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Abstract
The core-EP and BT inverses for rectangular matrices were studied recently in the literature.
The main aim of this paper is to unify both concepts by means of a new kind of generalized
inverse called W -weighted q-BT inverse. We analyze its existence and uniqueness by con-
sidering an adequate matrix system. Basic properties and some interesting characterizations
are proved for this new weighted generalized inverse. Also, we give a canonical form of the
W -weighted q-BT inverse by means of the weighted core-EP decomposition.

Keywords Weighted generalized inverses · q-BT inverse · W -weighted core-EP inverse ·
W -weighted Drazin inverse

Mathematics Subject Classification 15A09 · 15A24

1 Introduction and preliminaries

We denote by C
m×n the set of all m × n complex matrices. Let A ∈ C

m×n . The conjugate
transpose, rank, null space and column space of A are denoted by A∗, rank(A), N (A), and
R(A), respectively. The index of A ∈ C

n×n , denoted by Ind(A), is the smallest nonnegative
integer k such that rank(Ak) = rank(Ak+1). Moreover, A0 = In will refer to the n × n
identity matrix, and 0 will denote the null matrix of appropriate size. The standard notations
PS and PS,T stand for the orthogonal projector onto a subspace S and a projector onto S
along T , respectively, when Cn is equal to the direct sum of subspaces S and T .
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The Drazin inverse of a matrix A ∈ C
n×n is the unique matrix X = Ad ∈ C

n×n that
satisfies

X Ak+1 = Ak, X AX = X , AX = X A, where k = Ind(A).

When Ind(A) = 1, the Drazin inverse is called the group inverse of A and is denoted by A#.
The Moore–Penrose inverse of a matrix A ∈ C

m×n is the unique matrix X = A† ∈ C
n×m

that satisfies the Penrose equations

AX A = A, X AX = X , (AX)∗ = AX , (X A)∗ = X A.

We will denote by PA the orthogonal projector AA† onto the subspace R(A).
In 2014, Manjunatha Prassad andMohana [13] introduced the core-EP inverse of a matrix

A ∈ C
n×n of index k as the unique matrix X = A †© ∈ C

n×n that satisfies the conditions
X AX = X and R(X) = R(X∗) = R(Ak). That same year, Baksalary and Trenkler [2]
defined the BT inverse of A as the matrix A� = (APA)†. When the matrix A has index 1,
both inverses are reduced to the well-known core inverse A #© = A#AA† of A [1].

In 1980, Cline and Greville [4] extended the Drazin inverse to rectangular matrices and
it was called the W -weighted Drazin inverse. Let W ∈ C

n×m be a fixed nonzero matrix. We
recall that the W -weighted Drazin inverse of A ∈ C

m×n , denoted by Ad,W , is the unique
matrix X ∈ C

m×n satisfying the three equations

XW AW X = X , AW X = XW A, XW (AW )k+1 = (AW )k,

where k = max{Ind(AW ), Ind(W A)}. If k = 1, the W -weighted Drazin inverse of A
is called the W -weighted group inverse of A and is denoted by A#,W . When m = n and
W = In , we recover the Drazin inverse, that is, Ad,In = Ad .

The W -weighted Drazin inverse satisfies the following two dual representations

Ad,W = A[(W A)d ]2 = [(AW )d ]2A, whence Ad,WW = (AW )d , W Ad,W = (W A)d .

(1.1)
Interesting representations and properties of the W -weighted Drazin inverse were studied in
[17].

Similarly, the core-EP inverse was extended to rectangular matrices in [5]. It was named
W -weighted core-EP inverse, and defined as A †©,W = (W AW P(AW )k )

†, which is the unique
solution of

W AWX = P(W A)k , R(X) ⊆ R((AW )k). (1.2)

For the particular case k = 1, the W -weighted core-EP inverse of A is known as the
W -weighted core inverse of A and denoted by A #©,W . Clearly, when m = n and W = In ,
we recover the core-EP inverse, that is, A †©,In = A †©.

The W -weighted core-EP inverse satisfies the following interesting properties [5, 12]

A †©,W = A[(W A) †©]2, A †©,WW P(AW )k = (AW ) †©, P(W A)k W A †©,W = (W A) †©.

(1.3)
Recently, the W -weighted BT inverse of A was defined in [10] as the unique matrix

X = A�,W ∈ C
m×n satisfying the following equations

XW AW X = X , XW A = [W (AW )2(AW )†]†W A, AW X = AW [(W A)2W (AW )†]†.
(1.4)

It was also established that A�,W = (W AW PAW )†.
Interesting results including different kinds of weighted generalized inverses can be found

in [14–16].
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In this paper we unify the definitions given in (1.2) and (1.4) given rise a new kind of
generalized inverse calledW -weightedq-BT inverse.Weanalyze its existence anduniqueness
by considering an adequate matrix system.

This paper is organized as follows. In Sect. 2, we present results of existence and unique-
ness of the W -weighted q-BT inverse. More precisely, the existence will be characterized as
the unique solution of three matrix equations. In Sect. 3, we obtain some characterizations
of the W -weighted q-BT inverse. As an interesting consequence, we present new charac-
terizations of the W -weighted core-EP and W -weighted BT inverses. In Sect. 4, we obtain
a canonical form of the W -weighted q-BT inverse by using a simultaneous decomposition
of the matrices A and W called the weighted core-EP decomposition. Finally, some more
properties of this new generalized inverse are investigated.

2 Existence and uniqueness

In this section, we define and investigate the W -weighted q-BT inverse for rectangular
matrices A ∈ C

m×n by considering a non-null weight W ∈ C
n×m .

We start with a result of existence and uniqueness. Before that, we need the following
auxiliary lemma.

Lemma 2.1 Let A ∈ C
m×n and B ∈ C

n×s . Then PB(APB)† = (APB)†.

Proof Since (In − PB)PB A∗ = 0 trivially holds, we have thatR((APB)†) ⊆ N ((In − PB))

is always valid, which in turn is equivalent to PB(APB)† = (APB)†. ��
Theorem 2.2 Let A ∈ C

m×n, 0 	= W ∈ C
n×m and q ∈ N ∪ {0}. The system of equations

XW AW X = X , XW A = (W AW P(AW )q )
†W A, AW X = AW (W AW P(AW )q )

†,

(2.1)
is consistent and has a unique solution X = (W AW P(AW )q )

†.

Proof Existence. Let X := (W AW P(AW )q )
†. Clearly, X satisfies the two last equations in

(2.1). Moreover, from Lemma 2.1 we have

XW AW X = (W AW P(AW )q )
†W AW (W AW P(AW )q )

†

= (W AW P(AW )q )
†W AW P(AW )q (W AW P(AW )q )

†

= (W AW P(AW )q )
†

= X .

Thus, X is a solution to (2.1).
Uniqueness. Any arbitrary solution X to the system (2.1) satisfies

X = (XW A)WX

= (W AW P(AW )q )
†W (AW X)

= (W AW P(AW )q )
†W AW (W AW P(AW )q )

†

= (W AW P(AW )q )
†W AW P(AW )q (W AW P(AW )q )

†

= (W AW P(AW )q )
†,

which implies that the matrix X = (W AW P(AW )q )
† is the unique solution to (2.1). ��
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The example below shows that the uniqueness of the solution of the system (2.1) cannot
be guaranteed when the second condition is removed. Similar examples can be found by
removing the first and the third conditions and mantaining the remaining two.

Example 2.3 Consider the system XW AW X = X and AW X = AW (W AW PAW )†, where

A =

⎡
⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 0
0 0 1 1
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎥⎦

and W =

⎡
⎢⎢⎣
1 0 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎦ .

It is easy to see that k = max{Ind(AW ), Ind(W A)} = max{3, 3} = 3. Let X0 :=
(W AW PAW )†. By Theorem 2.2, it is clear that X0W AWX0 = X0 and AW X0 =
AW (W AW PAW )†.

Now, we consider the matrix X1 := QAW X0 + (Im − QAW )W ∗ where QAW :=
(AW )†AW . Then,

X1W AWX1 = [QAW X0 + (Im − QAW )W ∗]W AW [QAW X0 + (Im − QAW )W ∗]
= [QAW X0 + (Im − QAW )W ∗]W AWX0

= QAW X0W AWX0 + (Im − QAW )W ∗W AWX0

= QAW X0 + (Im − QAW )W ∗W AWX0

= QAW X0 + (Im − QAW )W ∗

= X1;

AW X1 = AW [QAW X0 + (Im − QAW )W ∗]
= AWQAW X0

= AW X0 = AW (W AW PAW )†.

Thus, X0 and X1 both satisfy XW AW X = X and AW X = AW (W AW PAW )†. Finally, we
observe that, due to Theorem 2.2, the matrix X0 is also a solution of the equation XW A =
(W AW PAW )†W A. However, X1 does not satisfy such an equation. In fact,

X1W A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3
5

3
5 − 1

5 −1

0 0 0 0
1
5

1
5 − 2

5 −1

0 0 1 2

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

	=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3 − 2

3 − 5
3

1
3

1
3 − 7

6 − 8
3

1
3

1
3 − 1

6 − 2
3

0 0 1 2

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= X0W A = (W AW PAW )†W A.

Definition 2.4 Let A ∈ C
m×n , 0 	= W ∈ C

n×m , k = max{Ind(AW ), Ind(W A)}, and q ∈
N∪{0}. The uniquematrix X ∈ C

m×n that satisfies the system (2.1) is called theW -weighted
q-BT inverse of A, and is denoted by A�q ,W .

Remark 2.5 Note that when m = n and W = In , the W -weighted q-BT inverse of A gives
rise a new generalized inverse for square matrices. For simplicity, it will be denoted as
A�q := (APAq )† and will be called the q-BT inverse of A.

The motivation for the study of this new kind of generalized inverse is stated in the
following result by showing that it extends certain inverses known in the literature.

123



Parametrizing W -weighted BT inverse to obtain the W -weighted… Page 5 of 13   120 

Corollary 2.6 Let A ∈ C
m×n, 0 	= W ∈ C

n×m, k = max{Ind(AW ), Ind(W A)}, and q ∈
N ∪ {0}. Then
(i) A�q ,W = (W AW )† if q = 0;
(ii) A�q ,W = A�,W if q = 1;
(iii) A�q ,W = A †©,W if either q = Ind(AW ) or q ≥ k.

Proof (i) Follows from Theorem 2.2 with q = 0.
(ii) It is a consequence from Theorem 2.2 and the expression of A�,W recalled below (1.4).
(iii) It follows fromTheorem 2.2, the definition of A †©,W and the fact that P(AW )q = P(AW )k

when either q = Ind(AW ) or q ≥ k.
��

Remark 2.7 WhenW AW = A, from the above corollary it follows that theW -weightedq-BT
inverse of A reduces to the Moore–Penrose inverse of A. Note that the conditionW AW = A
is a Stein equation (in A). We recall that this equation has important applications in system
theory, among them, the stability analysis of discrete-time systems [11].

Remark 2.8 Ifm = n andW = In , from Corollary 2.6 we deduce that theW -weighted q-BT
inverse concides with the BT inverse and core-EP inverse, when q = 1 and q ≥ k = Ind(A),
respectively.

An interesting relationship between the products AW and W A is

(AW )�−1A = A(W A)�−1, � ∈ N. (2.2)

Corollary 2.9 Let A ∈ C
m×n, 0 	= W ∈ C

n×m and q ∈ N ∪ {0}. Then
A�q ,W = [W (AW )(q+1)[(AW )q ]†]† = [(W A)q+1W [(AW )q ]†]†.

Proof Follows from Theorem 2.2 and (2.2). ��
In the following example we show that when 1 < q < k (eventually with q 	= Ind(AW )),

this new inverse is different from other known ones.

Example 2.10 Consider the matrices

A =

⎡
⎢⎢⎣
1 1 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ and W =

⎡
⎣
1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎦ .

Since Ind(AW ) = 3 and Ind(W A) = 2, we have k = max{Ind(AW ), Ind(W A)} = 3.
Therefore, we must consider q = 2. Thus, theW -weighted core-EP inverse, theW -weighted
BT inverse, and the W -weighted 2-BT inverse are given by

A †©,W =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ , A�,W =

⎡
⎢⎢⎢⎣

1
6 0 0
1
6 0 0
1
3 0 0
0 0 0

⎤
⎥⎥⎥⎦ , A�2,W =

⎡
⎢⎢⎣

1
2 0 0
1
2 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ .

Some properties of theW -weighted q-BT inverse are established below. For example, the
W -weighted q-BT inverse can be expressed in terms of the q-BT inverse. In particular, the
q-BT inverse provides the range and null space of the W -weighted BT inverse.
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Theorem 2.11 Let A ∈ C
m×n, 0 	= W ∈ C

n×m and q ∈ N ∪ {0}. Then the following
statements hold:

(i) A�q ,W = (W [(AW )�q ]†)†.
(ii) R(A�q ,W ) = R(P(AW )q (W AW )∗) and N (A�q ,W ) = N (P(AW )q (W AW )∗).
(iii) R(A�,W ) = R([(AW )�q ]†)∗W ∗) and N (A�,W ) = N ([(AW )�q ]†)∗W ∗).
(iv) R(A�q ,W ) = R([((AW )q)†]∗[(AW )q+1]∗W ∗) and N (A�q ,W ) =

N ([(AW )q+1]∗W ∗).
(v) R(A�q ,W ) ⊆ R((AW )q).
(vi) P(AW )q A�q ,W = A�q ,W .

Proof (i) By Theorem 2.2 we have A�q ,W = (W [AW P(AW )q ])†. Now, by Remark 2.5 we
deduce AW P(AW )q = ((AW )�q )†, whence the statement is clear.

(ii) By Theorem 2.2 we have A�q ,W = (W AW P(AW )q )
†. Now, the statement follows of

the properties R(B†) = R(B∗) and N (B†) = N (B∗).
(iii) It follows immediately from part (i).
(iv) By Corollary 2.9 and the property R(B†) = R(B∗) we get

R(A�q ,W ) = R([W (AW )(q+1)((AW )q)†]∗) = R([((AW )q)†]∗[(AW )q+1]∗W ∗).

Similarly, Corollary 2.9 and the property N (B†) = N (B∗) imply

N (A�q ,W ) = N ([((AW )q)†]∗[(AW )q+1]∗W ∗)
= N ([((AW )q)†]∗[(AW )q ]∗(AW )∗W ∗)
⊆ N ([(AW )q ]∗[((AW )q)†]∗[(AW )q ]∗(AW )∗W ∗)
= N ([(AW )q+1]∗W ∗)
⊆ N ([((AW )q)†]∗[(AW )q+1]∗W ∗)
= N (A�q ,W ).

Thus, N (A�,W ) = N ([(AW )q+1]∗W ∗).
(v) It directly follows from (ii) and the fact that R(P(AW )k ) = R((AW )k).
(vi) It is sufficient to note that P(AW )q A�q ,W = A�q ,W holds if and only if R(A�q ,W ) ⊆

N (Im − P(AW )q ) = R(P(AW )q ) = R((AW )q), which is true due to part (v).
��

We finish this section by showing that the W -weighted q-BT inverse can be written as
a generalized inverse with prescribed range and null space. Moreover, some idempotent
matrices related to the W -weighted q-BT inverse are found.

Proposition 2.12 Let A ∈ C
m×n, 0 	= W ∈ C

n×m and q ∈ N ∪ {0}. Then the following
representations are valid:

(i) A�q ,W = (W AW )
(2)
R (P(AW )q (W AW )∗),N ([(AW )q+1]∗W ∗);

(ii) W AW A�q ,W = PR (W [(AW )�q ]†(W AW )∗),N ([(AW )q+1]∗W ∗);
(iii) A�q ,WW AW = PR (P(AW )q (W AW )∗),N ([(AW )q+1]∗W ∗W AW ).

Proof (i) By definition of the W -weighted q-BT inverse we know that A�,WW AW A�,W =
A�,W . Now, parts (ii) and (iv) of Theorem 2.11 implyR(A�q ,W ) = R(P(AW )q (W AW )∗) and
N (A�,W ) = N ([(AW )q+1]∗W ∗), respectively. Thus, the statement follows by definition
of an outer inverse with prescribed range and null space.
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(ii) Since A�,WW AW A�,W = A�,W by definition, we have that W AW A�q ,W is
idempotent. Also, from Theorem 2.11 (ii) we obtain

R(W AW A�q ,W ) = W AWR(A�q ,W )

= W AWR(P(AW )q (W AW )∗)
= WR(AW P(AW )q (W AW )∗)
= WR([(AW )�q ]†(W AW )∗)
= R(W [(AW )�q ]†(W AW )∗).

On the other hand, note thatN (W AW A�,W ) = N (A�,W ) because A�,W is an outer inverse
ofW AW . Thus, from Theorem 2.11 (iv) we haveN (W AW A�,W ) = N ([(AW )q+1]∗W ∗).

(iii) By Theorem 2.11 (ii) we know that R(A�q ,W ) = R(P(AW )q (W AW )∗). Thus, as
A�,WW AW A�,W = A�,W , clearlyR(A�q ,WW AW ) = R(A�q ,W ) = R(P(AW )q (W AW )∗).

Similarly, from Theorem 2.11 (iv) we know thatN (A�q ,W ) = N ([(AW )q+1]∗W ∗). On
the other hand, it is easy to see thatN (B) = N (C) impliesN (BD) = N (CD), where B,
C , and D are complex rectangular matrices of adequate sizes. Therefore,N (A�,WW AW ) =
N ([(AW )q+1]∗W ∗W AW ). ��

Recall that the Moore–Penroe inverse [3], the core-EP inverse [6, Theorem 3.2] and the
BT inverse [7, Theorem 4.7] of a matrix A ∈ C

n×n of index k, are outer inverses that can be
represented as outer inverse with prescribed range and null spaces as:

A† = A(2)
R (A∗),N (A∗), A †© = A(2)

R (Ak ),N ((Ak )∗) and A� = A(2)
R (PA A∗),N ((A2)∗).

(2.3)
Our next theorem shows that the representations given in (2.3) are particular cases of the

following expression for the q-BT inverse.

Corollary 2.13 Let A ∈ C
n×n and q ∈ N ∪ {0}. Then the following statements hold:

(i) A�q = A(2)
R (PAq A∗),N ([Aq+1]∗)

(ii) AA�q = PR ([A�q ]†A∗),N ([Aq+1]∗).
(iii) A�q A = PR (PAq A∗),N ([Aq+1]∗A).

Proof Items (i)–(iii) immediately follow fromProposition 2.12 by takingm = n andW = In .
��

Remark 2.14 From Corollary 2.13 (i), it is clear that when q = 0 and q = 1, we recover the
expressions given in (2.3) for the Moore–Penrose inverse and the BT inverse, respectively.
On the other hand, if q ≥ k = Ind(A) we have that R(PAq A∗) = R((APAq )∗) =
R((APAk )†) = R(A †©) = R(Ak). Also, by definition of index, we obtain N ((Aq+1)∗) =
N ((Ak+1)∗) = N ((Ak)∗). In consequence, A�q = A(2)

R (Ak ),N ((Ak )∗) = A †©.

3 Algebraic characterizations

In this section we give some algebraic characterizations of the W -weighted q-BT inverse.

Theorem 3.1 Let A ∈ C
m×n, 0 	= W ∈ C

n×m, k = max{Ind(AW ), Ind(W A)}, and q ∈
N ∪ {0}. There exists a unique matrix X satisfying the conditions

P(AW )q X = (W AW P(AW )q )
† and R(X) ⊆ R((AW )q) (3.1)

and is given by X = A�q ,W .

123
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Proof Existence. Let X := A�q ,W . From parts (v) and (vi) of Theorem 2.11 it is clear that X
is a solution to (3.1).

Uniqueness. Any matrix X satisfying conditions (3.1), in particular satisfies R(X) ⊆
R((AW )q) which is equivalent to P(AW )q X = X . Thus, from the condition P(AW )q X =
(W AW P(AW )q )

†, we get X = (W AW P(AW )q )
†, which gives the conclusion. ��

Theorem 3.2 Let A ∈ C
m×n, 0 	= W ∈ C

n×m, k = max{Ind(AW ), Ind(W A)}, and q ∈
N ∪ {0}. The unique matrix X satisfying the conditions

AW X = AW (W AW P(AW )q )
† and R(X) ⊆ R(P(AW )q (W AW )∗) (3.2)

is given by X = A�q ,W .

Proof Existence. Let X := A�q ,W . By Definition 2.4 and Theorem 2.11 (ii) it is clear that X
satisfies both conditions in (3.2).

Uniqueness. Let X be an arbitrary matrix satisfying both conditions in (3.2). Since
R((W AW P(AW )q )

†) = R(P(AW )q (W AW )∗), the second condition in (3.2) implies X =
(W AW P(AW )q )

†Z for some matrix Z . Now, from Lemma 2.1 and the first equation in (3.2)
we obtain

X = (W AW P(AW )q )
†Z

= (W AW P(AW )q )
†W AW P(AW )q (W AW P(AW )q )

†Z

= (W AW P(AW )q )
†W AW [(W AW P(AW )q )

†Z ]
= (W AW PAW )†W (AW X)

= (W AW PAW )†W AW (W AW P(AW )q )
†

= (W AW P(AW )q )
†W AW P(AW )q (W AW P(AW )q )

†

= (W AW P(AW )q )
†

= A�q ,W ,

which gives the uniqueness. ��
A similar result can be obtained using the null space.

Theorem 3.3 Let A ∈ C
m×n, 0 	= W ∈ C

n×m, k = max{Ind(AW ), Ind(W A)}, and q ∈
N ∪ {0}. The unique matrix X that satisfies both conditions

XW A = (W AW P(AW )q )
†W A and N (P(AW )q (W AW )∗) ⊆ N (X) (3.3)

is given by X = A�,W .

As a consequence of above results we obtain some characterizations of the q-BT inverse
of a square matrix.

Theorem 3.4 Let A ∈ C
n×n. The following statements are equivalent:

(i) X is the q-BT inverse of A;
(ii) X AX = X, AX = A(APAq )†, and X A = (APAq )†A;
(iii) PAq X = (APAq )† and R(X) ⊆ R(Aq);
(iv) AX = A(APAq )† and R(X) ⊆ R(PAq A∗);
(v) X A = (APAq )†A and N (PAq A∗) ⊆ N (X).
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4 Canonical form of theW-weighted q-BT inverse

In [5] the authors introduced a simultaneous unitary block upper triangularization of a pair of
rectangular matrices, called the weighted core-EP decomposition of the pair (A,W ). More
precisely, we have the following result:

Theorem 4.1 Let A ∈ C
m×n and 0 	= W ∈ C

n×m with k = max{Ind(AW ), Ind(W A)}.
Then there exist two unitary matrices U ∈ C

m×m, V ∈ C
n×n, two nonsingular matrices

A1,W1 ∈ C
t×t , and two matrices A3 ∈ C

(m−t)×(n−t) and W3 ∈ C
(n−t)×(m−t) such that

A3W3 and W3A3 are nilpotent of indices Ind(AW ) and Ind(W A), respectively, with

A = U

[
A1 A2

0 A3

]
V ∗ and W = V

[
W1 W2

0 W3

]
U∗. (4.1)

The following lemma allows us to find the Moore–Penrose inverse of a partitioned matrix
with some of its diagonal block nonsingular.

Lemma 4.2 [10] Let A = U

[
A1 A2

0 A3

]
V ∗ ∈ C

m×n be such that A1 ∈ C
t×t is nonsingular

and U ∈ C
m×m and V ∈ C

n×n are unitary. Then

A† = V

[
A∗
1Ω −A∗

1ΩA2A
†
3

(In−t − QA3)A
∗
2Ω A†

3 − (In−t − QA3)A
∗
2ΩA2A

†
3

]
U∗, (4.2)

where Ω = [A1A∗
1 + A2(In−t − QA3)A

∗
2]−1. In consequence,

PA = U

[
It 0
0 PA3

]
U∗. (4.3)

Now, we present a representation for the W -weighted q-BT inverses by using the weighted
core-EP decomposition.

Theorem 4.3 Let A ∈ C
m×n, 0 	= W ∈ C

n×m, k = max{Ind(AW ), Ind(W A)}, and q ∈
N ∪ {0}. If A and W are written as in (4.1), then the W-weighted q-BT inverse of A is given
by

A�q ,W = U

⎡
⎣ (W1A1W1)

∗ΩW −(W1A1W1)
∗ΩW MA

�q ,W3
3

(P(A3W3)q − P
A

�q ,W3
3

)M∗ΩW A
�q ,W3
3 − (P(A3W3)q − P

A
�q ,W3
3

)M∗ΩW MA
�q ,W3
3

⎤
⎦ V ∗,

(4.4)
where

M := W1A1W2 + W1A2W3 + W2A3W3

and

ΩW := [W1A1W1(W1A1W1)
∗ + M(P(A3W3)q − P

A
�q ,W3
3

)M∗]−1.

Proof We assume that A and W are written as in (4.1). Applying Theorem 2.2, we have
A�q ,W = (W AW P(AW )q )

†. It can be easily obtained that

W AW = V

[
W1A1W1 W1A1W2 + (W1A2 + W2A3)W3

0 W3A3W3

]
U∗ = V

[
W1A1W1 M

0 W3A3W3

]
U∗,
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where M := W1A1W2 + W1A2W3 + W2A3W3, and

P(AW )q = U

[
It 0
0 P(A3W3)q

]
U∗.

Thus, we have that

A�q ,W = (W AW P(AW )q )
† = U

[
W1A1W1 MP(A3W3)q

0 W3A3W3P(A3W3)q

]†
V ∗ = U

[
B1 B2

B3 B4

]
V ∗,

where we are considering the partition given by the blocks B1, B2, B3 and B4 having appro-
priate sizes induced by the central matrix in the previous step. By Theorem 4.1, W1A1W1 is
nonsingular. In order to determine the blocks B1, B2, B3, and B4 we will use Lemma 4.2.
Taking Z := P(A3W3)q (In−t − QW3A3W3P(A3W3)q

)P(A3W3)q , we get

ΩW = [W1A1W1(W1A1W1)
∗ + MZM∗]−1. (4.5)

Moreover, from Lemma 2.1 and Theorem 2.2, it follows

Z = (P(A3W3)q )
2 − [P(A3W3)q (W3A3W3P(A3W3)q )

†]W3A3W3(P(A3W3)q )
2

= P(A3W3)q − [W3A3W3P(A3W3)q ]†W3A3W3P(A3W3)q

= P(A3W3)q − A
�q ,W3
3 [A�q ,W3

3 ]†
= P(A3W3)q − P

A
�q ,W3
3

. (4.6)

From (4.6) and (4.5) we have

ΩW = [W1A1W1(W1A1W1)
∗ + M(P(A3W3)q − P

A
�q ,W3
3

)M∗]−1.

Finally,

B1 = (W1A1W1)
∗ΩW ,

B2 = −(W1A1W1)
∗ΩWMP(A3W3)q (W3A3W3P(A3W3)q )

†

= −(W1A1W1)
∗ΩWMA

�q ,W3
3 ,

B3 = (In−t − QW3A3W3P(A3W3)q
)(MP(A3W3)q )

∗ΩW

= (P(A3W3)q − P
A

�q ,W3
3

)M∗ΩW ,

B4 = A
�q ,W3
3 − B3MP(A3W3)q (W3A3W3P(A3W3)q )

†

= A
�q ,W3
3 − (P(A3W3)q − P

A
�q ,W3
3

)M∗ΩWMA
�q ,W3
3 ,

which completes the proof. ��
Corollary 4.4 Let A ∈ C

m×n, 0 	= W ∈ C
n×m, and k = max{Ind(AW ), Ind(W A)}. If A and

W are written as in (4.1), then the W-weighted BT inverse of A is given by

A�1,W = A�,W = U

[
(W1A1W1)

∗ΩW −(W1A1W1)
∗ΩWMA�,W3

3
(PA3W3 − P

A
�,W3
3

)M∗ΩW A�,W3
3 − (PA3W3 − P

A
�,W3
3

)M∗ΩWMA�,W3
3

]
V ∗,

(4.7)
where

M = W1A1W2 + (W1A2 + W2A3)W3, and

ΩW = [W1A1W1(W1A1W1)
∗ + M(PA3W3 − P

A
�,W3
3

)M∗]−1,
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and the W-weighted core-EP inverse of A is given by

A�q ,W = A †©,W = U

[
(W1A1W1)

−1 0
0 0

]
V ∗, for q ≥ k. (4.8)

Proof By Corollary 2.6 we know that A�q ,W = A�,W if q = 1 and A�q ,W = A †©,W if
q ≥ k. Clearly, if q = 1, (4.4) reduces to the expression given in (4.7). On the other hand, if
q ≥ k we obtain (A3W3)

q = 0. In fact, since A3W3 is nilpotent of index at most k, we have

P(A3W3)q = 0. Hence, A
�q ,W3
3 = (W3A3W3P(A3W3)q )

† = 0. Now, from (4.5), it follows that
ΩW = [W1A1W1(W1A1W1)

∗]−1. In this way, (4.4) reduces to (4.8). ��
Remark 4.5 When k = max{Ind(AW ), Ind(W A)} = 1, the above representations coincide
with the W -weighted core inverse, that is, A�,W = A †©,W = A #©,W .

If A ∈ C
n×n has index k, by applying Theorem 4.1 with m = n and W = In , we obtain

the following canonical form of A

A = U

[
T S
0 N

]
U∗, (4.9)

where U ∈ C
n×n is unitary, T is nonsingular, rank(T ) = rank(Ak), and N is nilpotent of

index k. This representation of A is called the core-EP decomposition of A [18].
By using (4.9) we can give a canonical form for the q-BT inverse of a square matrix.

Corollary 4.6 Let A ∈ C
n×n, k = Ind(A), and q ∈ N ∪ {0}. If A is written as in (4.9), then

the q-BT inverse of A is given by

A�q = U

[
T ∗� −T ∗�SN�q

(PN − PN�q )S∗� N�q − (PN − PN�q )S∗�SN�q
]
U∗, (4.10)

where � = (T T ∗ + S(PN − PN�q )S∗)−1.

Corollary 4.7 Let A ∈ C
m×n, 0 	= W ∈ C

n×m, and k = max{Ind(AW ), Ind(W A)}. If A and
W are written as in (4.1), then it results that

(AW )�q = U

[
(A1W1)

∗� −(A1W1)
∗�S(A3W3)

�q
(PA3W3 − P(A3W3)

�q )S∗� (A3W3)
�q − (PA3W3 − P(A3W3)

�q )S∗�S(A3W3)
�q

]
U∗,

with � = (A1W1(A1W1)
∗ + S(PA3W3 − P(A3W3)

�q )S∗)−1 and S = A1W2 + A2W3, and

(W A)�q = U

[
(W1A1)

∗� −(W1A1)
∗�S(W3A3)

�q
(PW3A3 − P(W3A3)

�q )S∗� (W3A3)
�q − (PW3A3 − P(W3A3)

�q )S∗�S(W3A3)
�q

]
U∗,

with � = (W1A1(W1A1)
∗ + S(PW3A3 − P(W3A3)

�q )S∗)−1 and S = W1A2 + W2A3.

Proof From Theorem 4.1 we obtain

AW = U

[
A1W1 A1W2 + A2W3

0 A3W3

]
U∗, (4.11)

where U is unitary, A1W1 is nonsingular, and A3W3 is nilpotent of index Ind(AW ).
Clearly, (4.11) is a core-EP decomposition of AW . Thus, the the expression for (AW )�q

follows from Corollary 4.6.
The expression for (W A)�q can be found in a similar way. ��
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We recall that the W -weighted Drazin inverse and the W -weighted core-EP inverse of
A satisfy the interesting identities Ad,W = [(AW )d ]2A = A[(W A)d ]2 and A †©,W =
A[(W A) †©]2, from (1.1) and (1.3), respectively.
However, these equalities do not remain valid for the W -weighted q-BT inverse whenever
1 ≤ q < k = max{Ind(AW ), Ind(W A)}, as we can check with the following example.

Example 4.8 Let

A =

⎡
⎢⎢⎣
1 1 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ and W =

⎡
⎣
1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎦ .

Note that k = max{Ind(AW ), Ind(W A)} = max{3, 2} = 3. For 1 ≤ q < 3 we obtain

A�1,W =

⎡
⎢⎢⎢⎣

1
6 0 0
1
6 0 0
1
3 0 0
0 0 0

⎤
⎥⎥⎥⎦ , [(AW )�1 ]2A =

⎡
⎢⎢⎣
0 0 0
0 0 0
1
2 0 0
0 0 0

⎤
⎥⎥⎦ and A[(W A)�1 ]2 =

⎡
⎢⎢⎢⎣

3
25 0 0
2
25 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦ ,

A�2,W =

⎡
⎢⎢⎢⎣

1
2 0 0
1
2 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦ , [(AW )�2 ]2A =

⎡
⎢⎢⎢⎣

1
4

1
4 0

1
4

1
4 0

0 0 0
0 0 0

⎤
⎥⎥⎥⎦ and A[(W A)�2 ]2 =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ .

Remark 4.9 If we take q = 3 in the above example (i.e., q = k = 3), from Corollary 4.4 we
have that A�3,W = A †©,W . Thus, from (1.3) we obtain A�3,W = A[(W A)�3 ]2, which can be
verified in the example given above, that is,

A�3,W =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ , [(AW )�3 ]2A =

⎡
⎢⎢⎣
1 1 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ , and A[(W A)�3 ]2 =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦ .
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16. Mosić, M., Kolundzija, M.Z.: Weighted CMP inverse of an operator between Hilbert spaces. Rev. R.

Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 113, 2155–2173 (2019)
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