Marín, A model-driven approach to adopt
good practices for agile process configuration and certification, Comput. Stand.
Interfaces 86 (2023) 103737.

[4] S. Al-Saqqa, S. Sawalha, H. AbdelNabi, Agile software development:
Methodologies and trends, Int. J. Interact. Mob. Technol. 14 (11) (2020).

[5] C. Vassallo, F. Palomba, A. Bacchelli, H.C. Gall, Continuous code quality: are
we (really) doing that? in: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 790–795.

[6] M. Saadatmand, E.P. Enoiu, H. Schlingloff, M. Felderer, W. Afzal, Smartdelta:
automated quality assurance and optimization in incremental industrial software
systems development, in: 2022 25th Euromicro Conference on Digital System
Design, DSD, IEEE, 2022, pp. 754–760.

[7] H.M. Idrus, et al., Tacit knowledge in software testing: A systematic review, in:
2019 6th International Conference on Research and Innovation in Information
Systems, ICRIIS, IEEE, 2019, pp. 1–6.

[8] A. Bons, B. Marín, P. Aho, T.E. Vos, Scripted and scriptless GUI testing for web
applications: An industrial case, Inf. Softw. Technol. 158 (2023) 107172.

[9] C. Sadowski, E. Söderberg, L. Church, M. Sipko, A. Bacchelli, Modern code
review: a case study at google, in: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, 2018,
pp. 181–190.

http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb1
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb2
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb2
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb2
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb3
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb3
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb3
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb3
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb3
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb4
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb4
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb4
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb5
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb5
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb5
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb5
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb5
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb6
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb6
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb6
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb6
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb6
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb6
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb6
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb7
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb7
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb7
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb7
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb7
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb8
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb8
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb8
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb9
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb9
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb9
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb9
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb9
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb9
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb9

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
[10] J. Santos, D. Alencar da Costa, U. Kulesza, Investigating the impact of continuous
integration practices on the productivity and quality of open-source projects,
in: Proceedings of the 16th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2022, pp. 137–147.

[11] Y. Yu, H. Wang, G. Yin, T. Wang, Reviewer recommendation for pull-requests in
GitHub: What can we learn from code review and bug assignment? Inf. Softw.
Technol. 74 (2016) 204–218.

[12] F.P. Ricós, R. Neeft, B. Marín, T.E. Vos, P. Aho, Using GUI change detection for
delta testing, in: International Conference on Research Challenges in Information
Science, Springer, 2023, pp. 509–517.

[13] B. Kitchenham, S. Charters, et al., Guidelines for performing systematic literature
reviews in software engineering, 2007.

[14] B.A. Kitchenham, D. Budgen, O.P. Brereton, Using mapping studies as the basis
for further research–a participant-observer case study, Inf. Softw. Technol. 53
(6) (2011) 638–651.

[15] O. Rodríguez-Valdés, T.E. Vos, P. Aho, B. Marín, 30 Years of automated GUI
testing: A bibliometric analysis, in: Quality of Information and Communications
Technology: 14th International Conference, QUATIC 2021, Algarve, Portugal,
September 8–11, 2021, Proceedings 14, Springer, 2021, pp. 473–488.

[16] R. Pranckutė, Web of Science (WoS) and Scopus: The titans of bibliographic
information in today’s academic world, Publications 9 (1) (2021) 12.

[17] M. Bures, Change detection system for the maintenance of automated testing,
in: Testing Software and Systems: 26th IFIP WG 6.1 International Conference,
ICTSS 2014, Madrid, Spain, September 23-25, 2014. Proceedings 26, Springer,
2014, pp. 192–197.

[18] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, 2014, pp.
1–10.

[19] M. Grechanik, C.W. Mao, A. Baisal, D. Rosenblum, B.M. Hossain, Differencing
graphical user interfaces, in: 2018 IEEE International Conference on Software
Quality, Reliability and Security, QRS, IEEE, 2018, pp. 203–214.

[20] S. Raina, A.P. Agarwal, An automated tool for regression testing in web
applications, ACM SIGSOFT Softw. Eng. Notes 38 (4) (2013) 1–4.

[21] T.A. Walsh, G.M. Kapfhammer, P. McMinn, Automatically identifying potential
regressions in the layout of responsive web pages, Softw. Test. Verif. Reliab. 30
(6) (2020) e1748.

[22] D. Roest, A. Mesbah, A. Van Deursen, Regression testing ajax applications: Coping
with dynamism, in: 2010 Third International Conference on Software Testing,
Verification and Validation, IEEE, 2010, pp. 127–136.

[23] Z. Gao, C. Fang, A.M. Memon, Pushing the limits on automation in GUI
regression testing, in: 2015 IEEE 26th International Symposium on Software
Reliability Engineering, ISSRE, IEEE, 2015, pp. 565–575.

[24] H. Tanno, Y. Adachi, Y. Yoshimura, K. Natsukawa, H. Iwasaki, Region-based
detection of essential differences in image-based visual regression testing, J. Inf.
Process. 28 (2020) 268–278.

[25] Y. Adachi, H. Tanno, Y. Yoshimura, A method to mask Dynamic Content Areas
based on positional relationship of screen elements for visual regression testing,
in: 2020 IEEE 44th Annual Computers, Software, and Applications Conference,
COMPSAC, IEEE, 2020, pp. 1755–1760.

[26] Y. Xiong, M. Xu, T. Su, J. Sun, J. Wang, H. Wen, G. Pu, J. He, Z. Su, An
empirical study of functional bugs in android apps, in: Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis, 2023,
pp. 1319–1331.

[27] M. Li, J. Wang, L. Damata, TAO project: An intuitive application UI test
toolset, in: 2009 Sixth International Conference on Information Technology: New
Generations, IEEE, 2009, pp. 796–800.

[28] K. Moran, C. Watson, J. Hoskins, G. Purnell, D. Poshyvanyk, Detecting and
summarizing GUI changes in evolving mobile apps, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, 2018,
pp. 543–553.

[29] S. Flesca, F. Furfaro, E. Masciari, Monitoring web information changes, in:
Proceedings International Conference on Information Technology: Coding and
Computing, IEEE, 2001, pp. 421–425.

[30] M. Qiang, S. Miyazaki, K. Tanaka, WebSCAN: Discovering and notifying impor-
tant changes of web sites, in: Database and Expert Systems Applications: 12th
International Conference, DEXA 2001 Munich, Germany, September 3–5, 2001
Proceedings 12, Springer, 2001, pp. 587–598.

[31] L. Francisco-Revilla, F.M. Shipman III, R. Furuta, U. Karadkar, A. Arora, Percep-
tion of content, structure, and presentation changes in web-based hypertext, in:
Proceedings of the 12th ACM Conference on Hypertext and Hypermedia, 2001,
pp. 205–214.

[32] L. Francisco-Revilla, F. Shipman, R. Furuta, U. Karadkar, A. Arora, Managing
change on the web, in: Proceedings of the 1st ACM/IEEE-CS Joint Conference
on Digital Libraries, 2001, pp. 67–76.

[33] L. Liu, W. Tang, D. Buttler, C. Pu, Information monitoring on the web: a scalable
solution, World Wide Web 5 (2002) 263–304.

[34] N. Agrawal, R. Ananthanarayanan, R. Gupta, S. Joshi, R. Krishnapuram, S. Negi,
The eshopmonitor: A comprehensive data extraction tool for monitoring web
sites, IBM J. Res. Dev. 48 (5.6) (2004) 679–692.
23
[35] Z. Dalal, S. Dash, P. Dave, L. Francisco-Revilla, R. Furuta, U. Karadkar, F. Ship-
man, Managing distributed collections: evaluating web page changes, movement,
and replacement, in: Proceedings of the 4th ACM/IEEE-CS Joint Conference on
Digital Libraries, 2004, pp. 160–168.

[36] J. Jacob, A. Sachde, S. Chakravarthy, CX-DIFF: a change detection algorithm for
XML content and change visualization for WebVigiL, Data Knowl. Eng. 52 (2)
(2005) 209–230.

[37] J. Teevan, S.T. Dumais, D.J. Liebling, R.L. Hughes, Changing how people view
changes on the web, in: Proceedings of the 22nd Annual ACM Symposium on
User Interface Software and Technology, 2009, pp. 237–246.

[38] A. Jatowt, Y. Kawai, K. Tanaka, Browsing assistant for changing pages, in:
Intelligent Agents in the Evolution of Web and Applications, Springer, 2009,
pp. 137–160.

[39] H. Khandagale, P. Halkarnikar, A novel approach for web page change detection
system, Int. J. Comput. Theory Eng. 2 (3) (2010) 364.

[40] Z. Pehlivan, M. Ben-Saad, S. Gançarski, Vi-DIFF: Understanding web pages
changes, in: Database and Expert Systems Applications: 21st International Con-
ference, DEXA 2010, Bilbao, Spain, August 30-September 3, 2010, Proceedings,
Part I 21, Springer, 2010, pp. 1–15.

[41] F. Shao, R. Xu, W. Haque, J. Xu, Y. Zhang, W. Yang, Y. Ye, X. Xiao, WebEvo:
taming web application evolution via detecting semantic structure changes, in:
Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2021, pp. 16–28.

[42] M. Grechanik, Q. Xie, C. Fu, Maintaining and evolving GUI-directed test scripts,
in: 2009 IEEE 31st International Conference on Software Engineering, IEEE,
2009, pp. 408–418.

[43] S. Zhang, H. Lü, M.D. Ernst, Automatically repairing broken workflows for
evolving gui applications, in: Proceedings of the 2013 International Symposium
on Software Testing and Analysis, 2013, pp. 45–55.

[44] Z. Gao, Z. Chen, Y. Zou, A.M. Memon, Sitar: Gui test script repair, Ieee Trans.
Softw. Eng. 42 (2) (2015) 170–186.

[45] S.R. Choudhary, D. Zhao, H. Versee, A. Orso, Water: Web application test repair,
in: Proceedings of the First International Workshop on End-To-End Test Script
Engineering, 2011, pp. 24–29.

[46] M. Hammoudi, G. Rothermel, A. Stocco, Waterfall: An incremental approach
for repairing record-replay tests of web applications, in: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016, pp. 751–762.

[47] A. Stocco, R. Yandrapally, A. Mesbah, Visual web test repair, in: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp. 503–514.

[48] H. Kirinuki, H. Tanno, K. Natsukawa, COLOR: correct locator recommender for
broken test scripts using various clues in web application, in: 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengineering,
SANER, IEEE, 2019, pp. 310–320.

[49] M. Nass, E. Alégroth, R. Feldt, M. Leotta, F. Ricca, Similarity-based web element
localization for robust test automation, ACM Trans. Softw. Eng. Methodol. 32
(3) (2023) 1–30.

[50] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, X. Li, ATOM: Automatic
maintenance of GUI test scripts for evolving mobile applications, in: 2017 IEEE
International Conference on Software Testing, Verification and Validation, ICST,
IEEE, 2017, pp. 161–171.

[51] F. Song, Z. Xu, F. Xu, An xpath-based approach to reusing test scripts for
android applications, in: 2017 14th Web Information Systems and Applications
Conference, WISA, IEEE, 2017, pp. 143–148.

[52] N. Chang, L. Wang, Y. Pei, S.K. Mondal, X. Li, Change-based test script main-
tenance for android apps, in: 2018 Ieee International Conference on Software
Quality, Reliability and Security (Qrs), IEEE, 2018, pp. 215–225.

[53] M. Pan, T. Xu, Y. Pei, Z. Li, T. Zhang, X. Li, Gui-guided test script repair for
mobile apps, IEEE Trans. Softw. Eng. 48 (3) (2020) 910–929.

[54] T. Xu, M. Pan, Y. Pei, G. Li, X. Zeng, T. Zhang, Y. Deng, X. Li, Guider: Gui
structure and vision co-guided test script repair for android apps, in: Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021, pp. 191–203.

[55] A. Mesbah, M.R. Prasad, Automated cross-browser compatibility testing, in:
Proceedings of the 33rd International Conference on Software Engineering, 2011,
pp. 561–570.

[56] H. Tanaka, X-BROT: prototyping of compatibility testing tool for web application
based on document analysis technology, in: 2019 International Conference on
Document Analysis and Recognition Workshops, ICDARW, 7, IEEE, 2019, pp.
18–21.

[57] H. Tanaka, Automating web GUI compatibility testing using X-BROT: Prototyping
and field trial, in: Document Analysis and Recognition–ICDAR 2021 Workshops:
Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part II 16, Springer,
2021, pp. 255–267.

[58] Y. Ren, Y. Gu, Z. Ma, H. Zhu, F. Yin, Cross-device difference detector for mobile
application GUI compatibility testing, in: 2022 IEEE International Conference on
Software Testing, Verification and Validation Workshops, ICSTW, IEEE, 2022,
pp. 253–260.

http://refhub.elsevier.com/S0920-5489(24)00094-1/sb10
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb10
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb10
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb10
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb10
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb10
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb10
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb11
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb11
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb11
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb11
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb11
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb12
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb12
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb12
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb12
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb12
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb13
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb13
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb13
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb14
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb14
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb14
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb14
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb14
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb15
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb15
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb15
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb15
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb15
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb15
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb15
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb16
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb16
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb16
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb17
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb17
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb17
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb17
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb17
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb17
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb17
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb18
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb18
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb18
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb18
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb18
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb18
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb18
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb19
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb19
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb19
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb19
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb19
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb20
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb20
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb20
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb21
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb21
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb21
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb21
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb21
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb22
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb22
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb22
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb22
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb22
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb23
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb23
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb23
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb23
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb23
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb24
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb24
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb24
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb24
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb24
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb25
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb25
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb25
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb25
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb25
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb25
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb25
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb26
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb26
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb26
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb26
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb26
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb26
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb26
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb27
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb27
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb27
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb27
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb27
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb28
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb28
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb28
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb28
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb28
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb28
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb28
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb29
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb29
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb29
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb29
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb29
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb30
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb30
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb30
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb30
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb30
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb30
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb30
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb31
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb31
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb31
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb31
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb31
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb31
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb31
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb32
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb32
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb32
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb32
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb32
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb33
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb33
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb33
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb34
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb34
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb34
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb34
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb34
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb35
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb35
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb35
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb35
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb35
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb35
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb35
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb36
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb36
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb36
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb36
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb36
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb37
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb37
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb37
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb37
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb37
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb38
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb38
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb38
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb38
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb38
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb39
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb39
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb39
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb40
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb40
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb40
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb40
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb40
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb40
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb40
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb41
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb41
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb41
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb41
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb41
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb41
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb41
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb42
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb42
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb42
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb42
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb42
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb43
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb43
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb43
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb43
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb43
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb44
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb44
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb44
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb45
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb45
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb45
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb45
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb45
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb46
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb46
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb46
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb46
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb46
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb46
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb46
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb47
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb47
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb47
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb47
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb47
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb48
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb48
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb48
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb48
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb48
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb48
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb48
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb49
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb49
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb49
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb49
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb49
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb50
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb50
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb50
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb50
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb50
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb50
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb50
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb51
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb51
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb51
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb51
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb51
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb52
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb52
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb52
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb52
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb52
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb53
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb53
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb53
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb54
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb54
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb54
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb54
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb54
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb54
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb54
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb55
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb55
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb55
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb55
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb55
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb56
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb56
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb56
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb56
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb56
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb56
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb56
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb57
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb57
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb57
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb57
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb57
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb57
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb57
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb58
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb58
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb58
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb58
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb58
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb58
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb58

F. Pastor Ricós et al. Computer Standards & Interfaces 92 (2025) 103925
[59] T.E. Vos, P. Aho, F. Pastor Ricos, O. Rodriguez-Valdes, A. Mulders, Testar–
scriptless testing through graphical user interface, Softw. Test. Verif. Reliab. 31
(3) (2021) e1771.

[60] A. Mulders, O.R. Valdes, F.P. Ricós, P. Aho, B. Marín, T.E. Vos, State model
inference through the GUI using run-time test generation, in: International
Conference on Research Challenges in Information Science, Springer, 2022, pp.
546–563.

[61] F.P. Ricós, A. Slomp, B. Marín, P. Aho, T.E. Vos, Distributed state model inference
for scriptless GUI testing, J. Syst. Softw. 200 (2023) 111645.

[62] T. Jansen, F.P. Ricós, Y. Luo, K. van der Vlist, R. van Dalen, P. Aho, T.E. Vos,
Scriptless GUI testing on mobile applications, in: 2022 IEEE 22nd International
Conference on Software Quality, Reliability and Security, QRS, IEEE, 2022, pp.
1103–1112.

[63] I. Prasetya, F. Pastor Ricós, F.M. Kifetew, D. Prandi, S. Shirzadehhajimahmood,
T.E. Vos, P. Paska, K. Hovorka, R. Ferdous, A. Susi, et al., An agent-based
approach to automated game testing: an experience report, in: Proceedings of
the 13th International Workshop on Automating Test Case Design, Selection and
Evaluation, 2022, pp. 1–8.

[64] F.P. Ricós, B. Marín, T. Vos, J. Davidson, K. Hovorka, Scriptless testing for an
industrial 3D sandbox game, in: International Conference on Evaluation of Novel
Approaches To Software Engineering, ENASE-Proceedings, Vol. 1, SciTePress,
2024, pp. 51–62.

[65] F.P. Ricós, P. Aho, T. Vos, I.T. Boigues, E.C. Blasco, H.M. Martínez, Deploying
TESTAR to enable remote testing in an industrial CI pipeline: a case-based
evaluation, in: Leveraging Applications of Formal Methods, Verification and
Validation: Verification Principles: 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20–30,
2020, Proceedings, Part I 9, Springer, 2020, pp. 543–557.

[66] M. Nass, E. Alégroth, R. Feldt, Why many challenges with GUI test automation
(will) remain, Inf. Softw. Technol. 138 (2021) 106625.

[67] W. Wang, S. Sampath, Y. Lei, R. Kacker, R. Kuhn, J. Lawrence, Using combi-
natorial testing to build navigation graphs for dynamic web applications, Softw.
Test. Verif. Reliab. 26 (4) (2016) 318–346.

[68] X.-F. Qi, Y.-L. Hua, P. Wang, Z.-Y. Wang, Leveraging keyword-guided exploration
to build test models for web applications, Inf. Softw. Technol. 111 (2019)
110–119.

[69] K. Andrews, M. Wohlfahrt, G. Wurzinger, Visual graph comparison, in: 13th
International Conference Information Visualisation, IEEE, 2009, pp. 62–67.

[70] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Ex-
perimentation in Software Engineering, Springer Science & Business Media,
2012.

[71] T.E. Vos, B. Marín, M.J. Escalona, A. Marchetto, A methodological framework
for evaluating software testing techniques and tools, in: 2012 12th International
Conference on Quality Software, IEEE, 2012, pp. 230–239.
24
[72] OBS-Project, Free and open source software for live streaming and screen
recording, 2012, 2023, Last accessed: 9 Dec 2022, URL https://github.com/
obsproject/obs-studio.

[73] Calibre, Web app for browsing, reading and downloading ebooks, 2006, 2023,
Last accessed: 9 Dec 2022, URL https://github.com/janeczku/calibre-web.

[74] M. Totschnig, Android expenses tracking app, 2012, 2023, Last accessed: 9 Dec
2022, URL https://github.com/mtotschnig/MyExpenses.

[75] P. Ralph, E. Tempero, Construct validity in software engineering research and
software metrics, in: 22nd EASE, ACM, 2018, pp. 13–23.

[76] R. Feldt, A. Magazinius, Validity threats in empirical software engineering
research-an initial survey, in: Seke, 2010, pp. 374–379.

[77] B. Marín, T.E. Vos, A.C. Paiva, A.R. Fasolino, M. Snoeck, et al., ENACTEST-
European innovation alliance for testing education, in: Proceedings of RCIS 2022
Workshops and Research Projects Track Co-Located with the 16th International
Conference on Research Challenges in Information Science, 2022.

[78] J. Nielsen, Usability Engineering, Morgan Kaufmann, 1994.
[79] J. Rieman, M. Franzke, D. Redmiles, Usability evaluation with the cognitive walk-

through, in: Conference Companion on Human Factors in Computing Systems,
1995, pp. 387–388.

[80] A. Solano, C.A. Collazos, C. Rusu, H.M. Fardoun, Combinations of methods for
collaborative evaluation of the usability of interactive software systems, Adv.
Hum.-Comput. Interact. 2016 (1) (2016) 4089520.

[81] N. Doorn, T.E. Vos, B. Marín, Towards understanding students’ sensemaking of
test case design, Data Knowl. Eng. 146 (2023) 102199.

[82] F. Cammaerts, M. Snoeck, A.C. Paiva, Collecting cognitive strategies applied
by students during test case design, in: Proceedings of the 27th International
Conference on Evaluation and Assessment in Software Engineering, 2023, pp.
455–459.

[83] C. O’Malley, S. Draper, M. Riley, Constructive interaction: a method for study-
ing user-computer-user interaction, in: IFIP INTERACT’84 First International
Conference on Human-Computer Interaction, 1984.

[84] S. Panthaplackel, P. Nie, M. Gligoric, J.J. Li, R. Mooney, Learning to update
natural language comments based on code changes, in: D. Jurafsky, J. Chai,
N. Schluter, J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, Association for Computational
Linguistics, Online, 2020, pp. 1853–1868, http://dx.doi.org/10.18653/v1/2020.
acl-main.168, URL https://aclanthology.org/2020.acl-main.168.

[85] I. Steinmacher, T.U. Conte, C. Treude, M.A. Gerosa, Overcoming open source
project entry barriers with a portal for newcomers, in: Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 273–284.

[86] G.A.A. Prana, D. Ford, A. Rastogi, D. Lo, R. Purandare, N. Nagappan, Including
everyone, everywhere: Understanding opportunities and challenges of geographic
gender-inclusion in oss, IEEE Trans. Softw. Eng. 48 (9) (2021) 3394–3409.

http://refhub.elsevier.com/S0920-5489(24)00094-1/sb59
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb59
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb59
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb59
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb59
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb60
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb60
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb60
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb60
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb60
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb60
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb60
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb61
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb61
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb61
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb62
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb62
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb62
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb62
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb62
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb62
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb62
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb63
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb64
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb64
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb64
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb64
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb64
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb64
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb64
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb65
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb66
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb66
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb66
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb67
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb67
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb67
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb67
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb67
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb68
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb68
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb68
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb68
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb68
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb69
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb69
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb69
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb70
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb70
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb70
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb70
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb70
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb71
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb71
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb71
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb71
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb71
https://github.com/obsproject/obs-studio
https://github.com/obsproject/obs-studio
https://github.com/obsproject/obs-studio
https://github.com/janeczku/calibre-web
https://github.com/mtotschnig/MyExpenses
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb75
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb75
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb75
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb76
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb76
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb76
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb77
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb77
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb77
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb77
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb77
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb77
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb77
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb78
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb79
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb79
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb79
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb79
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb79
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb80
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb80
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb80
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb80
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb80
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb81
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb81
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb81
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb82
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb82
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb82
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb82
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb82
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb82
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb82
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb83
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb83
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb83
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb83
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb83
http://dx.doi.org/10.18653/v1/2020.acl-main.168
http://dx.doi.org/10.18653/v1/2020.acl-main.168
http://dx.doi.org/10.18653/v1/2020.acl-main.168
https://aclanthology.org/2020.acl-main.168
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb85
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb85
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb85
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb85
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb85
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb86
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb86
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb86
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb86
http://refhub.elsevier.com/S0920-5489(24)00094-1/sb86

	Delta GUI change detection using inferred models
	Introduction
	Literature review
	Methodology
	Data collection
	Data results
	Other interesting related work topics
	Repair test scripts
	Cross-Browser and Cross-Device testing

	Actionable insights obtained from the systematic mapping of the literature

	GUI State Model inference
	TESTAR tool for state model inference
	State Model Abstraction strategy
	State Model Inference strategy
	State Model Abstraction and Inference challenges

	GUI Change Detection tool
	Change detection algorithm
	Merge graph technique
	Configurable action abstraction identifiers

	Empirical Study
	SUT Objects
	Independent variables: Inference strategy
	Independent variables: Abstraction strategy
	Effort time for independent variables
	Dependent variables
	Design of the experiments

	Results
	State Model Inference
	OBS-Studio results
	OBS-Studio challenging results
	OBS-Studio further improvements ideas based on results

	Calibre-Web results
	Calibre challenging results
	Calibre further improvements ideas based on results

	MyExpenses results
	MyExpenses challenging results
	MyExpenses further improvements ideas based on results

	Answer to the research question

	Threats to validity
	Discussion
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Acknowledgment
	References

