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ABSTRACT

This thesis presents diverse contributions in the fieldsxif ¢tlassification, ma-
chine translation and computer-assisted translationrnihdestatistical framework.

In text classification, a new application called bilinguextt classification is
proposed together with a series of models to capture bi#ihgdormation. To
this purpose two main approaches were presented, the fiteeof is based on
a naive crosslingual-independent assumption and the decona more sophis-
ticated crosslingual word-correlation framework. As farthe naive assumption
is concerned, five unigram models and smoothed n-gram lgeguaodels are
introduced. These models were evaluated on three tasksm&faising complex-
ity, considering the most complex of these tasks under thepobint of a bilingual
machine-aided indexing application. The crosslingualda@rrelation framework
is represented by bilingual models that integrate a tréinslanodel. In our case
this model is the well-known Mitranslation model in conjunction with a unigram
model. This model was tested on two of the simpler previousintioned tasks
superseding the naive approximation.

In machine translation, the statistical word-alignmeahsiation models M1,
M2° and HMM are extended under the mixture modelling approacbrdter to
define context-specific translation models. In the caseeoMB model, a mixture
extension of an already existing iterative dynamic-prograng search algorithm
for the M2 model is also defined. This search algorithm allog/ directly assess
the translation quality of the M2 mixture model on a semifiaial controlled task,
obtaining statistically significant improvements over toaventional M2 model.
Moreover, an extensive experimental evaluation of theesetimodels is carried
out on two well-known shared tasks. These two tasks are wsedsess on the
one hand, the quality of the alignments obtained as a byptaofuthe M1, M2
and HMM models and on the other hand, the translation quafity statistical
phrase-based system seeded with these alignments. Aslaofethis evaluation
we observed that the M2 mixture model offered statisticsifynificant betterment
in alignment quality with respect to the conventional M2 miodn addition, the
evaluation of translation quality brought to light slighiyt systematic improve-
ments in translation quality for all three models, achigvatate-of-the-art results
for the HMM mixture model.

Finally, an interactive and predictive computer-assistanslation system based
on stochastic finite-state transducers is presented. Vkiema integrates well-
known efficient error-correcting and-best parsing algorithms that are adapted

a8Known as IBM 1 model in the literature.
PKnown as IBM 2 model in the literature.
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and implemented in order to guarantee low response timdewwhéserving ad-
equate translation quality. The system was automaticaliyet! on two corpora
devoted to technical user manuals and bulletins of the EBapnion. The for-
mer corpus served as a bedtest for a thoroughly manual éeslyzerformed by
translation agencies involved in the European projectdrgpe2. Both, automatic
and manual evaluations reported a significant reductioggimg effort, speeding
up the translation process, and achieving so, the final goebmputer-assisted
translation systems.
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RESUMEN

Esta tesis presenta diversas contribuciones en los caneplas ahsificacion au-
tomatica de texto, traduccion automatica y traduceiéistida por ordenador bajo
el marco estadistico.

En clasificacion automatica de texto, se propone una rajghi@acion llamada
clasificacion de texto bilingiie junto con una serie de rfaxlerientados a capturar
dicha informacién bilinglle. Con tal fin se presentan damxmaciones a esta
aplicacion; la primera de ellas se basa en una asuncie aie contempla la
independencia entre las dos lenguas involucradas, nsegtra la segunda, mas
sofisticada, considera la existencia de una correlacitne palabras en diferentes
lenguas. La primera aproximacion di6 lugar al desarmdl@inco modelos basados
en modelos de unigrama y modelosrdgramas suavizados. Estos modelos fueron
evaluados en tres tareas de complejidad creciente, siamdad compleja de estas
tareas analizada desde el punto de vista de un sistema d& ajyathdexacion de
documentos. La segunda aproximacion se caracteriza pgdelosode traduccion
capaces de capturar correlacion entre palabras en ddertanguas. En nuestro
caso, el modelo de traduccion elegido fue el modeld Miito con un modelo de
unigramas. Este modelo fue evaluado en dos de las tareasinmies superando
la aproximacion naive, que asume la independencia entabraa en differentes
lenguas procedentes de textos bilinglues.

En traduccion automatica, los modelos estadisticogatlitcion basados en
palabras M1, M2y HMM son extendidos bajo el marco de la modelizacion me-
diante mixturas, con el objetivo de definir modelos de traducdependientes del
contexto. Asimismo se extiende un algoritmo iterativo deduieda basado en pro-
gramacion dinamica, originalmente disefiado para elatwolll2, para el caso de
mixturas de modelos M2. Este algoritmo de blsqueda nosifeeevaluar direc-
tamente la calidad de la traduccion del modelo de mixtuead@d en una tarea
controlada y semiartificial, obteniendo mejoras estadistente significativas so-
bre el modelo M2 convencional. Ademas, estos tres modaE®h sometidos a
una amplia evaluacion experimental llevada a cabo en deagale referencia para
la comunidad de traduccion automatica estadisticaasEdbs tareas fueron uti-
lizadas para evaluar la calidad de los alineamientos ds esbtdelos, asi como la
calidad de sus traducciones de forma indirecta. Los alif@#os fueron obtenidos
como subproducto de los modelos M1, M2 y HMM, mientras quéréfucciones
fueron generadas por un sistema de traduccion estadtsigado en segmentos
bilinglies obtenidos a partir de estos alineamientos. C@suwltado de esta eva-

¢Conocido como modelo 1 de IBM en la literatura.
dConocido como modelo 2 de IBM en la literatura.



luacion, se obtuvieron mejoras gue son estadisticansegridicativas en la calidad
de los alineamientos del modelo de mixturas de modelos Mizoss al modelo
M2 convencional. La evaluacion de la calidad de la tradwcclesveldb mejoras
menores, pero sistematicas en la calidad de la traduscimfnecidas por estos tres
modelos, logrando resultados a la altura del estado dgbaréeel modelo de mix-
turas de HMM.

Por Gltimo, presentamos un sistema interactivo y prediale ayuda a la tra-
duccibn basado en transductores estocasticos de edtaittos Este sistema in-
tegra algoritmos de analisis eficientes para la correcd® errores y el calculo
de las mejores traducciones, que son adaptados e implefosrgara garantizar
un tiempo de respuesta bajo, a la vez que se preserva unadcdkdtraduccion
adecuada. El sistema presentado fue evaluado automéatitaran dos corpora,
uno de ellos consistente en una coleccion de manualegdéctie usuario, y el
otro formado por boletines de la Union Europea. El primezda$ corpora fue
utilizado para una evaluacibn manual por agencias dedcéoiu en el marco del
proyecto europeo TransType2. Tanto la evaluacibn mararabda automatica
proporcionaron reducciones significativas en el esfueemesario para traducir
dichos textos, acelerando el proceso de traduccion, yiguieado de esta forma
el objetivo final de los sistema de ayuda a la traduccion.
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RESUM

Aquesta tesi presenta diverses contribucions als campsctieskificacio automatica
de text, traducci6é automatica i traducci6 assistidagsdinador sota el marc es-
tadistic.

En classificaci6é automatica de text, es proposa una ndiGeid anomenada
classificacio de text bilinglie juntament amb una seriendeels orientats a cap-
turar aquesta informacio bilingie. Amb aquest fi es presedues aproximacions
a aquesta aplicacio; la primera d’'elles es fonamenta eragsiampcid naive que
contempla la independéncia entre les dues llenglesuicraades, mentre que la
segona, més sofisticada, considera I'existencia d’'una&legié entre paraules en
diferents llengilies. La primera aproximacio dona llodedenvolupament de cinc
models fonamentats en models d’'unigrama i models de llégguden-grames
suavitzats. Aquests models van ser avaluats en tres tadgueEsnplexitat creix-
ent, sent la més complexa d'aquestes tasques analitzadieldeunt de vista d’'un
sistema d'ajuda a la indexacid de documents. La segonaiam@ci6 es caracter-
itza per models de traduccié capacos de capturar la eciteentre paraules en
diferents llengiies. En el nostre cas, el model de tradusleigit va ser el model
M1€ juntament amb un model d’'unigrames. Aquest model va seuatvah dos
de les tasques més simples superant I'aproximacio nqive,assumeix la inde-
pendéncia entre paraules en differents llenglies protede textos bilingues.

En traducci6 automatica, els models estadistics dedidl basats en paraules
M1, M2f i HMM sbn estesos sota el marc de la modelitzacio mitjahgaxtures,
amb I'objectiu de definir models de traducci6 dependentsalgext. En el cas del
model M2, també es va estendre per al cas de mixtures unsagbde cerca iter-
atiu basat en programacio dinamica per a aquest modeksia@lgorisme de cerca
ens permet avaluar directament la qualitat de la tradwialilnodel de mixtures de
M2 en una tasca controlada i semiartificial, obtenint m@foestadisticament sig-
nificatives sobre el model M2 convencional. A més a mésesigires models van
ser sotmesos a una amplia avaluacio experimental poatégtane en dues tasques
de referencia per a la comunitat de traducci6 automastadistica. Aquestes
dues tasques van ser utilitzades per avaluar d’una bandmaléat dels alinea-
ments obtinguts com a subproducte dels models M1, M2 i HMMalti banda,
la qualitat de les traduccions d'un sistema de traducdiédestica basat en seg-
ments generat a partir d’aquests alineaments. Com a reglatpesta avaluacio,
es van obtenir millores significatives en la qualitat delse@ments del model de
mixtures de M2 respecte al model M2 convencional. L'avauae la qualitat

€Conegut com model 1 d'IBM en la literatura.
fConegut com model 2 d’IBM en la literatura.
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de la traducci6o va desvetlar millores menors, pero sigtegmes en la qualitat de
la traduccions oferides per aquests tres models, acomsegsultats a I'altura de
I'estat de I'art per al model de mixtures de HMM.

Finalment, vam presentar un sistema interactiu i predittjuda a la traduccio
basat en transductors estocastics d’estats finits. Agigstna integra algorismes
d’'analisi eficients per a la correccid d’errors i el cdlda les millors traduccions,
gue sbn adaptats i implementats per garantir un temps pestasbaix, alhora que
es preserva una qualitat de traducci6 adequada. El sigtersantat va ser avaluat
automaticament en dos corpora, un d’ells consistent ercaiteccié de manuals
tecnics d’usuari, i I'altre format per butlletins de la @rituropea. El primer dels
corpora va ser utilitzat per a una avaluacié manual pordatgame per agencies de
traducci6 al marc del projecte europeu TransType2. Tamaluacio manual com
'automatica, van proporcionar reduccions significaties I'esfor¢ necessari per
traduir aquests textos, accelerant el procés de tramlucaconseguint, d'aquesta
forma, I'objectiu final dels sistemes d’ajuda a la tradacci”

XIl JCS-DSIC-UPV



PREFACE

Natural language processing (NLP) is an hectic researahtfial aims at develop-
ing computer systems able to automatically generate anersitachd natural human
language, both written and spoken. NLP is a subfield of atifintelligence and
linguistics, and as such it tends to combine theories, ndellbgies and experts
coming from both worlds in order to address challenging |enois that sometimes
require world knowledge to be successfully solved. Thisiexplores two im-
portant areas of NLP: text classification (TC) and machiaediation (MT).

The purpose of TC is to convert an unstructured repositolgocftiments into
a structured one by automatically assigning documents ted@efined number of
groups, in the case of text clustering, or to a set of predéfaaegories, in the
case of text categorisation. Doing so, the task of storiegrching and browsing
documents in these repositories is significantly simplifildese days TC technol-
ogy seems to have reached a mature stage, however therdl amgest problems
and challenges ahead.

Among these open problems and challenges we find the classificof mul-
tilingual documents. Multilingual documentation is a coommphenomenon in
many official institutions (EU parliament, the CanadianliBarent, UN sessions,
Catalan and Basque Parliaments in Spain, etc.) and privatpanies (user’'s man-
uals, newspapers, books, etc.). In many cases, this térfoanation needs to be
categorised by hand, entailing a time-consuming and aslborden. In this thesis
we focused on the classification of bilingual documents;esihis closely related
to MT in which bilingual parallel texts are widely used toitré&ranslation systems.

Bilingual TC is a novel application in the field of TC strongiharacterised
by word correlation across languages. This word corralatiomes from the fact
that bilingual texts are mutual translations. Given th&elascenario, we propose
two main approaches to tackle bilingual TC. First, we mayelsi consider that
bilingual texts were generated independently and thezefbiere is not exist any
crosslingual relation between words found in mutual trainshs. Alternatively.
we can realistically assume that an underlying crosslihgwad mapping exists
and can be exploited to boost our bilingual classifier. Uidedly, the latter ap-
proach is significantly more complex than the former, howelie crosslingual
structure apprehended by the latter is a valuable infoomatiat cannot be ne-
glected.

The other area in NLP to which this thesis is devoted is MT. M1he use of
computers to automate the translation of texts or uttesaftoen one language into
another language, while the underlying meaning remainsainee. Current MT
technology is focused on three main applications: fulljeenatic MT, computer-
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assisted translation (CAT) and understandable roughlatan®. This thesis ap-
proaches the two first applications from a statistical pofntiew.

Fully-automatic statistical MT consists in the developimarstatistical models
that are automatically inferred from bilingual parallektge In this respect, there
have been different proposals for statistical translatimuels ranging from word
alignment translation models, such as the IBM models, HMMdnalignment
model, etc. to phrase-based and syntax-based translatidelsn These latter mod-
els are usually grounded on byproducts of the training m®odé word alignment
models. However, none of these models directly addressesthmon problem of
context-specific translations in MT. This is the case of womthose meaning, and
therefore their translation, depend on the domain or sememtext in which they
are found. In this thesis, we introduce the idea of contprt#ic word alignment
translation models by applying finite mixture modellingheimjues to conventional
word alignment translation models.

Nonetheless, current MT technology is still far from proidgchigh quality
translation without human intervention. This is the reafamdeveloping CAT
systems that can work in collaboration with translators uargntee high quality
translation, while easing and speeding up their work. Thstrpopular instantia-
tion of the CAT paradigm is implemented by post-editing sdmhsed on translation
memories. However, the lack of human-computer interdgtivi a post-editing
process prevents the MT system from adapting to the coorectdf the human
translator. Therefore, an interactive approach to CAT seenibe more adequate
in this human-computer interaction setting. This thesistiglly developed in the
framework of a European project devoted to the latter ampraa CAT, presents
how a fully-fledged MT system based on stochastic finiteest@nsducer (SFST)
technology was integrated into an interactive and pregiclAT environment.

The objective of this thesis is to present new applicatidrexisting technology
in TC and CAT, and new models in TC and statistical MT basedermparadigm of
finite mixture modelling. More precisely, the scientific toutions of this thesis
can be divided into three groups as follows:

1. Bilingual TC. Bilingual TC is proposed as a hew application in TC for which
we suggest two general approaches. The first approach isahelisation of
each language independently, that in this thesis is iriatadtin five mixture
models based on the unigram model. These models were atsesdaee
tasks of increasing complexity. The second approach iswalagvolution
of the latter. We derived a novel model that takes into actdus word
correlation across languages by combining the well-knowinthnslation
model with a unigram model. Comparative results with smeodthgram
language models, support vectors machines and boostingigees are also
reported.

2. Context-specific word alignment translation models Three translation

9Also known as gisting.
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models, M1, M2 and HMM were extended to incorporate contafbri
mation by means of finite mixture modelling. In the case of M& mix-
ture model, we also derived a mixture extension of an itezatiynamic-
programming search algorithm for the conventional M2 mdiaed was eval-
uated in a small controlled task. Furthermore, an study ighaient and
translation quality of these models is carried out on twoethéasks widely
known in the statistical MT community.

3. Interactive and predictive CAT based on SFST technology We adapt
well-known error-correcting ana-best parsing algorithms in order to be
integrated into a CAT system powered by SFST technology.s $istem
was automatically and manually evaluated in the framewdk Buropean
project.

The above contributions are sequentially organised in Ptehs that cover
most of the work developed in this thesis. We recommend aesigili reading of
the document should you wish to learn about the complete warkthat is not
strictly necessary. If the reader is only interested in aifjperesearch area, she
can opt to read those related chapters taking into accoemblibwing dependency
graph among chapters:

| 1. Introduction|

2. Bilingual text
classification

\
\v

3. Mixtures of M1

models
Y
4. Mixtures of M2
models
Y
5. Mixtures of hidden| | 6. Computer-assisted
Markov models translation

Ve

7. Conclusions |

Five unigram models are proposed for bilingual TC along \ghmixture ex-
tension and their experimental evaluation in Chapter 2. Nfhemixture model is
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introduced and applied to two different but related taskidual TC and statisti-
cal MT in Chapter 3. In bilingual TC, the M1 model is combinedhaa unigram
model as a step forward in modeling bilingual texts, andwatald on the two sim-
pler tasks presented in Chapter 2. In statistical MT, therfditalignments obtained
as a byproduct of the M1 mixture model are directly evaluated reference align-
ment shared task for the statistical MT community and, usddain a statistical
phrase-based system. This system is assessed in termsigiati@n quality on
another large-scale shared task used as a reference to tpgugerformance of
state-of-art translation systems for European languages.

In Chapter 4, a mixture extension of the well-known M2 modhel &s dynamic-
programming search algorithm are introduced and assessedsemi-artificial
task. This model is further evaluated on the two shared tpskgously men-
tioned. The HMM alignment model and its mixture version ds® aerived and
assessed on the same shared tasks in Chapter 5. In Chapteinractive and
predictive CAT system based on SFST technology is presemddautomatically
evaluated. In Chapter 7, a summary of the work and contabatpresented in this
thesis are discussed, followed by an outlook.

The appendix contains further details of the work presemddis thesis. In
Appendix A, additional comparative experimental resusg smoothed-gram
language models, support vector machines and boostingitees in bilingual TC
are reported. In Appendix B, a detailed derivation of somgheimodels presented
in this thesis is introduced. Finally, a list of mathemadt&ambols and acronyms
used throughout this thesis is presented in Appendix C.
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CHAPTER1

PRELIMINARIES

1.1 Introduction

Natural language processing (NLP) is an hectic researcahtfial aims at develop-
ing computer systems able to automatically generate anersitachd natural human
language, both written and spoken. NLP is a subfield of aetfintelligence and
linguistics, and as such tends to combine theories, meltbgids and experts com-
ing from both worlds. The challenging problems addressetti&NLP community
sometimes require world knowledge to be successfully solve this thesis, we
explore two important areas of NLP: text classification (BGY machine transla-
tion (MT).

The purpose of TC is to convert an unstructured repositolgostiments into
a structured one by automatically assigning documents tedefined number of
groups, in the case of text clustering, or to a set of predefoaegories, in the
case of text categorisation. Doing so, the task of storiegrching and browsing
documents in these repositories is significantly simplifi@db06]. Historically,
the seminal article of Maron [Mar61] is taken as the starfingnt of TC. However
it was not until the late eighties, early nineties when thedhef organising large
document collections increase the importance of TC. TC bag bpplied to news
filtering, patent classification and more recently to welmtedmy and spam filter-
ing. These days TC technology has reached a mature stagethedgess there are
still open problems and challenges. See [Seb02] for anpthdatroduction to the
evolution of TC over the last two decades.

MT is the use of computers to automate the translation oftexiutterances
from one language into another language, while the undaeylymeaning remains
the same. The history of MT goes back to the late forties vithfamous publi-
cation of Weaver [Wea55], in which the problem of MT was tackivith crypt-
analytic techniques inherited from the Second World Waris Thitial intensive
research period was followed by a discreet and pragmatichepéter the AL-
PAC report [BH60]. The seventies and eighties saw the @alifon of rule-based
system such as Meteo [Tih82], Systran [Bil82] and METAL [B$8The contri-
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butions in the statistical MT field were minor until the earlineties, when the
IBM group presented the Candide system™f&], a statistical translation sys-
tem [BT90, B"93] that was demonstrated to be competitive with statérefart
systems. Since then, the development of statistical MT kpereenced a major
boost that seems to be reaching a technical plateau nowaBags[HS92, JMO00]
for a detailed and thorough description of the history of MT.

In this chapter, first we briefly overview the state-of-thie-@ TC and MT in
Sections 1.2 and 1.3, respectively. Then, we focus onttalid/T in Section 1.4,
and more precisely on statistical phrase-based modelsdtio8el.5. Next, we
introduce in Section 1.6 some of the translation evaluati@trics that will be
used throughout this thesis. Section 1.7 provides a sheigweof the state of
the art incomputer-assisted translatidiCAT). While Section 1.8 is devoted to the
well-known expectation-maximisatio(EM) algorithm that is the parameter esti-
mation algorithm of most of the models in this thesis. Follaywthe EM algorithm
in the previous section, we present the finite mixture maaglhpproach, which
is the common factor in many models of this thesis, and its BSaintiation in
Section 1.9. Finally, we summarise the scientific contrdng of this thesis in
Section 1.10.

1.2 Text classification

In the eighties, the most popular approach to TC was baselgeatetvelopment of
rule-based systems with the help of knowledge engineerslamain experts. The
main problem of this approach was the definition of handtedafules and their
maintenance. In the nineties, the rule-based approach ewaced bypattern
recognition(PR) andmachine learningML) approaches because their numerous
advantages:

e The classifier is learnt from the observation of a set of pssified docu-
ments by an inductive process.

e The same inductive process can be applied to generateetiffetassifiers
for different domains and applications. This fact introelsi@an important
degree of automation in the construction of ad-hoc classifie

e The maintenance task is significantly simplified, since ityamequires to
retrain the classifier with the new working conditions.

e The existence of off-the-self software to train text clsss requires less
skilled man power than for constructing expert systems.

e The accuracy of text classifiers based on ML techniques ctaapath that
of human experts and supersedes that of knowledge engigaagthods.

In this thesis we focus on the statistical PR approach to Ti@led this ap-
proach the optimal decision rule assigning samples to efassdictated by the
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principle of minimumglobal risk defined over the sample space. However, the
global risk can be minimised by making as small as possildeigik for each sam-
ple z individually. In the case of classification tasks in whick #valuation metric

is theclassification error rat CER), the risk of classifying a sampleinto class

c is the probability of error, i.e. thposterior probability of classifyingz into a
class that is not. This latter probability is the sum over the posterior piuba
ity of all classes except far. Therefore, in order to minimise the global risk, we
must classifyx into that class: that makes the sum of posterior probabilities over
the rest of classes minimum. In other words, we must classifito that class:
that maximises the posterior probabilityc | z). This is exactly what the Bayes
decision (classification) rule says [DH73]

é(x) = arg inaxp(c | z). (1.2

This posterior probability is usually decomposed accaydothe Bayes theorem

() = aremax PEPEIC)
é(w) = arg max =0 (1.2)
where
px) =>_p(e)p(z]o). 1.3)

The termp(z) is constant for all classes, so it is normally dropped anduthel
form of Bayes decision rule arises

é(x) = argmax p(c)p(z|c) (1.4)

wherep(c) is the prior probability that is usually computed as the relative class
frequency, ang(z | ¢) is theconditional probability (density) function describing
how likely is to observer in classc.

As stated above, the Bayes rule is the optimal decision wheeoconsider CER
as evaluation metric. However, this is only the case undeasisumption that we
know the real probability distributions fqr(c) andp(x | c). In practise, we can
only compute approximations of these probability disttiitnos.

In this thesis, the estimation of conditional probabilitgtdbutionsp(z | ¢) for
TC is based on smoothed n-gram language models [CG96, Jal8¥]ts mixture
extension [KS93, 1099] in the case of the unigram languagdeho

Apart from those classifiers based on the statistical PRoagpr, different
types of classifiers have been used in TC, including regressiethods [FP94,
IDLA95, LG94, SHP95], decision trees, neural networks @it incremental or
batch methods for learning linear classifiers [SHP95, WPVIZB&R97, NGL9I7],
classifier ensembles, including boosting methods [SS0@],saipport vector ma-
chines [Joa98]. While all these techniques still retainrthepularity, it is fair to
say that in recent years support vector machines and bgdstive been the two
dominant learning methods in TC. This fact is mainly due tirtisuperiority on

JCS-DSIC-UPV 3
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the Reuters task, which is the reference task in TC, howéwdr performance
is similar to that of other TC techniques in other tasks. Titerested reader is
referred to [Seb02] for an excellent review in TC.

1.2.1 Support vector machines and boosting techniques

In this section, we briefly review support vector machinegNI$ and boosting
techniques since they will be used to obtain state-of-theemparative results in
TC. We mostly provide a practical view of how these technsquere applied to
multi-class classification tasks, as they are the focusistliesis.

SVM were originally thought to be used as binary classifitia define a
hyperplane that maximises the margin between two claskdise isamples are
linearly separable [Bur98, CSTO00]. Although there havenbaeyeneralisation
of the 2-class problem [CS02], implemented S M uiticlass - gn instance of
SV Mstruet [TJHAOS], in practise binary classifiers based on the orareg-one
approach, among others, seem to be the most adequate [HLBR].simple yet
effective approach consists in:

1. Define as many binary classifiers as possible class pairs.
2. Each binary classifier votes for a class.
3. Classify according to the majority voting criteria.

In this thesis, all the SVM experiments were carried out withSV M9 toolkit
[Joa99] adopting the approach to the multi-class problemroented above .

On the other hand, the idea behind boosting methods is to filghéy accurate
classification rule by combining many weak or base hypothessch of which may
be only moderately accurate. We assume access to a sepavedelyre called
the weak learner or weak learning algorithm for computirgileak hypotheses.
The boosting algorithm finds a set of weak hypotheses byngatllie weak learner
repeatedly in a series of rounds. These weak hypothesesearedmbined into a
single rule called the final or combined hypothesis. In tiepdest version of the
boosting method AdaBoost for single-label classificatitve, algorithm maintains
a set of importance weights over training examples. Thesghigeare used by the
weak learning algorithm whose goal is to find a weak hypothesih moderately
low error with respect to these weights. Thus, the boostiggrdhm can use these
weights to force the weak learner to concentrate on the ebesmghich are hardest
to classify [SS00].

The implementation of the boosting algorithm employed ia thesis is Boos-
Texter [SS00]. In BoosTexter the weak learner is a one-lgeeision tree, and for
our experiments the error, which we tried to minimise, wél tneasured in terms
of Hamming los% In our case the input data will be text, therefore the camalit

#There are other possible error functions such as rankirtheisense of finding a hypothesis that
places the correct labels at the top of the ranking.
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that is checked at the root of the decision tree (weak lepiaghe presence or
absence of a given-gram, for instancélahatma Gandhi

1.2.2 Machine-aided indexing

Most of the text classifiers reviewed so far assign a singlesclabel to each docu-
ment. However, in real-world TC applications, a documeny negeive more than
one label reflecting the different topics included in thewduent. If this is the case,
we would be facing a multi-label classification problem.

This multi-label characteristic is particularly commonkieyword assignment
in which a list of descriptors (keywords or labels) from asthigrus has to be as-
signed to a document. In this type of tasks, a classifier shiingt decide on the
number of labels that will be assigned to a document, andgblerct the most suit-
able set of descriptors for that document. As the readeidodeNise, this task is
significantly more complex than that of assigning a singteldo each document.

In this setting the accuracy of text classifiers is usualhfifam being accept-
able, and itis more convenient to look at our automatic tkadsifier as the backend
of a machine-aided indexing (MAI) tool [Hod98;"B3]. MAI tools usually assign
to a document a list of keywords (descriptors) from a cotddol/ocabulary (the-
saurus) for indexing purposes. This list of descriptorgyssted by the system is
reviewed by expert indexers to add and select those deswifitat are the most
adequate.

The interest behind the development of indexing systemsti®nly the doc-
ument classification capabilitigzer se but also the possibility to access cross-
lingual information [P 03] through multilingual thesaurus, as EuroVoc [EC95],
AgroVoc [FAQ98], etc. In this scenario, documents in diéiet languages are clas-
sified following the same multilingual thesaurus, and tfaee they use a common
set of descriptor identifiers shared across languages dexing purposes. Then,
given a query (document), we could first identify the set ofdidate descriptors
for this query, and then retrieve those documents, no matiat their language is,
labelled with these candidate descriptors.

In this case of multi-label TC, we adopted a simple trainimgcpdure that
consists in learning a single-class classifier with all thewmhents with the same
class label. While the classification rule in Eq. (1.1) idaepd by that providing a
set of most probable class labels (descriptors)

Sk(z) = argmax minp(c|z) (1.5)
é‘c_% ceS

where 2 is the set of classes aid< |(2|.

Multi-label classifiers are usually evaluated in terms @&gmsion and recall, or
using a combination of these metrics like F-measure [BYRNB@wever, in the
context of MAI tools is more meaningful to talk about mackeiaging precision
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and recall [Lew91] computed for a set &f documents

precision = N Z % recall = N Z % (1.6)

n n

wheres,, = Sk(acn), andR,, is the reference set of labels for théh document.

The precision measure provides the ratio of correct labhadsthe total number
of labels returned by the system, so it is an indicator of hoscige is our system
when providing a list of class labels. On the other hand, ¢eall measure reports
the ratio of correct labels over the total number of refeeetabels, therefore it
informs us about the coverage that the labels offered bytes provides of the
set of reference labels. In this thesis, we will make use egeéhevaluation metrics
as percentages when in Chapter 2 we report experimentdisresua multi-label
task.

1.3 Machine translation

In this section we review state-of-the-art applicationd approaches in the field
of MT. On the one hand, current MT technology is focused oadhmain applica-
tions:

e Fully-automatic MT in limited domains like weather foretdlsGLLO5],
hotel reception desk [AB€00], appointment scheduling, etc.

e Post-editing for CAT, understanding by post-editing thenan amendment
of automatic translations produced by an MT system.

e Understandable rough translation in which the aim is toraidiuman to de-
cide whether the translated text includes relevant inféiona For instance,
this is used for document finding purposes or user assistanseftware
troubleshooting.

On the other hand, state-of-the-art MT approaches can bsifiéal according
to the level of analysis of the source sentence before atingl

e The interlingua approach consists in transforming the @msentence to a
language independent semantic representation, the leat-aatkerlingua, and
translating that interlingua expression into the desiegddt language. The
major drawback of this approach is its demanding knowledgeurces to
represent such language independent information. Fuoitttails of this ap-
proach can be found in [N92, NM92, A™93].

e The transfer approach decomposes the translation prageshiee steps:

Analysis. The source sentence is syntactically and semanticallyegais
some abstract representation.

6 JCS-DSIC-UPV
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Transfer. A transformation from the source representation into thgeta
representation is performed.

Generation. The final translation is generated from the target repratient
obtained in the previous step.

A review of transfer-based systems is presented in [HS92].

e The direct approach refers to the word-by-word translatiom the source
sentence into the target sentence. Under this approach dexXample-
based MT and statistical MT:

Example-based MT. This approximation deals with the translation of new
sentences by analysing, using different matching critesirailar sen-
tences previously translated. See [Som99] for a review afrgple-
based MP.

Statistical MT. A statistical model is inferred from translation examples
and the translation process is derived from a statisticeikaten theory
perspective. This thesis is mainly devoted to the stasisipproxima-
tion to MT that will be further studied in the next section.

1.4 Statistical MT

The goal of MT is the automatic translation of a source sem@eninto a target
sentencey, being

T=T1...85... )y Tj EX

Y=Y Yi---Yy Vi<V

wherex; andy; denote source and target words, akidand ), the source and
target vocabularies respectively.

In statistical MT, this translation process is usually présd as a decision pro-
cess, where given a source sentenose will choose a target sentengaccording
to

§= arg max p(y|x) (1.7)
wherep(y | z) is the probability fory to be the actual translation efor, in other
words, the relative frequency gfbeing the actual translation ef The so-called
search problenis to compute a target senteng&r which this probability is max-
imum. Applying Bayes’s theorem we can reformulate Eq. (A%)

y= arg max p(z|y)p(y) (1.8)

PAlso known as memory-based MT [Bow02, Som03]
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where the ternp(y | z) has been decomposed intdranslation modelp(x | y)
and alanguage modeb(y). Intuitively, the translation model is responsible for
modelling the correlation between source and target seajdmt it can also be
understood as a mapping function from target to source waitisle the language
modelp(y) represents the well-formedness of the candidate traoslatilt should
be noted that the term(z) has been intentionally omitted in the denominator of
Eq. (1.8), since it is constant for a giverwhen maximising ovey.

From a broader perspective, we can look at statistical MTspeaific instance
of a classification problem where:

The object to be classified is the sentende be translated.

The set of possible classes are the set of possible sententes target
languagey € V*.

The prior probability distribution is the language mogé}).

The conditional probability distribution is the transtatimodelp(z | y).

Therefore, under this point of view the decision rule statelq. (1.7) is opti-
mal under the assumption ofzero-ondoss function. In statistical MT, the zero-
one loss function is better known asntence error ratéSERY and considers that
there is an error if the translation given by the systgns not identical to the
reference translation.

In conclusion, by applying Eqg. (1.7) we are minimising thelability of er-
ror using SER as a loss function. However, the SER measusedpsoa rough
and superficial evaluation of the translation quality ofanglation system and it
is rarely used in favour of other more popular evaluation suess likeword error
rate (WER) andbilingual evaluation understud{BLEU) [PRWZ01]. These eval-
uation measures, further explored in this thesis, sug@estisage of alternative
loss functions, and therefore different decision rules #ne closer to actual eval-
uation measures employed in statistical MT. An excellestusion on the use of
different loss functions in statistical MT can be found irff207].

A great variety of statistical translation models have bpmposed since the
IBM article was initially published [B90, B"93]. In that article, the correspon-
dence between source and target word positions is desdrbad alignment vari-
ablea = a; ...a;...a, Where for each source positigin we have a target po-
sition a; € {0,...,|y|} to which is connected. The artificial zero posifois
introduced to deal with source words with no direct mappimghie target sen-
tence. The alignment variable is called a hidden variabieesit is not directly
observable in the translation process, but it naturallgesriin the description of
many probabilistic alignment models,

ply)= > paly) (1.9)

a€A(z,y)

°SER in statistical MT is equivalent to CER in classificatiasKs.
dBetter known in the literature as NULL or empty word.

8 JCS-DSIC-UPV
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whereA(z, y) denotes the set of all possible alignments betweandy. The IBM
article proposes five word alignment translation modelshofgasing complexity,
that were implemented in the GIZA++ toolkit [ONO3].

The M1 model, the first of the IBM models, is basically definesdaastatis-
tical bilingual dictionary, and it usually serves as a aliiation step for superior
IBM models. Another interesting property of the M1 modelhs toncavity of its
log-likelihood function, and therefore the uniqueness afaximum value of this
function under non-degenerateihitialisation. The M1 model has been widely
employed in different applications of statistical MT, csdsgual information re-
trieval and bilingual TC due to its simplicity and appliclitlyi of its parameter
values.

In statistical MT, the M1 model has traditionally been an aripnt ingredient
in applications such as the alignment of bilingual senterit#0002], the align-
ment of syntactic tree fragments [DGPO03], the segmentatidnlingual long sen-
tences for improved word alignment [NCVO03], the extractudiparallel sentences
from comparable corpora [MFMO04], the estimation of wordeleconfidence mea-
sures [UNO7] and serves as inspiration for lexicalised gdrscoring in phrase-
based systems [KOMO03, Koe05]. Furthermore, it has alsovwedeattention to
improve its nonstructural problems [Moo04].

Moreover, the M1 model has been recently applied to crogg#l information
retrieval with promising results [PJR07]. In that work, tethors use a training
corpus made up by a set of query-relevant document pairs iatepilistic cross-
lingual information retrieval approach based on the M1 nhode

In this thesis, the M1 model, as well as the M2 model, wereistudnd ex-
tended in Chapters 3 and 4, respectively. Apart from the |Bdiats, other word
alignment translation models have been proposed, amongttiee homogeneous
hidden Markov alignment mod@iMM) [V T96] that has received special atten-
tion [TIMO2, DBO5]. This thesis further elaborates upon HédM model in Chap-
ter 5.

The search problem presented in Eqg. (1.8) was demonstrated an NP-
complete problem [Kni99, UMO06]. However various researobugs have devel-
oped efficient search algorithms by using suitable simjpliitcs and applying op-
timisation methods. Starting from the IBM work based on alstdecoding algo-
rithm [BPP96] over greedy [B94, WW98, G 01] and integer-programming [®1]
approaches to dynamic-programming search [GVCO01, TNOBJs Tatter search
approach was studied in Chapter 4.

Nevertheless, most of the current statistical MT systemisyguan alternative
modelisation of the translation process different front fhr@sented in Eq. (1.7).
The posterior probability is modeled as a log-linear coratiomn of feature func-

€Starting point in which none of the initial parameter valigzero.

JCS-DSIC-UPV 9



Chapter 1. Preliminaries

tions [ONO4] under the framework of maximum entropy [BPP96]

M

7 = arg max Z AP (2, ) (1.10)

Y m=1

where),, is the interpolation weight and,, (z, v) is a function that assigns a score
to the sentence pajr, y).
Under this framework Eq. (1.8) can be seen as a special casmewh

hi(x,y) = logp(x|y) (1.11)
ha(z,y) = logp(y) (1.12)

and\; = \y = 1.

Most of state-of-the-art statistical MT systems are basedilingual phrases
[CBT07]. These bilingual phrases are sequences of words in theéawguages
and not necessarily phrases in the linguistic sense. Trasetrased approach to
MT is further explored in Section 1.5.

Another approach which has become popular in recent yeayoisided on
the integration of syntactic knowledge into statistical lgyistems [Wu96, YKO1,
GKO04, Lin04, DP0O5]. This approach parses the sentence inoottmth of the
involved languages, defining then, the translation opamaton parts of the parse
tree. In [Chi07], Chiang constructs hierarchical transdsdor translation. The
model is a syntax-free grammar which is learnt from a biladgeorpus without
any syntactic information. It consists of phrases which@amtain sub-phrases, so
that a hierarchical structure is induced.

The third main approach, which is currently investigatedtatistical MT, is
the modelling of the translation process as a finite-statesttucer [ADB0O, BR95,
CV04, KNO4, M06]. This approach solves the translation problem by esinma
a language model on sentences of extended symbols deromdlfle association
of source and target words coming from the same bilingual gdie translation
transducer is basically an acceptor for this language anelddd symbols. This
approach is further explored in Chapter 6 where we introdutnteractive and
predictive CAT system based stochastic finite-state transducgiSFST).

1.5 Statistical phrase-based translation systems

1.5.1 Generative phrase-based models

In this section, we outline an example of generative phtesed model [AFJCO07]
that will serve us to present the problems faced by this ambroand to motivate
the introduction of heuristically estimated phrase-basetems in the next section.
Let (z,y) be a pair of source-target sentences, we introduce the ctorel
conditional probabilityp(z | y) for the translation model. Let assume thahas
been monotonically generated frdfcontinuous segments that compaseThe

10 JCS-DSIC-UPV
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resultant source and target non-empty segments are defineet o, 11, - . ., 7}
andy = {vo, M1, -..,vr} variables, respectively, where

0=po <p1<...<pur=|z
0=y <m<...<v =yl (1.13)

so given two monotone, monolingual segmentations ahdy into 7 segments,
1 and -y, their associated bilingual segmentationaofind y is defined ass =
81,82, ,8T with

St = (Mt—l +17Mta7t—1 +17’Yt) = 17"'7T' (114)

An example of all possible bilingual segmentations for arsetsentence of
length 4 and a target sentence of length 5 is representedyime-i..1 as a direct
multi-stage graph.

The initial stage of the graph has a single, artificial nodmlled as “init”,
which is only included to point to the initial segments of také possible segmen-
tations. There aré2 of such initial segments, vertically aligned on the firsgsta
Similarly, there arel5, 3 and13 segments aligned on the second, third and final
stages, respectively. The total number of segments is4BefThere is a unique
segmentation of unit lengths, = (1415), which is represented by the rightmost
path, but there aré2, 18 and4 segmentations of length 3 and4, respectively;
comprising35 segmentations in total. As empty segments are not allovnexd, s
mentation lengths range from one to the length of the shosegence.

Finally, our model forp(z | y) can be seen as a full exploration of all possible
bilingual segmentations af andy,

min(|z|,|y|)
ple|y) = > p(x,5,T|y) (1.15)
T=1 S
where
p(x,s,T|y) =p(T|y)p(s|T,y)p(x|s,T,y) (1.16)

is a generation process in which we first decide on the numbsggments, then
we select the sequence of segmentation states, and finaljemarate the source
segment.

The estimation of a phrase-based model as that presented &ba cumber-
some problem that possess not only computational efficiehajlenges, but also
overwhelming data requirements. One of the main difficsiltieat phrase-based
models have to cope with is the problem of the bilingual segate®n. In the
model proposed above, this segmentation is explained biittten variable§”
and s which leads us to a large combinatorial number of possibjgneatations
to explore. As can be guessed, this problem is further agtgdwvith the length
of the source and target sentence. Despite this obstaele tave been several
bold proposals for phrase-based models, from the jointgiitity model [MWO02,
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Chapter 1. Preliminaries

Figure 1.1: Directed, multi-stage graph representing all possibliailal
segmentations for a source sentence of ledgémd an target sentence of
length5. Each node defines a different segment; the first two digithef
node label are the segment limits in the source sentencks thiei other two
digits correspond to the target sentence.

BCBMOKO06], over the HMM phrase-based models [DB05, AFJQ0#he statis-
tical GIATI model [AFJCCO08].

However, the most popular approach to the development @fsghibased sys-
tems has been the log-linear combination of heuristicalyneated phrase-based
models [KOMO03, ONO04], since these systems offer similarvanebetter perfor-
mance than those based on generative phrase-based moG&K(B].

1.5.2 Heuristic phrase-based models

The heuristic estimation of phrase-based models is gralodehe Viterbi align-
ments computed as a byproduct of word-based alignment sodehe Viterbi
alignment is defined as the most probable alignment giversdlece and target
sentences and an estimation of the model param@ters

a = argmaxp(a|z,y; O) 2.17)

also rewritten
a = argmaxp(z,a|y; ©). (1.18)
a

The conventional alignments, for instance those providedM models, dis-
allow the connection of a source word with more than one tavged. This unreal-
istic limitation negates the common linguistic phenomeimowhich a word in one
language is translated into more than one word in anothgulege. To circumvent
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this problem, alignments are not only computed from the emlaeinguage to the
target language, but also from the target language to theesdanguage. Doing
so, we can reflect the fact that a single word is connected te than one word.

Once the Viterbi alignments have been computed in both tres; there ex-
ist different heuristic algorithms to combinthem [KOM03, ONO3]. These al-
gorithms range from the intersection of both alignments hiclv we have high
precision, but low recall alignments, to the union in whicé ave low precision,
but high recall. In between, there are algorithms like tHeneel method [ONO3]
and thegrow-diag-final[KOMO3] that starting from the intersection, heuristigall
add additional alignment points taken from the union. Titetasymmetrisation al-
gorithm will be employed throughout this thesis to combime Yiterbi alignments
provided by our word-based alignment translation modetss & a previous step,
before extracting bilingual phrases, to construct a phbased system.

Bilingual phrase extraction is based on the concepbaosistencyf a bilingual
phrase(Z,y) (derived from a bilingual segmentation) with a word aligmne.
Formally,

(z,7) consistent withy & Vz; € T: (vj,y) €a — y; ETA
N Yy €7 (xj,y:) €a—x; ETA
A dz; €T, y; €7 (z5,y) €a (1.19)

basically Eqg. (1.19) means that a bilingual phrase is ctergisf and only if, all
the words in the source phrase are aligned to words in thettplgase, and there
is at least one word in the source phrase aligned to a worckitatiget phrase.

Given the definition of consistency, all bilingual phrasap {o a maximum
phrase length) that are consistent with the alignment tiaguirom the symmetri-
sation process are extracted.

The next step is to define functions that assign a score or lzapilday to a
bilingual phrase in isolation or as part of a sequence afidpilal phrases in a given
segmentation. These score functions are seamlesslyatgegn a log-linear fash-
ion under the maximum entropy framework.

The most commonly used score functions are the direct aretsavphrase
translation probability estimated as a relative frequency

- count(T,7) ey count(Z,7)
pa(T|Y) = W pi(¥|T) = —Z count(@,7) (1.20)

Y

as well as the direct and inverse lexical translation proipalnspired in the M1
model [KOMO03, CLO7]. Other score functions are related tordering capabil-
ities, such as the distance-based reordering model [ONt@i#titee lexicalised re-
ordering model [K"05]. Additional score functions are phrase and word peralty
control the length of the translated sentence.

This process is also known as symmetrisation.
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The weight of each score function in the log-linear comborais adjusted on
a development set with respect to a predefined criteriorgllysBLEU. There are
two popular techniques in statistical MT to carry out thisqass, minimum error
rate training [Och03] and minimum Bayes risk [KB04]. Therfar criterion was
used in this thesis to tune the weights of the log-linear mhoBerthermore, the
most common approach to the decoding process in log-lineaets is the well-
known multi-stack decoding algorithm [Koe04, ONO4]. Thedés toolkit [K-07],
that implements an instantiation of this type of multi-&taecoding algorithms,
will be used throughout this thesis to carry out most of thagfation experiments.
It should be noted that the Moses toolkit is employed at ther level to tune
the weights of the score functions, and will allow us to iedity evaluate the
translation quality of the models proposed in this thesis.

1.6 Automatic MT evaluation metrics

In MT, the use of automatic evaluation metrics is imperative to the high cost
of human made evaluations. Also the need of rapid assesshéme translation
quality of an MT system during its development and tuningsglsas another rea-
son for the usage of automatic metrics. These metrics ardogatpunder the
assumption that they correlate well with human judgemehtsaaslation quality.
This arguable statement must be considered bearing in iméldw inter-annotator
agreement on translation quality [€B7]. This fact makes automatic evaluation
an open challenge in MT.

In this thesis, we mainly use two conventional translatieal@ation metrics,
WER and BLEU, although other measures like METEOR [BLO05] &radslation
edit rate (TER) [S06] are becoming more and more popular.

The WER metric [A 00, C"04] is defined as the minimum number of word
substitution, deletion and insertion operations requteedonvert the target sen-
tence provided by the translation system into the referérareslation, divided by
the number of words of the reference translation. It can la¢ésseen as the ratio of
the edit distance between the system and the referencéatransand the number
of words of the reference translation. This metric will allais to compare our
results to previous work on the same task. Even though the WE&tRc can value
more than 1.0, it will be expressed as a percentage as it ismony presented in
the SMT literature. The WER metric can also be evaluated rgipect to multiple
references, however, in this thesis, we have a single mefer&ranslation at our
disposal.

The BLEU score [PRWZ01] is the geometric mean of the modifigecision
for different order ofn-grams (usually from unigram up tegrams) between the
target sentence and the reference translation, multipljean exponential brevity
penalty (BP) factor that penalises those translationsatatshorter than the ref-

9The number of occurrences of a word in a target sentence itetirto that of this word in the
reference translation.
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1.7. Computer-assisted translation

erence translation. Although some voices have been raggidsit BLEU as the
dominant evaluation methodology over the past years [CB&)KOis still a ref-
erence error measure for the evaluation of translationitgualMT systems. We
take BLEU as a percentage ranging frorfi (worst score) td 00.0 (best score).

1.7 Computer-assisted translation

Present translation technology has not been able to ddiillgrautomated high-
quality translations [NIS06, CB07]. Experts are almost unanimous about this [Isa96,
Kay97a, Hut99, Arn03]. An alternative way to take advantafjthe existing MT
technologies is to use them in collaboration with humanslegtors within a CAT
framework.

Historically, CAT and MT have been considered as differeutt dlose tech-
nologies [Kay97b] and more so for one of the most popular C&dhmnologies,
namely, translation memories. Translation memories agebtsic ingredient of
post-editing tools in which an MT system provides a compted@slation using
sentences previously translated, and a human expert tothex possible errors
incurred by the MT system. It should be noticed that thereigactual interaction
between the MT system and the translator in this scenariogghey work as two
isolated serial processes.

The main drawback of post-editing tools is that the seriacpss residing at
the core of this technology, prevents the MT system fromnigkadvantage of
the knowledge of the human translator and the human transtainnot benefit
from the adapting capability of the MT system. In contrast,isteractive ap-
proach to CAT [IC97] seems to be more adequate in this hurnarpater inter-
active setting. Interactivity in CAT has been explored fdoag time. Systems
have been designed to interact with human translators ierdodsolve different
types of (lexical, syntactic or semantic) ambiguities EElipWWC"86]. Other
interactive strategies have been considered for updatseg dictionaries or for
searching through dictionaries [Slo85, WW85]. Specific proposals can be found
in [Tom85, Zaj88, Y 93, SZH97] among others.

Animportant contribution to interactive CAT technologys\@arried out around
the TransType (TT) project [LFLOO, LLLO2, FLLO2, Fos02]. iStproject entailed
an interesting focus shift in which interaction directlyngid at the production of
the target text, rather than at the disambiguation of thecgotext, as in former
interactive systems. The idea proposed in that work was teedrdata driven MT
techniques within the interactive translation environinerhe hope was to com-
bine the best of both paradigms: CAT, in which the human teamsensures the
high-quality output, and MT, in which the machine ensuresgaiicant gain of
productivity. Following these TT ideas, the innovative eddling proposed here
consists in using a complete MT system to produce full tasgatence hypotheses,
or portions thereof, which can be partially or completelgegated and amended by
a human translator. Each partial correct text segmentiisiibed by the MT system
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as additional information to achieve further, hopefullypimved suggestions.
A follow-up of the precursor TT project was TransTypeZ2 (Tp&)ject [Ato01].
In this project, a series of novel contributions were depetb

e Fully-fledged statistical MT systems produce completeeserg hypotheses
as a response to user corrections, instead of single wogdgstions as hap-
pened in the TT project.

e Systematic off-line experiments to simulate the specificditions of inter-
active translation and analyse the results.

e Some of the systems developed in this project were sucdigsstialuated
by professional translators under real working conditivitlS05, Mac06].

This thesis presents one of the three CAT systems developthe framework of
the TT2 project, as said before, this system based on SF&Mndkgy is intro-
duced in Chapter 6.

In the CAT scenario, the speech was proposed as an altermaéians of inter-
action [VCR06] and as a tool to dictate translations [KZN05, KZNO06].

1.8 The expectation-maximisation algorithm

In this thesis, we present a series of probabilistic moplels®) that are governed
by their corresponding set of parametés Supposing that we hawy samples
that have been randomly drawn frgifiz; ©)

X ={z1,...,Tn,..., TN},

we can compute the log-likelihoBaf © w.r.t. N independent samples as
N
L(©; X) =logp(X;0) = > log p(n; ©). (1.21)
n=1

The log-likelihood can be thought of as a function 01‘ the peaters® where the
data X is fixed. Our goal will be to find an estimatid® that maximises the log-
likelihood of ®,

A~

® = argmax L(O; X). (1.22)
()

Depending on the form of(z; ®) this maximisation can be easy or hard. For
example, ifp(z; ®) is a D-nomial distribution of parameters ! and

© = (p1,---,Pd;---,PD) (1.23)

"We take the logarithm of the likelihood because it is anesfty and computationally easier to
work with.
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1.8. The expectation-maximisation algorithm

that is,

D
l‘+! T
p(#;0) = —5—— | | P4* (1.24)
Hc?:l 4! dljl

then, the maximum likelihood estimate &fw.r.t. N independent D-nomial sam-
ples can be easily computed by taking partial derivativesgpf(1.21) w.r.tp, and
equa}ing to zero, subject to the constraint ®atlefines a p.f. Doing so, we have
that® is

(1.25)

wherez,,q is the number of occurrences of ttigh event in the:-th sample. How-
ever, this is much more complicated for many interesting elgdncluding nearly
all of those studied in this thesis.

Fortunately, maximum likelihood estimation of all “comgdted” models stud-
ied in this work can be reliably accomplished by the EM altjon [DLR77, Wu83].
The EM algorithm considerX to be incomplete data which can bempletedby
addition of missinglfiddenor latent) dataZ. This results in a many-to-one map-
ping from the complete to the incomplete models,

p(X;0) = > p(X,Z;0). (1.26)
ZeZ

whereZ is the domain from whicly takes value. The marginalisation in Eq. (1.26),
represented as the sum over the domain of the hidden varghbie the case of
all the models presented in this thesis, since they onlylwevdiscrete variables.
However, this sum is replaced by an integral in the case dfiraeous variables,
or a combination of sum and integral when the marginalisaiacarried out over
discrete and continuous variables.

The EM algorithm works iteratively in two basic steps. Hirsthe E step
computes the expected value of the logarithmp@X, Z; ®) w.r.t. the posterior
p(Z]X;0W),

Q©|0") = BE(logp(X, Z;0) | X,0"). (1.27)
Secondly, the M step maximis€ © | ©¥)) to obtain a new estimation @,

O+ — arg max QO] G)(k)). (1.28)
()

These two steps are repeated for a number of iterations ibcanvergence There
exists a modified version of the algorithm known as the gdisechEM [DLR77],

"Normally, the condition for convergence is a relative irse of log-likelihood from iteratiok
to k + 1 below a given threshold.
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in which the M step is only required to fulfil the conditigp(®@*+1) |@*)) >

Q(®" | ®®), In any case, the algorithm converges to a local maximumef th
likelihood function.

Let us now consider the conventional case in which the ngsdata consists
of NV independent and identically distributed hidden varidbles

Z=A{z1,.-.,2Zn,-- -, 2N} (1.29)

and thus, Eq. (1.26) factorises over the joint distribution

N
= Z H p(xn, 2n; ©

ZeZn=1
= Z Z Hp :L'n,zn,
zZN n=1
= p(1,21;0) Z ZHp (Tn, 2n; ©
z ZN n=2
]\1[ N
= H Zp(xn,zn;Q). (1.30)
n=1 zn

Similarly, the joint probability forV independent samples becomes

(X, Z;0) Hp (T, 2n; © (1.31)

Thus, the E step can be rewritten as

N
Q©[0®) =" E(log p(zy, 20; ©) |2, OF)). (1.32)

n=1

where we compute the expected value of the missing gafar each sample in-
dependently.

1.9 Finite mixture modelling

Finite mixture modelling is a popular approach for the eation of probability
(density) functions in PR [TSM85, JDMO00]. Mixtures are flede enough for find-
ing an appropriate tradeoff between model complexity ardatinount of training
data available. Usually, model complexity is controlledvayying the number of
mixture components while keeping the same (often simpledrpatric form for
all components. Although most research on mixture modedschacentrated on

JEach hidden variable, completes its corresponding incomplete (observed) datplsa,,.
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mixtures for continuous data, there are many tasks for wilietrete mixtures are
better suited, for instance those related to model natanguage.
A T-component mixture model is a probability (density) fuantof the form

T
p(:©) =Y p(t) p(x |t ©y) (1.33)
t=1

where for each componetitp(t) is its mixture prior or coefficient ang(z | ¢; ©;)

is its component-conditional probability (density) fuioct governed by the com-
ponent parameter vect@;. It can be seen as a generative model that first selects
the ¢tth component (or topic) with probability(¢) and then generatesin accor-
dance withp(z | t; ©;). Thus, the global vector of parametédsis

O = (p(1),...,p(t),...,p(T);®")" (1.34)

where
0 =(0...,0...,07)" (1.35)

We can provide an equivalent representation of the finitdéuréxmodel presented
above using an indicator vectey

z="(21,...,2,...,27)" (1.36)

with 1 in the position corresponding to tht# component generating and zeros
elsewhere

z=(0,...,0,1,0,...,0)". (1.37)

)
t

Therefore, the domain of the hidden variablés composed of vectors within a
single position and zeros elsewhere.

This indicator vector replaces the integer latent variabi&roduced in Eq. (1.33),
simplifying the derivation of the EM algorithm, while beimgjuivalent to the inte-
ger representation.

Then, the mixture model in Eqg. (1.33) is rewritten in termsaof indicator
vector as

p(;©) = p(x,2O)

=Y p(z)p(x]26) (1.38)
wherep(z) is a multinomial p.f.,
T
p(z) = [[p(t)* (1.39)
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beingp(z) = p(t) whenz valuesl in the ¢th position and zeros elsewhere, and
p(z | z) is a component-conditional p.f. over

p(z]z;0) = pr[t@)t . (1.40)

beingp(z | z; ©®') = p(x|t;©;) when z values1 in the tth position and zeros
elsewhere. Thus, the general form for a finite mixture modebmes

=Y H p(z|t: @))% . (1.41)

z t=1

which is equivalent to Eqg. (1.33).

Now, let X be a set of samples available to le@nthat governs a finite mix-
ture model as described above. This is a statistical pasarastimation problem
since the mixture is a p.f. of known functional form, and &kt is unknown is a
parameter vector including the prigpét) and component-conditional parameters
in ®;. The optimal parameter values maximise the log-likelih@aattion of ®

w.rt. X,
Z log ) H [p(t) plan ;O] (1.42)

Zn
that can be estimated with an instantiation of the EM alporipresented in Sec-
tion 1.8.
The EM algorithm for a finite mixture model entails the apation of the E
step in EqQ. (1.32). Here, we consider the indicator veetto be the missing data
z, drawn fromZ in Eq. (1.29), but redefined as

Z={z1,...,2n,---,ZN}. (1.43)

So, the E-step computes the expected value of the logarithifxg, z,,; ©) given
the observed data,, and the current estimation &, ®*)

E(log p(2n, 2n; ©) | 2, ©H))

Mz

QE|e")=

®) [log p(t) + log p(xs | £ ©,)]. (1.44)

”Mﬂ

]G
wherez( )is the posterior probability of,, being generated from thi¢h compo-
nent,

k
(k) p(t) pla, | t; O

nt = : (1.45)
S p(t)p(x, | ;00))

z
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The M-step maximises the functiap in Eq. (1.44) subject to the constraint
that mixture coefficients must sum up to one, along with aeltél constraints im-
posed by the normalisation of the parameters definédl;inThese constraints are
incorporated into the maximisation problem in Eqg. (1.28) vagrange multipliers,

©*+1) = arg max max Q(O | ('-)(k)) +A (1.46)
®

with

T
A=-\ (Z p(t) — 1> . (1.47)
t=1
where )\ is the Lagrange multiplier to normalise the mixture coedfits. Addi-
tional Lagrange multipliers are usually needed to enfohgenormalisation con-
straints of the parameters defineddn.

In the case of mixture coefficients, we take derivativeQof A w.r.t. p(¢) and
A and equate them to zero in order to obtain their correspgngdate equation,

N
p() D) = % SR8 w (1.48)
n=1

that can be understood as the average contribution (reigdiiys of the ¢th com-
ponent to generate the training set, or alternatively, @sdtative count of training
samples drawn from th&gh component. Similarly, the derivative 6f w.r.t. ©;
and its Lagrange multipliers (if any) must be equal to zemas to obtain the
corresponding update equations &)iﬁ).

In this thesis, we exclude the problem of the estimation efdhtimal number
of components per mixture. Instead, we prefer to study tledugen of the eval-
uation metrics as a function of the number of componentsHerdifferent tasks
in bilingual TC and statistical MT. This study is constraingy memory require-
ments.

1.10 Scientific contributions

The objective of this thesis is to present new applicatidnexesting technology
in TC and CAT, as well as new models in TC and statistical MTeldasn the
paradigm of mixture modelling. More precisely, the scigntontributions of this
thesis are:

1. Bilingual TC. Bilingual TC is proposed as a new application in TC along
with novel models that are capable to deal with bilinguabinfation and
learn word correlation across languages. Five models baseitie uni-
gram model and its corresponding mixture extension areepted. These
models were tested on three tasks of increasing complegityggfrom a
semi-artificial task, over a real small task, to a real compdsk. The two
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first tasks were assessed in terms of CER, while the lattkrnwas evalu-
ated on precision-recall figures due to its multilabel ratamd the working
conditions from which it is extracted. As a natural evolatiof the five
unigram models previously mentioned, we derived a novelehtithit com-
bines a unigram distribution with the well-known M1 trarigla model. The
unigram-M1 model incorporates word correlation constginto the bilin-
gual classification model in order to fully exploit the bgwal information.
This model was assessed on the first two proposed tasks. Alithdghese
models, smoothed-gram language models, support vectors machines and
boosting techniques are included in the evaluation for aatjve purposes
and for the study of variable-size word-context informatiio the framework
of bilingual TC.

2. Context-specific word alignment translation models Three fundamental
word alignment statistical translation models, M1, M2 ardM, were ex-
tended to incorporate context information by applying migtmodelling.
The word alignment translation models proposed so far ifitteature ig-
nore the context information from which bilingual sentehese extracted,
however it is unanimously accepted that a word has diffemegdnings de-
pending on the semantic domain in which is found. The mixmcaels
presented in this thesis aim at capturing domain informabip develop-
ing context-specific word alignment translation modelwatit supervision.
The M1, M2 and HMM mixture models proposed were evaluatethfi@o
points of view on real shared tasks. On the one hand, we askt®s qual-
ity of the Viterbi alignments generated by these models amdhe other
hand, we indirectly measure the translation quality of¢he®dels by feed-
ing its Viterbi alignments into a statistical phrase-basgstem. In the case
of the M2 mixture model, we also developed a mixture extansican itera-
tive dynamic-programming search algorithm for the coneral M2 model.
This search algorithm allows us to directly gauge the tegimsl quality of
the M2 mixture model on a semi-artificial translation task.

3. Interactive and predictive CAT based on SFST technologyCurrent MT
technology is still far from producing fully-automatic higyuality transla-
tion. Alternatively, CAT systems seek to integrate MT tegaes in the hu-
man translator activity in order to increase their prodiigtiand guarantee
high quality translations. Following this idea, our proglas to perform such
a human-computer synergy mediating the target sentents theing trans-
lated, that is, the translator guides the translation @®dy correcting the
suggestions that the system offers. More precisely, in ase the backend
MT technology for such an interactive and predictive CATtsysis pow-
ered by SFSTs. The capability of this formalism to providecdhte trans-
lations and the existence of efficient parsing algorithnssifi its selection
given the tight usability and real-time constraints thaiseh interactive sys-
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tems require. The work carried out in this part of the thesfe¢used on the
adaptation, development and integration of existing dlgams in the field of

finite-state machines to construct an interactive and ptigdi CAT system.

The resultant system is automatically evaluated in ternwdfdine transla-

tion quality and on-line typing effort reduction in two cama of different

complexity. Furthermore, this system was manually assdsgdranslators
in controlled user-trial session. This latter work was exadly developed in
the framework of a European project.
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CHAPTER2

BILINGUAL TEXT
CLASSIFICATION

2.1 Introduction

The proliferation of multilingual documentation in our émfmation Society has
become a common phenomenon in many official institutions &atliament, the
Canadian Parliament, UN sessions, Catalan and BasquarRaniis in Spain, etc.)
and private companies (user's manuals, newspapers, beikys, In many cases,
this textual information needs to be categorised by hartdjlgmy a time-consuming
and arduous burden.

As mentioned in Section 1.2, monolingual TC has receivedtrabshe at-
tention of the scientific community compared to bilingualtiingual) or cross-
lingual TC. Among the diverse approaches to monolingual R€ well-known
naive Bayes classifier [Lew98, MN98] is one of the most populBeing so,
there have been several instantiations and generalisatibthis classifier, from
Bernoulli mixtures [JV02] to multinomial mixtures [NDO, NM03]. Both general-
isations seek to relax the naive Bayes feature independascenption made when
using a single Bernoulli or multinomial distribution peask.

The unrealistic assumption of the naive Bayes classifienésas the main rea-
sons explaining its comparatively poor results in conttasither techniques such
ashoosting-based classifier committédesosting) [SS00] andupport vector ma-
chines(SVM) [BGV92, CV95, Vap95]. However, the performance of theve
Bayes classifier is significantly improved by using the gal&aitions mentioned
above. Moreover, there are other recent generalisationisd@rrections) that also
overcome the weaknesses of the naive Bayes classifier arev@ackery competi-
tive results [SW02, R03, VT 04, P"04a, P 04b].

The accuracy of the single-class text classifiers presatiede is considered
to be fairly good [Seb02]. However, the performance of rdalbiel text classifiers
is far from being acceptable, and it is more convenient t& miothese classifiers
as the backend of a MAI system [HH96, LHOO, LD0Z2; @3], as commented in
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Chapter 2. Bilingual text classification

Section 1.2.2.

This chapter is devoted to bilingual TC, a novel applicaiiothe field of TC,
that considers the case in which bilingual parallel texestarbe classified. The
organisation of this chapter is as follows. We first intragltice unigram mixture
modef and its maximum likelihood estimation in Section 2.2, parfimg analo-
gously with the bilingual unigram mixture model in Sectio®.2Then, we derive
five bilingual text classifiers grounded on the unigram atidduial unigram mod-
els in Section 2.4. The presentation of these bilingualsiiass is followed in
Section 2.5 by a series of experimental results on thres @isttifferent complex-
ity, together with comparative results SVM and boostinghiggues. Finally, we
state the conclusions and future work in Section 2.6.

2.2 Unigram mixture model

2.2.1 The model

Let us consider the p.f. over sequences of words of the formz; ... z; ... x|,
of known length|x|

|z|

p(z) =[] pla; 2. (2.1)
j=1

For the unigram model, we assume that the probability of @awi to occur does
not depend on any previous wérd

p(xs|ai ™) == p(x;). (2.2)
Thus, the unigram model becomes

|z|

p(w;©) = [ p(x). (2.3)
j=1

where
O =(pu):uek). (2.4)

A unigram mixture modek an instance of the general mixture model defined
in Eq. (1.41), wherg(x | ¢; ©,) is a component-dependent version of the unigram
model presented in Eq. (2.3)

|z]

p(x|t;0:) = [[ ple; | 1). (2.5)

Jj=1

2A unigram language model is just a multinomial word disttibn.
PWe do not distinguish between the general probability fiamcand the model itself, since it is
clear by the context or the introduction of the parametetore®.
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2.2. Unigram mixture model

where each component has its own vector of unigrams
0; = (p(ult) :uelX) (2.6)

being X', the vocabulary from which the word is drawn andp(u | t), the proba-
bility of word u to occur at componerit

2.2.2 Maximum likelihood estimation

Let X = (z1,...,7x)" be a set of samples available to learn the unigram mixture
model presented in Section 2.2.1. Following the maximuraliliood principle,
optimal parameter values maximise the log-likelihood figrcof ©

N T
L(©;X) =) log > [[ ) plx,|t;©)) 2.7)
n=1

zn t=1

asin Eq. (1.42). Here, we consider an specific instantiatfahe EM algorithm for
mixture models presented in Section 1.9, for the unigramturexmodel. The)
function is defined as in Eq. (1.44), with") in Eq. (1.45) being the posterior prob-
ability of x,, being actually generated by thi#n component-conditional unigram
model, as defined in Eq. (2.5).

In the M step we compute Eq. (1.28), in order to find a new esénf@ the
mixture coefficients as in Eq. (1.48), and for the compormemiitional unigram
parameters,

N(u,t)
) = o X 2.8
u'eXx
where
N(ut) =285 6(an; = u) (2.9)
n=1 7j=1
and
1 if bistrue
o) = { 0 if bis false. (2.10)

The § function will be used throughout this thesis to simplify tmathematical
notation. Eq. (2.8) can be understood as weighted relativats of unigrams for
each componerit in which the weighting term,,; accounts for how much theh
sample contributes to the counts of tle component. The asymptotic cost of the
training algorithm per iteration i©(N - T - |z[), where]|z]| is the sentence average
length.
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2.3 Bilingual unigram mixture model

2.3.1 The model

Bilingual texts are pairs of sentences or documéntg) that are mutual transla-
tions, i.e.x is a sentence in a source language, @igits corresponding translation
in a target language. In this section, we present a bilinguature model based
on the unigram distribution to tackle the modelisation dihigual texts.

To this purpose, let us consider the joint p.f. oveandy,

p(x,y; © ZH[p pla,y |t;©,)] (2.11)

z t=1

where, similarly to Eq. (1.41)(¢) andp(x,y|t; ©;) are the mixture coefficient
and the component-conditional p.f. of thiéh component, respectively. In what
follows, we assume: andy to be two conditionally independent variables given
the mixture componeritfrom which they were drawn

p(z,y|t:0,) = p(z[t;©) p(y | t;©y). (2.12)
Plugging Eqg. (2.12) into Eq. (2.11) results in thiéngual unigram mixture model
plz,y; © ZH p(x|t:0) py | ;O (2.13)
z t=1

wherep(z | t; ©;) is the component-dependent unigram model for the souree lan
guage as defined in Eq. (2.5), an@ | ¢; ®,) is the component-dependent unigram
model for the target language

[yl

ply|t;©;) = Hp yi |t). (2.14)

Thus, the global vector of parametédsis of the form of Eq. (1.34) where

_Joplult) ueX
G)t_{p(vhf) bey (2.15)

is the source and target language unigrams, respectively.

2.3.2 Maximum likelihood estimation

The maximum likelihood estimation of this model is similarthat of the unigram
mixture model in Section 2.2.2. Generally speaking, thitices to substituting
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2.3. Bilingual unigram mixture model

Let (X,Y) = ((z1,%1),---,(xn,yn))" be a set of samples available to learn
©. The optimal parameter values maximise the log-likelihbwotttion of ® w.r.t.
(X,Y), that can be expressed in terms of the indicator vegjaas

L(©;X,Y) ZlogZH[p p(an [0 plyn |1 O] (2.16)

zn t=1

As shown in Section 1.9 for finite mixtures in general, we rete the EM algo-
rithm to obtain a maximum likelihood estimation®f. To this purpose, we replace
xn BY (2, yn) In EQ. (1.44) to compute the expected valu@@X, Y, Z; ©) w.r.t.
the posteriop(Z | X,Y; @*),

N T
QO0®) =33 W) [log p(t) + log p(x | £;©;) + log p(y | #;©,)] (2.17)
n=1 t=1

where

W p®"p|t @”“) (y]t:©1")
TSI e ple |50 py | Of)
In the M step, equivalently to Eq. (1.46), we maximise Eql(2.so as to find a
new estimate fo®, ® *+1) This results in updating equations that are analogous
to those in Section 2.2.2. Specifically, the mixture coedfits are calculated as in
Eqg. (1.48) and the source-language component-conditiomglam parameters as
in Eqg. (2.8). The update equation for the target-languagepoment-conditional
unigram parameters is

. (2.18)

plo] )+ = % Vibvey (2.19)

v'eX

where
|yn

Zz Zé Yni = V) (2.20)

The asymptotic cost of the training algorithm per iterai®@® (N - T"- (2] + 1)),
where|z| and|y| are the source and target average lengths, respectively.

2.3.3 Smoothing

Two major problems in parameter estimation are zero préibabidue to model
overfitting, and the occurrence of infrequent events whosbabilities are poorly
estimated. The usual solution to this problem is what is kmowthe literature as
smoothing Smoothing basically consists in the interpolation of ac#ffeproba-
bility distribution, which we are estimating in our traigirprocess, with a more
general distribution.
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In this chapter, we smooth the component-conditional amgdistribution af-
ter each M step, interpolating the estimated probabiligtriiutionp(u | t) with a
uniform probability distribution

Bl t) = (1= p(u]t) + 7 (2.21)
wheree is an interpolation parameter that weighs the contributéreach dis-
tribution. A different interpretation of the parameter would be the amount of
probability mass that we discount from the specific distidouto be uniformly
shared among all the words. Thparameter was manually fixed in order to obtain
smoothed CER and log-likelihood curves as we increase timauof components
in the mixture model.

2.4 Bilingual text classification using unigram models

The mixture models explained in Sections 2.2 and 2.3 aredhis lhor supervised
bilingual text classifiers depicted in this section.

2.4.1 Decisionrules

Let us consider the task in which we have to classify a bilaquair (z,y) into
one of C supervised classes. As shown in Section 1.2, the optimssi@lzation
decision is the Bayes rule that assigasy) to a class with maximum posterior
probability. The Bayes rule in Eqg. 1.4 requires a class-ttmmal p.f. that in our
case is instantiated ip(x,y | ¢). This fact involves the definition of supervised
class-conditional versions of the unigram mixture modeSattion 2.2 and the
bilingual unigram mixture model in Section 2.3.

In this thesis we consider five bilingual classification s,lde first four of them
are based on the unigram mixture model and the last one, dnlifigual unigram
mixture model. Firstly, the monolingual source-languagle simply ignores the
target text

T
c(w,y) = argmax log p(c) +log > p(t]c) p(x|t,¢; O). (2.22)
¢ t=1

A similar rule holds for the monolingual target-languaged®io Alternatively we
could think of a unigram model trained on the concatenatiosoarce and target
texts

T
c(zy) = argmax logp(c) +log Y p(t|c) p(ay|t,c; O) (2.23)
¢ t=1

wherexy represents the concatenation of the source and target Tdytsmodel is
referred as to thbilingual bag-of-wordgdBBoW) model in this thesis.
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Furthermore, we could carry outgdobal decomposition of the bilingual p.f.
into two unigram mixture p.f.

T T

p(z,y) =Y pt)p(x[t) Y p(t')p(y|t) (2.24)

t=1 t'=1

so the classification rule becomes,
T
c(x,y) = arg maxlog p(c) + log Zp(t le)p(x|t,c;On) +
¢ t=1

T
+1log > p(t'|)p(y |, ¢; Oc). (2.25)
t'=1

Finally, alocal decomposition of the bilingual p.f. yields a classificatioite
based on the bilingual unigram mixture model

T

c(x,y) = argmaxlogp(c) + > p(t]c) p(a|t,¢; @) p(y|t,¢; Ou).  (2.26)
¢ t=1

2.4.2 Maximum likelihood estimation for supervised clasdication

The unigram-based models can be used as class-conditiausI$nin supervised
classification. To this purpose, we can extend the E and Mssiéphe EM al-
gorithm in order to carry out the training process for selvetgervised classes
simultaneously. This simple extension of the EM algorittsrequivalent to the
usual practise of applying its basic version to each supedvclass in turn. How-
ever, we prefer to adopt the extended EM, mainly to have aashffamework for
classifier training in accordance with the log-likelihoaiterion.

For the sake of simplicity, we just present the derivationtfi@ unigram mix-
ture model. In a supervised setting, training samples coittetheir correspond-
ing class labels(X,C) = ((z1,¢1),-..,(xn,cn))t, and the vector of unknown
parameters is

v = (p(1),...,p(C);O4,...,0¢) (2.27)

where, for each supervised classits prior probability is given by(c) and its
class-conditional probability function is a unigram midiwcontrolled by a vector
of the form of Eq. (1.34)@.. The log-likelihood of® w.r.t. the labelled data is

C
L(®;X,C) =Y Nelogp(c) + Lo(®; Xe) (2.28)
c=1

where X, is the set of samples iX labelled as belonging to class and [V, is
the number of samples iN.. The functionL. is as the log-likelihood function in
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Eq. (2.7), but only for the parameter vector of clas®., w.r.t. the samples in
classe,

N T
Le(@®iXe) =Y d(cn =c) log Y [ Ip(t]cn) p(zn |t cns O ) (2.29)
n=1 zn t=1

which can be optimised by a simple extension of the EM algorigiven in Sec-
tion 2.2.2.

More precisely, the E step computes Eq. (1.45) uéng for thosez,, belong-
ing to class,,

te,)®) plx, |, cn; Oy ) F)
9 = pt]cn)™ p(an |t cni Oc,t)™ (2.30)
> p(t | en)®) plan ¢, en; O, )™
t'=1
The M step computes the conventional estimates for clagsspri
N
p(c) = N Ve, (2.31)

class-dependent versions of the update equation for meixtgfficients in Eq. (1.48),
| "
k+1) _ _
p(t]e)* ) = ¥ ;:1: zyy 6(cn =c¢) Vet (2.32)

and class-dependent versions of the update equation fopawent-conditional
unigrams in Eq.(2.8),

N(u,t,c)
toykt) = o tueXx 2.33
pluft 0 = S e tue (2:33)
u'eX
where
N £
N(u,t,c) = Z den =) z,(ﬁ) Z (xn; =u). (2.34)
n=1 j=1

Note that the estimation computed in Eq. (2.31) is invaraetr the estimation
process.

2.5 Experimental results

The five models considered were assessed and compared erbilmgual text

classification tasks known as the Traveller dataset, the @&&nch acronym for
English-French Bitext) corpus and the JRC-Acquis corpusis $ection first de-
scribes these datasets and then provides the experimesudtisrobtained on them.
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2.5.1 Datasets
Traveller dataset

The Traveller dataset comes from a limited-domain SpaBisgish machine trans-
lation application for human-to-human communicationatitons in the front-desk
of a hotel [ABCT00]. It was semi-automatically built from a small “seed” akstt
of sentence pairs collected from traveller-oriented betskby four persons; A, F,
J and P, in accordance with the subdomain assignment givéabile 2.1. Note
that each person had to cater for a (non-disjoint) subsetilid@mains, and thus
each person can be considered a different (multimodaly @&éSpanish-English
sentence pairs. Therefore, the task will be to classifyeserd pairs into one of
the four disjoint classes A, F, J or P, that is, to identify ¢hehorship of a given
sentence pair. Subdomain overlapping among classes worddefe that perfect
classification is not possible, although in our case, low @&Rindicate that our
mixture model has been able to capture the multimodal naiutiee data in each
class. Unfortunately, the subdomain of each pair was nardecl, and hence we
cannot train a subdomain-supervised unigram mixture ih efass to see how it
compares to mixtures learnt without such supervision.

The Traveller dataset contaiRsD00 sentence pairs, with, 000 pairs per class.
The size of the vocabulary and the number of singletons tefieaelative simplic-
ity of this corpus. Some statistics are shown in Table 2.2.

Table 2.1: Subdomain assignment in the Traveller dataset.

Persons Subdomain

F J P Description

O notifying a previous reservation
asking about rooms

having a look at rooms
asking for rooms
signing the registration form
complaining about rooms
changing rooms
asking for wake-up calls
asking for keys

asking for moving the luggage
notifying the departure

asking for the bill

asking about the bill
complaining about the bill
asking for a taxi
16 general sentences
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BAF corpus

The BAF corpu$ [Sim98] is a compilation of bilingual “institutional” Fre-
English texts ranging from debates of the Canadian parl@rftéansard), court
transcripts and UN reports to scientific, technical andditg documents. This
dataset contains 11 documents trying to be representdtives dypes of text that
are available in multilingual versions. They are organised 4 natural disjoint
genres:institutional scientifi technicalandliterary. Institutional and scientific
classes comprises documents from the original pool of 1ideats, which were
theme-related, but devoted to heterogeneous purposesttenwy different au-
thors. This fact provides the multimodal nature to the BAFpcs that can be
adequately modelled by mixture models. The BAF corpus wigaed at the sen-
tence level by human experts. It was initially thought to Isedias a reference
corpus to evaluate automatic alignment techniques in madhanslation.

Prior to performing the experiments, the BAF corpus was §fieg in order
to reduce the size of the vocabulary and discard spuriousrses pairs. This pre-
processing mainly consisted in three basic actions: dosingareplacement of
those words containing a sequence of numbers by a genesl; kfd isolation
of punctuation marks. This basic procedure halved the dilgeovocabulary and
significantly simplified this corpus. Neither stopword dishor stemming tech-
niques were applied since, as shown in"P4], it is unclear whether this further
preprocessing may be convenient. As seen in Table 2.2, dhisis is much more
complex than the Traveller dataset.

JRC-Acquis corpus

The JRC-Acquis corpd§SPW'06] is a multilingual parallel corpus in more than
20 languages containing documents extracted from the Ac&mnmunautaire that
constitutes the body of common rights and obligations whicld all the Member
States together within the European Union.

Like most other official documents of the European Commissiod the Eu-
ropean Parliament, the Acquis texts have been classifiertding to the multilin-
gual, hierarchically organised EuroVoc thesaurus [EC&%8]jch is a classification
system with over 6,000 hierarchically organised classbs.main subject domains
assigned to the document collection cover economy, haafttrmation technol-
ogy, law, agriculture, food, politics and more. Howevergledocument receives
a variable number of specific descriptors (class labels)datefound at the lowest
level of the Eurovoc hierarchy, reflecting the multi-topature of these documents.

The JRC-Acquis corpus was aligned at the paragraph levegubie Vanilla
alignef which implements the Gale and Church alignment algorithia 9], and

“Available at http://rali.iro.umontreal.ca/RessourBas#
dVersion 2.2. employed in this thesis is available at hi:jfc.it/It/Acquis
®Available at http://nl.ijs.si/telri/Vanilla
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Table 2.2: Traveller task (top) and the BAF (bottom) corpus statistics
for all classes, respectively, in the form of "Spanish/Estgl for Trav-
eller and "French/English” for BAF. Abbreviations usexkNTS=sentences;
AVGSLEN=average sentence lengtiRUNKw=running Kilo-words; vo-
cAB=vocabulary size; andToNs=singletons;

Traveller task
CLASS A F J P AL
SENTS 2,000 2,000 2,000 2,000 8,000
RUNKW 19/17 25/23 20/17 21/22 86/80
VOCAB 329/311 442/317 179/140 142/51 679/503
AVGSLEN 9/8 12/11 10/8 10/11  10/10
STONS 95/106 78/71 0/0 1/0 47/43

BAF corpus
CLASS INST LITE SCIE TECH ALL
SENTS 10,988 2,435 2,295 3,021 18,739
RUNKW 351/301 56/51 61/53 48/40 516/445
VOCAB  14,046/10,858 7,124/5,607 5,975/4,997 2,542/2,053 20¥%5471
AVGSLEN 31/27 22/20 26/23 16/13 27123

STONS 5,329/3,709 4,034/2,548 2,791/2,099 939/628 8,205/5,353

the HunAlign aligner [ 05]. However we only made use of the alignment infor-
mation at the document level, since our task is descripwigasent at that level.

Before training our text classifiers, the JRC-Acquis conpuderwent the same
basic preprocessing as the BAF corpus. Here we also préfaoeto apply any
language-dependent preprocessing such as stemmingdgeebrir stopword lists.

In our experiments, we only used those documents drawn frarFtench-
English partition of the JRC-Acquiis corpus, retaining #hdescriptors occurring at
least 5 times. As a result, there are 990 different descgpiothis partition. Some
statistics of the preprocessed French-English partitfdhise corpus are shown in
Table 2.3. Comparing these figures to those of the BAF corpesan observe that
the ratio between singletons and vocabulary is similarlexthie number of running
words and the average length is about two orders of magngugerior in the
case of the JRC-Acquis corpus. This longer average lengtiesdo compensate
somehow the scarcity of samples per class. However, the eupnflclasses in
the JRC-Acquis is almost three orders of magnitude grehgar that of the BAF
corpus.

2.5.2 Experimental results on Traveller and BAF

A series of experiments were carried out to analyse the li@lnaef each individual
classifier in terms of log-likelihood and CER as a functioth&f number of mixture
components per clas$'(€ {1, 2, 5, 10, 20, 50, 100}). This was done for a training
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French English

Number of documents 5108
Average length (in words) 1,819 1,564
Vocabulary 36.6K  32.5K
Singletons 10.6K  10.5K
Running words 9.3M 8.0M

Table 2.3: Basic statistics of the preprocessed French-Englishtijoartf
the JRC-Acquis corpud{ = x103 andM = x105).

and test sets resulting from a random dataset partition J(2/2plit for Traveller
and 4/5-1/5 for BAF).

Figure 2.1 shows the evolution of CER (lgfaxis) and log-likelihood (right
axis), on training and test sets, for an increasing numbaetixture componentsi(
axis). From top to bottom rows we have: the best monolinglaakdier (English in
both datasets), the BBoW classifier, and global and locakifiars. Each plotted
point is an average over values obtained frégfihmrandomised trials.

From the results in Figure 2.1, we can see that the evolufitiredog-likelihood
on the training and test sets is as theoretically expectedlif classifiers in both,
Traveller and BAF. The log-likelihood in training alwaysneases, while the log-
likelihood in test increases up to a moderate number of co@pis 20 — 50 in
Traveller ands — 10 in BAF). This number of components can be considered as
an indication of the number of “natural” subclasses in the.d&bout this num-
ber of mixture components is also commonly found the lowkssification test
error rate, as it occurs in our case. As the number of compsikeeps increasing,
the well-known overtraining effect appears, the log-ltkebd in test falls and the
accuracy degrades. For this reason we decided to limit timbacuof mixture com-
ponents tol00. Additional informal trials (not reported here) with an irasing
number of mixture components confirmed this performanceadigion.

Figure 2.2 shows competing curves for test error-rate ascin of the num-
ber of mixture components for the English-based, BBoW, gl@nd local clas-
sifiers; there are two plots, one for Traveller and the otloerBAF. Error bars
representind5% confidence intervals are plotted for the English-basedsifiass
in both plots, and the global classifier in BAF.

From the results for Traveller in Figure 2.2, we can see thaitet is no sig-
nificant statistical difference in terms of error rate bedgwehe best monolingual
classifier and the bilingual classifiers. The reason betiiedd similar results can
be better explained in the light of the statistics of the €tier dataset shown in
Table 2.2. The simplicity of the Traveller dataset, chaased by its small vocab-
ulary size and its large number of running words, allows fagl@ble estimation of
model parameters in both languages. This is reflected inigedtcuracy £ 95%)
of the monolingual classifiers and the little contributichacsecond language to
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boost the performance of bilingual classifiers. Nevertgldilingual classifiers
seem to achieve systematically better results.

In contrast to the results obtained for Traveller, the itssfdr BAF in Fig-
ure 2.2 indicate that bilingual classifiers perform sigmaifity better than mono-
lingual models. More precisely, if we compare the curvestlier English-based
classifier and the global classifier, we can observe thattleno overlapping
between their error-rate confidence intervals. Clearlg, ¢cbmplexity and data
scarcity problem of the BAF corpus lead to poorly estimatestefs, favouring
bilingual classifiers that take advantage of both languablesvever, the different
bilingual classifiers have similar performance.
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Figure 2.2: Test-set error rate curves as a function of the number ofurext
components, for each classifier in Traveller and BAF
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2.5.3 Experimental results on JRC-Acquis

In the previous section, we evaluated our bilingual modelsweo single-class
classification tasks, the Traveller task and the BAF corputhe case of the JRC-
Acquis corpus, we tackle a multi-label classification pesblfrom the viewpoint
of a MAI tool as presented in Section 1.2.2.

The evaluation was performed using the bilingual local &edEnglish mono-
lingual classifiers, on random 80%-20% train-test splitsh@ French-English
JRC-Acquis partition. In this task, the average computing't for the bilingual
local classifier is 8 minutes per iteration and component.

Also, it should be noticed that the number of EuroVoc desoripvaries from
one document to other, so a strategy to select the right nuoflaescriptors for
each document is required. In Figure 2.3, we have simplyetdd five descriptors
per document, which is the average number of descriptoreenatole corpus.
This figure shows macro-averaging precision and recallesuas a function of
the number of mixture components per class, for the best limgoual (English-
only) and the bilingual local classifier. Each plotted pasin average over values
obtained from 6 randomised trials.

49.0

Precision & Recall (%) JRC-Acquis

1gig R
48.0 e

47.0
46.0

45.0

Mixture components

44.0
1 2 5 10 20 50

Figure 2.3: Macro-averaging precision (P) and recall (R) curves as a-fun
tion of the number of mixture components (x axis) for the Estgbnly (1g)
and bilingual { g1¢) unigram mixture classifiers.

From the results in Figure 2.3 clearly outstand the beneffitsutiple compo-
nent over single component modelling. This fact is stai@dly significant when
we use 5 or more components. However, the figures of bilingiaskifiers are not
statistically significantly better than those of their miimgual counterparts. We

fOn a 2.0 GHz Intel Xeon machine
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Number of labels 1 5 10 | |R]
Precision 62.0 45.7 31.1 46.7
Recall 13.4 478 64.3 46.7

Table 2.4: Macro-averaging precision and recall figures as a functicheo
number of labels offered by the MAI system.

believe this is because the length of the texts in the JRQs&8aprpus is two or-
ders of magnitude longer than imaveller and BAF corpora. Therefore, it seems
that the additional information of the second language issooessential as it is
in other tasks with shorter texts, in which the contributadra second language is
more significant.

Table 2.4 presents macro-averaging precision and recalfaaction of the
number of labels offered by the MAI systen?| stands for the number of labels
of the test sample, i.e., an ideal fictitious scenario in White MAI system always
provides the right number of labels for each document. Herrérason, precision
and recall are equal. As expected, precision degrades veuig improves, as we
increase the number of labels.

The excellence of these results should be assessed beanmgd the com-
plexity of this task and how MAI systems work. On the one hgmfessional
indexers do not completely agree on the most suitable qestsifor a given doc-
ument. Indeed, previous studies 3] on annotator agreement maintain that key-
word overlapping among indexers is about 70% to 80%.

On the other hand, MAI systems work by providing a lengthtydfslescriptors
from which an indexer would select those ones considered appsopriated. For
evaluation purposes we decided that our MAI system shouwddige only 5 de-
scriptors for each document, seeking a balance betweeisipreand recall. How-
ever, in a MAI scenario, we would be more interested in resiatte we would like
that our system provides a longer list of descriptors, frohiclv a indexer would
filter out those unsuitable descriptors.

Taking this into account, the figures in Figure 2.4 reveabad dur MAI system
would be offering up to 64.3% of the correct descriptors flisteof 10 descriptors.
This figure conveys the possibility of a MAI system which segig many of the
desired descriptors.

2.5.4 Comparative results

In this section, we compare the performance of the bilingped! classifier to that
of state-of-the-art techniques in TC. More precisely, welgtSVM implemented
in the SV M9t toolkit and boosting instantiated in BoosTexter.

Regarding the experiments with SVM, we focused on the cdiomal vector-
based kernels, however some authors have proposed the as@égfbased ker-
nels. In string kernels, the conventional term frequen@tuies in vector-based
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Table 2.5: Test-set CERs (in percentage) on Traveller and BAF, andanacr
averaging precision and recall figures on JRC-Acquis fobitiegual local
decompositionSV M 9"t and BoosTexter classifiers.

Traveller BAF JRC-Acquis

CER precision recall
Bilingual Local 1.4 3.0 45.9 47.7
SV Mlight 15 9.0 N/A N/A
BoosTexter 1.2 5.8 43.2 44.9

kernels are replaced by all possible ordered subsequehckaracters or words in
the document. While the well-known dot product is subsituby a string similar-
ity measure efficiently computed with a dynamic programnatgprithm [Wat00,

LSSTT02, CGGRO03].

The experiments reported with SVM were carried out withdinkernel func-
tions, although the polynomial kernels were informally leaéed with poorer re-
sults. As regards the feature representation, we utiliségiam (term) frequency.
For BoosTexter, we trained decision trees (weak learnertherpresence or ab-
sence of unigrams. SVM and boosting classifiers were traimethe bilingual
training set resulting of the concatenation of source argktaentences, as we did
in the BBoW model .

In order to tune the different parametersf /19"t and BoosTexter, we per-
formed a 10-fold cross-validation on the training set of Tnaveller task and BAF
corpus, although this tuning procedure was not feasibléhi®dRC-Acquis due to
excessive running time. In the latter corpus, for BoosTrexte also considered as
objective functionrankinginstead of Hamming loss, but the results were inferior.
Once these parameters were adjusted, we run the same catiiguon the test
set.

The results on the test set are shown in Table B9 and BoosTexter
offer similar performance to the bilingual local classifoerthe Traveller, although
BoosTexter achieves the best result on this task. Howéwehitingual local clas-
sifier statistically significantly outperformsV M9t and BoosTexter on the BAF
corpus. On the JRC-Acquis task, the bilingual local classifbtained better pre-
cision and recall figures than BoosTexter. However, it waspussible to run
experiments with5V M9 on this corpus due to memory constraints.

2.6 Conclusions and future work

We have presented three extensions of the unigram mixaseebmodel for bilin-
gual text: the BBoW model, and the global and local decontippsimodels. The
performance of these extensions was compared to that of S\daosting clas-
sifiers.
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Two outstanding conclusions can be stated from the restdtsepted in this
chapter. First, mixture-based classifiers surpass scwigonent classifiers in all
cases (monolingual, BBoW, global and local). In fact, weehtaken advantage of
the flexibility of the mixture modelisation over the singlemponent approach to
further improve the error rates achieved. Second, bilihglassifiers outperform
their monolingual counterparts in the Traveller task arel BAF corpus. How-
ever, this is not the case on the JRC-Acquis corpus in whiehrtonolingual and
bilingual classifiers show similar performance. This leaslo think that the incor-
poration of a second language into a text classifier is s@amtiin the presence of
data scarcity. In the Traveller task and BAF corpus we hawe tir12 and 20-30
words per sentence on average, respectively. So, if weaaielthis small number
of words by adding a second language, it notably helps tods®the accuracy
of the classifier. However, in the JRC-Acquis the averagegtleis 1,500-1,800
words per document, so it seems that the contribution ofd¢bersd language is not
S0 significant.

Moreover, we have compared the performance of our bilingnajram-based
classifier to state-of-the-art techniques in TC: SVM anddtiog. We have ob-
served that the bilingual local classifier obtains simiksults to these latter tech-
niques on the Traveller task, but it outperforms them on tA€ Borpus. This is
also the case on the JRC-Acquis.

Furthermore, the accuracy of the bilingual local classiiethe JRC-Acquis is
good enough to support a MAI system, that would be providingieerage about
65% of the correct descriptors associated with a document.

A direct extension of the models presented in this chaptauldvbe to go
beyond the unigram representation and take advantage dafothtext informa-
tion [SW02, P-04b]. In appendix A, we scratch the surface of this approach b
considering smoothed-gram language models andgram features to train SVM
and boosting methods.

As future work, we plan to investigate the application of tane modelling to
smoothedr-gram models which has been successfully tested in autosgiech
recognition [I099]. Furthermore, it would also be worth lenading alternative
smoothing techniques as that proposed in [Hie00]. This $hirap technique can
be interpreted as the well-known TF-IDF term weighting iformation retrieval,
and its application to the unigram mixture-based modelseored in this chapter
is an interesting open problem.

Nonetheless, the bilingual approaches described in tlgipteh are relatively
simple models for the statistical distribution of bilingtiexts. More sophisticated
models, such as IBM statistical translation models $B, B+93], may be better
describing the statistical distribution of bilingual, celated texts. This latter ap-
proach is explored in Chapter 3.

Regarding multi-label text classification, we would coesidlternative clas-
sifiers that directly address the multi-label problem [MEC&WO05, ZIJXGO5].
Although our first experience with such classifiers, reprem by the BoosTexter
toolkit, was rather disappointing.
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Finally, the working procedure described in Section 1.212loe seen as a post-
processing of the output of a TC system with no actual intemadetween human
and computer. However a more intelligent approach wouldhake advantage of
the user feedback in order to refine the classification peocEss process is well-
studied in information retrieval and is known as relevareedback [BYRN99].
This idea opens an appealing research line that can be egpdarfuture work.

The bilingual models and the single-class TC results ptedean this chapter
were published in an international workshop:

e J. Civera and A. Juan. Multinomial Mixture Modelling for Bilingual k&
Classification. IrProceedings of the 6th International Workshop on Pattern
Recognition in Information Systems, PRIS 200&ges 93-103, INSTICC
Press, Paphos (Cyprus), May 2006.

The multi-label TC results of this chapter were publishedininternational
conference:

e J. Civera and A. Juan. Bilingual Machine-Aided Indexing. Pioceedings
of the fifth international conference on Language ResousoesEvaluation,
LREC 2006 pages 1302-1305, Genoa (ltaly), May 2006.
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CHAPTER 3

MIXTURE OF M1 MODELS

3.1 Introduction

In this chapter, we present a mixture extension of the M1 madesady intro-
duced in Section 1.4, in order to define context-specific Mdet® One of the
most interesting properties of mixture modelling is itsaaifity to learn a specific
probability distribution in a multimodal dataset that begxplains the general data
generation process. In MT these multimodal datasets aramexception, but the
general case. Indeed, it is easy to find corpora from whichraétopics could be
drawn. These topics usually define sets of context-speeificdns that need to be
translated taking into account the semantic context in lvtiiey are found.

However, there have not been until very recently that thdiegimn of mix-
ture modelling in statistical MT has received increasirtgraton. In [ZX06], three
fairly sophisticated bayesian topical translation modalking M1 model as a base-
line model, were presented under the bilingual topic adméformalism. These
models capture latent topics at the document level in omleFduce semantic am-
biguity and improve translation coherence. The modelsgseg provide in some
cases better word alignment and translation quality thariviHiid superior IBM
models on an English-Chinese task.

In this chapter, we introduce the conventional M1 model asadM deriva-
tion in Section 3.2, along with its mixture extension in $@ct3.3. Then, two
applications of the M1 model are presented: bilingual TC statistical MT.

As regards bilingual TC, we present in Section 3.4 the M1 rhodeombi-
nation with the unigram language model, as an evolution efrétatively simple
unigram models presented in Chapter 2. An appealing pypéthe unigram-M1
model is its capability to exploit the structural inforn@aticontained in word cor-
relation across languages in bilingual texts. The resultdimgual classifier will
be evaluated on the Traveller task and the BAF corpus.

As far as the application of the M1 mixture model to MT is camesl, in
Section 3.5 we will focus on the Viterbi alignments obtaimesca byproduct of the
training process of this model. These Viterbi alignmentsvalus to assess the
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alignment and translation quality of the M1 mixture modehafy, Section 3.6 is
devoted to the conclusions of this chapter and an outloofutare work.

3.2 The M1 Model

3.2.1 The model

Following the notation introduced in Section 1.4, det z; . xm be a sen-
tence in a certain source language of known lengttand Iety =. Yyl
be its translation of known lengtly| into a different target Ianguage.

For the M1 word alignment model we start from the target-dimual prob-
ability distribution p(x|y), for which we define the alignment hidden variable
a = aj---a;---aq, as introduced in Section 1.4. The alignment variable con-

nects each source word to exactly one target wagret {0,--- ,4,--- ,|y|}, being
0 the position of the NULL (empty) word
plzly)= > paly) (3.1)
acA(z,y)

where A(z,y) denotes the set of all possible alignments betweamdy. Now,
we can decompose the teprti, a | y) at the word-level from left to right

|z|

aca|y prj>aj|xl ,(I Y )

|x|
o L

= I pta; 127" @l w) pla |17 0l ) (3.2)

i=1

wherep(a; | 277", al™"!,y) is an alignment p.f. ang(z; | 27 ~", a], y) is a lexical
p.f. or statistical dictionary. In order to define the wetldevn M1 model [B~93],
we make the following two assumptions. First, we assumetktigprobability of
aligning a source position to a target position is uniform

. . 1
Jj—1 j—1 —
pla;|xy a7 ,y) = . (3.3)

Then, we also assume that the probability of translatinguaceoword does only
depend on the target word to which is aligned

p(zj |27 al,y) = p(a; | ya,) (3.4)

wherep(z; | y.,) is a statistical bilingual dictionary. Thus, we can rewEg (3.2)
under assumptions in Egs. (3.3) and (3.4) as

|z|

p(x,aly; © H| |+1 (| Ya,) (3.5)
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where
©={pulv) uexve)} (3.6)

is a statistical bilingual dictionary.

The model using indicator vectors

As we did in Chapter 2, we change the nature of the originghatient variable
a; € {0,...,y|}, from an integer value into an indicator vector

a; = (ajo,ajl,...,aﬂy‘)t. (37)

The vectora; values one in theth position and zeros elsewhere, if the source
positionj is aligned to the target positian Equivalently to Eq. (3.5), we have

2| Jy] a:

p(z,aly; © HH[| =17 %Iyz)} : (3.8)

7=1i=0

According to this notation, the initial model in Eq. (3.1)dae rewritten as follows

p(a|y; © praly

|yl
1yl |yl
I !+1 |m|ZHp“1‘y )™ Z D vt fwy
y a; =0 aj;) j=21i=0
el yl
)%
|y|+1|m|]Hl%:H)p%ly g
| y]
= | yi)- (3.9)
JHlZz;IyIJrl il

Eqg. (3.9) is the usual form of the M1 model that only depends dilingual dic-
tionary. The M1 model makes the naive assumption that somocds are condi-
tionally independent given

|z|

p(z|y; © Hp (5] y) (3.10)

where
|yl

1
; = E T oy 3.11
p(z;|y) — gl + 1 p(z; | yi) ( )
is the average probability of; to be translated into a target wordyn
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3.2.2 Maximum likelihood estimation

In this section we derive an EM algorithm for the maximum litkeod estima-
tion of ® in the M1 model w.r.t. a set of independent samples. (LétY) =

((z1,91), - (Tn,Yn), - - -, (TN, yN))t be N samples independently drawn accord-
ing to the probability distribution defined by an M1 model efameter®, being
Ty = (mnl, ey Ty >xn|m|) andy, = (ynl, e Yniy - ,yn|y‘) the sequence

of source and target words of théh sample. The log-likelihood function @ is

N ‘xn‘ Iyn

L@©X.Y)=3 > log) o |+1 P(@n; [ Yns). (3.12)

n=1j=1 1=0

Now, let A be the set of alignment indicator vectors associated watbtlingual
pairs(X,Y') with
A=(ay,...,an,...,an)" . (3.13)

The variableA is the missing data in the M1 model, playing the roleZoin Sec-
tion 1.8. Asin Eq. (1.27), the E step computes the expectker v the logarithm
of p(X, A|Y), given the (incomplete) data sample$s, Y) and a current estimate
of ®, ®%), Given that the alignment variables ih are independent from each
other, we can compute the E step equivalently to Eqg. (1.44),

N ‘xn‘ Iyn

Q©10%) =33 ol [l g +lowplans )] (G20
n=1 j=1 i=0
with
k) _ P(@nj | yni) ™)

) = . (3.15)
M p(n | ) ®)
That is, the expectation of word, ; to be connected tg,; is our current estimation
of the probability ofz,,; to be translated intg,,;, instead of any other word i,
(including the NULL word).

In the M step, we maximise Eq. (3.14), as seen in Sectionri @ger to obtain

the standard update formula for the M1 model,

N(u,v)
btl) — 2200 X 3.16
p(ulv) S N v) Yue X,ve) (3.16)
u'ex
where
N |@n| [yn] i
N(u,v) = Z Zé(mm = u) 0(Yni = v) a,gj)i. (3.17)
n=1 j=1 i=0

The estimation op(u | v) can be seen as a normalised partial count of how many
times the source word is aligned to the target wora
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3.3 Mixture of M1 models
3.3.1 The model

Eq. (3.9) is a relatively simple parametric model for disttions of bilingual pairs
of sentences. Then, itis a good choice to describe simpieldigsons, but it might
not be so good to approximate complex distributions, sucthese comprising
many topically-unrelated groups of pairs. To deal with scases, we will use the
idea of finite mixture modelling and replace our simple mddetq. (3.9) by ay
conditional finite mixture.

Considering that our bilingual pairs are drawn from différopics (contexts),
we can rewrite the conditional translation p#(z|y) as ay-conditional finite
mixture, similarly to Eq. (1.41),

(x|y;© ZH ( |y, t; ©,)] (3.18)

z t=1

where we have implicitly assumed thatdoes not depend omn when modelling
p(t). On the other handy(x | y,t; ®;) is a component-dependent version of an
alignment translation model,

pla |y, t:0,) =Y pla,aly,t;O,). (3.19)

playing the role of the component-conditional p.f. in Eq4@). Now, we can plug
Eqg. (3.19) into Eq. (3.18) and reorganise the resultingesgon

Zt

$|ya ZH Zp($7a|y>t7@t)

z t=1 a

T
- Zp(t) Zp(mvahht;@t)
t=1 a
T
=> > pt)p(z,aly,t;©,)

a t=1

- Z > H p(z,aly,t; O] (3.20)

a t=1

to ease the presentation of the EM algorithm in the curredisalbbsequent transla-
tion mixture models in Chapters 4 and 5.

In the M1 mixture modelthe component-conditional p.p(x,a|y,t;©;) in
Eqg. (3.20) becomes a component-dependent version of Bj, (3.

2 Iy

pla,a]y,t:0;) = HH[||+1 (@ 1 t)] (3.21)

7j=14i=0
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where®; is a component-dependent dictionary

6, ={ plulv,t) ueXve) }. (3.22)

3.3.2 Maximum likelihood estimation

The log-likelihood function o® w.r.t. N independent samples is

L(®;X,Y) ZlogZZH (T | Yns 15 O (3.23)

zZn an t=1

For the application of the EM algorithm, we considérand A, as defined in
Egs. (1.43) and (3.13) respectively, to be the missing datia Eq (1.27). Thus,
equivalently to Eqg. (1.44), the functiap becomes

QO0®) =332 logp(t)

[n] |ynl
1
+ Z Z Znt anﬂ {log T 1 + log p(@n; | Yni t)| . (3.24)

So, the E step requires the calculationz;(jﬁ‘ and (2, an;;)*). The computation

of z ( ) is similar to that of Eq. (1.45), substituting the comporewriditional p.f.
by a component -conditional M1 p.f., that is,

) _ p(®)® p(zp | yn,t; OF)

(3.25)
ST p)®) (@ |y, t'; OF)

wherez( )is the posterior probability of th&h-component having generated the
nth sample(a:n,yn) Regarding z,; a,;;)*), we have,

(znt anji)(k) = p(znt =1, Unji = 1 | Tn, yn)

p(znt = 1|2, yn) planji = 1| 20t = 1,20, yn)

— A al®), (2.26)
with aﬁm)t being a component-dependent versmrm&fjf in Eq. (3.15),
+) (k)
P\Znj | Yni,
av), = (&g i, ) (3.27)

z‘ynop(l’nj |ym’> t)( )

wherea( ) , can be thought of the posterior probability of the sourcetjpos; to
be allgned to the target positiarn the¢th component for theth samplex,,, vy, ).
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3.3. Mixture of M1 models

In the M step, we maximise Eq. (3.24) to obtain a new set of rpatars
O+ The new component priors are computed as in Eq. (1.48), endip-
date equation for the component-dependent dictionaries is

N(u,v,t)
> N(u',v,t)

u'eX

plu|v, ) = Viue X,v ey (3.28)

where

N lzn |yn
N(u,v,t) Zz ZZ Tnj =) 0(Yni = V) ag;)it. (3.29)
n=1 =0

The estimation op(u | v,t) can be understood as a normalised partial count
of how many times the source wortds aligned to the target word, weighted by
the posterior probability (responsibility) of th#h component having generated the
nth sample. The asymptotic cost of the training algorithmifgeation isO(N - T -
|| - Jy|), where|z| and|y| are the source and target average lengths, respectively.

3.3.3 Smoothing

The component-conditional dictionary is smoothed at twelgto avoid overfit-
ting problems and zero probabilities for rare words. On the lband, we smooth
the estimated statistical dictionary interpolating witlurdform distribution over
the source vocabulary

plu|v,t) = (1 —¢)p(u]v,t)+e (3.30)

1
Xl
This smoothing technique follows the same idea that we pteden Section 2.3.3
to smooth the unigram distribution and so, thparameter was manually set in
order to obtain smoothed error and log-likelihood curves@ascrease the number
of components in the mixture model.

On the other hand, we smooth the component-conditionalststal dictio-
nary (specific distribution) interpolating with the contienal statistical dictionary
(general distribution)

plu|v,t) = [1 - rp(@)} p(ulv,t) + rp(v)p(u |v). (3.31)

The interpolation coefficient depends on the interpolaiarametery, and on the
unigram probability of the target worgd that is, the relative frequency of the target
word v on the training set.

This interpolation parameter defines the target-word unigram probability
threshold at which the specific and general distributionegpeally weighted. For
those target words above this threshold (higher unigrarbglitity), the specific
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distribution will dominate, while for those target wordddse the threshold (lower
unigram probability), the general distribution dominat8ee Figure 3.1 to observe
the evolution of the interpolation coefficient, as a funatf the unigram proba-
bility of the target word for a givex = le — 3. It should be noticed that the
interpolation coefficient is equal 5 whenp(v) = .

1.0 ————
€ a=le-3
0
o
e
)
o
o
5 os :
8
o
2
1)
£

\“\
0.0 ! ! ! |
le-5 le-4 le-3 le-2 le-1
p(v)

Figure 3.1: Interpolation coefficient curve with interpolation paraerer =
le — 3 as a function of the unigram probability of the target wotdsHould
be noticed that the interpolation coefficient is equdl.towhenp(v) = a.

Intuitively, the interpolation parameter is a powerful waycontrol at which
relative frequency is worth considering a component-dépenstatistical dictio-
nary for a target word. The idea behind this smoothing tegphiis that, target
words with high frequency may have different translatioepahding on the con-
text and, given their high frequency on the training sety ttentext-specific dictio-
nary can be correctly estimated. On the contrary, low fraquéarget words might
have fewer translations, and in any case, their correspgrdictionary cannot be
adequately estimated due to their few occurrences.

During the EM training of the M1 mixture model, smoothing Epéed at the
end of each M step. Besides, the parametés manually tuned to optimise the
evaluation metric in question on the development set. Thisaghing technique is
inspired on that of the fertility distribution presented @NO03].

3.4 Bilingual text classification using the M1 model

In this section, we present the application of the M1 moddiilimgual TC. Our
goal is to study the contribution of cross-lingual struatunformation in order to
improve the accuracy of bilingual text classifiers. To thisgmse, we combine the
unigram and M1 models under the finite mixture modelling. Asdid in Chap-
ter 2, we first derive the model and its maximum likelihoodreation, followed
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3.4. Bilingual text classification using the M1 model

by the view of this model as a bilingual text classifier andn@ximum likelihood
estimation in the framework of supervised classification.

3.4.1 Mixture of unigram-M1 models
The model

Let (z,y) be a bilingual pair of source-target sentences coming fr@tamponent
mixture model, equivalently to Eq. (1.41),

p(x,y; © ZH p(y|t;©) p(x |y, t; ©))* (3.32)

z t=1

where, for theunigram-M1mixture model,p(¢) is its mixture coefficient as in
Eqg. (1.39),p(y | t; ®;) is a component-conditional unigram model as in Eq (2.5)
and p(x | y,t; ©;) is a component-conditional M1 model as in Eq (3.19). The
parameter vecto® has the usual form of a mixture model in Eq. (1.34), and each
component has its own vector of parameters

_ [ pwlt)  ve)
G)t_{p(u]v,t) ueXve) -’ (3.33)

It is important to note the substantial difference betwéenkilingual unigram
mixture model in Eqg. (2.13) and thenigram-M1mixture model in Eq. (3.32), in
which z depends ory as a result of the inclusion of a translation model.

Maximum likelihood estimation

As in previous models, we use the EM algorithm to compute amax likelihood
estimation o® w.r.t. N independent sampléX,Y) = ((z1,41), - ., (xn,yn))".
The log-likelihood function o® is

L(®:; X,Y) ZlogZH PWn | £,00) p(@n | Yn, t: O™ (3.34)

zn t=1

and considering’ and A to be the missing data in Eq. (1.27), we have the following
Q function

N T |yn‘ A
QO10W) =350 logp(t) + Y 21} log plyni | 1)

n=1 t=1 1=1

1
+ Z Z Znt an]z |:10g W + Ing(.Z'nj ‘ Yni’ t) (335)
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where we need to calculate the expected value,gfand z,; a,;i, as in Sec-

tion 3.3.2. However, the computation mff? differs from that in Eq. (1.45) in the
underlying component-conditional p.f.,

(k) _ p(O)®) p(z, yn | t; @(k))
NS ) pla, g | 75010

(3.36)

wherez(k) is the posterior probability ofz,,, v,,) being actually generated by the
tth component of a unigram-M1 mixture model. On the other hémeldecompo-
sition of (2, a,;)*) is analogous to that of Eq. (3.26), whex{éj.)i,t is computed
as in Eq. (3.27).

In the M step, we obtain an updated set of parame®@¥s?). The com-
ponent priors are computed as in Eq. (1.48), the compormditonal unigram
language model are updated according to Eq. (2.19), and @datesgquation for
the component-conditional M1 model is given in EqQ. (3.28).

3.4.2 Bilingual text classification using the unigram-M1 madel
The decision rule

As we did in Section 2.4.1 for the unigram and bilingual uaigr models, the
unigram-M1 model can be also used as a class-conditionakhiodupervised
bilingual TC tasks. Here, the Bayes' rule for the unigram-Mikture model is

c(z,y) = argmax logp(c) + log p(z,y|c) (3.37)
where
T |y lz] |yl
plz,yle) = pltle prz’tc HZ||+1 plz; |y t,c)  (3.38)
t=1 =1 j=14'=0

Maximum likelihood estimation for supervised classificaton

As in Section 2.4.2, we extend the single supervised classirig presented in
Section 3.4.1 to train several supervised classes at the Sa®.

Let (X,Y,C) = ((z1,91,¢1),---, (N, yn,cn))t be the set of training sam-
ples, and le be the vector of unknown parameters as defined in Eq. (2. 2%rev
the class-conditional p.f. is a unigram-M1 mixture modehtcolled by a vector
®., as defined in Section 3.4.1 f@. The log-likelihood of¥ w.r.t. the labelled
data is, equivalently to Eq. (2.28),

C
L(¥; X,Y,C) = ZNC log p(c) + Le(®c; X, Ye) (3.39)
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whereY, is defined analogously t& ., and

LC(@C§XC>Y Zé Cn = C IOgZH t|Cn l'myn |t>cn§@cnt)]zm

S (3.40)
which is optimised by extending the EM algorithm presente8ection 3.4.1.
The E step computes Egs. (3.36) and (3.27) uéng for those training sam-
ples of the form(z,, y,, ¢,). SO we have

) _ p(t ] en)® plyn |t cn)® p(n | yn, t, cn) (3.41)
" Zz:le(t/ | Cn)(k) p(yn | tla Cn)(k) p(wn | Yn, t/7 Cn)(k)
and
i | Ynis by e ) F)
s = Mot i ) (3.42)

njit — n :

The M step computes the new set of paramet®f§t!). More precisely,
we calculate class priors as in Eq. (2.31), class-conditionixture coefficients
as in Eqg. (2.32), class-conditional unigram parameters &xji (2.33) and class-
conditional statistical dictionaries as

N(u,v,t,c
p(u] fu,t,c)(kﬂ) = 5 §V(u’,fu,t), 3 Ve, t,u e X,v e (3.43)
u'eX
where
N |zn| [yn]
N(u,v,t,c) = Z 0(cn, =¢) z,(ﬁ) Z Z (xn; = u)0(Yni = v) ag;.)it . (3.44)
n=1 j=1i=0

3.4.3 Experimental results

The unigram-M1 mixture model described in the previousiseatias assessed on
the two tasks described in Chapter 2: the Traveller datamsktree BAF corpus.

Several experiments were carried out to analyse the balravidhe unigram-
M1 classifier in terms of log-likelihood and classificatiomae rate as a function
of the number of mixture components per clags€ {1,2,5, 10, 20,50, 100}).
These experiments were carried out on the same trainingeahgdrtitions defined
in Chapter 2 for Traveller and BAF.

Figures 3.2 and 3.3 shows the evolution of the error raté leiis) and log-
likelihood (right ¢y axis), on the training and test sets of the Traveller and BAF,
respectively, for an increasing number of mixture comptsénaxis). Each plot-
ted point is an average over values obtained fBdmandomised trials.

From the results in Figures 3.2 and 3.3, we can see that tHatievoof the
log-likelihood on the training set is as theoretically exteel, in both Traveller
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Figure 3.2: Error rate and log-likelihood curves in training and tess s a
function of the number of mixture components, in Traveltarthe unigram-

M1 classifier.
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Figure 3.3: Error rate and log-likelihood curves in training and tess ses a
function of the number of mixture components, in BAF for thégnam-M1

classifier.

and BAF. In the test set of the Traveller task, the log-lifketid increases up to a
moderate number of componers, while the best error rate is obtained with

components.
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3.5. Mixture of M1 models applied to MT

Table 3.1: Summary error table of monolingual and bilingual classsfien
the Traveller task and the BAF corpus.

| mix1g mix1glg mix 1gM1 SV M9 BoosTexter
Traveller| 1.5 1.4 13 15 1.2
BAF 4.1 3.0 25 9.0 5.8

However, in the test partition of the BAF corpus, the logelikood keeps in-
creasing (and the error rate decreasing) even after 100 @uengs per mixture.
This uncommon behaviour may be explained in the light of tiatissics of the
BAF corpus where one third of the words occurs only once indbipus as a
whole and even less than that in some of the classes. Thissdateity feature
makes very difficult for a model such as M1 to learn word cattiehs across lan-
guages resulting in an expected overfitting effect.

Figure 3.4 compares the performance of the best monolir{&mallish-based),
the bilingual local, both of them presented in Chapter 2,taedunigram-M1 clas-
sifiers. As shown, the unigram-M1 classifier outperforms ri@nolingual and
bilingual local classifiers, but the difference is not so aripnt in the Traveller as
in the BAF corpus. Therefore, the word correlation acroeglages that provides
the M1 model helps to improve the accuracy of its classifier.

Table 3.1 presents a summary of the error figures of the driteslassifiers on
the Traveller task and the BAF corpus. As we can observe, rifggam-M1 (mix
1gM1) mixture model supersedes the other two unigram mplelsg statistically
significant better in the case of the BAF corpus, but not bemépr the Traveller
task. The unigram-M1 mixture model obtains similar perfante to SVM and
boosting methods in the Traveller task, and statisticatipiicantly better in the
BAF corpus. These experiments show the benefits of learnmgl worrelation
across languages in bilingual TC.

3.5 Mixture of M1 models applied to MT

In this section, we describe the computation of the Vitetignenents for the M1
mixture model and then, we directly and indirectly evaluiie model on well-
known MT tasks.

First, we decided to carry out the direct evaluation in teoghalignment er-
ror rate (AER) using the Hansard shared task. Although indear the relation
between alignment quality (AER) and translation quality.R)), if any [ADO6,
FMO7b]. Being that as it is, this measure is still a usefutrunment to directly
gauge the quality of novel models as its ability to map souocéarget posi-
tions [ZX06, FMO7a].

Secondly, we indirectly assess the translation qualityhefgroposed model
by training a phrase-based system from its Viterbi alignisieiVe are aware that
this evaluation procedure of the models may mask their bperéormance, but it
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Figure 3.4: Competing curves: %error vs. mixture components for Trav-
eller and BAF.

allows us to compare the translation quality of the propasedels to other trans-
lation system trained in a similar fashion. Moreover, we aaalyse the evolution
of the translation quality of the system, in terms of BLEUrs;@s a function of
the number of components in the mixture.

3.5.1 Viterbi alignment

In Eqg. (3.1) we introduced the concept of alignment as argassent between
source and target words, more precisely between sourceayat positions. How-
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ever, this alignment information was missing in the trati@faprocess, and we had
to marginalise over all possible values of the alignmenictée.

In practise, we are interested in the most probable alighnaso known as
the Viterbi alignment, given the source and target senteand an estimate of the
model parameters,

a = argmaxp(a|z,y; O) (3.45)
a

that, considering that we are maximising owecan be easily rewritten as

a = argmaxp(z,al|y; ©). (3.46)

Assuming a conventional M1 model, Eqg. (3.46) can be transéorinto

R 1
4 = arg max H . (2| Ya;)
a ooy vl
||
= arg max Hp(mj | ya].) (3.47)
a ]:1
whose maximisation is trivial
=1, g (3.48)

with
a; = max p(z; | ya; ).
aj
In other words, the Viterbi alignment for the M1 model is cartgdl as a local
maximisation for each source position, being its asymeioistO(|z| - |y|).

Nevertheless, the computation of the Viterbi alignmenttfee M1 mixture
model

T ||
. 1
a = arg maXZp(t) H ﬁp(mj | Yay > 1) (3.49)
¢ =1 =1 Iyl +
is approximated by maximising over the components in theumex
||

a~ argmax max p(t) Hp(acj | Ya;» 1) (3.50)

=Ly

j=1
being its asymptotic cosd(T - |z| - |y|).
3.5.2 Evaluation of alignment quality

Corpora

The corpus employed in the experiments was the Frenchdfnglansard task
consisting on the debates of the Canadian parliament. Tnmus is one of the
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Table 3.2: Statistics on the French-English Hansard task denotes
x1.000, andM denotesx1.000.000)

Training set| Trial set Test set

Fr En | Fr En Fr En
sent. pairs 1.1M 37 447
average length| 20 17 | 19 17| 17 15
vocabulary size 87K 68K | 344 322| 1943 1732
running words | 24M 20M | 721 661| 7761 7020
singletons 27K 20K | 265 238| 1323 1103

resources that were used during the word alignment shas&dtganised at the
HLT/NAACL 2003 workshop on "Building and Using Parallel Tiek See statis-
tics in Table 3.2.

The measures defined above are computed on an independeet tesdomly
drawn that was manually labelled by two annotators. Eacbtator comes up with
a S andP alignment set. Thé alignment sets from each annotator are intersected
to defined the referencg alignment set, while the referenéealignment set is the
result of the union of thé alignment sets from both annotators. The definition of
the S and P alignment sets in this ways guarantees an alignment eti@pfaero
percent when we compare tlsealignments of each annotator with the reference
alignment.

The training partition was filtered according to the GIZA+#arglards to ease
the comparison with this toolkit, that is, sentences whesgth is above 100 words
were truncated and those sentence pairs whose ratio bethve@source and target
length is more than 9 were shortened to the minimum of thecgoand target
length.

Experimental results

The objective of these experiments is to study the evolubbAER as a func-
tion of the number of components in the M1 mixture model onHlamsard task.
The results reported with the GIZA++ toolkit are mostly fangy check reasons.
For this reason, this kind of experiments were not carriedfauthe evaluation
of translation quality in Section 3.5.3. The smoothing paeters were manually
tuned on the trial partition to minimise AER.

Table 3.3 presents AER figures on the test partition for thenlkture model.
Each number in Table 3.3 is an average over values obtainadifs randomised
initialisation. These experiments were performed for bditections, English-
French (En-Fr) and French-English (Fr-En) and varying timalmer of components
in the mixture modelT = 1, 2, 3). The training scheme (number of iterations per
model) wasniz1®. The computation of the Viterbi alignments was calculated a
cording to Eq. (3.50). As observed in Table 3.3, it does netrs¢o be a clear
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Table 3.3: AER figures on the test partition of the Hansard corpus for the

M1 mixture model varying the number of components in the ort(l” =

1, 2, 3) and the conventional M1 model implemented in the GIZA++kito
|GlzA++| 1 2 3

27.8 273 273 274
24.3 244 244 244

Fr-En
En-Fr

contribution by applying mixture modelisation to the M1 nebadn either of the
two directions.

3.5.3 Evaluation of translation quality
Corpora

The dataset that was used in the experiments for the M1 reixhodel was ob-
tained from the shared-task of the ACL 2007 statistical MTksbop on “Machine
Translation for European Languages” [€®7]. This dataset includes four parti-
tions devoted to different purposes:

e Training sets for translation models.

e Development sets to tune translation systems (see dtatistiTables 3.4
and 3.5).

e Test development sets to evaluate translation systemss{atstics in Ta-
bles 3.4 and 3.5).

e Monolingual training sets for language models (see siedigh Table 3.6).

The first three partitions include data coming from both ocoap Europarl and
News-Commentary, however the last partition only includat coming from the
Europarl corpus. It would be possible to enrich the lattetifpan with data from
other training partitions [KS07], but we decided not to dsswe our focus is the
study of context-specific translation models.

The shared task described above is composed of two corper&uroparl ver-
sion 3 and the News-Commentary, although the number of segdeof the latter
constitutes less than 5% of the number of sentences of theefolit is important to
remark that the domain of the Europarl and News-Commentamyoca is differ-
ent, and this is an interesting characteristic that ourunenodel can exploit in or-
der to learn domain-specific translation models. To thippse, we concatenated
the training sets for translation models of the Europarl twedNews-Commentary
corpora (see statistics in Table 3.7), letting the mixtui@dei distinguish which
sentence pairs should contribute to learn a given M1 comypanehe mixture.
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Table 3.4: Statistics of the English, Spanish, French, German deustop
and test partitions for the Europarl corpus (lenotesx1.000, andM de-

notesx 1.000.000).

Europarl development set test set

En Es Fr De|En Es Fr De
sentences (K) 2 2 2 212 2 2 2
average length (words) | 29 30 32 28|29 30 32 27
running words (Kwords) 59 61 64 55|58 60 63 54
perplexity 74 75 63 118 72 76 63 117

Table 3.5: Statistics of the English, Spanish, French, German devstop
and test partitions for the News-Commentary corpldsdenotesx1.000,

and M denotesx1.000.000).

News-Commentary development set test set

En Es Fr De|l En Es Fr De
#sentences (K) 1 1 1 1 1 1 1 1
average length (words) | 24 28 29 25| 24 28 29 25
running words (Kwords) 26 29 31 26| 26 30 31 27
perplexity 225 155 120 322 248 164 134 339

The language pairs involved in the experiments w&panish,French,Germpan
English. Both corpora were preprocessed as suggestedeftateline system by
tokenising, filtering sentences longer than 40 words anctoasing. This same
corpora will be employed in the evaluation of the M2 and HMMktaire models

(see Chapters 4 and 5, respectively).

Regarding the statistics of Table 3.7, it should be notidedratio between
vocabulary size and singletons (words that occur only orenajing from 35% in
English to 50% in German, indicates somehow the complexith® task, while
the number of sentence pairs and running words give a cleardtithe magnitude

Table 3.6: Statistics of the English, Spanish, French, German mogoéh
training partitions used to train language modéts denotesx1.000, and

M denotesx1.000.000).

Europarl | En Es Fr De
sentences (M) 14 14 14 15
average length (words) | 27 28 30 25
running words (Mwords) 38 40 43 37
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Table 3.7: Statistics of the concatenation of th8panish,French,Germpgn
English training partitions of the Europarl (EU) and the Ne@ommentary
(NC) corpora K denotesx1.000, and M denotesx<1.000.000).

EU+NC En Es|En Fr|En De
sent.pairs (M) 1.0 1.0 1.0

average length (words) | 21 22 |21 23|22 21
vocabulary size (Kwords) 88 121| 85 96| 82 246
running words (Mwords)| 21 22 | 20 22| 23 21
singletons (Kwords) 37 46 | 35 35| 32 124

of the task.

A special comment needs the perplexity figures in Tables 84385. These
figures were obtained with language models trained in treiresponding parti-
tions, being these models also used in the translation gsodeerplexity figures
are an appealing indicator of the complexity of the develephand test sets from
the point of view of the language model. For instance, thégcethe complex-
ity of German in the Europarl corpus and the out-of-domaitureaof the News-
Commentary corpus with respect to the partition on whicHahguage model was
trained.

Experimental setting and results

As mentioned before, the M1 mixture model was indirectlylexged on the trans-
lation quality of a phrase-based system generated from iteebValignments of
this model. The publicly available Moses toolkit 7], which implements the
log-linear approach to statistical MT, was employed totggirase-based systems
from Viterbi alignments.

In our experiments, the log-linear combination involved tonventional base-
line components integrated into the Moses multi-stack deco

e Phrase model (direct and inverse phrase and lexical s@réghrase penalty).
e Distance-based reordering model.

e Lexicalised reordering model.

e Language model.

e Word penalty.

Apart from the decoder, this toolkit provides a series of edul scripts, which are
abundantly employed in this thesis with the following fuonglity:

e Training of phrase and lexicalised reordering tables fratarti alignments.
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e Adjustment of weights of the log-linear model according tmimum error
rate training (MERT) criterion.

e Phrase and lexicalised reordering table filtering.
e Automatic evaluation of translation quality using BLEU sz0

Phrase and lexicalised reordering tables were trainedViti#nbi alignments com-
puted after 5 iterations of the M1 mixture modetix 1°). The average comput-
ing timé* is approximately 15 minutes per M1 iteration and componexd. far
as the language model is concerned, we trained smoothedhasetl 5-gram in-
terpolated models with modified Kneser-Ney discount [CG28hg the SRILM
toolkit [Sto02] on the monolingual version of the Europaokmora for English
(En), Spanish (Es), French (Fr) and German (De).

Concerning the weights of the components of the log-lineadeh we tuned
those weights on the development set according to the MER&rion for the
phrase-based system resulting from the HMM Viterbi aligntaésee chapter 5).
Then, the same weighting scheme was employed for all theiexgiets in the same
language pair throughout the different translation mo@dis, M2 and HMM) and
over different number of component¥’ (= 1,2, 3), as well as for the baseline
system. The same experimental conditions were used tdatarimth test devel-
opment sets, Europarl and News Commentary.

At this point, we would like to make clear that statisticalate-based systems
are not one of the scientific goals of this thesis. Theref@eewill be using Moses
as a black bdkin which first we input the Viterbi alignments for the traigiset
provided by our word alignment translation models (M1, M2HWMM mixture
models), then we tune the weights of the log-linear modeldgdessary), and finally
we obtained as an output a translation for each sentence teshset.

BLEU scores are reported in Tables 3.8 and 3.9 as a functitimreaiumber of
components in the M1 mixture model on the preprocessed amvant test sets
of the Europarl and News Commentary corpora, respectiVélg. column labelled
asbaselinestands for the baseline system proposed in the shared-@kk2B07
statistical MT workshop, training the translation modeltbe concatenation of
the Europarl and News-Commentary corpora. The basic diffex between the
baseline system and our system is the training scheme ofdfebased alignment
models employed to compute the Viterbi alignments. In theeaaf the baseline
system, the training scheme 183343, that is, 5 iterations of the M1 model, 3
iterations of the M3 model and 3 iterations of the M4 modehgsihe GIZA++
toolkit, and mkcls [Och99] to generate word classes nead#tkitraining process.
The baseline system provides BLEU reference figures attieédéstate-of-the-art
in statistical MT to which we can compare the translationligaf our translation
models (M1, M2 and HMM mixture models).

#0n a 2.0 GHz Intel Xeon machine
PDefault parameters are used, unless it is explicitly stathdrwise.
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The results offered by the M1 mixture model are far from thofsthe baseline
system, as we could foresee from the dissimilar trainingeses. However the
analysis of the evolution of the BLEU score as a function ef tlimber of com-
ponents in the M1 mixture model is the focus of the study offitperes presented
in Tables 3.8 and 3.9. In Table 3.8, we can observe a slightow@ment, not sta-
tistically significant, when we move from the conventionalgée-component M1
model to the multiple-component M1 mixture model on the parbtest. Never-
theless, this is not the case for the News-Commentary tegsase Table 3.9) in
which there is no gain when increasing the number of compsrierthe M1 mix-
ture model, except for the English-French direction thawshan increase of half
a point in BLEU.

Table 3.8: BLEU scores on the Europarl development test partitiontier t
baselinesystem and the M1 mixture modél (= 1, 2, 3).

BLEU || baseline| 1 2 3

En-Es 316 | 291 29.2 29.2
Es-En 321 | 299 30.0 30.0
En-Fr 31.1 | 284 286 286
Fr-En 322 |29.0 29.1 281
En-De 191 | 174 175 175
De-En 26.8 | 244 244 245

Table 3.9: BLEU scores on the News-Commentary development test parti-
tion for thebaselinesystem and the M1 mixture modél (= 1, 2, 3).

BLEU || baseline| 1 2 3

En-Es 31.2 | 247 247 246
Es-En 325 | 276 276 27.6
En-Fr 247 |194 195 199
Fr-En 252 | 21.0 20.8 20.8
En-De 141 | 114 114 114
De-En 208 | 176 174 174

3.6 Conclusions and future work

In this chapter, we have reviewed and derived the well-knbdhinmodel, before
introducing its mixture version. The M1 mixture model ainbgapturing context-
specific translation processes that are common in naturguiges, but had not
been directly addressed so far in the literature. The M1 inpdssented in this
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chapter bridges the gap between bilingual TC and statisiidaby being a com-
mon ingredient in both applications.

In bilingual TC, the M1 model is revealed as an effective apph to appre-
hend the word correlation across languages in bilingualis@nts. Doing so, we
outperformed the accuracy of those bilingual classifieed tonsiders each lan-
guage separately. To be precise, the unigram-M1 model atist&tally signifi-
cantly superior to the bilingual unigram classifier on theFB#orpus.

Apart from the unigram-M1 mixture model, we experiencednvatolutions
of this model replacing the M1 model by the M2 model, defininghis way a
non-uniform alignment probability distribution. Specéily, the unigram-M2 and
the bigram-M2 mixture models were derived, implemented iafamally evalu-
ated. Both of them suffer even more severely from data sggsobblems than the
unigram-M1 model, and their performance was worse tharofithe unigram-M1
model. Nevertheless, they served as inspiration of the M&urg@ model that will
be introduced in Chapter 4.

A straightforward extension of the model presented in thiapter is the re-
placement of the unigram language model by higher ordeulkzgg models with
richer context information. We believe that this extenstould provide an ade-
guate tradeoff between cross-lingual word correlation@mdext information with
promising results. Furthermore, we plan to incorporatmdpilal classes [Och99]
in order to control the model complexity in the presence dédgareness by ad-
justing the number of word classes.

In statistical MT, we revisited the computation of the Mitieslignments for the
M1 model and explained how we extended it for the M1 mixtureleioAs shown
in Chapter 1, the Viterbi alignments are the foundationsfatistical phrase-based
systems, therefore we exploited this idea in order to aseesdignment and trans-
lation quality of the M1 mixture model. The evaluation ofgaiment quality on the
Hansard task did not show a clear contribution of applyingtune modelisation to
the M1 model. In the case of the evaluation of the translaiigality, we employed
the Moses toolkit to generate phrase-based systems froiitdmbi alignments
trained on the concatenation of the Europarl and News-Cartangecorpora. The
results obtained reflect minor, but systematic improvesgnBLEU scores on the
Europarl development test, that encouraged us to devedold Zmixture model in
Chapter 4.

The work related to the unigram-M1 mixture model for biliagTC have been
submitted to an international conference:

e J. Civeraand A. Juan. Bilingual Text Classification using the IBM 1figa
lation Model. Accepted for publication in the sixth intefioaal conference
on Language Resources and Evaluation, LREC 2008.
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CHAPTER4

MIXTURE OF M2 MODELS

4.1 Introduction

In this chapter we describe a mixture extension of the M2 hegeond model of
the well-known IBM translation models [B20, B93], along with its correspond-
ing EM parameter estimation. The M2 model is a refinement @Ml model in
which the uniform alignment probability distribution ispleced by a probability
distribution depending on the source position and the tagatence length

The M2 mixture model was evaluated on two statistical MT saslor the first
task, a dynamic-programming search algorithm for the M2tunex model was
implemented, as a mixture extension of that presented inJ898, GVCO01]. For
the second task, as we did for the M1 mixture model, we conadptite Viterbi
alignments for the M2 mixture model that were employed tmteaphrase-based
system.

The organisation of this chapter is as follows. Section Atebduces the M2
model, and its mixture extension is studied in Section 4.8enl we discuss the
dynamic-programming search algorithm in Section 4.4, gtisg results on a
small task in Section 4.5. Further experimental resultsvem large scale tasks
are reported in Section 4.6. Finally, we conclude in Sectign

4.2 The M2 model

4.2.1 The model

The derivation of the M2 model is almost the same to that ofMHemodel in
Section 3.2.1. The main difference between M1 and M2 modedgies in the
assumption that is made to define the alignment probabilityilution

plaj| 2] ] y) = plaj | 4, |y]) (4.1)

#Actually, the alignment probability distribution also deyls on the source sentence length, but
we have dropped this dependency to simplify the model.
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Chapter 4. Mixture of M2 models

wherep(a; | , |y|) is the alignment probability distribution, replacing theiform
alignment distribution of the M1 model in Eq. (3.3). So, imtast to Eq. (3.5),
we have

||

p(z,al,y;0) = [ pla; |4, 1y) p(; | va,) 4.2)
where® is defined to also include the alignment parameters of the [d@an

[ pGlaly) Vi€ {01 i} g € (L. lal} andly]
@_{p(u|v) ueX,vey (4.3)

in contrast to the parameter vector of the M1 model in Eq.)(3.6
As we did in Eq. (3.9) for the M1 model, we can express the M2ehodterms
of indicator vectors

| |yl
@ly;©) =[] TG4 lyl) pla; [y:)) (4.4)
j=1 a; i=0
so, the M2 model becomes
lz|[ |yl
pa|y;©) =D plililyl) p; | vi) (4.5)
j=11=0

that is the conventional form of this model.

4.2.2 Maximum likelihood estimation

The maximum likelihood estimation of the parameters of th2 mdodel is per-
formed in an analogous way to that of the M1 model in Secti@3using the EM
algorithm. Generally speaking, we just need to substitaéeuniform alignment
distribution of the M1 model by the alignment distributiohtibe M2 model.
The E step compute@g‘})i as in Eqg. (3.15), incorporating the M2 alignment
distribution
k) P14, [y )™ p(an; | yni) ™

M (@ | lyn))® (g | i) ®
In the M step, we obtain the same update equation for thestitali dictionary as
in Eq. (3.16) for the M1 model. Moreover, we need an additi@smation for the
alignment parameters

(4.6)

N (4,7, o
il )0 = R andy @)

> N, 4, lyl)
i'=0
where

N
N(i. g, ly)) = D 8(|zn| > 5) 8(Jyn| = |y]) atry - (4.8)
n=1

86 JCS-DSIC-UPV



4.3. Mixture of M2 models

Intuitively, Eq. (4.7) can be understood as a normalisedigdarount of how
many times position is aligned to position for target sentences of lengith .

4.3 Mixture of M2 models

4.3.1 The model

The M2 mixture model is straightforward given the derivatiaf the M1 mixture
model in Section 3.3.1 and the conventional M2 model in $acti.2.1. Here, we
introduce a component-dependent version of the alignmematnpeter in Eq. (4.1)
to replace the uniform alignment distribution of the comguaticonditional M1
model in Eq (3.21),

lz| lyl
pa,aly,t:0:) = [T TTpG 1.1yl 0) pla; [y:, 01 (4.9)
Jj=11=0
where the component-conditional parameter ve@egrin Eq. (3.22) for the M1
mixture model is substituted by

[ Byl Vi {00y} g€ {L..... |2} and]y)
©. = { p(u]|v,t) ueX,vey (4.10)

4.3.2 Maximum likelihood estimation

The estimation of the E and M steps of the EM algorithm for thzivixture model
and the M1 mixture model in Section 3.3.2 are alike.

The E step computee,(l? in a similar fashion to Eq. (1.45), but using the un-
derlying component-conditional M2 model. On the other hahd termag;)it is
computed similarly to Eq. (3.27), but incorporating the gament-conditional M2

alignment distribution

*) pi | s [yals)*) p(an | ynis t)*)

njit — . :

Tl i, [yl )R p(@n | Y, 1))
In the M step, mixture coefficients are updated as shown in(E¢8) and sta-

tistical dictionaries, as in Eq. (3.28). Finally, compotieanditional alignment
parameters are newly estimated using

(4.11)

L. Ni?jv Y|, t ..
(il )0 = P pangr (a12)

> N, lyl,t)
/=0

where
k
N(i,jlyl,t) = Zarwnr>y (lynl = lyl) 24 alty . (4.13)

The asymptotic cost of the M2 mixture training process panatfon is the same
that that of the M1 mixture model, i.&(N - T - |z| - |y|).
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4.3.3 Smoothing

As we did for the component-conditional statistical dindoy in Section 3.3.3,
the component-conditional alignment distribution is sthed at two levels. First,
we smooth the component-conditional alignment distrdouinterpolating with a
uniform distribution over the target positions

o . 1
p(i|g,yl,t) = (L —€)p(ilJ, |y, 1) +6@' (4.14)

Secondly, we smooth the component-conditional alignmesitiloution (specific
distribution) interpolating with the conventional aligent distribution (general
distribution)

) pliLi 1ol ) +

P 4. Iyl 1) = (1 Y

__ B
B+ p(J, 1yl
(4.15)

In this case, the interpolation coefficient depends on ttaive frequency of the
event, source positiof and target sentence lengti, in the training set, and on
the interpolation parametet. The interpretation of the interpolation parameter
0 is similar to that of the parameter in Section 3.3.3, that is, the interpolation
coefficient is0.5 when 3 is equal to the relative frequency of the event, source
position j and target sentence lengthi. The parametep is manually tuned to
optimise the evaluation metric in question on the develogrset.

~ B+p0, lyl)

4.4 Decoding algorithm

In this section, we introduce a mixture extension of a dymapnogramming de-
coding algorithm of that presented in [GVCN98, GVCO01] inertb directly eval-
uate the translation quality of the M2 mixture model.

In statistical MT, the aim of the decoding algorithm is to rebafor a target
sentencg) given a source sentenge

y =argmaxp(y|x)
Yy

= arg;naxp(y) p(z|y). (4.16)
The search fofj has been demonstrated to be an NP-hard problem [Kni99,
UMO06]. However, several search algorithms have been pesposthe literature
to solve this ill-posed problem efficientlyA* [B*90], stack-decoding [WW97,
AO199], integer-programming [601] and dynamic-programming [GVCO01, TNO3].
In [GVCN98, GVCO01], a dynamic-programming search algaritfor the M2
model is proposed, along with some heuristics to acceldéragtesearch process.
This same algorithm has been extended in this thesis to d#althe M2 mix-
ture model. The idea behind this extension to the mixture eastraightforward
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4.4. Decoding algorithm

by considering an extra-dimension in the search trelli;wtependently store the
translation score for each component in the mixture.

Specifically, the translation modg(z | ) in Eq. (4.16) is instantiated as a M2
mixture model angh(y), for the sake of simplicity in the notation, will be assumed
to be a bigram language model. Then, the score associatbd to/pothest'y‘
given the source sentenegeand the target-sentence lenggfis

[yl T |z |yl

[T owilvi) > o) TTD el lult) pla; [y, ). (4.17)
i=1 t=1

j=1i=0
The expression in Eq. (4.17) can be reformulated in termsvofrecursive
functionsim andtm

|z|

T
m(yy 1) > o) [Tty yl, 4. 1). (4.18)
=1 =1

The definition of the recursive functioris: andtm for any partial hypothesig!
beingy; = vis

Im(v,i) =lm(v(v,1i),i — 1) p(v|v(v,1)) (4.19)
tm(v,1,7,t) =tm(v(v,q),i — 1,4,t) p(i| j, |y|, t) p(x; | v, t) (4.20)
forallve Y, j={1,...,]z|} andi = {1,...,|y|}. The functionv(v,1i) returns

the previousestword v’ given thatv is going to appear next in the target sentence
at position,

0(v,7)) = arg max [Zm(v',i — 1) p(v]v') x
v'ey

T ||
x> p(t) [ (tm i — 1,5.6) + p(i| 4, lyl, ) plaj [v,8) + ftm(j,i+ 1,1)) ]
t=1 j=1

being ftm a function that estimates the cost of translating from pwsit + 1 to
the end of the target sentence,

|yl
ftm(j,i,t) = Zpk|y,|y|t (| G t) (4.21)

whereg‘ly| is an estimation of the best translation far Doing so, this decoder
computes the most probable translation:afsing the maximum approximation.
The base case of recursion for functidnsandtm is

Im(v,1) = p(v|$) (4.22)
m(v,1,5,t) = p(0|7, lyl,t) p(z; | NULL,t) + p(1] ], |y|.t) p(z; [v,t) (4.23)
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forallv € Yandj = 1,...,|z| and whereb represents the starting symbol for the
language model.

The estimation of the functiolitm poses a problem when the target sentence
is unknown. A mixture extension of the initial optimistictiesation of ftm, pro-
posed in [GV03], can be calculated as

|yl
ftm(jyit) = > max p(klj, [yl £) p(;lv,¢). (4.24)
k=i

Once a translation has been computed, the funcfion can be re-estimated
using this translation. Therefore, the search processides| an iterative refine-
ment process that updatgsm in each iteration. This iterative translation process
runs until convergence (when the functigim remains the same between two
consecutive iterations) or for a fixed number of rounds, Vet comes first.

The asymptotic cost of the decoding algorithm for each raamel(|y| =« J™),
wherem is the order of the smoothedgram language model. As can be deduced
from this cost, the size of the target vocabulary is a clliigetor in the decoding
time of the algorithm.

4.4.1 Decoding parameters

The decoding algorithm defined in the previous section pitegevo main difficul-
ties in order to be able to run experiments in a reasonabledeftime, even with
simple tasks.

First, the search space explores all the words in the tamgtbulary, even if
many of these words are improbable translations of the wiordse source sen-
tence. In order to reduce the cost of the algorithm, only agptomisingtarget
words will be considered during the search process. Thes$ibés set is indirectly
defined by means of the number of most probable translatiorisr each word in
the source sentence, and the number of “zero-fertility”dsdt’ 2.

The set ofli’-most probable translatiorts,, is computed according to the in-
verse translation probability [AG99]

_ _pulv)p()
PO = S o))

that has been adapted for the case of our mixture model

S [p(t) plu | 0,8)] plv)
pv]u) ~ —= (4.25)
- S (0) o [0,0)] 200
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4.4. Decoding algorithm

wherep(v) is a unigram language model learnt on the training partitidre com-
putation ofS,, for a source sentenceis

||

Sw = argmax min p(v|z;) (4.26)
]L;Jl Scy:|s|=w ves !

where we just take the union of the setldf-most probable inverse translations
of each source word in the sentence to be translated. Thd satro-fertility”
wordsS,,, is constituted by thél” Z-least aligned target words to any source word
in the training set, according to the Viterbi alignment foe tM2 mixture model.
It is necessary to take into account those target words #natyroccur as direct
translation of words in the source sentence, otherwisewlveyd not appear in the
translated sentence.

The Viterbi alignment for the M2 mixture model is computedhie same way
to the M1 mixture model (see Section 3.5.1)

||

o~ argmax max p(t) [ [ maxp(a; |3, |yl )p(x; | ya, ) (4.27)
a - . J
7j=1

geeey

Thus, the set ofV Z-least aligned target words is defined as

N |yn|
Swr = argmax minZZé(v,ym)qﬁ(dn,i) (4.28)

Scy:|s|=wz ves =

where
0 Jj:a; =1 j=1,...,]q

1 otherwise (4.29)

ofa.i) = {
is the condition that says whether the positios connected to any source position
4 or not, and’ is the Kronecker functicdh

Finally, the union of the set§,, and S,,. defines the final bag-of-words of
candidate target words.

Secondly, the alignment distribution of M2 model dependghentarget sen-
tence length, so the decoding algorithm needs to kagwiori the length of the
target sentence that will be output. In practise, this falies the need of explor-
ing a range opromisingtarget sentence lengths given the source sentence.

The adopted solution considers a Gaussian distributiontbegarget sentence
length depending on the source sentence length. So, the gaeg fromﬂm —L

to mm + L, Wheremm| is the average length of the target sentence given the
length of source sentence to be translated Arigl a parameter that controls the
range width. This range width is a factor that multiplies dsgmptotic cost of the
algorithm.

®§(a, b) is 1 if a = b and zero otherwise.
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Another useful parameter to control the response time ofldmmding algo-
rithm is the maximum number of search rounfls This parameter defines the
number of times that the same source sentence is going tardted for a fixed
target-sentence length. For each round the funcfion is recomputed.

Finally, a beam-search paramef@ris set in order to prune those hypotheses
whose score was lower than the best score multiplied by Hrisrpeter.

All the parameters presented in this section were tuneddardo control the
trade-off between translation quality and response timesgrving the benefits of
using more components in the M2 mixture model.

4.5 Experimental results

The Spanish-English GURrIsT task [ABCT00] was selected to assess the M2
mixture model. It is composed of sentence pairs correspgnth human-to-
human communication situations at the front-desk of a heteth were semi-
automatically produced using a small seed corpus compifddur persons from
travel guides booklets dealing with different topics. Amas of10,000 random
sentences pairs was selected for training purposes antigatéion was defined
using2, 996 random sentence pairs generated independently from thengaar-
tition. The basic statistics of this corpus are shown in &abl.

Table 4.1: Basic statistics of the Spanish-EnglisbOriIsTtask (X denotes
x1.000).

Training Set  Test Set
Es En Es En
sentences 10.000 2.996
average length| 9 9 11 11
vocabulary sizeg 686 513 611 468

singletons 10 8 63 49
running words | 97K 99K 35K 36K
perplexity - - - 4.92

This multimodal corpus defines an excellent test bed to ataline M2 mixture
model, since its simplicity will bring about the pros and saf the model.

Several experiments were carried out with the Spanishi&EnglbuRrIST task
to analyse the evolution of the error rate as a function ofniln@ber of mixture
components®T € {1,2,5,10,20}). On the one hand, the training process starts
by iterating with the M1 mixture model from a random initgdtion until conver-
gence. Then, the parameters learnt in the M1 mixture moeédransferred to the
M2 mixture model that is also trained until convergence.sTio-step procedure
favours a smoothed parameter learning from a simpler modalrhore complex
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model. On the other hand, the search parameters were fixeddénto not interfere
in the study of the translation model itself, so that a largenber of hypotheses
were explored. The language models used in these expedmane smoothed
bigrams and trigrams based on back-off with Witten-Beltdismt [WB91].

Figure 4.1 shows the evolution of the WEeft y axis) and BLEU score (right
y axis), on the test partition of thedURIST task, for an increasing number of
mixture componentsy(axis). Each curve represents the progress of an evaluation
measure, WER (W) or BLEU (B), when using a smoothed bigram ¢2grigram
(39) language model. Each plotted point is an average oveevabtained from
10 randomised trials.

85.0
WER(%) — = +AIIDICT $aal, BLE
24 [ WERCH) TOURIST task v
227 80.0
20
18 | 75.0
16 r
70.0
14
12
Mixture components+ 65.0

1 2 5 10 20

Figure 4.1: WER (W) and BLEU (B) curves in the test partition as a func-
tion of the number of mixture components using smoothediigi2g) and
trigram (3g) language models.

When analysing the results in Figure 4.1, it is clearly obséra systematic
WER decrease (BLEU increase) as more components are adthexNt2 mixture
model. This positive trend reverts at different paramedtirgs depending on the
language model we are using. In the case of bigrams that hapgeen the model
incorporate20 components into the mixture, while in trigrams this trenderés
when usingl0 components. The reason behind this behaviour is mainlyaltiest
fact that a trigram language model leaves less space fopwaprent than a simple
bigram language model. So, the refinement of the translatiodel through the
incorporation of more components produces greater bemeéitsimpler bigram
model, than in an already sophisticated trigram model.

As a reference, the single-component version of thesetsesid correlated with those obtained
in [GVO03].
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A summary of single-component and best mixture results ifgram and tri-
gram language models is shown in Table 4.2. These figurestrdflat the M2
mixture model provides an average relative improvement ERMf 15% for the
bigram language model and 11% for the trigram language muodd. the single-
component M2 model. These improvements are statisticahjifcant.

Table 4.2: Baseline and best mixture results on the Spanish-English
TourisT task. The n-column indicates the n-gram order of the languag
model, while the T-column denotes the number of componentee M2
mixture model.

n T|WER BLEU
2 1| 21.3 677
10| 18.0 728

3 1| 142 781
5| 126  80.0

We are aware that the results reported in this section afeofarthose obtained
in the same corpus with state-of-the-art phrase-based Imajeecifically Align-
ment Templates [Och99], and stochastic finite-state traesd, more precisely
GIATI [CV04]. However, these experiments allow us to stuldg behaviour of the
M2 mixture model under controlled experimental conditiores. simple task and
customised decoder, avoiding so the influence of other madtéactors that could
mask the results.

4.6 Further evaluation

The evaluation of the M2 mixture model presented in the previsection provides
a direct insight into the capabilities and properties ofriedel. However, as we
said before, the results reported are far from those oltaivith state-of-the-art
phrase-based systems. Furthermore, the conclusions dramnthe results on
the small synthetic ®URIST task are difficult to be extrapolated to other corpora.
To have a broader view of the alignment and translation tyuafithe model, we
performed a throughout evaluation on the shared tasksmiezban Section 3.5.
The corpora and experimental setting of this chapter aneticid to that of
Section 3.5, except for the training scheme that was usedrtgpuate the Viterbi
alignments. In this case, the training scheme was 1°2°, that is, 5 iterations
of the M1 mixture model followed by 5 iterations of the M2 miré model. As
usual, the statistical dictionary learnt by the M1 mixturedal are transferred to
the M2 mixture model. For the joint Europarl and News Comragntraining
corpus, the average computing tifrie approximately 20 minutes per M2 iteration

40n a 2.0 GHz Intel Xeon machine
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and component. It should be borne in mind that the weightseofdg-linear model
integrated in Moses are the same to those in Chapter 3.

4.6.1 Evaluation of alignment quality

Table 4.3 presents AER figures on the test partition for thei2ure model. As
in case of the M1 mixture model, each number in Table 4.3 isvenage over
values obtained from0 randomised initialisation. The computation of the Viterbi
alignments was calculated according to Eq. (4.27).

Table 4.3: AER figures on the test partition of the Hansard corpus for the

M2 mixture model varying the number of components in the ort(l” =

1, 2, 3) and the conventional M2 model implemented in the GIZA++#kio
GIZA++ H 1 ‘ 2 3

Fr-En 20.0 19.6| 19.0 18.8
En-Fr 18.3 17.6| 17.2 16.8

As seen in Table 4.3, there is a statistically significantrmmpment when we
go from the conventional single-component M2 model to thdtipla-component
M2 mixture model for both language directions. Furthermtre decrease in AER
on the English-French direction when we increase from twbree the number of
components is also statistically significant.

4.6.2 Evaluation of translation quality

BLEU scores are reported in Tables 4.4 and 4.5 as a functidheohumber of
components in the M2 mixture model on the preprocessed amvint test sets
of the Europarl and News Commentary corpora, respectivityit happened in
the M1 mixture model, the BLEU scores reported are far froenthseline system.
This is due to the more refined models (M3 and M4) employed énltaseline
system compared to the relatively simple M2 model.

Furthermore, in contrast to the appealing results predentBection 4.5, there
is little gain in BLEU score on the Europarl development settwhen increasing
the number of components per mixture. Nonetheless, tharedaserage systematic
increase of half a point in BLEU score on the News-Commerdaxglopment test
set (except for the English-German direction), when udlirg\iterbi alignments
provided by 2-component or 3-component M2 mixture modekhatbackend of
Moses. These improvements are not statistically significan

4.7 Conclusions and future work

In this chapter we presented a mixture extension of the M2aitodether with its
maximum likelihood parameter estimation and a specific diecpalgorithm.
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Table 4.4: BLEU scores on the Europarl development test partition

BLEU H baseline\ 1 2 3

En-Es 316 |30.7 31.1 30.2
Es-En 321 | 314 309 315
En-Fr 31.1 | 304 305 30.8
Fr-En 322 | 313 315 315
En-De 191 | 19.0 189 19.0
De-En 26.8 | 260 26.1 26.0

Table 4.5: BLEU scores on the News-Commentary development test parti-
tion

BLEU || baseline| 1 2 3

En-Es 31.2 | 29.2 29.6 29.6
Es-En 325 | 312 309 317
En-Fr 247 | 234 239 239
Fr-En 252 | 237 239 243
En-De 141 | 13.0 128 129
De-En 20.8 |19.3 196 195

The experiments conducted on a small synthetic task, gleaticate the ben-
efits of the mixture approach over the single-component M8eahoEven though
these results are not competitive enough compared to tHmaeed by state-of-
the-art phrase-based models in the same task. These erpé&imere comple-
mented with results on alignment and translation sharskkialready introduced
in Chapter 3, in order to study the behaviour of the model &h ta&sks. The results
on alignment quality showed a statistically significant imygment as we increase
the number of components in the mixture model. Regardingrémeslation quality
of the M2 mixture model, the BLEU figures revealed a systetratérage increase
of half a point in most of the language pairs of the News-Comtanrg development
test, although this improvement was not conveyed to theautdevelopment test
set.

The BLEU scores reported in this chapter are still behindehaf the baseline
system. This fact leads us to consider superior word alignirtranslation mod-
els to bridge this gap in performance. However, the complexithese superior
models should be moderate so as to avoid overtraining. @akis concern into
account, we introduce the HMM alignment model in Chapter 5.

The work related to the M2 mixture model using the dynamimgpamming
search algorithm presented was published in an interredtammference:

e J. Civeraand A. Juan. Mixtures of IBM Model 2. IRroceedings of the 11th

96 JCS-DSIC-UPV



4.7. Conclusions and future work

annual conference of the European Association for Machiramslation,
EAMT 2006 pages 159-167, Oslo (Norway), June 2006.

The AER results on the Hansard task presented in this chapktee published
in an international workshop:

e J. Civeraand A. Juan. Word alignment quality in the IBM 2 mixture madel
In Proceedings of the 8th International Workshop on Patterodgaition in

Information Systems, PRIS 2QA8ISTICC Press, Barcelona (Spain), June
2008.
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CHAPTERDS

MIXTURE OF HMM
ALIGNMENT MODELS

5.1 Introduction

The HMM alignment model was initially proposed in{\@6] and refined in [ONO3].
This model possesses appealing properties, like the gitypbf the first-order
word alignment distribution, and the efficient and exact patation of the E-step
and Viterbi alignment using a dynamic-programming aldwnit These properties
have made this model suitable for extensions [TIM02, LRO®] etegration into
a phrase-based model [DBO05] in the past.

In this chapter, we present a mixture extension of the HMIgratient model,
as we did in Chapter 3 for the M1 model, and in Chapter 4 for tHerivbdel.
Similarly to Chapters 3 and 4, an indirect evaluation of ta@slation quality was
carried out on the Europarl and News-Commentary corpordilising the Viterbi
alignments of the HMM model to train a phrase-based system.

The structure of this chapter is as follows. We first preskatiMM align-
ment model in Section 5.2 and its mixture extension in Saci®@. We report
experimental results on alignment quality for the Hansast,tand on translation
quality for the Europarl and News-Commentary corpora intiecs.4. Finally,
conclusions and future work are stated in Section 5.5.

5.2 The HMM alignment model
5.2.1 The model

For the HMM model, we derive the conditional probabiltiyx | y), as we did in
Egs. (3.1) and (3.2). However, the assumption that we makéhéalignment
probability distribution in the HMM model differs from thah the M1 and M2
models, shown in Egs. (3.3) and (4.1) respectively. Thenalignt p.f. in the
HMM model includes a dependency on the previous alignmeésb, known as a
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Chapter 5. Mixture of HMM alignment models

first-order dependency, while the lexical p.f. remains e as in Eq. (3.4).
More precisely, the original formulation of the HMM alignmtenodel assumes
that the alignment; depends on the previous alignment ; and the length of the

Jj=1 j-1

plajlal™ " 21 y) = plaj[aj-1ly])- (5.1)

It is interesting to observe the evolution of the alignmerit from the M1
model in Eq (3.3) represented by a simple uniform distrintover the M2 model
in Eqg. (4.1) that considers a zero-order dependency alighrteethe HMM model
in Eqg. (5.1) modelling a first-order dependency.

The HMM alignment model can be either derived from the M1 mhadEqg. (3.5),
or the M2 model in Eq. (4.2), substituting their alignmertt fy that defined in
Eq. (5.1). Thus, we have

|z]

p(z,aly; © Hp (@5 | ya,) P(aj | aj—1, ly]) (5.2)

where we suppose thag = 0 and

[ pGlily) 1<i<lyl, 0 <7 <[yl and¥ [y
6_{ pulv)  VweXandve) (5.3)

is the set of unknown parameters comprising the first-ordpeddency alignment
parameters and the conventional statistical dictionary.

As we proceeded in the previous models presented in thisthes can express
Eq. (5.2) in terms of indicator vectors as

[z [yl [yl

p(x,aly;©) =[] [T p(xs 1y [] oG, lyl)a- s (5.4)
i'=1

j=1i=1

with agg = 1.

5.2.2 Maximum likelihood estimation

As we did in previous chapters, we revert to the EM algoritlonedtimate® ac-
cording to the maximum likelihood criterion w.r.t. a set/@findependent samples
(X,Y) = ((x1,71),-- ., (zx,yn))". The log-likelihood function o is

L(®; X,Y) ZlogZp Ty O | Yn; ©). (5.5)

an

Taking (X, Y") as the observed dafé, and the alignment datd in Eq. (3.13) as
the missing datéZ, the E step computes the expected value of the logarithm of
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5.2. The HMM alignment model

p(X, A|Y) w.rt. the posteriop(A | X,Y; ©*)), analogously to Eq. (1.32),

N ‘xn‘ |yn
QO | @(k Z Z Z anﬂ log p(2n; | Yni)
n=1j=1 i=1
[y
+ Z Qnj—14 anjz (k) logp(i ’ i/7 ’yn‘) (5.6)
with
. Oénjiﬂnji
agm)i = (5.7)
2 O‘nﬁﬁnﬁ
g1 P |7 yn))® p(@nj | yni)®) Buji
(anj—li’ an]l)(k) = Iy ‘ ‘y | (58)
Zl -1z DT, [y )®) p(an; [ yn)®) Buji
'=11=

being (a;—1i anji)(’“), the posterior probability of aligning the source position
j — 1to the target positioil and the positior to the positiory for thenth sample.
So, the recursive functions and are defined as

p(i 10, [yn)®) p(@n; | yni)® j=1
Qnj; =

> . (5.9)
Z Olpj— 11]?( ‘1 \yn!) (xnj ‘ym)(k) j>1

1 Jj= ’wn‘
Brji =14 ¥l , (5.10)
’ ZP( i, |y )™ p(@njst [ ynn) ¥ Bujarr J < |anl-

The M step finds a new estimate®f © “*1) maximising Eq. (5.6), as in Eq. (1.28),
resulting in update equations for the alignments parameter

) (k+1) M

p(i]i, |y " Vi, i and|y| (5.11)

NG )

where o
N, [y]) 25 lynl = [y D (@nj1ir angi) ™ (5.12)

7j=1

and for the statistical dictionary in Eq. (3.16). IntuifiyeEq. (5.11) is a normalised

partial count of how many times target positions to whichaligned two consec-

utive source positions are;_; = ¢ anda; = i for target sentences of length
lyl-
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5.3 Mixture of HMM alignment models

5.3.1 The model

In a similar fashion to Sections 3.3.1 and 4.3, let us condidat p(x |y) has
been generated by ‘A-component mixture as in Eq. (3.18), in this case a mix-
ture of HMM alignment models. Here, we rewritéx, a | y,t) in Eq. (3.21) as a
component-conditional version of the HMM alignment modeEq. (5.4). Thus,
we have that the component-conditional HMM model is

lz| 1yl ly|

pa,aly,t;0,) = [[ [ p(; v, )% T pG1d, |yl t)%—2%  (5.13)
i'=1

j=1i=1
whereagy = 1 and the parameter vect®;, is defined as

_ pGld gl Vi<i<lyl, o< <lyland]y
o= { p(u|v,t) Yu € X andv € ). (5.14)

being a component-dependent version of Eq. (5.3).

5.3.2 Maximum likelihood estimation

The log-likelihood function o® w.r.t. N independent samples for the HMM mix-
ture model is the same to that in Eq. (3.23).

Instantiating the EM algorithm for the HMM mixture model, wempute the
Q function as in Eq. (1.44),

‘xn‘ Iyn
@) ’ @) Z Z Znt logp + Z Z Znt angz logp(wn] ‘ Yni, )
n=1t=1 j=11i=1
|yn|
+ 3 Gt Ongorr angi) ¥ log p(i | 7,y 1): (5.15)

r—1

that involves the computation afl’?, (2nt angi)®) and (zps anj—1r anji)®). First,
z}j;) is calculated as in Eq. (1.45) using the underlying compboenditional

HMM model. Secondly(z,; a,;;)*) is decomposed as in Eq. (3.26) where

anjitﬁnjit
P (5.16)

njit |yn‘

Qnjit ﬁnﬁt
=1
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is a component-dependent version of Eq. (5.7). Lastly,h tz,,; a1y an;i)*
is similarly decomposed to Eq. (3.26)

(Znt Qnj—14 anji)(k) =p(znt = Lanji = 1, anj—10r = 1| Tn, yn)
= p(znt =1 ‘ wrwyn)p(anji = 17anj—1i’ =1 ’ Znt = 17-%717yn)

= 28 (anjo1o angi | )P (5.17)

where

Oénj—li'tp(i ! i, ’yn\7 t)(k) p(xnj \ Ynis t)(k) 5njz't

(an] 14/ a“n.]Z| ) |yn\ |y7l‘

P 21 i1t AT, |y |, ) p(20j | Y, ) F) Brjie

e (5.18)
is a component-dependent version of Eq (5.8). In this casey ind g functions
are component-dependent versions of those in Egs.(5.9)6at@).

The M step finds an update estimate@f ®*+1) as a result of maximising
Eqg. (5.15). The update equation for the mixture coefficiehtbat of Eq. (1.48).
The new estimate for the component-dependent alignmeat@ers is a component-
conditional version of Eq. (5.11)

NG, |y, ¢
p(i| 7 |y, )" = — (7 yl. ) Vi, i, |ylandt  (5.19)

> NG yl,t)

=1

where

2

|z
N, [yl t) = Z ([ynl = lyl) = Z (nj—1ir anji | 1)) (5.20)

and the component-dependent dictionaries are updatedtas (8.28). The asymp-

totic cost of the training procedure per iteratiorGgN - T - [z - Ty1%), wherejz]
and|y| are the source and target average lengths, respectively.

5.3.3 Viterbi alignments

As we did in Eq. (3.48) for the M1 model and in Eq. (4.27) for 12 model, it

is possible to compute the Viterbi alignment for a bilingpalr according to the
HMM model. To this purpose, we need to use an efficient dynaragramming

algorithm that can be derived from a recursive function

4 = argmax Qg (5.21)
|zlajz)
a=ai...a|q|
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where
) p(i] 0, [yl) p(z; | yi) j=1
o { max Gyl e lv) j>1 622

whose complexity i) (|z| - |y|?). As we did in the M1 and M2 mixture models,
we approximate the Viterbi alignment by maximising over toenponents of the
mixture. Therefore, we have that the complexity of the cotaton of the Viterbi
alignment in a’-component HMM mixture model i© (T - |z| - [y|?).

5.4 Experimental results

According to [V"96], we consider that HMM alignment probabilitigsi | i’ |y|)
depend only on the jump width. Also the treatment of the NULdrevis the same
to that presented in [ONO3], as well as the probability ofrilng to the NULL
word pg, that is optimised on held-out data. In addition to thesepbfioations, we
drop the dependency on the previous alignment and the tsegétnce length

plajlaj—1,|yl) == plaj). (5.23)

It should be noticed that the way in which the alignment paians are defined
makes this model be deficiéntHowever, this assumption greatly simplifies the
alignment parameters, while still representing the vitMM jump width infor-
mation. As we did in previous models, the alignment distidouwas interpolated
with a uniform distribution for smoothing purposes.

The evaluation of the HMM mixture model was carried out with same cor-
pora and experimental setting to that of Sections 3.5 anaeAdgpt for the training
scheme that was used to compute the Viterbi alignments. ralertg scheme was
mix 1°H°, that is, 5 iterations of the M1 mixture model followed by &ritions
of the HMM mixture model. As in the M2 mixture model, the s$tittal dictio-
naries are transferred from the M1 to the HMM model. The cdiatn of the
Viterbi alignments employed in these experiments is dbsdriin Section 5.3.3.
For the joint Europarl and News Commentary training corphe,average com-
puting timé is approximately 2.5 hours per HMM iteration and component.

5.4.1 Evaluation of alignment quality

Table 5.1 presents AER figures on the test partition for theMHiviixture model.
As in Tables 3.3 and 4.3, each number in Table 5.1 is an avenayevalues ob-
tained from10 randomised initialisation.

As shown in Table 5.1, the HMM model exhibits a minor, notistatally sig-
nificant, reduction in AER when we train a 2-component HMM taie model on

4n the sense that this model reserves probability mass fgetaositions outside the target
sentence boundaries.
®On a 2.0 GHz Intel Xeon machine
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Table 5.1: AER figures on the test partition of the Hansard corpus for the
M1, M2 and HMM mixture models varying the number of composént
the mixture " = 1, 2, 3) and the conventional M1, M2 and HMM models
implemented in the GIZA++ toolkit.

GlZA++ H 1 ‘ 2 3
Fr-En 8.9 89188 9.0
9.1

En-Fr 8.4 93 94

the French-English direction. Although AER increases aés the number of
components on the English-French direction. In the caskeoHIMM model, the
parametep, that defines the probability of aligning to the NULL word, isa¥ in
the performance of the HMM model and is necessary to adjisiptrameter on
held-out data. We believe that this high dependency of thR A& the value of the
parametep, interferes with the possible benefits of mixture modelati

5.4.2 Evaluation of translation quality

BLEU scores are reported in Tables 5.2 and 5.3 as a functidheohumber of

components in the HMM mixture model on the preprocessedlolevent test sets
of the Europarl and News Commentary corpora, respectivighe weights of the
log-linear model in Moses are the same that those in Sec8cdhand 4.6. The
first conclusion, which we can draw from the figures in Tabl&sahd 5.3, is that
there is not significant difference between the BLEU scofésebaseline system
and those of the HMM-based system. As observed in Table Hv2e compare

the BLEU scores of the conventional single-component HMMleido those of

the HMM mixture model, it seems that there is little or no glagm incorporating

more components into the mixture for the Europarl corpuseiibeless, Table 5.3
offers a minor, but systematic improvement in BLEU scoresnwve increase from
one to two the number of components per mixture.

5.5 Conclusions and future work

In the same line to previous chapters, we introduced a nextersion of the HMM
alignment model. This model was employed to generate cbapecific Viterbi
alignments that were directly evaluated, and also inpatanphrase-based system
to be indirectly assessed. Regarding the direct evaluatidghe HMM mixture
model through AER figures, we obtained a minor, not staé$ificsignificant, re-
duction when we increase the number of components.

The BLEU scores reported by the HMM-based system are at ¥iekdéstate-
of-the-art in this task, while the benefits of mixture moihgllare minor but, as in
the M1 and M2 mixture model, systematic in some cases. Allljmea are fully
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Table 5.2: BLEU scores on the Europarl development test partition

EU baseline| 1 2 3

En-Es 31.6 | 315 316 31.7
Es-En 321 |31.8 319 31.9
En-Fr 31.1 | 311 31.2 30.9
Fr-En 322 | 322 322 321
En-De 19.1 19.9 19.8 20.0
De-En 268 | 27.0 26.9 26.8

Table 5.3: BLEU scores on the News-Commentary development test parti-
tion

NC baseline| 1 2 3

En-Es 31.2 | 309 311 311

Es-En 325 | 322 324 324

En-Fr 247 | 250 253 244

Fr-En 252 | 247 247 246

En-De 14.1 141 142 141

De-En 20.8 | 20.7 20.8 21.0

aware that indirectly assessing the translation quality miodel through a phrase-
based system is arguable because of the different factmkvéd that could mask
the results [ADO6].

One of the challenges of training a mixture of translatiordeis, is the linear
growth of the number of parameters to be learnt as we incrdes@umber of
components. Thisis a specially delicate issue in the catbeeatatistical dictionary
due to the potential quadratic number of parameters an@atsisy. In this thesis,
we have proposed smoothing techniques to alleviate thisigmrg although other
ideas grounded on the incorporation of monolingual andidpilal classes [Och99]
would also be interesting to consider.

Nonetheless, in the advent of larger open-domain corpte.idea behind
context-specific translation models seem to be more tharopppte, necessary.
We believe that the idea behind mixture modelling is inhetehe nature of large
corpora in which multimodal distributions are frequentdérd, the convenience
of using a weighted combination of models, instead of a simgbdel trained on
massive scale data has already been proved in [BRFX

The HMM mixture model and some of the results presented m ¢hiapter
were published in an international workshop:

¢ J. Civera and A. Juan. Domain adaptation in statistical machine latios
with mixture modelling. InProceedings of the Second Workshop on Statis-
tical Machine Translationpages 177-180, Association for Computational
Linguistics, Prague (Czech Republic), June 2007.
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CHAPTER®G

COMPUTER-ASSISTED
TRANSLATION BASED ON
STOCHASTIC FINITE -STATE
TRANSDUCERS

6.1 Introduction

Information technology advances in modern society havddetie need of more
efficient methods of translation. It is important to empbkadhat current MT sys-
tems are not able to produce ready-to-use text. Indeed, M are usually
limited to specific semantic domains and the translationsiged require human
post-editing in order to achieve a correct high-qualitytation.

A way of taking advantage of MT systems is to combine them ttighknowl-
edge of a human translator constituting the so-called CAadgigm. CAT offers
different approaches in order to benefit from the synergween humans and MT
systems. In this thesis we focus on the interactive and gireeiMT approach to
CAT?, Under this approach the user can amend the translatioredffey the MT
system, while the system takes into account these cormsctmimprove its trans-
lation. This protocol of interaction is more comfortable tbe translator that can
work with a greater freedom to make changes at any time wihddranslation is
in progress.

The interactive and predictive MT approach to CAT has twodrntgnt aspects:
the models need to provide adequate completions and theytbae so efficiently
under usability constrains. To fulfil these two requirensestochastic finite-state
transducers (SFST) [M05b] have been selected since they have proved to be able
to provide adequate translations [KAO98; 80, BR95] and there exist efficient

@ n this thesis, we will refer to the interactive and predietMT approach to CAT simply as CAT,
whenever it is clear in the context and does not lead to camfusiowever, we are aware that there
are other approaches to CAT, such as those based on pasgedit
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parsing algorithms [V 05a] that can be easily adapted in order to provide comple-
tions.

The adaptation, integration and implementation of thessipg algorithms in
a CAT framework is the original contribution of this thess)ce they were already
introduced and studied in previous work [Wag74, JM99] inahktthe details of the
algorithms can be found. The inference algorithm and thprpeessing module
were implemented by external software, but they are predemtre to provide a
complete view of the CAT system to the reader.

The structure of this chapter is as follows. Next sectiorouiiices the general
setting for finite-state models in statistical MT. In Senti®.3, the search proce-
dure for interactive and predictive translation is expgin Experimental results
are presented in Section 6.4. Finally, conclusions andduttork are exposed in
Section 6.5.

6.2 Machine translation with finite-state transducers

In contrast to the usual language and translation modelseofrainslation rule in
Eqg. (1.8), SFSTs [Cas00, PC01, CV04] model the joint distiim p(x, y). Thus
this rule becomes,

g = argmax p(x,y). (6.1)
Yy

SFSTs constitute an important framework in syntactic PRMIDB. The sim-
plicity of finite-state models has given rise to some congaivout their applicabil-
ity to real tasks. Specifically in the field of language tratish, it is often argued
thatnatural languagesre so complex that these simple models are never able to
cope with the required source-target mappings. Howeversbould take into ac-
count that the complexity of the mapping between the souncetarget domains
of a transducer is not always directly related to the coniplexf the domains
themselves. Instead, a key factor is the degreeohotonicityor sequentiality
between source and target subsequences of these domaiRO%L \Finite-state
transducers have been shown to be adequate to handle comafgings effi-
ciently [Ber79]. Also, SFSTs have been successfully agpilemany translation
tasks in the past [A00, C"04a].

A SFSTT is defined as a tupleX, A, Q, qo,qy,6,p, f) whereX and A are
finite sets of source and target symbols respectivglig a finite set of stategy is
the initial stateg; C @ is the set of final states,C @ x X x A* x @ is the set of
transitions,p and f are two functions

p:Q x X x A" xQ — [0,1] (6.2)
f:Q—10,1] (6.3)
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being p, the transition probability function and, the final-state probability func-
tion that satisfy,

floo + > plgwgd)=1 Yoe Q. (6.4)

(%,7,¢")EXXA*XQ

Giveng(z,y), a path withz| transitions associated with the translation pairy) €
¥* x A* is a sequence of transitions

¢($7 y) = (QO> xlvglv QI)((]l, 33'2,@2, Q2) cee (q\x\—lv $|:c|7y|x|7 q|:(:|)7 (65)

such thatryzy ... x| = x andy, 7, . . T = Y- The probability of a path is the
product of its transition probabilities, multiplied by tli@al-state probability of
the last state in the path

||

p(o(z,y) = [[p(aj-1,25,7;,45) - Flap)- (6.6)

i=1

The probability of a translation pafr, y) according top(z, y) is then defined as
the sum of the probabilities of all the paths associated (itly)

p(a,y) = > p((x,y)). 6.7)
d(z,y)

Therefore Eq. (6.1) could be rewritten as

j=argmax Y p(¢(z,y)). (6.8)
Yo ga)

It should be noted that the maximisation problem stated is. E6,1) and (6.8)
is NP-hard [CdIHOO]. Nevertheless, adequate approximataan be obtained by
means of efficient search algorithms, like Viterbi [Vit6 8} the best path

p(z,y) = pmax p(o(z,y)) (6.9)

and the recursive enumeration algorithm (REA) [JM99] fa ithbest paths.

6.2.1 Learning finite-state transducers

There are different families of techniques to train a SF®Mmfia parallel corpus
of source-target sentences [CV07]. One of the techniquashidis been adopted
in this thesis is thgrammatical inference and alignments for transducer iahee
(GIATI) technique. This technique is in the categoryhgbrid methodsvhich use
statistical techniques to guide the SFST structure legraimd simultaneously train
the associated probabilities.

Given a finite sample of string pairs, the inference of SFSSisquthe GIATI
technique is performed as follows [CV04, CVPO5]:
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1. Building training strings: each training pair is tranmsfied into a single
string from an extended alphabet to obtain a new sample oigstr The
“extended alphabet” contains words or substrings from so@and target
sentences coming from training pairs.

2. Inferring a (stochastic) regular grammar: typically,nao®thedn-gram is
inferred from the sample of strings obtained in the previstep.

3. Transforming the inferred regular grammar into a traneduthe symbols
associated with the grammar rules are adequately transtbimack into
source/target symbols.

The transformation of a parallel corpus into a corpus of Isireggntences is
performed with the help of statistical alignments: eachdwisr joined with its
translation in the target sentence, creating an “extendedw This joining is
done taking care not to invert the order of the target worde third step is trivial
with this arrangement. In our experiments, the alignmergsoatained using the
GIZA++ software [ON0O], which implements the IBM statistionodels [B93].

An example of a SFST is shown in Figure 6.1. This SFST was gégkifrom
a bilingual corpus composed of two pairs of sentences mralagned:

tie scinner \Lthe Scw

el escaner el menUt del escaner

and trained as a smoothed interpolated bigram model on mersees of extended
symbolsthe#el scaner#eéoerandthe#el scaner# menu#niedel es@ner.

™ (0.33)
“the" /"el" (0.67) “menu” / "men( del escaner” (0.1)
"scanner” / ™ (0.25)

.. “scanner” /™ (0.1)
“the" / "el" (0.2)

“menu” / "mend del escaner” (0.5)

"1™ (0.5)

“scanner’ / "escaer"0.25)

“scanner" / "escaner” (0.1)

Figure 6.1: Example of the resulting SFST trained on two pairs of sen-
tencesthe scanner # el ednerandthe scanner menu # el medel esaner

6.3 Interactive and predictive search

As commented in Section 6.1, the interactive and prediep@roach to CAT pro-
poses a way of interaction based on the target sentencegthrehich the CAT
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ITER-O (yp) 0
(¥s) (Haga clic para cerrar el dialogo de impresion)
(a) (Haga clic)
ITER-1
(k) (en)
(yp) (Haga clic en)
(9s) (ACEPTAR para cerrar el dialogo de impresion)
) (a) (ACEPTAR para cerrar el)
ITER-2 (k) (cuadr o)
(yp) (Haga clic en ACEPTAR para cerrar el cuadro)
(@s) (de dialogo de impresion)
FINAL (a) (de dialogo de impresion)
(k) #)
(yp=v) (Haga clic en ACEPTAR para cerrar el cuadro de dialogo de impresion)

Figure 6.2: Example of a CAT system interaction to translate into Sganis
the English sentenc€lick OK to close the print dialogue’extracted from

a printer manual. Each step starts with a previously fixegetalanguage
prefixy,, from which the system suggests a suffix Then the user accepts
part of this suffix &) and types some key strokds)(in order to amend the
remaining part ofy,. This produces a new prefix, composed by the prefix
from the previous iteration and the accepted and typed taxitk), to be
used agy, in the next step. The process ends when the user enters tialspe
key stroke #”. In the final translationy, all the text that has been typed by
the user is underlined.

system and the user exchange portions of it in order to agltlew final correct
translation.

An example of this interaction is shown in Figure 6.2. In eiéetation, a prefix
(yp) of the target sentence has somehow been fixed by the hunmshata in the
previous iteration and the CAT system computes its best{best) translation
suffix hypothesis ;) to complete this prefix.

Giveny,ys, the CAT cycle proceeds by letting the user establish a rewgdr
acceptable prefix. To this end, he or she has to accept ag)at ¢,y (or, more
typically, just a prefix ofy,). After this point, the user may type some key strokes
(k) in order to amend some remaining incorrect parts. Theeefthie new prefix
typically encompasseg, followed by the accepted part of the system suggestion,
a, plus the textk, entered by the user. Now this prefix,a k, becomes a newy,,
thereby starting a new CAT prediction cycle.

Ergonomics and user preferences dictate exactly when #teraycan start its
new cycle, but typically, it is started after each user-etavord or even after each
new user key stroke.

Perhaps the simplest formalisation of the process of hgsighsuggestion of
a CAT system is as follows. Given a source texand a user validategrefix of
the target sentencg,, search for auffixof the target sentence that maximises the
posteriorprobability over all possible suffixes:

Us = argmax p(ys | ,yp) - (6.10)
Ys
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Taking into account thgi(y,, =) does not depend oy, we can write

s = argymaxp(ypys,x) , (6.11)
wherey,y; is the concatenation of the given prefixand a suffixys. Eq. (6.11) is
similar to Eqg. (6.1), but here the maximisation is carrietl@er a set of suffixes,
rather than full sentences as in Eq. (6.1). Therefore, theem@mains the same,
that is, we can still use SFSTs, while the search procedwdsi® be adequately
adapted.

This adapted search procedure has been structured in tvgeghdhe first
one copes with the extraction of a word graghfrom a SFSTZ given a source
sentencer. In a second phase, the search of the best translation suffsuffixes)
according to the Viterbi approach is performed over the wgnaph)V given a
prefixy, of the target sentence.

6.3.1 Word graph derivation

A word graph is a compact representation of all the possialestations that a
SFSTT can produce from a given source senten¢€™04c, Cr04b]. In fact, the
word graph could be seen as a kind of weighted finite-statensaion in which
the probabilities are not normalised. Intuitively, the d@raph generated retains
those transitions in the SFST that were compatible with thece sentence along
with their transition probability and output symbol(s).

Formally, given a SFST = (X,A,Q,qo,qy,0,p, f) and a source sentence

T = x1,- T4, Ty, the constructed word graph is defined as a tople=
(A, Q' qp, 45,0, f):

Q = Qxj:0<j<|z|

& = {(¢:7—-1,7,(d.9) | (¢,25,5,4) € 6}

% = (,0)

¢; = {(d 12D | (¢ 2.,7,d) €6) A (d €qp)}

There are several minor issues to deal with in this constmucFirst, the output
symbol for a given transition could contain more than onedwvam this case, aux-
iliary states were created to assign only one word for eamisition and simplify
the posterior search procedure. Secondly, it is possildi@te words in the source
sentence that do not belong to the source vocabulary in ti$¥ SFhis problem
is solved with the introduction of a special generic “unkmoword” in the source
vocabulary of the SFST. Lastly, if the SFST was generatetussmoothed inter-
polated language model, then before parsing every wordecddlarce sentence we
have to compute all those states reachable wittansition§ from the set of active
states. Also in this case, the set of final states in the waplgis augmented with
states that are reachable witkransitions from final states.

PA A-transition is a transition of the forify, \, 7, q’).
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An example of a word graph is shown in Figure 6.3. This worgfraas ex-
tracted from the SFST in Figure 6.1 when parsing the sourmteseethe scanner
The initial step computes those states that are reachalie)wiansitions from
the initial stateA, that isC. Therefore the set of initial active stat8sbecomes
{A,C%} in the SFST andV = {A0,C0} in the word graph. Then, for the first
source wordhe and for each state i, we retain those edges and its associated
destiny state whose input symbotieg, transferring this information into the word
graph. For instance, the edge with inplo and outputl going from the statel to
the stateB in the SFST is mapped into the word graph as the edge with dyehbo
going from the statel0 to the state31. As a result of parsinthe, we define a new
set of active state§ = {B} in the SFST andV = {B1} in the word graph, for
which we compute those states reachable withansitions, that isS = {B,C}
andW = {B1,C1}. Now we parse the source wosganney transferring those
compatible edges and associated states in the SFST to tliegnaph. For ex-
ample, the edge going from the staeto the statels with input symbolscanner
and output symboA in the SFST, becomes an edge from the siatdo the state
E2 with symbol \. After parsing the last wordcanney the set of active states
isS = {D,E} andW = {D2, E2}, being these latter states, final states. As
we said before, we consider an extra step computing thotes steachable with-
transitions, so we have that= {D, £, C'} andW = {D2, E2,C2} incorporating
the stateC'2 in the set of final states.

Once the word graph is constructed, it can be used to find thtecbenpletions
for the part of the translation typed by the human translaiste that the word
graph depends only on the source sentence, so it is repeatselll to find the
completions of all the different prefixes provided by theruse

“scanner" / "escaner" (0.25)

“the” / "el" (0.67) “scanner' / "escaner” 0.1)]( D2 )\ . ..

" /" (0.33) “"the" / "el" (0.2)

“scanner" /"™ (0.1)

“scanner” /"™ (0.25)

Figure 6.3: Word graph extracted from the SFST in Figure 6.1 when parsing
the source sententiee scanner

6.3.2 Search forn-best translations given a prefix of the target sen-
tence

Ideally, the search problem consists in finding the targ#ixsy, that maximises
the posterior probability given a prefixy, of the target sentence and the source
sentencer, as described in Eq. (6.11).

To simplify this search, it will be divided into two steps drgses. The first one
would deal with the parsing af, over the word grapiV. This parsing procedure

JCS-DSIC-UPV 117



Chapter 6. Computer-assisted translation based on stacfiage-state transducers

would end defining a set of statgy, that define paths from the initial state whose
associated translations inclugg. To clarify this point, it is important to note that
each state in the word graph defines a set of paths reaching this state

©q = 1(00,Tgy» 11)(q1, Yy 2)5 - - - » (pred(q), Ty, @)} (6.12)

and so, a set of translation prefixes

p(eq) =Yy =Ty Ugy - - Uy} (6.13)

is defined as the concatenation of the output symbols of tifierelt paths that
reach this state from the initial state. Therefore,

Qp=1q:yp € pleg)}- (6.14)

The second phase would be the search of the most probalsatian suffix from
any of the states iq);,. Formally,

Vg = {(q,7, succ(q)), ..., (pred(q),j,.q) g€ Q, N € ¢y} (6.15)

wherey; =7, .. Y, SO

s = arg max p(1y). (6.16)
Ys

Finally, the complete search procedure extracts a tramsl&om the word graph
whose prefix ig;, and its remaining suffix is the resulting translation suifix

Error-correcting parsing

In practise, however, it may happen thatis not exactly present in the word
graph)V. The solution is not to usg, but a prefiXy;, that is themost similar
to y, in some string distance metric. The metric that will be erpptbis the well-
known edit distance based on three basic operations: imsegubstitution and
deletion. Therefore, the first phase introduced in the pressparagraph needs to
be redefined in terms of the search for those staté¥ iwhose sep(y,) contains
y,,, that is, the set of stateg),. It should be noticed thay, is not unique, but there
exist a set of prefixes inV whose edit distance tg, is the same and minimum.

Given a translation prefiy,, the computation Oan is efficiently carried out
by applying an adapted version of the error-correcting ritlgm for regular gram-
mars [Wag74] over the word graply. This algorithm returns the edit distance
(ed) with respect tay, for each statg in W

f(ypa q) = min ed(yp7 y;)) (617)
Yp€p(Pq)
However we are interested in those states minimising thaledance with respect

toy,

Q;, = argminé(yp, q)- (6.18)
qeQ’
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The asymptotic cost of this algorithmd¥(|y,|- |Q’'|- B), whereB is the (average)
branching factor of the word graphy.

The implementation of the error-correcting parsing istfartimproved by vis-
iting the states iV in topological order, and incorporating beam-search tech-
nigues [Low76] to discard those states whose minimum edit ioworse than
the best minimum edit cost at the current stage of the palsraygiven constant.
Moreover, given the incremental natureyf the error-correcting algorithm takes
advantage of this peculiarity to parse only the new suffiy,qfrovided by the user
in the last interaction, that is, the concatenatiom ehdk.

As mentioned before, once the @;g has been computed, the search of the

most probable translation suffix could be calculated from @fnthe states irQ;.
In practise, a subset of statgsfrom @), is selected to find the suffiy,. These
statesg, maximise the most theosterior probability of the word-graph prefix
y,, computer during the error-correcting parsing process.s Tiéximisation is
performed according to the Viterbi approximation.

Furthermore, it may be the case that a user prefix ends in amiglete word
during the interactive translation process. Thereforés itecessary to start the
translation completion with a word whose prefix matches timignished word.
Thus, the proposed algorithm searches for such a word: dwossider the target
words of the edges leaving the nodes returned by the erroeating algorithm.
If this initial search fails, then a matching word is lookeg in the word graph
vocabulary. Finally, as a last resort, the whole transduoeabulary is taken into
consideration to find a matching word, otherwise this incletgpword is treated
as an entire word.

N-best search

The implementation of this CAT system is able to provide ao$elifferent trans-
lation suffixes, instead of a single suggestion. To this psep an algorithm that
searches for the-best translation suffixes in a word graph is required. Among
the n-best algorithms available, the REA described in [JM99] selected. The
main two reasons that support this decision are its sintplicicalculate best paths
on demand and its smooth integration with the error-camggbarsing algorithm.
Basically, the interaction between these two algorithmsgresorrecting ancdh-
best, is carried out by means of the state with the minimurndéstiance returned
by the error-correcting parsing, from which thebest translation suffixes can be
calculated.

The version of REA included in the CAT system, which is beimgatibed,
stores for each staigin W, the heap of current best paths (in the form of next
state in the best path) fromto any final state. The size of this heap depends on
the number of transitions leaving During the initialisation of REA, the initial
sorted list of best paths for each state is calculated stpftom the final states
and visiting the rest of states in backward topological ordehis last condition
imposes a total order ip’ that favours the efficient calculation of the heap of best
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paths. This is so because each state is visited only onceremedthe best paths of
the preceding states have already been computed.

Then, among the set of states@g from which then-best translation suffixes
need to be calculated, REA first extracts the 1-best path fhenset of stateg’,
since it was precomputed during REA initialisation.nlf> 1, then the next best
path will be obtained. The next best path can be found amangahdidate paths
still left in the heap of states ip/, and the second best path computed from the
state from which we extracted the best path.

The computation of the second best path, whenever exispsires the recur-
sive calculation of this path through the states visitedhanl-best path. This same
rationale is applied to the calculation of subsequent kegtsispuntiln-best different
translation suffixes have been obtained or no more best pathke found.

6.4 Experimental framework and results

The CAT system introduced in previous sections was asséssmadjh some series
of experiments with two different corpora that were acqliia@d preprocessed in
the framework of the TransType2 (TT2) project [AtoO1]. Instlsection, these
corpora, the assessment metrics and the results are mesent

6.4.1 XRCE and EU corpora

Two bilingual corpora from different semantic domains wesed in the evaluation
of the CAT system described. The language pairs involveblerassessment were
English/Spanish, English/French and English/German.

The first corpus, nameB{RCEcorpus, was obtained from a miscellaneous set
of printer user manuals. Some statistics of the raw versiidimeocorpus are shown
in Table 6.1. It should be noted that the English manuals iffexeht in each pair
of languages.

The size of the vocabulary in the training set ranges frond@®b,to 37,000
words. In the test set, even though all test sets have sisidar perplexity varies
abruptly over the different language pairs.

The second dataset was compiled from the Bulletin of the [i@an Union,
which exists in the 11 official languages of the European brand is publicly
available on the Internet. This dataset is known as®tecorpus. A summary of
its features is presented in Table 6.1.

The size of the vocabulary of EU corpus is at least three tiamger than that
of the XRCE corpus. These figures together with the amounirofing words and
sentences reflect the challenging nature of this task. Hexyvthe perplexity of the
EU test set is lower than that of the XRCE. There are two reatimat combines to
explain this phenomenon. First, the different nature ofXRECE and EU corpora,
user manuals that required heavy preprocessing versumiafive bulletins rather
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grammatically uniform requiring little preprocessing.c8ed, the size of the EU
corpus is larger than that of the XRCE corpus.

Table 6.1: The XRCE and EU corpora English(En) to/from Spanish(Es),
German(De) and French(Fr). Trigrams models were used t@utethe
test perplexity £ denotesx1.000, andM denotesx<1.000.000).

XRCE EU
En/Es En/Fr En/De En/Es En/Fr En/De
sent.pairs (K) 56 49 53 214 223 215

avg.length (words) 10/12 10/11 10/9 24/27 25/28 26/24

c

E vocabulary (Kwords)| 26/30 25/27 25/37 84/97 84/91 86/153
singletons (Kwords) | 10/12 9/11 10/18 38/43 38/40 39/75
run.words (Mwords) | 0.5/0.7 | 0.5/0.6 | 0.5/0.4 5/6 5/6 6/5
sentences (K) 11 1.0 1.0 0.8 0.8 0.8

avg.length (words) 718 10/10 11/10 25/28 25/28 25/24
run.words (Kwords) 8/9 10/10 11/10 20/23 20/22 20/19
run.chars (Kchars) 46/58 55/63 61/71 || 117/133| 117/132| 117/132
perplexity 103/61 | 180/131 | 90/155 || 58/46 58/45 57187

Test

Corpora preprocessing

A preprocessing module was implemented in order to redweedtpora complex-
ity and ease the learning process of the models.

The preprocessing has three main parts: tokenisation,rloase conversion
and categorisation. Tokenisation basically consistetienseparation of the punc-
tuation marks from the words. After that, all the characteese lowercased. Fi-
nally, the categorisation of some types of words was cawigd The idea was
to replace those words that remain invariable in all the laggs with a category
label.

Doing so, the vocabulary size was cut down considerably ¢ugp 70%), im-
plying an increment in the number of running words (less th@¥). As a result,
perplexity decreased significantly, which finally allowebedter transducer infer-
ence.

This preprocessing was also applied to the translationessycsince the mod-
els were learnt on the preprocessed version of the corpanasdguently, prefixes
written by the user had also to be preprocessed. In addéi@ustprocess mod-
ule was needed to make the translations given by the systghideéy the user,
undoing all the changes introduced by the preprocessieg (incategorisating,
suitably uppercasing and joining punctuation marks to wprdhree examples of
raw sentences along with their corresponding preprocesgsibns extracted from
the English partition of the XRCE corpus are shown in Figute 6
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1. Chapter 4 Scanning A Document 4-1
chapter<NUM> scanning a documenrtOTHERS>

2. PRINTS PER CARTON - 2 PACK  6R849
prints per carton <OTHERS> <NUM> pack <OTHERS>

3. 65PPM/230V Sold 109R340
<BULLET> ppm <MIDDLE _SLASH> <OTHERS> sold <OTHERS>

Figure 6.4: Three examples of preprocessed sentences extracted feom th
English partition of the XRCE corpus. The first line of eaclir pd sen-
tences shows the raw (original) version of the sentencelandecond line,

the preprocessed version. As observed some of the tokeneethain in-
variable were replaced by categorised labels, requiringesiones a previous
tokenisation process. Besides, all characters were ciauvierto lowercase.

6.4.2 Translation quality evaluation

The CAT system was assessed according to two differentrieriged therefore,
two different sets of evaluation measures are employed.

On the one hand, we proceeded to gauge the translationygpatitided by
SFST models that lie at the core of the CAT system. These arsdicalledoff-
line metrics. This evaluation was performed using WER and BLEUndhe case
of pure statistical translation systems. Here we also coeapilhecharacter error
rate (CER) measure, defined as the edit distance in terms of dhesdoetween
the target sentence provided by the system and the refemamstation. CER can
be thought of the estimated effort of a fictitious user wogkivith adummypost-
editing translation tool that suggests a single transtatidhis translation would
have to be corrected by this fictitious user applying the mimn number of editing
operations at the character level to achieve the refereanslation.

On the other hand, other assessment figures, naonelipe metrics, are aimed
at estimating the effort needed by a human translator toysedorrect transla-
tions using the interactive system. To this end, the targeistations which a real
user would have in mind are simulated by the given referenths first transla-
tion hypothesis for each given source sentence is compdtb@wingle reference
translation and the longest common character prefix (LCBbiained. The first
non-matching character is replaced by the correspondifegerece character and
then, a new system hypothesis is produced. This processr&dt until a full
match with the reference is obtained.

Each computation of the LCP would correspond to the useringofor the
next error andnoving the pointeto the corresponding position of the translation
hypothesis. Each character replacement would corresppadkey strokeof the
user. If the first non-matching character is the first charaof the new system
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hypothesis in a given iteration, no LCP computation is ndetieat is, no pointer
movement would be made by the user. Bearing this in mind, ieeléhe follow-
ing interactive-predictive performance measures:

e Key-Stroke RatidKSR). Number ofkey strokeghat should be needed to
obtain the reference translation divided by the number mfing characters.

e Mouse-Action RatidMAR). Number of mouse movemenfdus an extra
mouse actioraccounting for the acceptance of the final correct tramsiati
A mouse movement is assumed to happen between key strokels ariin
non-consecutive positions. It models the effort to positilbe cursor each
time the user would need to amend a part of the system traomslat

e Key-Stroke and Mouse-Action RaflMSR). KSR plus MAR.

KSR reflects the ratio between the number of key-strokeaotemns of a ficti-
tious user when translating a given text using a CAT systempawed to the num-
ber of key-stroke interactions, which this user would ndedranslate the same
text without any aiding translation tool. In contrast, thifedence between CER
and KSR gives us an idea of how much typing effort is saved thighuse of an
interactive and predictive MT system with respect to a dunpast-editing tool.

The second measure under consideration is KMSR (the ctitmulaf MAR is
straightforward given KSR and KMSR) offers a better appradion to the total
amount of work that a translator would be saving when traingjausing a CAT
system. In any case, we should keep in mind that the main doalitomatic
assessment is to estimate the effort of the human transldterimportant question
is whether the estimated productivity of the human traonslean be increased or
not by the CAT approach.

6.4.3 Experimental results

These experimental results were obtained with GIATI trameds based on smoothed
trigram language models for théRCE corpus and smoothegtgram language
models for theEU corpus (see Tables 6.2 and 6.3). The translation evaluation
measures presented in the previous section were calcdatad independent test
set when translating from English into a non-English lamgguand vice versa.

Analysing the results achieved in t¥dRCEcorpus (see Table 6.2), it is ob-
served that the results for English-Spanish are subsligritietter than those ob-
tained in the rest of language pairs. A possible reason tt@aies these error
rate discrepancies between English-Spanish with respdenglish-German and
English-French could be found in the test perplexity défezes shown in Table 6.1.
The Spanish test perplexity is significantly lower than tfahe rest of languages
and this fact is transformed into better translation result

This rationale is compatible with the results obtained f@ EU corpus. In
these results, the English-Spanish experiment exhibitgesi error rates to those
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of the English-French pairs, but somewhat better than tbhbee English/German
pairs. This same tendency is followed by the perplexity &slappearing in Ta-
ble 6.1. As observed, the German language seems to be momesothan the
other languages and this is reflected in Table 6.3.

Table 6.2: Off-line (BLEU, WER[%] and CER[%]) and on-line (KSR,
KSMR) measures on théRCEcorpora.

off-line on-line

XRCE | BLEU WER CER| KSR KSMR
En-Es | 52.0 379 279 13.0 21.8
Es-En | 38.9 453 32.2| 15.9 26.9
En-Fr | 24.6 70.7 57.5| 30.2 438
Fr-En 19.2 68.9 56.1| 295 455
En-De | 20.2 745 62.9| 30.6 45.7
De-En| 20.5 71.4 60.6| 30.6 46.6

The KSR and KSMR figures of Tables 6.2 and 6.3 clearly mané@sbductiv-
ity gain if we use the CAT system presented. For exampleskasing from English
into Spanish on th&XRCEcorpus, the user would only need to perform 13.0% of
the key-stroke interactions that would be required withibig CAT system. On
the other hand, the KSR results for the English-French argli#fnGerman ex-
periments are 30.2% and 30.6%, respectively. Even in thesescthe number of
key-stroke interactions is one third of that that would gmtanslating the same test
set without a CAT system. The results obtained in the othrexction are similar.

If we consider the mouse interaction in the CAT evaluationa,can observe a
50% increment in the interaction rates, key strokes plussaagtions, for most of
the language pairs in both corpora. These figures reflecattiéifat the productivy
gain that CAT systems would theoretically provide is somandependent on the
interaction scheme that is assumed.

In the EU corpus, the best KSR results were obtained for the Englishdh
experiment, followed by the English-Spanish results amallff, the worst results
were achieved for English-German. Despite the importdiférénce in size be-
tweenXRCEandEU, the results are similar and for some language pairs evesrlow
in the EU corpus. As previously mentioned, the perplexity figures athbcor-
pora partially explain these results. For instance, thdigmgrrench and English-
German experiments present lower perplexity figures angéretsults in theeU
corpus than in th&XRCEcorpus.

As observed in the result tables, CER figures usually doltdeKiSR figures
bringing to light the benefits of an interactive and pregielCAT system compared
to a dummy post-editing tool. However, it could be argued this comparison is
not completely fair since the CER measure simulates a venplsi post-editing
system. We are aware that a real post-editing tool wouldrparate additional
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Table 6.3: Off-line (BLEU, WER[%] and CER[%]) and on-line (KSR,
KSMR) measures on theU corpora.

off-line on-line

EU BLEU WER CER| KSR KSMR
En-Es| 39.6 546 453 21.3 33.0
Es-En| 39.8 52.0 43.1| 20.0 311
En-Fr | 41.6 52.8 415/ 195 30.1
Fr-En | 43.3 47.8 39.2/ 17.8 28.0
En-De| 29.4 64.4 54.6| 23.4 359
De-En| 28.7 66.4 57.7| 258 39.1

functionalities to reduce the typing effort of the user, ffastance the prediction
of alternatives to the word that is being corrected. Bein@sat is, this com-
parative statement should be carefully considered takitigaccount the working
conditions that were assumed.

Table 6.4: Comparative table 1-best to 5-best for KSR and KSMR [%] on
the XRCEcorpora.

1-best 5-best
XRCE | KSR KSMR | KSR KSMR

En-Es | 13.0 21.8 | 11.2 19.2
Es-En | 159 26.9 | 13.6 235
En-Fr | 30.2 43.8 | 27.3 40.1
Fr-En | 29.5 455 | 26.9 420
En-De | 30.6 457 | 27.4 418
De-En| 30.6 46.6 | 27.4 426

Table 6.4 shows a comparative table between two CAT systengspf them
providing the best translation and the other, 5-best tadiosis. In the latter sys-
tem, the calculation of KSR and KSMR was conducted considetat translation
out of the five suggested translations that minimises thet thesnumber of key
strokes needed to achieve the reference translation. Ateq) there is a notable
improvement when compariniybest to5-best translation accuracy. This gain in
translation quality diminishes in a log-wise fashion as naeéase the number of
best translations.

From a practical point of view, the improvements providedusyng n-best
translations would come at the cost of the user having to g@owndhich of these
translations is more suitable. In real operation, this tatal user effort may or
may not outweight the benefits of thebest increased accuracy. Consequently,
this feature should be offered to the users as an option.
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In the TT2 project, this CAT system based on SFST was exhvalistevalu-
ated by human translators through real test translationd®{MNS05, Mac06].
The results showed that the actual productivity of humanstedors depended on
the given test texts. In cases where these texts were quitaretated with the
training data, the system did not significantly help the harmmanslators to boost
their productivity. However, when the test texts were reabty well correlated
with the training data, a high productivity gain was registk close to what could
be expected according to the KSR/MAR empirical results.

6.5 Conclusions and future work

In this chapter, SFSTs have been revisited and applied ta GEETs are learnt
from parallel corpora and in our case, they were inferrechieyGIATI technique,
which was briefly reviewed.

Furthermore, the concept of interactive search was intedalong with well-
known algorithms, i.e. error-correcting andbest parsing, that allow us the cal-
culation of the suffix translation that better completesgredix previously refined
by the user. It is fundamental to remember that usability landresponse time
are vital features for CAT systems. CAT systems need to geotrianslation suf-
fixes after each user interaction and this imposes the mmgeint of very efficient
algorithms to solve the search problem.

The automatic evaluation carried on two different corpagp®rts the idea that
the incorporation of statistical MT technigues into a CABteyn would reduce the
human translator effort, without sacrificing the high gtyadif the translations. This
thesis was corroborated by an external evaluation condumgtdhuman translators
in real working conditions.

Given the relatively high positioning effort (MAR) obsedsén the experi-
ments, it seems worth investigating interaction modalitiehich are alternative
or complementary to the traditional keyboard and mousehigrespect, the use
of speech interaction has been considered in [VG&, with encouraging results.
Finally, the integration of confidence measures [UNO5] t@guwsers’ attention
into the interactive and predictive CAT scenario are toitls to be explored in
future research.

Preliminary versions of the CAT system presented in thiptdrahas been
published in numerous international and national confegsn

e J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casac
berta, E. Vidal, D. Picé and J. Gonzalez. A syntactic pattecognition ap-
proach to computer assisted translation. In A. Fred, T.IC&elCampilho,
R. P.W. Duin, and D. de Ridder, editoisgvances in Statistical, Structural
and Syntactical Pattern Recognitiohecture Notes in Computer Science,
pages 207-215, Springer-Verlag, Lisbon (Portugal), Aug0e4.

e J. Civera, E. Cubel, A. L. Lagarda, D. Pic6, J. Gonzalez, F. Casatabe
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E. Vidal, J. M. Vilar and S. Barrachina. From machine tratistato com-
puter assisted translation using finite-state models.Proteedings of the
Conference on Empirical Methods in Natural Language Prsiteg EMNLP
2004 pages 349-356, Association for Computational LingusstBarcelona
(Spain), July 2004.

e E. CubelJ. Civera, J. M. Vilar, A. L. Lagarda, F. Casacuberta, E. Vidal, D.
Pico, J. Gonzéalez and L. Rodriguez. From machine trdosléo computer
assisted translation using finite-state models. Ptaceedings of the 16th
European Conference on Atrtificial Intelligence, ECAI 20pdges 586-590,
IOS Press, Valencia (Spain), August 2004.

e J. Civera, E. Cubel, A. L. Lagarda, F. Casacuberta, E. Vidal, J. M.Alad
S. Barrachina. Computer-assisted translation using fatéte transducers.
In Actas del XXI Congreso de la Sociedad Espaola para el Pragesdo
del Lenguaje Natural, SEPLN 200%ages 357-363, Granada (Spain), Septem-
ber 2005.

e J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casac
berta and E. Vidal. A novel approach to computer assisteslmion based
on finite-state transducers. In A. Yli-Jyra, L. Karttunendal. Karhumaki,
editors, Finite-State Methods and Natural Language Processingcture
Notes in Artificial Intelligence (LNAI-LNCS). Springer-Viag, Helsinki (Fin-
land), September 2005.

e J. Civera, J. M. Vilar, A. L. Lagarda, E. Cubel, S. Barrachina, F. Casac
berta and E. Vidal. A Computer-Assisted Translation Toaldohon Finite-
State Technology. IProceedings of the 11th annual conference of the
European Association for Machine Translation, EAMT 2008&ges 33-40,
Oslo (Norway), June 2006.

However, the content of this chapter reflects the final varsibthe interac-
tive and predictive CAT system based on SFST technologylojgsd in the TT2
project. This system along with two other CAT systems basedtate-of-the-art
phrase-based and alignment templates technology and catmpaesults are to
be published in an international journal:

e S. Barrachina, O. Bender, F. CasacubeitaCivera, E. Cubel, S. Khadivi,
A. L. Lagarda, H. Ney, J. Tomas, E. Vidal and J. M. Vilar. &tital
approaches to computer-assisted translati@omputational Linguistigsin
press.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

The work developed in this thesis covers three differentc®m natural language
processing: text classification, statistical machinediaion and computer assisted
translation.

In TC, we proposed a novel application called bilingual Tihdsically con-
sists in the classification of bilingual documents that esieglation of each other.
This peculiar feature allowed us to present two classes aefsdclassifiers): on
the one hand those models that naively assume the independémlocuments
conveying the same meaning, but written in different lamgsa and on the other
hand, those models that exploit this characteristic byniegrthe word correlation
across languages in order to improve the accuracy of thedeive classifier.

For the first class of models, those assuming no direct depeydacross lan-
guages, we introduced five unigram models presented in €h2pFor the second
class of models, those learning the word mapping acrossidayes, we proposed
the unigram-M1 model in Chapter 3. For all these models wdiegbpnixture
modelling as a powerful way to deal with multimodal data.

These two classes of models were evaluated offtireellertask and théBAF
corpus, reaching the following conclusions. First, migtlhiased classifiers are
superior to single-component classifiers. Secondly, dpilat classifiers ourper-
form their monolingual counterparts on tBAF corpus, but this is not the case
on theTravellertask due its simplicity. Lastly, this same conclusion camlizavn
between the unigram-M1 model and the naive unigram-baseatkismiovhen their
corresponding classification error rate figures are conapafdiese results were
complemented with comparative experiments with otheest&the-art learners
from the field of ML, these were support vector machines arastiog techniques.
These techniques offered similar performance to thoseepted in this thesis on
the Traveller task, but significantly worse on tHe@AF corpus. Furthermore, Ap-
pendix A contains additional experiments to assess themeance of monolin-
gual and bilingual text classifiers, when its feature regméstion goes beyond the
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unigram.

In Chapter 2, we also presented a real application of bilhgext classifiers
in the framework of machine-aided indexing. This interggtapplication dealt
with the automatic assignment of keywords to documentsderaio describe their
content. This process is performed under the supervisiantafman expert that
refines the output of the classification system. The sat@faexperimental results
obtained on the JRC-Acquis corpus, suggested the possifiilthe integration of
our bilingual classifiers as the backend of a MAI system.

In statistical MT, we introduced three novel context-sfiedranslation mod-
els as a mixture extension of the well-known M1, M2 and HMM mledn Chap-
ters 3, 4 and 5, respectively. The Viterbi alignments of ¢htbsee mixture mod-
els were used to value the benefits of context-specific &arl models, in the
framework of two shared tasks devoted to the assessmengofrant and trans-
lation quality. The experimental results aimed at studytimg alignment quality
on the Hansard task reflected statistically significant cgdos in alignment error
rate for the M2 mixture model, showing little or no gain in thther two models.
The experiments to evaluate the translation quality of tiidure models mani-
fested minor, but systematic improvements in BLEU scordHose phrase-based
systems trained on a mixture model with more than one conmgrer mixture.
Moreover, the BLEU figures reported for the HMM mixture mode at the level
of state-of-the-art systems on the Europarl and News-Cantanedatasets.

In the case of the M2 mixture model, an iterative dynamiggpranming search
algorithm, designed for the conventional M2 model, wassié in order to run
additional experiments on a simple semi-artificial taske Plurpose of these ex-
periments was to analyse the evolution of the translatialityuof the model un-
der controlled experimental conditions, minimising sosanice factors that could
mask or interfere in the final results. Interestingly, thsutes achieved in these
conditions show a statistically significant improvementranslation quality as we
increase the number of components in the mixture.

In Chapter 6, we presented an interactive and predictive §ATem based on
stochastic finite-state transducer technology. To thipgae, it was necessary to
adapt, implement and integrate efficient error-correcfiagsing anch-best trans-
lation algorithms in order to guarantee low response timéewtreserving ade-
guate translations. This CAT system was automaticallyuatetl on two tasks,
XRCE and EU corpora, revealing a significant reduction inrtgpeffort for both
tasks. An external human evaluation by translation agsraighe XRCE task, re-
ported productivity boosts when the test texts were reddpmeell correlated with
the training data employed to infer the underlying stodhdstite-state transducer
model.

Summarising the main contributions of this thesis are tHeviing:

1. Bilingual TC is proposed as a novel task in text classificatWe introduce
four bilingual mixture models: the bilingual unigram mogdtie local and
global decomposition models and the unigram-M1 model. Wainlgood
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results, being comparable or superior to those of stateeshrt techniques
on two tasks of different complexity.

2. Bilingual MAI is presented as a novel application in maehaided index-
ing. The results reported on the JRC-Acquis corpus convepaissibility of
a MAI system based on the models previously introduced.

3. Translation models for heterogeneous data are presas@dixture exten-
sion of well-known word alignment translation models. Mgrecisely, the
M1, M2 and HMM mixture models are thoroughly evaluated frdma view-
point of their translation quality with minor, but systemamprovements in
BLEU score; and complementary experiments to assess tiraradnt qual-
ity of these mixture models reflected a statistically sigaifit reduction of
AER for the M2 mixture model. The BLEU scores reported for ithdM
mixture model are at the level of state-of-the-art tramnsfasystems.

4. Error-correcting and-best parsing algorithms for stochastic finite-state trans
ducers were adapted to work under the tight usability andrésponse time
constraints of a CAT environment. This system was autoraltiand man-
ually evaluated with satisfactory results.

7.2 Scientific publications

The content of this thesis has been published in interratimorkshops, confer-
ences and journals. In this section, we review those puldita pointing out their
relation with this thesis.

The work developed on bilingual TC was published in inteoret! confer-
ences and workshops. More precisely, the following set bfipations are related
to that work in which bilingual smoothed n-gram language eigavere used (see
appendix A):

e J. Civera, E. Cubel, A. Juan, and E. Vidal. Different approaches todilal
text classification based on grammatical inference tectasigIn2nd Iberian
Conference on Pattern Recognition and Image Analygdume 3523 of
Lecture Notes in Computer Scienpages 630-637. Springer-Verlag, Estoril
(Portugal), June 2005.

e E. Cubel,J. Civera, and E. Vidal. On the use of grammatical inference
techniques for bilingual text classification. &orkshop on Grammatical
Inference Applications: Successes and Future Challergges 46-50, Ed-
inburgh (Scotland), August 2005.

e J. Civera, E. Cubel, and E. Vidal. Bilingual Text Classification. 3nd
Iberian Conference on Pattern Recognition and Image Aiglyslume
4477 of LNCS pages 265-273. Springer, Girona (Spain), June 2007.
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The content of Chapter 2 was published in an internationaksymp and an inter-
national conference:

e J. Civera and A. Juan. Multinomial Mixture Modelling for Bilingual k&
Classification. IrProceedings of the 6th International Workshop on Pattern
Recognition in Information Systems, PRIS 20p&ges 93—-103, INSTICC
Press, Paphos (Cyprus), May 2006.

e J. Civera and A. Juan. Bilingual Machine-Aided Indexing. Pioceedings
of the fifth international conference on Language ResouscesEvaluation,
LREC 2006 pages 1302—-1305, Genoa (Italy), May 2006.

The content of Chapter 3 related to the unigram-M1 mixturel@hdor bilingual
TC have been submitted to an international conference:

e J. Civeraand A. Juan. Bilingual Text Classification using the IBM 1isa
lation Model. Accepted for publication in the sixth intetioaal conference
on Language Resources and Evaluation, LREC 2008.

The M2 mixture model, the extension of the dynamic-programgnsearch al-
gorithm and their corresponding results presented in @naptvere published in
an international conference:

e J. Civeraand A. Juan. Mixtures of IBM Model 2. IRroceedings of the 11th
annual conference of the European Association for Machiranslation,
EAMT 2006 pages 159-167, Oslo (Norway), June 2006.

The HMM mixture model and some of the results presented irpp@&h& were
published in an international workshop:

e J. Civera and A. Juan. Domain adaptation in statistical machine latioa
with mixture modelling. InProceedings of the Second Workshop on Statis-
tical Machine Translationpages 177-180, Association for Computational
Linguistics, Prague (Czech Republic), June 2007.

The work carried out in this thesis focused on the developmiasearch algo-
rithm for interactive and predictive CAT using SFSTs (seapthr 6). This system
evolved over the time in the framework of the TT2 project ioying its efficiency
and quality. The scientific community was timely informediudé advances of this
system in numerous publications in international and naticonferences:

e J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casac
berta, E. Vidal, D. Picé and J. Gonzalez. A syntactic pattecognition ap-
proach to computer assisted translation. In A. Fred, T.lIC#&elCampilho,

R. P.W. Duin, and D. de Ridder, edito’sgdvances in Statistical, Structural
and Syntactical Pattern Recognitiohecture Notes in Computer Science,
pages 207-215, Springer-Verlag, Lisbon (Portugal), Aug084.
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e J. Civera, E. Cubel, A. L. Lagarda, D. Pic6, J. Gonzalez, F. Casatabe
E. Vidal, J. M. Vilar and S. Barrachina. From machine tratistato com-
puter assisted translation using finite-state models.Prbteedings of the
Conference on Empirical Methods in Natural Language Preces EMNLP
2004 pages 349-356, Association for Computational LingusstBarcelona
(Spain), July 2004.

e E. CubelJ. Civera, J. M. Vilar, A. L. Lagarda, F. Casacuberta, E. Vidal, D.
Pico, J. Gonzalez and L. Rodriguez. From machine trdasléo computer
assisted translation using finite-state models. Ptaceedings of the 16th
European Conference on Atrtificial Intelligence, ECAI 200dges 586-590,
IOS Press, Valencia (Spain), August 2004.

e J. Civera, E. Cubel, A. L. Lagarda, F. Casacuberta, E. Vidal, J. M.Alad
S. Barrachina. Computer-assisted translation using fitéte transducers.
In Actas del XXI Congreso de la Sociedad Espaola para el Procesdo
del Lenguaje Natural, SEPLN 200%ages 357-363, Granada (Spain), Septem-
ber 2005.

e J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casac
berta and E. Vidal. A novel approach to computer assistedtation based
on finite-state transducers. In A. Yli-Jyra, L. Karttunendal. Karhumaki,
editors, Finite-State Methods and Natural Language Processingcture
Notes in Artificial Intelligence (LNAI-LNCS). Springer-Viag, Helsinki (Fin-
land), September 2005.

e J. Civera, J. M. Vilar, A. L. Lagarda, E. Cubel, S. Barrachina, F. Casac
berta and E. Vidal. A Computer-Assisted Translation Toaldohon Finite-
State Technology. IfProceedings of the 11th annual conference of the
European Association for Machine Translation, EAMT 2008&ges 33-40,
Oslo (Norway), June 2006.

The final results of the TT2 project including those obtaiméth the SFST
technology presented in this thesis and those of other @te-sif-the-art systems
based on phrase-based and alignment templates approadhés published in
an international journal:

e S. Barrachina, O. Bender, F. Casacubeitaivera, E. Cubel, S. Khadivi,
A. L. Lagarda, H. Ney, J. Tomas, E. Vidal and J. M. Vilar. &tital
approaches to computer-assisted translati@omputational Linguistigsin
press.

The SFST system depicted in this thesis was evaluated inva&ing condi-
tions by two translation agencies that collaborated asipestin the TT2 project.
A general public presentation of this system and the humatuation performed
will be published in an international journal for a very bidelaased audience of
computing professionals:
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e F. Casacubertd, Civera, E. Cubel, A. L. Lagarda, G. Lapalme, E. Macklovitch
and E. Vidal. Human interaction for high quality machinensiation. Com-
munications of ACMIn press.

Finally, the integration of this CAT system with an autornajpeech recog-
niser in order to dictate translations and corrections imgractive manner was
published in an international conference and an internatipurnal:

e L. RodriguezJ. Civera, E. Vidal, F. Casacuberta, and C. Martinez. On the
use of speech recognition in computer assisted transldtidProceedings of
the InterSpeech’Q5ages 2269-2272, Lisbon (Portugal), September 2005.

e E.Vidal, F. Casacuberta, L. RodrigudzCivera, and C. Martinez. Computer-
assisted translation using speech recognititBEE Transaction on Audio,
Speech and Language Processihg(3):941-951, 2006.

7.3 Future work

There are several research lines that would be interestirexplore as a future
work in the different fields covered in this thesis.

In bilingual TC, the accuracy of the unigram mixture classitiould be signifi-
cantly boosted by incorporating some of the techniquesqs®qg in [R703, PT04]
from the ML community, or tackling this classification prels from the maxi-
mum entropy viewpoint [NLM99, JVNO07]. An obvious continieat of the work
presented is the application of mixture modellingitgram models [I099] in iso-
lation or together with a translation model. We believe th& promising line of
research could return interesting results, since it cogsbihe capability of captur-
ing word-context and domain-specific information

In Chapter 2, we circumvented the problem of multilabel telgissification
training a classifier for each class independently, igrptive overlapping among
classes, and predefining the number of classes to be outputevdr, there have
been previous works that assume the multilabel nature odidlte designing spe-
cific classifiers to elegantly solve this problem [McC99, E3WBJXG05]. One of
these approaches is tB®osTextesystem [SS00] that was already considered
the experiments of Appendix A.

The M1 model, although proved to be useful in bilingual TC $amall tasks,
possesses serious limitations that make it counterprivéuch large task like the
JRC-Acquis corpus. This limitation is the difficulty to gethword alignment evi-
dence in bilingual documents with excessive source or tdeggth. For example
in the JRC-Acquis corpus, it is almost impossible to learmdiaprrelation across
languages given that the average document length is ov@® Wbrds. A possible
solution to this problem would be the derivation of a phreased model that inte-
grates the M1 model at two levels. The first level would caurytbe alignment of
bilingual phrases defined by a segmentation hidden variabl& the second level

n
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would align words inside bilingual phrases as the usual Mdeholn this way,
we would reduce the range of the alignment variable to thagghdefined in the
upper-level model.

The M1 model has proved to be a versatile model that have baiywwused
in many different MT tasks. However, its applicability tchet NLP fields is still
quite unexplored. For example, cross-lingual informatietnieval [PJR0O7], cross-
lingual plagiarism and other cross-lingual applicatioa smitable to be studied as
future work.

Another interesting problem in TC is the extension of thénbilal scenario
to the multilingual one. This extension is trivial in the eas the decision rules
presented in Section 2.4.1 for the bilingual bag-of-wordslet, and the global and
local decompositions. This is also the case for the naivebawation of smoothn-
gram models presented in Section A.1.1. In the multilinge&nario many ques-
tions arise, how can we efficiently integrate several laggaanto a classifier?,
how would the classification error rate correlate with theusion of an increas-
ing number of multilingual sources into a classifier?, hofukwould be to learn
word correlation across more than two languages? Thesenéyesome of the
guestions that multilingual TC opens for future research.

In statistical MT, the application of mixture modelling t@ainslation models is
a natural evolution of these models in the advent of largdrlarger corpora with
greater domain variability. Indeed, the convenience aigisi weighted combina-
tion of models, instead of a single model trained on massisegata has already
been proved to be successful for large-scale language himggiel [BPXT07]. In
the case of language modelling, finite mixtures have beecesstully explored
for automatic speech recognition in [I099], so it would b&riasting to study the
use of mixture ofn-grams models for large-scale corpora in statistical MT- Fu
thermore, the derivation of other context-specific tratimtamodels, for example
phrase-based or syntax-based models, or even phrase+baskets parametrised
by context-specific word-based translation models, areapp and challenging
issues that are worth exploring as future work.

In this thesis, finite mixture modelling has been always i@t sentence level
as a continuation of the work developed on text classifinatiat it would be worth
exploring its applicability at word level, since it diregthddresses the common
problem of word ambiguity in natural languages. Senteegelland word-level
mixture model context-specific p.f. in two different axiserfence-level mixtures
consider the context defined by each sample, while word-teisd¢ures depend on
each word to establish this context.

To conclude, the interactive and predictive approach to GATpromising ap-
proach, just started to be explored, with many potentiatausehe leverage of the
statistical translation models underlying these systenasvays an active research
area from which CAT systems can benefit. Apart from this, thprovement in
the adaptation capabilities of the CAT system to the userections, the incor-
poration of confidence measures [UNO5] and the incorparasfan-line learning
techniques to take full advantage of the user amendmerighet CAT system,
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are tasks to be tackled to guarantee the usability and eftigief interactive and
predictive CAT systems.

140 JCS-DSIC-UPV



BIBLIOGRAPHY

[BPXT07] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Lamguage

[EWO05]

[1099]

[JVNO7]

[McC99]

[NLMO99]

[P+04]

[PIRO7]

[R+03]

[SS00]

[UNO5]

models in machine translation. Froc. of EMNLP-CoNLL'O7pages
858-867, Prague, Czech Republic, June 2007. Associatio8dm-
putational Linguistics.

A. Elisseeff and J. Weston. A kernel method for midtelled classi-
fication. InProc. of SIGIR’05 pages 274-281, August 2005.

R. M. lyer and M. Ostendorf. Modelling long distancepgndence in
language: Topic mixtures versus dynamic cache modEEE Trans-
actions on Speech & Audio Processigl):30-39, 1999.

A. Juan, D. Vilar, and H. Ney. Bridging the gap betwd¢aive Bayes
and Maximum Entropy Text Classification. Rroc. of PRIS’07pages
59-65, Funchal, Madeira - Portugal, June 2007.

A. McCallum. Multi-label text classification with enixture model
trained by EM. InProc. of AAAI'99: Workshop on Text Learninguly
1999.

K. Nigam, J. Lafferty, and A. McCallum. Using maximuentropy for
text classification. IfProc. of IJCAI'99 pages 61-67, July 1999.

D. Pavlov et al. Document Preprocessing For Naive Bayassfica-
tion and Clustering with Mixture of Multinomials. IRroc. of KDD’04,
pages 829-834, New York, NY, USA, August 2004. ACM.

D. Pinto, A. Juan, and P. Rosso. Using query-reted@cuments pairs
for cross-lingual information retrieval. IRroc. of TSD'07 pages 630—
637, September 2007.

J. Rennie et al. Tackling the Poor Assumptions of NaivgeRaTlext
Classifiers. IrProc. of ICML'03 pages 616-623, August 2003.

R. E. Schapire and Y. Singer. Boostexter: A boodbaged systemfor
text categorizationMachine Learning39(2-3):135-168, 2000.

N. Ueffing and H. Ney. Application of Word-Level Conédce
Measures in Interactive Statistical Machine Translation.Proc. of
EAMT’05, pages 262—-270, Budapest, Hungary, May 2005.

141



Bibliography

[ZIXGO5] S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled skification using
maximum entropy method. IRroc. of SIGIR’05pages 274-281, New
York, NY, USA, August 2005. ACM.

142 JCS-DSIC-UPV



APPENDIXA

ADDITIONAL EXPERIMENTS ON
BILINGUAL TEXT
CLASSIFICATION

This appendix presents a series of additional experimantslingual TC in order
to assess the performance of monolingual and bilingual disisifiers, when its
feature representation goes beyond the unigram. Theseirenes were carried
out on the same datasets introduced in Chapter 2, that illeg BAF and JRC-
Acquis using smoothed-gram language models, SVM and boosting techniques.

A.1 Experiments on Traveller and BAF datasets

A.1.1 Smoothedn-gram language models

This set of experiments was performed with the well-knowd pablicly avail-
able SRILM toolkit [Sto02]. The language models were trdinsing Witten-Bell
discount [WB91] and back-off as smoothing technique. Otligzount algorithms
were also evaluated, but they were discarded because #réarmpance was sig-
nificantly poorer.

The general training procedure consists in generating gukge model for
each supervised class separately and for both languagependently. These
class-dependent language models were used to define muuraliand bilingual
naive Bayes classifiers. The results for the Traveller an# BAtasets are given in
Table A.1 while the:-gram order ranges from unigram to trigram.

As expected, the general trend of these figures is a decneadaskification
error rate as we enlarge thegram context window. However, bigram and trigram
classifiers offer similar performance. Additional expegimts demonstrated that
smoothedr-gram models beyond trigrams provides no accuracy imprewerat
all.
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Table A.1: Test-set error rates for monolingual and bilingual naiassi-
fiers based on smoothedgram language models in Traveller and BAF.

1.3
1.2

Traveller 1-gram 2-gram 3-gram
English classifier 4.1 1.9
Spanish classifier 2.8 1.2
Bilingual classifier 3.3 1.2

11

3.6
4.4

BAF 1-gram 2-gram 3-gram
English classifier 5.3 3.5
French classifier 6.7 4.4
Bilingual classifier 4.1 2.8

2.6

Table A.2: Competing error table of the best performing bilingual sifksrs

on the Traveller task and the BAF corpus

Traveller BAF
1-gram2-gram3-gram | 1-gram2-gram3-gram
Bilingual smoothech-gram 3.3 1.2 1.1 4.1 2.8 2.6
Bilingual local mixture 1.4 - - 2.9 - -
Unigram-M1 mixture 1.3 - - 2.5 - -

Table A.2 shows competing errors for bilingual smoothegram, bilingual lo-
cal mixture and unigram-M1 mixture classifiers. The resoitt&ined withn-gram
classifiers withn > 1 are slightly better than the best results obtained with uni-
gram mixtures. More precisely, the best results achievéldwgrams ard . 1% in
Traveller and2.6% in BAF, while the best results obtained with unigram mixture

are1.4% in Traveller and2.9% in BAF.

Furthermore, as we can observe in Table A.2, the unigram-tiune model
supersedes the other two unigram models proving the beoékgarning the word
correlation across languages. As we move to bilingual bigrar trigrams on the
Traveller task, the context information in the same langusgems to be more
discriminative than the word mapping information betweanguages. But this
is not the case on the BAF corpus, in which the M1 model is sap&w n-gram

models.

Nonetheless, an impartial assessment of the role of tt@mslmodels when
compared to bilingual smoothedgram ¢ > 1) should be carried out using the
same underlying language models in combination to a traoslanodel, such as

the M1 model.
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Table A.3: Test-set error rates on Traveller and BAF fov M 9"t and
BoosTexter

| Traveller BAF
SV Mlght 0.0 1.7
BoosTexter 1.0 3.9

A.1.2 Comparative results with SVM and boosting techniques

We also run comparative experiments with SVM and boostiobrigues in order
to explore the benefits of context information. More prdgisere studied the in-
fluence of then-gram order and the combination of differesigram orders, as a
feature representation in SVM and boosting classifiers.

In order to tune the different parameters ands+thgram order combination up
to trigrams inSV M'9"* and BoosTexter, we followed a 10-fold cross-validation
on the bilingual training set. The final results for both data, Traveller and BAF,
are shown in Table A.3

SV Mlisht offers the best results on the Traveller and BAF corpora,lavhi
BoosTexter works similarly to smoothedgram language models on the Traveller
task and even worse on the BAF corpus.

A.2 Experiments on JRC-Acquis

A.2.1 Smoothedn-gram language models

The comparative results between smoothegram (straight lines) and mixture
(curves) unigram classifiers are shown in Figure A.1, boatlhe best monolingual
(English-only) and the bilingual classifiers.

From the results in Figure A.1, we can observe that the migfag) classi-
fier performs the best on its monolingual and bilingual \asj followed by the
bigram (2g) classifier, the mixture unigram (mix 1g) classi@and the unigram
(19g) classifier. This performance directly correlates wiité increasing length of
the n-gram context window supporting these classifiers. Addalaexperiments
demonstrated that smootheegram models beyond trigrams provides no accuracy
improvement at all.

A.2.2 Comparative results with boosting techniques

As we did in Section A.2.2, we carried a comparative studyhwibosting tech-
niques instantiated in the toolkit BoosTexter, varying ¢ihéer of then-gram em-

ployed in the weak learner. The objective function to mirsienwas the Hamming
loss, since ranking as learning criterion provided worsellte. The best results
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Figure A.1: Precision (P) and recall (R) curves as a function of the numbe
of mixture components for the English-only (top) and biliag (bottom)
unigram (mix) classifiers. Precision and recall straigh¢di are plotted for
the English-only and bilingual single componengram (ng) classifier.

obtained were a precision value of 44.8% and a recall vald® @%b, that are dis-
tant from the best results using smoothedram language models with a precision

Precision & Recall (%)
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value of 50.7% and a recall value of 52.7%.

Finally, we evaluated the performance of-@ram classifier as the backend of
a MAI system. To this purpose, we compute the recall valuaswie would obtain
if we considered a longer list of descriptors suggested bystistem. The results
were that the system would be offering up to 69.1% of the cbescriptors for
a list of 10 descriptors. This value can be considered fajidgd considering our
MAI system as an external annotator that always returns &€rgitors and given

that the human annotator agreement is between 70%-80%.
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APPENDIX B

EM DERIVATION

This appendix assumes that the reader is familiar with tla@tehns in which these
models were initially presented. The objective of this aqgdeis to provide further
details of the derivation of the models introduced througtibis thesis.

However, the EM algorithm for the bilingual unigram, unigré1 and M2
models is not included in this appendix due their similaivddion to the unigram
and M1 models that are presented in this appendix.

B.1 EM algorithm for finite mixture models

This section depicts the E and M steps of a finite mixture mtiddlare thoroughly
used in Chapters 2, 3, 4 and 5.

B.1.1 E step for finite mixture models

As seenin Eq. (1.44), we need to compute the expected valhe ofdicator vari-
ablez,;. This variable is 1 if theath sample was generated by ttie component
of the mixture and 0 otherwise. Thus,

z,(ﬁ) = E(znt | Tn; G)(k))
= Z Znt P(Znt ‘ Tns G)(k))

Znt

=p(zne = 1| zp; Q(k)). (B.1)

So, the expected value of the variablg in the kth iteration is the posterior prob-
ability of the¢th being responsible for the generation of tite sample given the
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current estimation o®. This posterior is computed as

=D pl ] =1:00) 2
Sz = 1) pn | 2ne = 1;007)
(k)
() p(zn |t 0;7) .3)

TSI p(#)® plan |5 0P)

B.1.2 M step for finite mixture models

In the M step, we maximise th@ function along with its associated Lagrange mul-
tipliers as in Eq. (1.46). This maximisation entails takdegivatives of Eq. (1.46)
w.r.t. ® and the associated Lagrange multipliers, and equating theero.

In the case of mixture coefficients, we take derivativesw(t) and its corre-
sponding Lagrange multipliex equating to zero

(k) N (k)
0Q(O®|0e )+A:Zzﬂ_ _o (B.4)
ap(t) 2 ()
0QO|0M)+A &
@ |8A ) => p(t)-1=0. (B.5)
t=1
Reorganising these equations, so we can substitute onthantither
N (K)
= Znt_ B.6
p(t) ; A (8.6)
T
> op(t) =1 (B.7)
t=1
then,
TN K
D =1 (B.8)
t=1n=1
where
T N
=33 20 (B.9)
t=1 n=1

1 N
== R0 (B.10)
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For the component-conditional parameters, we take demgtv.r.t. ®; and
its Lagrange multiplier (if any) equating to zero

QO 0% ) + A

56, =0 (B.11)

B.2 EM algorithm for the unigram mixture model

This section aims at clarifying the EM algorithm applied he terivation of the
unigram model presented in Section 2.2.2. This derivatiosimilar to that of
Section B.1, considering the component-conditional pfbeé a unigram model.
Indeed, the derivation of the E step for unigram mixture nhaglthe same to that
presented in Section B.1.1, and therefore it is omitted.

B.2.1 M step for the unigram mixture model

In the M step, we maximise Eq. (1.46), with an additional ¢ist

> pult)y=1 Vvt (B.12)
ueX

to normalise the unigram parameters. So, we redéfimeEq. (1.46) as,

(£
A= P (B.13)
“g (g -)

Now we can take derivatives of Eq. (1.46) w.&.andA equating to zero. The
derivation of the mixture coefficients was already preskiteSection B.2.1, so
here, we focus on the derivation ofu | ). First, we take derivatives and equate to
zero

[ (k)
Q@00+ I
= — =0 B.14
B, s 519
9Q(® | ©®) + A
@ ’a ) =) plult)-1=0 (B.15)
H ueX

Reorganising these equations, so we can substitute onthantiher

|0

Z Z It (B.16)

n=1j:xyj=u

> p(ult) =1 (B.17)

ueX
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then,
N |zn] L (®)
S IIDBIE ®18)
ueX n=1jiz,;=u e
where

|Zn]

N
=300 > (B.19)

ueX n=1j:r,;=u

and replacing:; into Eq. (B.16), we have

N ‘xn‘ k
YOS D

plu| )kt = LT (B.20)

>y W

uw'eX n=1 j:xnj:u’

B.3 EM algorithm for the M1 model

This section provides details of the derivation of E and Mystior the M1 model.
The E step of the M1 mixture model is briefly described in ortteclarify the
computation of the expected value of the product of two hiddgriables and its
notation. The derivation of the M step of the M1 mixture modedtraightforward
provided that the updating equation for the mixture coefits is the same to that
in Section B.1.2, and the derivation of the updating equatibthe component-
dependent statistical dictionary is analogous to that efciinventional statistical
dictionary. So, we omit the derivation of the M step of the Miktmre model.

B.3.1 E stepinthe M1 model

In the M1 model, the E step reduces to compute the expectad wathe indicator
variablea,,;, as seen in Eq. (3.14). This variable is 1 if there is an aligmim
between thegth source position to théh target position in thexth sample and 0
otherwise.
k
a) = E(anji | 0, yn; ©W)
= anjip(ani | T, yn; OF)
Anji

= p(anji = 1|z, yn; OW). (B.21)

So, the expected value af,;; in the kth iteration is the posterior probability of the
source positior to be connected to the target positiogiven the source and target
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sentence and the current estimatior@fThis posterior is computed as follows

p(xna Anji =1 | Yn; @(k))
(k)

Apji =

[yn|

E p(l'm Apji = 1 | Yns @(k))
/=0

_1 n
P(Tnj, ngi = 1| y; ©F) p(a, 17" 2, 0} |y ©9)

[yn|
j—1 T
zp<xm,anﬂf—1\yn,®<k>> (@] 2 [y @)

i =

P(anji = 1] yn; ©P) p(2j | anji = 1, yn; OP)

2| (k) (k)
z p(anyz’ =1 ‘ yn; )p(xnj ‘ Apjit = 17yn; (S )

P(Tnj | yni)®)
- . (B.22)

[yn|

> p(@ng | ynir)®)
/=0

B.3.2 M step in the M1 model

In the M step, we maximise the functid@p in Eq. (3.14), with the constraint that
the dictionary probabilities sum up to 1

Zp(u\fu) =1 Vo (B.23)

ueX

As in Eq. (1.46), we incorporate this contraint with Lagramgultipliers

> N (Zp(u]v) —1>. (B.24)

ve) ueX

Now we can take derivatives of Eq. (1.46) wuti: | v) and\, equating to zero

AR ()
2Q(e c-)< pji
QOOIZA S S Y s @29
p n=1j:x, _uzym'—v
(k
(@(';; = plulv)—1=0. (B.26)

ueX
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Reorganising both derivatives

N |zn [yn
=> Z Z "ﬂ (B.27)

n=1 J: Tnj=u LYni=v

> p(ulv) =1. (B.28)

ueX
and plugging Eqg. (B.27) into Eq. (B.28)

|zn| [Yn] (k)

ZZ > Z Ingi g (B.29)

UEX N=1 J:Tp;=U 1:Yni =

where

|75 [Yn]

N
) D D A (B.30)

UWEX N=1 J:Tp;=U 1:Yni=

Therefore, substituting Eq. (B.30) into Eq. (B.27), we htheeupdate equation for
the statistical dictionary in the M1 model

N |zl [yn
YORED DED DR

plu|v)+D) = "I i (B.31)

[znl  lynl

DD

uw' eX n=1jixy;=u’ :yn;=v

B.3.3 E step for the M1 mixture model

In Eq. (3.24), we need to comput) and (z,,; a,,;;)*). On the one hand;)
calculated as g-conditional version of that in Eq. (B.1). On the other hatin
computation of(z,,; a,,;;)(¥) is simplified taking into account that their product is
different from zero when both variable are evaluated to one

(Znt anji)(k) = E(Znt Qnjg ’ Tns Yns @(k))
= Z Znt anjip(znta QAnji | TnsYn; @(k))

Znt Anji
= p(znt = 1, anji = 1| 20, yn; OF))
) (B.32)

njit”
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as seenin Eq. (3.26), therefore the computatiomf@ft is a component-conditional

version ofa*) in Eq. (B.22)

nji

P(Tns angi = 1| yn, 2t = 1; ©F))
(k)

njit —

‘yn| (k)
Y. P(@n, angir = 1| Yn, 2 = 1, 01)

i'=0

p(anji =1 ’ Yny Znt = 1; G(k))p(wn] ’anji = 17yn7znt = 1; G)(k))

‘yn|
E p(anji’ =1 | Yn, Znt = 1; Q(k))p(l'ny | Apji = L yn, zne = 1; Q(k))

1'=0

p(fﬂnj ‘ Ynis t)(k)
- — (B.33)

Z p(wnj ‘ Yni’ t)(k)
/=0

B.4 EM algorithm for the HMM model

This section carries out a presentation of the E and M stefhvéoHMM alignment
model in a similar fashion to the M1 model in Section B.3. Alstdepicts the com-
putation of the E-step of the HMM mixture model, and as we di&éction B.3, it
omits the derivation of the M step of the HMM mixture modehc it is consid-
ered to be straightforward given the derivation of the M stefection (B.4.2).

B.4.1 E stepinthe HMM model

In the HMM model, the E step in Eq. (5.15) requires the comijmuteof the ex-
pected value of the indicator variabig ;; for the alignment of the first position
and for the statistical dictionary, and the produg}_1; a,;; for the jump width
alignment parameter.

The computation ofi,,;; anda,, ;1 a,;; is somewhat more complex given the
first-order dependency of the HMM model and requires the eigdighea and 3

JCS-DSIC-UPV 155



Appendix B. EM derivation

recursive functions in Egs. (5.9) and (5.10). The teuffﬁ is calculated as

%) = planji = 1] @n, yn; ©F)

P(Tn, Anji =1 ‘ Yn; G')(k))

= lyal
S (T, angi = 1] yn; OF)
=1

|0

p(:EnJD angi =1 | Yns @(k))p($nj+1 |$n{7 anji = 1, Yn; @(k))

lyn|

2 plwyds angi = 1]y O®) p(a, 11 |, g = 1,y; O)
1=
Oénjiﬂnji
= T (B.34)
Z anjiﬁnji
i=1
and (a1 an;i)* as
(anj—li’anji)(k) = p(anj—1v = 1,anji = 1| Tn, Yn; o)
P(Tn, anj—1 = 1, anj = 1| yn; o)
= B.35
lyn| [ynl ) ( )
zp(wrwanj—li’ = 17anﬁ = 1‘yn;® )
T=1i=1

where

i—1
(s anj 1 = 1, angi = 1] yn;0P) = p(2,77" anj 10 = 1] yn; ©F))
i—1
Plangi = 12,17 anj1i = 1,yn; ©F))
i—1
p(l’n] ’xnjl y Anj—1i = 1, Qpji = 17 Yn; @(k))
|n|

p($nj+1 |$n{,anj—1¢/ =1,anj; = 1,yn; Q(k))
=anj—19 P(i] 1, [y p(@nslyni)® Bnji- (B.36)

Then,

anj—10 P(A |7, [y))®) p(205|yni)®) Brji
(B.37)

RO ()
(@ —1iranja) ™ = lyn| lyn

\
Q17 D1 7, ’y\)(k) p(xnj]yn;)(k) B

=11=1
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then,

where
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B.4. EM algorithm for the HMM model
B.4.2 M step in the HMM model

straints

In the M step, we maximise th@ function in Eq. (5.6), under the following con-

Zp(l)

1
ueX

y
Z p(i|i,lyl) =1 V1< <[yl and|y|

(B.38)
Yo
that are translated into Lagrange multipliers as
lyl
=2 2 Ay

<Z p(ild, lyl) — 1)
i'=11y]

A

— > M

= <U§Xp(u 0) — 1) (B.39)

in Eq. (1.46). Then, we can take derivatives of Eq. (1.46Xw3 and A equating
itho(i | 7. [y]).
Qe e

to zero. Starting withp(i | 7/, |y|), we take derivatives and equate to zero w.r.t. this
parameter and its corresponding Langrange multiplier

+A f: i CLnj 14/ anjz 0\ —0 (B 40)
Op(i| ', \y! = = pGlslyD) 7yl :
lyn|=1y]
ly|
0Q(® |0k £ A
=) p(i|d]yl) - (B.41)
Oy Z
N |fEn| an » anz (k)
@l yh= Y > s (B.42)
n=1 j=1 Airly|
Iyn‘zl ‘
ly|
> (il |y (B.43)
=1
‘yl N ISCn| , (k)
Z Yo it g (anj1ir angi) (B.44)
i=1 n=1 j=1 Aifly|
Iy |=yl
’\y| _Z Z Z Qnj—14 angz (k) (B.45)
e VR
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and substituting\;/|, into Eq. (B.42), we have

> Z(anj—li’anji)()
\ynlz—l\yljz1
(k+1) nl=
p(|7, |yl) PR . (B.46)
> 2 (anj1ir angn)®
i=1 n=1 j=1
lyn|=]y]
Finally, for p(u | v) we follow the same procedure
lzn|  |ynl (k)
QO |ek
9Q( a| Z > Z b =0 (B.47)
p n=17:Tn;=U 0:Yni= U
(@gi )+A_Z )—1=0. (B.48)
v ueX
Reorganising terms
N x| lyn] o ()

p(u|v):Z Z Z )\"ZZ (B.49)

n=1J:Tn;=u i:yni=v

> plulv) =1 (B.50)
ueX
then,
[z  |yn]
Z Z Z Z ”ﬂ = (B.51)
UEX n=1 J:Tp;=U i:Yn;=v
where

|zn]| [Yn]

N
=303 N G (B.52)

UEX N=1 J:Tp;=U 1:Yni=v

As we did before, replacing, into Eq. (B.49)

Nl
21 } Z_ § Z_ Opji
plu|v) D = e (B.53)

DD

uw' eX n=1jixp;=u’ :yn;=v

B.4.3 E step for the HMM mixture model

As seenin Eq. (5.15), we need to compzﬁ?, (2nt anji)® and(zns anj—1ir anji) ™.
First, 28 s computed in the usual way considering&onditional version of

nt
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Eq (B.1), taking component-dependent HMM alignment mo@slcomponent-
dependent p.f. in a finite mixture.
The term(zy,; a,;;)*) is decomposed as in Eq. (3.26), and the resultant term

*) can be computed as a component-dependent version of E4)(B.3

QA jit

(k) _

Uit = Panji = 1] T, 2nt = 1, yn; o)

(T i = 1| 20t = 1,9, ©F)

‘yn| k
z (xnaanﬁ: 1|Znt = 1>yn;®( ))
=1
Anjit ﬁnjit
= o (B.54)

z Qnjit ﬂnﬁt
i=1

Finally, the term(z,,; a1 anj;)*) is decomposed as we did in Eq. (5.17), where
(anj—1i anji | t)*) is computed as a component-dependent version of Eq. (B.35)

(Anj—1i anji | t)(k) =

= p(anj_1ir = 1, anji = 1] 2ne = 1,20, Yn; o)

p(l"manj—li' = 1>anji =1 | Znt = 1, Yn; @(k))

[yn| |yn| )
z p(wrwanj—li’ - 17anﬁ =1 ‘ Znt = 1ayn; C) )
7=11=1

anj—10e (11, |y, ) ®) p(@ni|yni, ) Bujie
= Tyal lal - - B39
Zl i1 AT, Y], 0)F) p(205]yns, )P B
=11=
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APPENDIXC

SYMBOLS AND ACRONYMS

C.1 Mathematical symbols

|z _

a = ay —al,...,aj,...,a‘w‘

a;

a;

S
<

—
=
S
S
3
o
=2

Il
o
G
o
3
o
=

Z3 RS Q0 a2y

=
—~~
~— —

-3

£}

IR
I
8
=

P
|
=

ey Xy TN

:l‘l,...,:Ej,...,ﬂj“x‘

cardinal of a set or word sequence length.

alignment sequence.

target position to which is aligned thgh
source position.

indicator vector for alignment ojth source
position.

indicator variable for alignment gith source
position toith target position.

set of all possible alignments fromto y
vector of alignments.

class label.

vector of class labels.

index for the source sentence.

secondary index for the target sentence.
iteration of EM algorithm.

index for a set of samples.

number of samples.

general probability function.

model probability distribution.

index for components in a mixture model.
number of components in a mixture model.
word in a source language.

word in a target language.

jth word in a source sentence.

sequence of source words.

source segment or phrase.

source vocabulary.

vector of source sentences.
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Appendix C. Symbols and acronyms

Yi
y:y‘1y| =Yty Yis -5 Yyl
Y

y
Y:ylv"'vyn7"'>yN
Z = 21y By ey 2T
L = ZlyeeiyZnyeey ZN
€

S}

v

ith word in a target language.

sequence of target words.

target segment or phrase.

target vocabulary.

vector of target sentences.

indicator vector for mixture components.
vector of indicator vectors.

interpolation parameter for uniform smooth.
parameter vector for a model.

parameter vector for a set of classes.
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C.2. Acronyms

C.2 Acronyms

p.f. probability function
w.r.t. with respect to
ACL association for computational linguistics

AER alignment error rate
BLEU bilingual evaluation understudy

BP brevity penalty

BAF bitextes anglais-francais

CAT computer-assisted translation

CER classification error rate

CER character error rate

GIATI  grammatical inference and alignments for transductarence
EM expectation maximisation

EU European Union

HMM  hidden Markov model

IBM international business machines

KSR key-stroke ratio

KMSR  key-stroke and mouse-action ratio
LCP longest common character prefix
MAI machine-aided indexing

MAR mouse-action ration

MERT  minimum error rate training

ML machine learning

MT machine translation

NLP natural language processing
REA recursive enumeration algorithm
SER sentence error rate

SFST stochastic finite-state transducers

SRILM Stanford research institute language modeling
SVM support vector machines

TER translation edit rate

UN United Nations

WER word error rate
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