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Posiblemente sean estas ĺıneas de las más leı́das en esta tesis, aunque esperemos
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desembocado en esta tesis. Por último, agradecer a Enriquejunto con Paco la
oportunidad que me brindaron de entrar en este grupo de investigación, trabajar
en un proyecto europeo como TT2, y por contribuir a mi formación a través de
discusiones, revisiones y correcciones de mi trabajo.
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ABSTRACT

This thesis presents diverse contributions in the fields of text classification, ma-
chine translation and computer-assisted translation under the statistical framework.

In text classification, a new application called bilingual text classification is
proposed together with a series of models to capture bilingual information. To
this purpose two main approaches were presented, the first ofthem is based on
a naive crosslingual-independent assumption and the second, on a more sophis-
ticated crosslingual word-correlation framework. As far as the naive assumption
is concerned, five unigram models and smoothed n-gram languages models are
introduced. These models were evaluated on three tasks of increasing complex-
ity, considering the most complex of these tasks under the viewpoint of a bilingual
machine-aided indexing application. The crosslingual word-correlation framework
is represented by bilingual models that integrate a translation model. In our case
this model is the well-known M1a translation model in conjunction with a unigram
model. This model was tested on two of the simpler previouslymentioned tasks
superseding the naive approximation.

In machine translation, the statistical word-alignment translation models M1,
M2b and HMM are extended under the mixture modelling approach inorder to
define context-specific translation models. In the case of the M2 model, a mixture
extension of an already existing iterative dynamic-programming search algorithm
for the M2 model is also defined. This search algorithm allowsus to directly assess
the translation quality of the M2 mixture model on a semi-artificial controlled task,
obtaining statistically significant improvements over theconventional M2 model.
Moreover, an extensive experimental evaluation of these three models is carried
out on two well-known shared tasks. These two tasks are used to assess on the
one hand, the quality of the alignments obtained as a byproduct of the M1, M2
and HMM models and on the other hand, the translation qualityof a statistical
phrase-based system seeded with these alignments. As a result of this evaluation
we observed that the M2 mixture model offered statisticallysignificant betterment
in alignment quality with respect to the conventional M2 model. In addition, the
evaluation of translation quality brought to light slight,but systematic improve-
ments in translation quality for all three models, achieving state-of-the-art results
for the HMM mixture model.

Finally, an interactive and predictive computer-assistedtranslation system based
on stochastic finite-state transducers is presented. This system integrates well-
known efficient error-correcting andn-best parsing algorithms that are adapted

aKnown as IBM 1 model in the literature.
bKnown as IBM 2 model in the literature.
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and implemented in order to guarantee low response time, while preserving ad-
equate translation quality. The system was automatically tested on two corpora
devoted to technical user manuals and bulletins of the European Union. The for-
mer corpus served as a bedtest for a thoroughly manual evaluation performed by
translation agencies involved in the European project TransType2. Both, automatic
and manual evaluations reported a significant reduction in typing effort, speeding
up the translation process, and achieving so, the final goal of computer-assisted
translation systems.
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RESUMEN

Esta tesis presenta diversas contribuciones en los campos de la clasificación au-
tomática de texto, traducción automática y traducciónasistida por ordenador bajo
el marco estadı́stico.

En clasificación automática de texto, se propone una nuevaaplicación llamada
clasificación de texto bilingüe junto con una serie de modelos orientados a capturar
dicha información bilingüe. Con tal fin se presentan dos aproximaciones a esta
aplicación; la primera de ellas se basa en una asunción naive que contempla la
independencia entre las dos lenguas involucradas, mientras que la segunda, más
sofisticada, considera la existencia de una correlación entre palabras en diferentes
lenguas. La primera aproximación dió lugar al desarrollode cinco modelos basados
en modelos de unigrama y modelos den-gramas suavizados. Estos modelos fueron
evaluados en tres tareas de complejidad creciente, siendo la más compleja de estas
tareas analizada desde el punto de vista de un sistema de ayuda a la indexación de
documentos. La segunda aproximación se caracteriza por modelos de traducción
capaces de capturar correlación entre palabras en diferentes lenguas. En nuestro
caso, el modelo de traducción elegido fue el modelo M1c junto con un modelo de
unigramas. Este modelo fue evaluado en dos de las tareas mássimples superando
la aproximación naive, que asume la independencia entre palabras en differentes
lenguas procedentes de textos bilingües.

En traducción automática, los modelos estadı́sticos de traducción basados en
palabras M1, M2d y HMM son extendidos bajo el marco de la modelización me-
diante mixturas, con el objetivo de definir modelos de traducción dependientes del
contexto. Asimismo se extiende un algoritmo iterativo de b´usqueda basado en pro-
gramación dinámica, originalmente diseñado para el modelo M2, para el caso de
mixturas de modelos M2. Este algoritmo de búsqueda nos permite evaluar direc-
tamente la calidad de la traducción del modelo de mixturas de M2 en una tarea
controlada y semiartificial, obteniendo mejoras estadı́sticamente significativas so-
bre el modelo M2 convencional. Además, estos tres modelos fueron sometidos a
una amplia evaluación experimental llevada a cabo en dos tareas de referencia para
la comunidad de traducción automática estadı́stica. Estas dos tareas fueron uti-
lizadas para evaluar la calidad de los alineamientos de estos modelos, ası́ como la
calidad de sus traducciones de forma indirecta. Los alineamientos fueron obtenidos
como subproducto de los modelos M1, M2 y HMM, mientras que lastraducciones
fueron generadas por un sistema de traducción estadı́stica basado en segmentos
bilingües obtenidos a partir de estos alineamientos. Comoresultado de esta eva-

cConocido como modelo 1 de IBM en la literatura.
dConocido como modelo 2 de IBM en la literatura.
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luación, se obtuvieron mejoras que son estadı́sticamentesignificativas en la calidad
de los alineamientos del modelo de mixturas de modelos M2 respecto al modelo
M2 convencional. La evaluación de la calidad de la traducción desveló mejoras
menores, pero sistemáticas en la calidad de la traducciones ofrecidas por estos tres
modelos, logrando resultados a la altura del estado del artepara el modelo de mix-
turas de HMM.

Por último, presentamos un sistema interactivo y predictivo de ayuda a la tra-
ducción basado en transductores estocásticos de estadosfinitos. Este sistema in-
tegra algoritmos de análisis eficientes para la corrección de errores y el cálculo
de las mejores traducciones, que son adaptados e implementados para garantizar
un tiempo de respuesta bajo, a la vez que se preserva una calidad de traducción
adecuada. El sistema presentado fue evaluado automáticamente en dos corpora,
uno de ellos consistente en una colección de manuales técnicos de usuario, y el
otro formado por boletines de la Unión Europea. El primero de los corpora fue
utilizado para una evaluación manual por agencias de traducción en el marco del
proyecto europeo TransType2. Tanto la evaluación manual como la automática
proporcionaron reducciones significativas en el esfuerzo necesario para traducir
dichos textos, acelerando el proceso de traducción, y consiguiendo de esta forma
el objetivo final de los sistema de ayuda a la traducción.
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RESUM

Aquesta tesi presenta diverses contribucions als camps de la classificació automàtica
de text, traducció automàtica i traducció assistida perordinador sota el marc es-
tadı́stic.

En classificació automàtica de text, es proposa una nova aplicació anomenada
classificació de text bilingüe juntament amb una sèrie demodels orientats a cap-
turar aquesta informació bilingüe. Amb aquest fi es presenten dues aproximacions
a aquesta aplicació; la primera d’elles es fonamenta en unaassumpció naive que
contempla la independència entre les dues llengües involucrades, mentre que la
segona, més sofisticada, considera l’existència d’una correlació entre paraules en
diferents llengües. La primera aproximació donà lloc aldesenvolupament de cinc
models fonamentats en models d’unigrama i models de llenguatge den-grames
suavitzats. Aquests models van ser avaluats en tres tasquesde complexitat creix-
ent, sent la més complexa d’aquestes tasques analitzada des del punt de vista d’un
sistema d’ajuda a la indexació de documents. La segona aproximació es caracter-
itza per models de traducció capaços de capturar la correlació entre paraules en
diferents llengües. En el nostre cas, el model de traducci´o elegit va ser el model
M1e juntament amb un model d’unigrames. Aquest model va ser avaluat en dos
de les tasques més simples superant l’aproximació naive,que assumeix la inde-
pendència entre paraules en differents llengües procedents de textos bilingües.

En traducció automàtica, els models estadı́stics de traducció basats en paraules
M1, M2f i HMM són estesos sota el marc de la modelització mitjançant mixtures,
amb l’objectiu de definir models de traducció dependents del context. En el cas del
model M2, també es va estendre per al cas de mixtures un algorisme de cerca iter-
atiu basat en programació dinàmica per a aquest model. Aquest algorisme de cerca
ens permet avaluar directament la qualitat de la traducciódel model de mixtures de
M2 en una tasca controlada i semiartificial, obtenint millores estadı́sticament sig-
nificatives sobre el model M2 convencional. A més a més, aquests tres models van
ser sotmesos a una àmplia avaluació experimental portadaa terme en dues tasques
de referència per a la comunitat de traducció automàticaestadı́stica. Aquestes
dues tasques van ser utilitzades per avaluar d’una banda, laqualitat dels alinea-
ments obtinguts com a subproducte dels models M1, M2 i HMM i d’altra banda,
la qualitat de les traduccions d’un sistema de traducció estadı́stica basat en seg-
ments generat a partir d’aquests alineaments. Com a resultat d’aquesta avaluació,
es van obtenir millores significatives en la qualitat dels alineaments del model de
mixtures de M2 respecte al model M2 convencional. L’avaluació de la qualitat

eConegut com model 1 d’IBM en la literatura.
fConegut com model 2 d’IBM en la literatura.
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de la traducció va desvetlar millores menors, però sistemàtiques en la qualitat de
la traduccions oferides per aquests tres models, aconseguint resultats a l’altura de
l’estat de l’art per al model de mixtures de HMM.

Finalment, vam presentar un sistema interactiu i predictiud’ajuda a la traducció
basat en transductors estocàstics d’estats finits. Aquestsistema integra algorismes
d’anàlisi eficients per a la correcció d’errors i el càlcul de les millors traduccions,
que són adaptats i implementats per garantir un temps de resposta baix, alhora que
es preserva una qualitat de traducció adequada. El sistemapresentat va ser avaluat
automàticament en dos corpora, un d’ells consistent en unacollecció de manuals
tècnics d’usuari, i l’altre format per butlletins de la Unió Europea. El primer dels
corpora va ser utilitzat per a una avaluació manual portadaa terme per agències de
traducció al marc del projecte europeu TransType2. Tant l’avaluació manual com
l’automàtica, van proporcionar reduccions significatives en l’esforç necessari per
traduir aquests textos, accelerant el procés de traducci´o, i aconseguint, d’aquesta
forma, l’objectiu final dels sistemes d’ajuda a la traducci´o.
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PREFACE

Natural language processing (NLP) is an hectic research field that aims at develop-
ing computer systems able to automatically generate and understand natural human
language, both written and spoken. NLP is a subfield of artificial intelligence and
linguistics, and as such it tends to combine theories, methodologies and experts
coming from both worlds in order to address challenging problems that sometimes
require world knowledge to be successfully solved. This thesis explores two im-
portant areas of NLP: text classification (TC) and machine translation (MT).

The purpose of TC is to convert an unstructured repository ofdocuments into
a structured one by automatically assigning documents to a predefined number of
groups, in the case of text clustering, or to a set of predefined categories, in the
case of text categorisation. Doing so, the task of storing, searching and browsing
documents in these repositories is significantly simplified. These days TC technol-
ogy seems to have reached a mature stage, however there are still open problems
and challenges ahead.

Among these open problems and challenges we find the classification of mul-
tilingual documents. Multilingual documentation is a common phenomenon in
many official institutions (EU parliament, the Canadian Parliament, UN sessions,
Catalan and Basque Parliaments in Spain, etc.) and private companies (user’s man-
uals, newspapers, books, etc.). In many cases, this textualinformation needs to be
categorised by hand, entailing a time-consuming and arduous burden. In this thesis
we focused on the classification of bilingual documents, since it is closely related
to MT in which bilingual parallel texts are widely used to train translation systems.

Bilingual TC is a novel application in the field of TC stronglycharacterised
by word correlation across languages. This word correlation comes from the fact
that bilingual texts are mutual translations. Given the latter scenario, we propose
two main approaches to tackle bilingual TC. First, we may naively consider that
bilingual texts were generated independently and therefore, there is not exist any
crosslingual relation between words found in mutual translations. Alternatively.
we can realistically assume that an underlying crosslingual word mapping exists
and can be exploited to boost our bilingual classifier. Undoubtedly, the latter ap-
proach is significantly more complex than the former, however the crosslingual
structure apprehended by the latter is a valuable information that cannot be ne-
glected.

The other area in NLP to which this thesis is devoted is MT. MT is the use of
computers to automate the translation of texts or utterances from one language into
another language, while the underlying meaning remains thesame. Current MT
technology is focused on three main applications: fully-automatic MT, computer-
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assisted translation (CAT) and understandable rough translationg. This thesis ap-
proaches the two first applications from a statistical pointof view.

Fully-automatic statistical MT consists in the development of statistical models
that are automatically inferred from bilingual parallel texts. In this respect, there
have been different proposals for statistical translationmodels ranging from word
alignment translation models, such as the IBM models, HMM word alignment
model, etc. to phrase-based and syntax-based translation models. These latter mod-
els are usually grounded on byproducts of the training process of word alignment
models. However, none of these models directly addresses the common problem of
context-specific translations in MT. This is the case of words whose meaning, and
therefore their translation, depend on the domain or semantic context in which they
are found. In this thesis, we introduce the idea of context-specific word alignment
translation models by applying finite mixture modelling techniques to conventional
word alignment translation models.

Nonetheless, current MT technology is still far from producing high quality
translation without human intervention. This is the reasonfor developing CAT
systems that can work in collaboration with translators to guarantee high quality
translation, while easing and speeding up their work. The most popular instantia-
tion of the CAT paradigm is implemented by post-editing tools based on translation
memories. However, the lack of human-computer interactivity in a post-editing
process prevents the MT system from adapting to the corrections of the human
translator. Therefore, an interactive approach to CAT seems to be more adequate
in this human-computer interaction setting. This thesis, partially developed in the
framework of a European project devoted to the latter approach to CAT, presents
how a fully-fledged MT system based on stochastic finite-state transducer (SFST)
technology was integrated into an interactive and predictive CAT environment.

The objective of this thesis is to present new applications of existing technology
in TC and CAT, and new models in TC and statistical MT based on the paradigm of
finite mixture modelling. More precisely, the scientific contributions of this thesis
can be divided into three groups as follows:

1. Bilingual TC . Bilingual TC is proposed as a new application in TC for which
we suggest two general approaches. The first approach is the modelisation of
each language independently, that in this thesis is instantiated in five mixture
models based on the unigram model. These models were assessed on three
tasks of increasing complexity. The second approach is a natural evolution
of the latter. We derived a novel model that takes into account the word
correlation across languages by combining the well-known M1 translation
model with a unigram model. Comparative results with smoothedn-gram
language models, support vectors machines and boosting techniques are also
reported.

2. Context-specific word alignment translation models. Three translation

gAlso known as gisting.
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models, M1, M2 and HMM were extended to incorporate context infor-
mation by means of finite mixture modelling. In the case of theM2 mix-
ture model, we also derived a mixture extension of an iterative dynamic-
programming search algorithm for the conventional M2 modelthat was eval-
uated in a small controlled task. Furthermore, an study of alignment and
translation quality of these models is carried out on two shared tasks widely
known in the statistical MT community.

3. Interactive and predictive CAT based on SFST technology. We adapt
well-known error-correcting andn-best parsing algorithms in order to be
integrated into a CAT system powered by SFST technology. This system
was automatically and manually evaluated in the framework of a European
project.

The above contributions are sequentially organised in 7 chapters that cover
most of the work developed in this thesis. We recommend a sequential reading of
the document should you wish to learn about the complete work, but that is not
strictly necessary. If the reader is only interested in a specific research area, she
can opt to read those related chapters taking into account the following dependency
graph among chapters:

1. Introduction

2. Bilingual text
classification

3. Mixtures of M1
models

4. Mixtures of M2
models

5. Mixtures of hidden
Markov models

6. Computer-assisted
translation

7. Conclusions

Five unigram models are proposed for bilingual TC along withits mixture ex-
tension and their experimental evaluation in Chapter 2. TheM1 mixture model is

JCS-DSIC-UPV xv



introduced and applied to two different but related tasks, bilingual TC and statisti-
cal MT in Chapter 3. In bilingual TC, the M1 model is combined with a unigram
model as a step forward in modeling bilingual texts, and evaluated on the two sim-
pler tasks presented in Chapter 2. In statistical MT, the Viterbi alignments obtained
as a byproduct of the M1 mixture model are directly evaluatedon a reference align-
ment shared task for the statistical MT community and, used to train a statistical
phrase-based system. This system is assessed in terms of translation quality on
another large-scale shared task used as a reference to gaugethe performance of
state-of-art translation systems for European languages.

In Chapter 4, a mixture extension of the well-known M2 model and its dynamic-
programming search algorithm are introduced and assessed on a semi-artificial
task. This model is further evaluated on the two shared taskspreviously men-
tioned. The HMM alignment model and its mixture version are also derived and
assessed on the same shared tasks in Chapter 5. In Chapter 6, an interactive and
predictive CAT system based on SFST technology is presentedand automatically
evaluated. In Chapter 7, a summary of the work and contributions presented in this
thesis are discussed, followed by an outlook.

The appendix contains further details of the work presentedin this thesis. In
Appendix A, additional comparative experimental results using smoothedn-gram
language models, support vector machines and boosting techniques in bilingual TC
are reported. In Appendix B, a detailed derivation of some ofthe models presented
in this thesis is introduced. Finally, a list of mathematical symbols and acronyms
used throughout this thesis is presented in Appendix C.
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CHAPTER 1

PRELIMINARIES

1.1 Introduction

Natural language processing (NLP) is an hectic research field that aims at develop-
ing computer systems able to automatically generate and understand natural human
language, both written and spoken. NLP is a subfield of artificial intelligence and
linguistics, and as such tends to combine theories, methodologies and experts com-
ing from both worlds. The challenging problems addressed bythe NLP community
sometimes require world knowledge to be successfully solved. In this thesis, we
explore two important areas of NLP: text classification (TC)and machine transla-
tion (MT).

The purpose of TC is to convert an unstructured repository ofdocuments into
a structured one by automatically assigning documents to a predefined number of
groups, in the case of text clustering, or to a set of predefined categories, in the
case of text categorisation. Doing so, the task of storing, searching and browsing
documents in these repositories is significantly simplified[Seb06]. Historically,
the seminal article of Maron [Mar61] is taken as the startingpoint of TC. However
it was not until the late eighties, early nineties when the need of organising large
document collections increase the importance of TC. TC has been applied to news
filtering, patent classification and more recently to web taxonomy and spam filter-
ing. These days TC technology has reached a mature stage, nevertheless there are
still open problems and challenges. See [Seb02] for an in-depth introduction to the
evolution of TC over the last two decades.

MT is the use of computers to automate the translation of texts or utterances
from one language into another language, while the underlying meaning remains
the same. The history of MT goes back to the late forties with the famous publi-
cation of Weaver [Wea55], in which the problem of MT was tackled with crypt-
analytic techniques inherited from the Second World War. This initial intensive
research period was followed by a discreet and pragmatic epoch after the AL-
PAC report [BH60]. The seventies and eighties saw the proliferation of rule-based
system such as Meteo [Tih82], Systran [Bil82] and METAL [BS85]. The contri-
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butions in the statistical MT field were minor until the earlynineties, when the
IBM group presented the Candide system [B+94], a statistical translation sys-
tem [B+90, B+93] that was demonstrated to be competitive with state-of-the-art
systems. Since then, the development of statistical MT has experienced a major
boost that seems to be reaching a technical plateau nowadays. See [HS92, JM00]
for a detailed and thorough description of the history of MT.

In this chapter, first we briefly overview the state-of-the-art of TC and MT in
Sections 1.2 and 1.3, respectively. Then, we focus on statistical MT in Section 1.4,
and more precisely on statistical phrase-based models in Section 1.5. Next, we
introduce in Section 1.6 some of the translation evaluationmetrics that will be
used throughout this thesis. Section 1.7 provides a short review of the state of
the art incomputer-assisted translation(CAT). While Section 1.8 is devoted to the
well-known expectation-maximisation(EM) algorithm that is the parameter esti-
mation algorithm of most of the models in this thesis. Following the EM algorithm
in the previous section, we present the finite mixture modelling approach, which
is the common factor in many models of this thesis, and its EM instantiation in
Section 1.9. Finally, we summarise the scientific contributions of this thesis in
Section 1.10.

1.2 Text classification

In the eighties, the most popular approach to TC was based on the development of
rule-based systems with the help of knowledge engineers anddomain experts. The
main problem of this approach was the definition of hand-crafted rules and their
maintenance. In the nineties, the rule-based approach was replaced bypattern
recognition(PR) andmachine learning(ML) approaches because their numerous
advantages:

• The classifier is learnt from the observation of a set of preclassified docu-
ments by an inductive process.

• The same inductive process can be applied to generate different classifiers
for different domains and applications. This fact introduces an important
degree of automation in the construction of ad-hoc classifiers.

• The maintenance task is significantly simplified, since it only requires to
retrain the classifier with the new working conditions.

• The existence of off-the-self software to train text classifiers requires less
skilled man power than for constructing expert systems.

• The accuracy of text classifiers based on ML techniques competes with that
of human experts and supersedes that of knowledge engineering methods.

In this thesis we focus on the statistical PR approach to TC. Under this ap-
proach the optimal decision rule assigning samples to classes is dictated by the

2 JCS-DSIC-UPV
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principle of minimumglobal risk defined over the sample space. However, the
global risk can be minimised by making as small as possible the risk for each sam-
plex individually. In the case of classification tasks in which the evaluation metric
is theclassification error rate(CER), the risk of classifying a samplex into class
c is the probability of error, i.e. theposterior probability of classifyingx into a
class that is notc. This latter probability is the sum over the posterior probabil-
ity of all classes except forc. Therefore, in order to minimise the global risk, we
must classifyx into that classc that makes the sum of posterior probabilities over
the rest of classes minimum. In other words, we must classifyx into that classc
that maximises the posterior probabilityp(c |x). This is exactly what the Bayes
decision (classification) rule says [DH73]

ĉ(x) = arg max
c

p(c |x). (1.1)

This posterior probability is usually decomposed according to the Bayes theorem

ĉ(x) = arg max
c

p(c) p(x | c)

p(x)
(1.2)

where
p(x) =

∑

c

p(c) p(x | c). (1.3)

The termp(x) is constant for all classes, so it is normally dropped and theusual
form of Bayes decision rule arises

ĉ(x) = arg max
c

p(c) p(x | c) (1.4)

wherep(c) is theprior probability that is usually computed as the relative class
frequency, andp(x | c) is theconditionalprobability (density) function describing
how likely is to observex in classc.

As stated above, the Bayes rule is the optimal decision when we consider CER
as evaluation metric. However, this is only the case under the assumption that we
know the real probability distributions forp(c) andp(x | c). In practise, we can
only compute approximations of these probability distributions.

In this thesis, the estimation of conditional probability distributionsp(x | c) for
TC is based on smoothed n-gram language models [CG96, Jel97], and its mixture
extension [KS93, IO99] in the case of the unigram language model.

Apart from those classifiers based on the statistical PR approach, different
types of classifiers have been used in TC, including regression methods [FP94,
IDLA95, LG94, SHP95], decision trees, neural networks [Mit96], incremental or
batch methods for learning linear classifiers [SHP95, WPW95, DKR97, NGL97],
classifier ensembles, including boosting methods [SS00], and support vector ma-
chines [Joa98]. While all these techniques still retain their popularity, it is fair to
say that in recent years support vector machines and boosting have been the two
dominant learning methods in TC. This fact is mainly due to their superiority on

JCS-DSIC-UPV 3
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the Reuters task, which is the reference task in TC, however their performance
is similar to that of other TC techniques in other tasks. The interested reader is
referred to [Seb02] for an excellent review in TC.

1.2.1 Support vector machines and boosting techniques

In this section, we briefly review support vector machines (SVM) and boosting
techniques since they will be used to obtain state-of-the-art comparative results in
TC. We mostly provide a practical view of how these techniques were applied to
multi-class classification tasks, as they are the focus of this thesis.

SVM were originally thought to be used as binary classifiers that define a
hyperplane that maximises the margin between two classes, if the samples are
linearly separable [Bur98, CST00]. Although there have been a generalisation
of the 2-class problem [CS02], implemented inSVMmulticlass, an instance of
SVM struct [TJHA05], in practise binary classifiers based on the one-against-one
approach, among others, seem to be the most adequate [HL02].This simple yet
effective approach consists in:

1. Define as many binary classifiers as possible class pairs.

2. Each binary classifier votes for a class.

3. Classify according to the majority voting criteria.

In this thesis, all the SVM experiments were carried out withtheSVM light toolkit
[Joa99] adopting the approach to the multi-class problem commented above .

On the other hand, the idea behind boosting methods is to find ahighly accurate
classification rule by combining many weak or base hypotheses, each of which may
be only moderately accurate. We assume access to a separate procedure called
the weak learner or weak learning algorithm for computing the weak hypotheses.
The boosting algorithm finds a set of weak hypotheses by calling the weak learner
repeatedly in a series of rounds. These weak hypotheses are then combined into a
single rule called the final or combined hypothesis. In the simplest version of the
boosting method AdaBoost for single-label classification,the algorithm maintains
a set of importance weights over training examples. These weights are used by the
weak learning algorithm whose goal is to find a weak hypothesis with moderately
low error with respect to these weights. Thus, the boosting algorithm can use these
weights to force the weak learner to concentrate on the examples which are hardest
to classify [SS00].

The implementation of the boosting algorithm employed in this thesis is Boos-
Texter [SS00]. In BoosTexter the weak learner is a one-leveldecision tree, and for
our experiments the error, which we tried to minimise, will be measured in terms
of Hamming lossa. In our case the input data will be text, therefore the condition

aThere are other possible error functions such as ranking, inthe sense of finding a hypothesis that
places the correct labels at the top of the ranking.
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that is checked at the root of the decision tree (weak learner) is the presence or
absence of a givenn-gram, for instanceMahatma Gandhi.

1.2.2 Machine-aided indexing

Most of the text classifiers reviewed so far assign a single class label to each docu-
ment. However, in real-world TC applications, a document may receive more than
one label reflecting the different topics included in the document. If this is the case,
we would be facing a multi-label classification problem.

This multi-label characteristic is particularly common inkeyword assignment,
in which a list of descriptors (keywords or labels) from a thesaurus has to be as-
signed to a document. In this type of tasks, a classifier should first decide on the
number of labels that will be assigned to a document, and thenselect the most suit-
able set of descriptors for that document. As the reader could devise, this task is
significantly more complex than that of assigning a single label to each document.

In this setting the accuracy of text classifiers is usually far from being accept-
able, and it is more convenient to look at our automatic text classifier as the backend
of a machine-aided indexing (MAI) tool [Hod98, P+03]. MAI tools usually assign
to a document a list of keywords (descriptors) from a controlled vocabulary (the-
saurus) for indexing purposes. This list of descriptors suggested by the system is
reviewed by expert indexers to add and select those descriptors that are the most
adequate.

The interest behind the development of indexing systems is not only the doc-
ument classification capabilitiesper se, but also the possibility to access cross-
lingual information [P+03] through multilingual thesaurus, as EuroVoc [EC95],
AgroVoc [FAO98], etc. In this scenario, documents in different languages are clas-
sified following the same multilingual thesaurus, and therefore, they use a common
set of descriptor identifiers shared across languages for indexing purposes. Then,
given a query (document), we could first identify the set of candidate descriptors
for this query, and then retrieve those documents, no matterwhat their language is,
labelled with these candidate descriptors.

In this case of multi-label TC, we adopted a simple training procedure that
consists in learning a single-class classifier with all the documents with the same
class label. While the classification rule in Eq. (1.1) is replaced by that providing a
set of most probable class labels (descriptors)

Ŝk(x) = arg max
S⊂Ω
|S|=k

min
c∈S

p(c |x) (1.5)

whereΩ is the set of classes andk ≤ |Ω|.
Multi-label classifiers are usually evaluated in terms of precision and recall, or

using a combination of these metrics like F-measure [BYRN99]. However, in the
context of MAI tools is more meaningful to talk about macro-averaging precision

JCS-DSIC-UPV 5
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and recall [Lew91] computed for a set ofN documents

precision =
1

N

∑

n

|Sn ∩Rn|

|Sn|
recall =

1

N

∑

n

|Sn ∩Rn|

|Rn|
(1.6)

whereSn = Ŝk(xn), andRn is the reference set of labels for thenth document.
The precision measure provides the ratio of correct labels over the total number

of labels returned by the system, so it is an indicator of how precise is our system
when providing a list of class labels. On the other hand, the recall measure reports
the ratio of correct labels over the total number of reference labels, therefore it
informs us about the coverage that the labels offered by the system provides of the
set of reference labels. In this thesis, we will make use of these evaluation metrics
as percentages when in Chapter 2 we report experimental results on a multi-label
task.

1.3 Machine translation

In this section we review state-of-the-art applications and approaches in the field
of MT. On the one hand, current MT technology is focused on three main applica-
tions:

• Fully-automatic MT in limited domains like weather forecast [LGLL05],
hotel reception desk [ABC+00], appointment scheduling, etc.

• Post-editing for CAT, understanding by post-editing the human amendment
of automatic translations produced by an MT system.

• Understandable rough translation in which the aim is to allow a human to de-
cide whether the translated text includes relevant information. For instance,
this is used for document finding purposes or user assistancein software
troubleshooting.

On the other hand, state-of-the-art MT approaches can be classified according
to the level of analysis of the source sentence before translating:

• The interlingua approach consists in transforming the source sentence to a
language independent semantic representation, the so-called interlingua, and
translating that interlingua expression into the desired target language. The
major drawback of this approach is its demanding knowledge resources to
represent such language independent information. Furtherdetails of this ap-
proach can be found in [N+92, NM92, A+93].

• The transfer approach decomposes the translation process into three steps:

Analysis. The source sentence is syntactically and semantically parsed to
some abstract representation.

6 JCS-DSIC-UPV
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Transfer. A transformation from the source representation into the target
representation is performed.

Generation. The final translation is generated from the target representation
obtained in the previous step.

A review of transfer-based systems is presented in [HS92].

• The direct approach refers to the word-by-word translationfrom the source
sentence into the target sentence. Under this approach we find example-
based MT and statistical MT:

Example-based MT. This approximation deals with the translation of new
sentences by analysing, using different matching criteria, similar sen-
tences previously translated. See [Som99] for a review of example-
based MTb.

Statistical MT. A statistical model is inferred from translation examples
and the translation process is derived from a statistical decision theory
perspective. This thesis is mainly devoted to the statistical approxima-
tion to MT that will be further studied in the next section.

1.4 Statistical MT

The goal of MT is the automatic translation of a source sentence x into a target
sentencey, being

x = x1 . . . xj . . . x|x| xj ∈ X

y = y1 . . . yi . . . y|y| yi ∈ Y

wherexj andyi denote source and target words, andX andY, the source and
target vocabularies respectively.

In statistical MT, this translation process is usually presented as a decision pro-
cess, where given a source sentencex, we will choose a target sentenceŷ according
to

ŷ = arg max
y

p(y |x) (1.7)

wherep(y |x) is the probability fory to be the actual translation ofx or, in other
words, the relative frequency ofy being the actual translation ofx. The so-called
search problemis to compute a target sentenceŷ for which this probability is max-
imum. Applying Bayes’s theorem we can reformulate Eq. (1.7)as

ŷ = arg max
y

p(x | y) p(y) (1.8)

bAlso known as memory-based MT [Bow02, Som03]

JCS-DSIC-UPV 7
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where the termp(y |x) has been decomposed into atranslation modelp(x | y)
and alanguage modelp(y). Intuitively, the translation model is responsible for
modelling the correlation between source and target sentence, but it can also be
understood as a mapping function from target to source words. While the language
modelp(y) represents the well-formedness of the candidate translationy. It should
be noted that the termp(x) has been intentionally omitted in the denominator of
Eq. (1.8), since it is constant for a givenx when maximising overy.

From a broader perspective, we can look at statistical MT as aspecific instance
of a classification problem where:

• The object to be classified is the sentencex to be translated.

• The set of possible classes are the set of possible sentencesin the target
languagey ∈ Y∗.

• The prior probability distribution is the language modelp(y).

• The conditional probability distribution is the translation modelp(x | y).

Therefore, under this point of view the decision rule statedin Eq. (1.7) is opti-
mal under the assumption of azero-oneloss function. In statistical MT, the zero-
one loss function is better known assentence error rate(SER)c and considers that
there is an error if the translation given by the systemŷ is not identical to the
reference translation.

In conclusion, by applying Eq. (1.7) we are minimising the probability of er-
ror using SER as a loss function. However, the SER measure provides a rough
and superficial evaluation of the translation quality of a translation system and it
is rarely used in favour of other more popular evaluation measures likeword error
rate (WER) andbilingual evaluation understudy(BLEU) [PRWZ01]. These eval-
uation measures, further explored in this thesis, suggest the usage of alternative
loss functions, and therefore different decision rules that are closer to actual eval-
uation measures employed in statistical MT. An excellent discussion on the use of
different loss functions in statistical MT can be found in [AF+07].

A great variety of statistical translation models have beenproposed since the
IBM article was initially published [B+90, B+93]. In that article, the correspon-
dence between source and target word positions is describedby an alignment vari-
ablea = a1 . . . aj . . . a|x| where for each source positionj, we have a target po-
sition aj ∈ {0, . . . , |y|} to which is connected. The artificial zero positiond is
introduced to deal with source words with no direct mapping in the target sen-
tence. The alignment variable is called a hidden variable since it is not directly
observable in the translation process, but it naturally arises in the description of
many probabilistic alignment models,

p(x | y) =
∑

a∈A(x,y)

p(x, a | y) (1.9)

cSER in statistical MT is equivalent to CER in classification tasks.
dBetter known in the literature as NULL or empty word.

8 JCS-DSIC-UPV
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whereA(x, y) denotes the set of all possible alignments betweenx andy. The IBM
article proposes five word alignment translation models of increasing complexity,
that were implemented in the GIZA++ toolkit [ON03].

The M1 model, the first of the IBM models, is basically defined as a statis-
tical bilingual dictionary, and it usually serves as a initialisation step for superior
IBM models. Another interesting property of the M1 model is the concavity of its
log-likelihood function, and therefore the uniqueness of amaximum value of this
function under non-degeneratede initialisation. The M1 model has been widely
employed in different applications of statistical MT, cross-lingual information re-
trieval and bilingual TC due to its simplicity and applicability of its parameter
values.

In statistical MT, the M1 model has traditionally been an important ingredient
in applications such as the alignment of bilingual sentences [Moo02], the align-
ment of syntactic tree fragments [DGP03], the segmentationof bilingual long sen-
tences for improved word alignment [NCV03], the extractionof parallel sentences
from comparable corpora [MFM04], the estimation of word-level confidence mea-
sures [UN07] and serves as inspiration for lexicalised phrase scoring in phrase-
based systems [KOM03, Koe05]. Furthermore, it has also received attention to
improve its nonstructural problems [Moo04].

Moreover, the M1 model has been recently applied to cross-lingual information
retrieval with promising results [PJR07]. In that work, theauthors use a training
corpus made up by a set of query-relevant document pairs in a probabilistic cross-
lingual information retrieval approach based on the M1 model.

In this thesis, the M1 model, as well as the M2 model, were studied and ex-
tended in Chapters 3 and 4, respectively. Apart from the IBM models, other word
alignment translation models have been proposed, among them the homogeneous
hidden Markov alignment model(HMM) [V +96] that has received special atten-
tion [TIM02, DB05]. This thesis further elaborates upon theHMM model in Chap-
ter 5.

The search problem presented in Eq. (1.8) was demonstrated to be an NP-
complete problem [Kni99, UM06]. However various research groups have devel-
oped efficient search algorithms by using suitable simplifications and applying op-
timisation methods. Starting from the IBM work based on a stack-decoding algo-
rithm [BPP96] over greedy [B+94, WW98, G+01] and integer-programming [G+01]
approaches to dynamic-programming search [GVC01, TN03]. This latter search
approach was studied in Chapter 4.

Nevertheless, most of the current statistical MT systems pursue an alternative
modelisation of the translation process different from that presented in Eq. (1.7).
The posterior probability is modeled as a log-linear combination of feature func-

eStarting point in which none of the initial parameter valuesis zero.
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tions [ON04] under the framework of maximum entropy [BPP96]

ŷ = arg max
y

M∑

m=1

λmhm(x, y) (1.10)

whereλm is the interpolation weight andhm(x, y) is a function that assigns a score
to the sentence pair(x, y).

Under this framework Eq. (1.8) can be seen as a special case where

h1(x, y) = log p(x | y) (1.11)

h2(x, y) = log p(y) (1.12)

andλ1 = λ2 = 1.
Most of state-of-the-art statistical MT systems are based on bilingual phrases

[CB+07]. These bilingual phrases are sequences of words in the two languages
and not necessarily phrases in the linguistic sense. The phrase-based approach to
MT is further explored in Section 1.5.

Another approach which has become popular in recent years isgrounded on
the integration of syntactic knowledge into statistical MTsystems [Wu96, YK01,
GK04, Lin04, DP05]. This approach parses the sentence in oneor both of the
involved languages, defining then, the translation operations on parts of the parse
tree. In [Chi07], Chiang constructs hierarchical transducers for translation. The
model is a syntax-free grammar which is learnt from a bilingual corpus without
any syntactic information. It consists of phrases which cancontain sub-phrases, so
that a hierarchical structure is induced.

The third main approach, which is currently investigated instatistical MT, is
the modelling of the translation process as a finite-state transducer [ADB00, BR95,
CV04, KN04, M+06]. This approach solves the translation problem by estimating
a language model on sentences of extended symbols derived from the association
of source and target words coming from the same bilingual pair. The translation
transducer is basically an acceptor for this language of extended symbols. This
approach is further explored in Chapter 6 where we introducean interactive and
predictive CAT system based onstochastic finite-state transducers(SFST).

1.5 Statistical phrase-based translation systems

1.5.1 Generative phrase-based models

In this section, we outline an example of generative phrase-based model [AFJC07]
that will serve us to present the problems faced by this approach, and to motivate
the introduction of heuristically estimated phrase-basedsystems in the next section.

Let (x, y) be a pair of source-target sentences, we introduce the conventional
conditional probabilityp(x | y) for the translation model. Let assume thatx has
been monotonically generated fromT continuous segments that composey. The
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resultant source and target non-empty segments are defined by µ = {µ0, µ1, . . . , µT }
andγ = {γ0, γ1, . . . , γT } variables, respectively, where

0 =µ0 < µ1 < . . . < µT = |x|

0 =γ0 < γ1 < . . . < γT = |y| (1.13)

so given two monotone, monolingual segmentations ofx andy into T segments,
µ and γ, their associated bilingual segmentation ofx and y is defined ass =
s1, s2, · · · , sT with

st = (µt−1 + 1, µt, γt−1 + 1, γt) t = 1, . . . , T. (1.14)

An example of all possible bilingual segmentations for a source sentence of
length 4 and a target sentence of length 5 is represented in Figure 1.1 as a direct
multi-stage graph.

The initial stage of the graph has a single, artificial node labelled as “init”,
which is only included to point to the initial segments of allthe possible segmen-
tations. There are12 of such initial segments, vertically aligned on the first stage.
Similarly, there are15, 3 and13 segments aligned on the second, third and final
stages, respectively. The total number of segments is then43. There is a unique
segmentation of unit length,s = (1415), which is represented by the rightmost
path, but there are12, 18 and4 segmentations of length2, 3 and4, respectively;
comprising35 segmentations in total. As empty segments are not allowed, seg-
mentation lengths range from one to the length of the shortest sentence.

Finally, our model forp(x | y) can be seen as a full exploration of all possible
bilingual segmentations ofx andy,

p(x | y) =

min(|x|,|y|)∑

T=1

∑

s

p(x, s, T | y) (1.15)

where
p(x, s, T | y) = p(T | y) p(s |T, y) p(x | s, T, y) (1.16)

is a generation process in which we first decide on the number of segments, then
we select the sequence of segmentation states, and finally wegenerate the source
segment.

The estimation of a phrase-based model as that presented above is a cumber-
some problem that possess not only computational efficiencychallenges, but also
overwhelming data requirements. One of the main difficulties that phrase-based
models have to cope with is the problem of the bilingual segmentation. In the
model proposed above, this segmentation is explained by thehidden variablesT
ands which leads us to a large combinatorial number of possible segmentations
to explore. As can be guessed, this problem is further aggravated with the length
of the source and target sentence. Despite this obstacle, there have been several
bold proposals for phrase-based models, from the joint probability model [MW02,
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init
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Figure 1.1: Directed, multi-stage graph representing all possible bilingual
segmentations for a source sentence of length4 and an target sentence of
length5. Each node defines a different segment; the first two digits ofthe
node label are the segment limits in the source sentence, while the other two
digits correspond to the target sentence.

BCBMOK06], over the HMM phrase-based models [DB05, AFJC07]to the statis-
tical GIATI model [AFJCC08].

However, the most popular approach to the development of phrase-based sys-
tems has been the log-linear combination of heuristically estimated phrase-based
models [KOM03, ON04], since these systems offer similar or even better perfor-
mance than those based on generative phrase-based models [DGZK06].

1.5.2 Heuristic phrase-based models

The heuristic estimation of phrase-based models is grounded on the Viterbi align-
ments computed as a byproduct of word-based alignment models. The Viterbi
alignment is defined as the most probable alignment given thesource and target
sentences and an estimation of the model parametersΘ,

â = arg max
a

p(a |x, y;Θ) (1.17)

also rewritten
â = arg max

a
p(x, a | y;Θ). (1.18)

The conventional alignments, for instance those provided by IBM models, dis-
allow the connection of a source word with more than one target word. This unreal-
istic limitation negates the common linguistic phenomenonin which a word in one
language is translated into more than one word in another language. To circumvent
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this problem, alignments are not only computed from the source language to the
target language, but also from the target language to the source language. Doing
so, we can reflect the fact that a single word is connected to more than one word.

Once the Viterbi alignments have been computed in both directions, there ex-
ist different heuristic algorithms to combinef them [KOM03, ON03]. These al-
gorithms range from the intersection of both alignments in which we have high
precision, but low recall alignments, to the union in which we have low precision,
but high recall. In between, there are algorithms like the refined method [ON03]
and thegrow-diag-final[KOM03] that starting from the intersection, heuristically
add additional alignment points taken from the union. The latter symmetrisation al-
gorithm will be employed throughout this thesis to combine the Viterbi alignments
provided by our word-based alignment translation models. This is a previous step,
before extracting bilingual phrases, to construct a phrase-based system.

Bilingual phrase extraction is based on the concept ofconsistencyof a bilingual
phrase(x, y) (derived from a bilingual segmentation) with a word alignment a.
Formally,

(x, y) consistent witha⇔ ∀xj ∈ x : (xj , yi) ∈ a −→ yi ∈ y ∧

∧ ∀yi ∈ y : (xj , yi) ∈ a −→ xj ∈ x ∧

∧ ∃xj ∈ x, yi ∈ y : (xj , yi) ∈ a (1.19)

basically Eq. (1.19) means that a bilingual phrase is consistent if and only if, all
the words in the source phrase are aligned to words in the target phrase, and there
is at least one word in the source phrase aligned to a word in the target phrase.

Given the definition of consistency, all bilingual phrases (up to a maximum
phrase length) that are consistent with the alignment resulting from the symmetri-
sation process are extracted.

The next step is to define functions that assign a score or a probability to a
bilingual phrase in isolation or as part of a sequence of bilingual phrases in a given
segmentation. These score functions are seamlessly integrated in a log-linear fash-
ion under the maximum entropy framework.

The most commonly used score functions are the direct and inverse phrase
translation probability estimated as a relative frequency

pd(x | y) =
count(x, y)∑

x

count(x, y)
pi(y |x) =

count(x, y)∑
y

count(x, y)
(1.20)

as well as the direct and inverse lexical translation probability inspired in the M1
model [KOM03, CL07]. Other score functions are related to reordering capabil-
ities, such as the distance-based reordering model [ON04] and the lexicalised re-
ordering model [K+05]. Additional score functions are phrase and word penaltyto
control the length of the translated sentence.

fThis process is also known as symmetrisation.
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The weight of each score function in the log-linear combination is adjusted on
a development set with respect to a predefined criterion, usually BLEU. There are
two popular techniques in statistical MT to carry out this process, minimum error
rate training [Och03] and minimum Bayes risk [KB04]. The former criterion was
used in this thesis to tune the weights of the log-linear model. Furthermore, the
most common approach to the decoding process in log-linear models is the well-
known multi-stack decoding algorithm [Koe04, ON04]. The Moses toolkit [K+07],
that implements an instantiation of this type of multi-stack decoding algorithms,
will be used throughout this thesis to carry out most of the translation experiments.
It should be noted that the Moses toolkit is employed at the user level to tune
the weights of the score functions, and will allow us to indirectly evaluate the
translation quality of the models proposed in this thesis.

1.6 Automatic MT evaluation metrics

In MT, the use of automatic evaluation metrics is imperativedue to the high cost
of human made evaluations. Also the need of rapid assessmentof the translation
quality of an MT system during its development and tuning phases is another rea-
son for the usage of automatic metrics. These metrics are employed under the
assumption that they correlate well with human judgements of translation quality.
This arguable statement must be considered bearing in mind the low inter-annotator
agreement on translation quality [CB+07]. This fact makes automatic evaluation
an open challenge in MT.

In this thesis, we mainly use two conventional translation evaluation metrics,
WER and BLEU, although other measures like METEOR [BL05] andtranslation
edit rate (TER) [S+06] are becoming more and more popular.

The WER metric [A+00, C+04] is defined as the minimum number of word
substitution, deletion and insertion operations requiredto convert the target sen-
tence provided by the translation system into the referencetranslation, divided by
the number of words of the reference translation. It can alsobe seen as the ratio of
the edit distance between the system and the reference translation, and the number
of words of the reference translation. This metric will allow us to compare our
results to previous work on the same task. Even though the WERmetric can value
more than 1.0, it will be expressed as a percentage as it is commonly presented in
the SMT literature. The WER metric can also be evaluated withrespect to multiple
references, however, in this thesis, we have a single reference translation at our
disposal.

The BLEU score [PRWZ01] is the geometric mean of the modifiedg precision
for different order ofn-grams (usually from unigram up to4-grams) between the
target sentence and the reference translation, multipliedby an exponential brevity
penalty (BP) factor that penalises those translations thatare shorter than the ref-

gThe number of occurrences of a word in a target sentence is limited to that of this word in the
reference translation.
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erence translation. Although some voices have been raised against BLEU as the
dominant evaluation methodology over the past years [CBOK06], it is still a ref-
erence error measure for the evaluation of translation quality in MT systems. We
take BLEU as a percentage ranging from0.0 (worst score) to100.0 (best score).

1.7 Computer-assisted translation

Present translation technology has not been able to deliverfully automated high-
quality translations [NIS06, CB+07]. Experts are almost unanimous about this [Isa96,
Kay97a, Hut99, Arn03]. An alternative way to take advantageof the existing MT
technologies is to use them in collaboration with human translators within a CAT
framework.

Historically, CAT and MT have been considered as different but close tech-
nologies [Kay97b] and more so for one of the most popular CAT technologies,
namely, translation memories. Translation memories are the basic ingredient of
post-editing tools in which an MT system provides a completetranslation using
sentences previously translated, and a human expert corrects the possible errors
incurred by the MT system. It should be noticed that there is no actual interaction
between the MT system and the translator in this scenario, since they work as two
isolated serial processes.

The main drawback of post-editing tools is that the serial process residing at
the core of this technology, prevents the MT system from taking advantage of
the knowledge of the human translator and the human translator cannot benefit
from the adapting capability of the MT system. In contrast, an interactive ap-
proach to CAT [IC97] seems to be more adequate in this human-computer inter-
active setting. Interactivity in CAT has been explored for along time. Systems
have been designed to interact with human translators in order to solve different
types of (lexical, syntactic or semantic) ambiguities [Slo85, WWC+86]. Other
interactive strategies have been considered for updating user dictionaries or for
searching through dictionaries [Slo85, WWC+86]. Specific proposals can be found
in [Tom85, Zaj88, Y+93, SZH97] among others.

An important contribution to interactive CAT technology was carried out around
the TransType (TT) project [LFL00, LLL02, FLL02, Fos02]. This project entailed
an interesting focus shift in which interaction directly aimed at the production of
the target text, rather than at the disambiguation of the source text, as in former
interactive systems. The idea proposed in that work was to embed data driven MT
techniques within the interactive translation environment. The hope was to com-
bine the best of both paradigms: CAT, in which the human translator ensures the
high-quality output, and MT, in which the machine ensures a significant gain of
productivity. Following these TT ideas, the innovative embedding proposed here
consists in using a complete MT system to produce full targetsentence hypotheses,
or portions thereof, which can be partially or completely accepted and amended by
a human translator. Each partial correct text segment is then used by the MT system
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as additional information to achieve further, hopefully improved suggestions.
A follow-up of the precursor TT project was TransType2 (TT2)project [Ato01].

In this project, a series of novel contributions were developed:

• Fully-fledged statistical MT systems produce complete sentence hypotheses
as a response to user corrections, instead of single words suggestions as hap-
pened in the TT project.

• Systematic off-line experiments to simulate the specific conditions of inter-
active translation and analyse the results.

• Some of the systems developed in this project were successfully evaluated
by professional translators under real working conditions[MNS05, Mac06].

This thesis presents one of the three CAT systems developed in the framework of
the TT2 project, as said before, this system based on SFST technology is intro-
duced in Chapter 6.

In the CAT scenario, the speech was proposed as an alternative means of inter-
action [VCR+06] and as a tool to dictate translations [KZN05, KZN06].

1.8 The expectation-maximisation algorithm

In this thesis, we present a series of probabilistic modelsp(x;Θ) that are governed
by their corresponding set of parametersΘ. Supposing that we haveN samples
that have been randomly drawn fromp(x;Θ)

X = {x1, . . . , xn, . . . , xN},

we can compute the log-likelihoodh of Θ w.r.t.N independent samples as

L(Θ;X) = log p(X;Θ) =

N∑

n=1

log p(xn;Θ). (1.21)

The log-likelihood can be thought of as a function of the parametersΘ where the
dataX is fixed. Our goal will be to find an estimation̂Θ that maximises the log-
likelihood ofΘ,

Θ̂ = arg max
Θ

L(Θ;X). (1.22)

Depending on the form ofp(x;Θ) this maximisation can be easy or hard. For
example, ifp(x;Θ) is a D-nomial distribution of parametersx+! and

Θ = (p1, . . . , pd, . . . , pD) (1.23)

hWe take the logarithm of the likelihood because it is analytically and computationally easier to
work with.
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that is,

p(x;Θ) =
x+!

∏D
d=1 xd!

D∏

d=1

p
xd

d (1.24)

then, the maximum likelihood estimate ofΘ w.r.t. N independent D-nomial sam-
ples can be easily computed by taking partial derivatives ofEq. (1.21) w.r.t.pd and
equating to zero, subject to the constraint thatΘ defines a p.f. Doing so, we have
thatΘ̂ is

pd =

N∑
n=1

xnd

D∑
d=1

N∑
n=1

xnd

(1.25)

wherexnd is the number of occurrences of thed-th event in then-th sample. How-
ever, this is much more complicated for many interesting models, including nearly
all of those studied in this thesis.

Fortunately, maximum likelihood estimation of all “complicated” models stud-
ied in this work can be reliably accomplished by the EM algorithm [DLR77, Wu83].
The EM algorithm considersX to be incomplete data which can becompletedby
addition of missing (hiddenor latent) dataZ. This results in a many-to-one map-
ping from the complete to the incomplete models,

p(X;Θ) =
∑

Z∈Z

p(X,Z;Θ). (1.26)

whereZ is the domain from whichZ takes value. The marginalisation in Eq. (1.26),
represented as the sum over the domain of the hidden variableZ, is the case of
all the models presented in this thesis, since they only involve discrete variables.
However, this sum is replaced by an integral in the case of continuous variables,
or a combination of sum and integral when the marginalisation is carried out over
discrete and continuous variables.

The EM algorithm works iteratively in two basic steps. Firstly, the E step
computes the expected value of the logarithm ofp(X,Z;Θ) w.r.t. the posterior
p(Z |X;Θ(k)),

Q(Θ |Θ(k)) = E(log p(X,Z;Θ) |X,Θ(k)). (1.27)

Secondly, the M step maximisesQ(Θ |Θ(k)) to obtain a new estimation ofΘ,

Θ
(k+1) = arg max

Θ

Q(Θ |Θ(k)). (1.28)

These two steps are repeated for a number of iterations or until convergencei . There
exists a modified version of the algorithm known as the generalised EM [DLR77],

iNormally, the condition for convergence is a relative increase of log-likelihood from iterationk
to k + 1 below a given threshold.
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in which the M step is only required to fulfil the conditionQ(Θ(k+1) |Θ(k)) >
Q(Θ(k) |Θ(k)). In any case, the algorithm converges to a local maximum of the
likelihood function.

Let us now consider the conventional case in which the missing data consists
of N independent and identically distributed hidden variablesj ,

Z = {z1, . . . , zn, . . . , zN} (1.29)

and thus, Eq. (1.26) factorises over the joint distribution,

p(X;Θ) =
∑

Z∈Z

N∏

n=1

p(xn, zn;Θ)

=
∑

z1

. . .
∑

zN

N∏

n=1

p(xn, zn;Θ)

=
∑

z1

p(x1, z1;Θ)

[
∑

z2

. . .
∑

zN

N∏

n=2

p(xn, zn;Θ)

]

=

N∏

n=1

∑

zn

p(xn, zn;Θ). (1.30)

Similarly, the joint probability forN independent samples becomes

p(X,Z;Θ) =

N∏

n=1

p(xn, zn;Θ). (1.31)

Thus, the E step can be rewritten as

Q(Θ |Θ(k)) =
N∑

n=1

E(log p(xn, zn;Θ) |xn,Θ
(k)). (1.32)

where we compute the expected value of the missing datazn for each sample in-
dependently.

1.9 Finite mixture modelling

Finite mixture modelling is a popular approach for the estimation of probability
(density) functions in PR [TSM85, JDM00]. Mixtures are flexible enough for find-
ing an appropriate tradeoff between model complexity and the amount of training
data available. Usually, model complexity is controlled byvarying the number of
mixture components while keeping the same (often simple) parametric form for
all components. Although most research on mixture models has concentrated on

jEach hidden variablezn completes its corresponding incomplete (observed) data samplexn.
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mixtures for continuous data, there are many tasks for whichdiscrete mixtures are
better suited, for instance those related to model natural language.

A T -component mixture model is a probability (density) function of the form

p(x;Θ) =

T∑

t=1

p(t) p(x | t;Θt) (1.33)

where for each componentt, p(t) is its mixture prior or coefficient andp(x | t;Θt)
is its component-conditional probability (density) function governed by the com-
ponent parameter vectorΘt. It can be seen as a generative model that first selects
the tth component (or topic) with probabilityp(t) and then generatesx in accor-
dance withp(x | t;Θt). Thus, the global vector of parametersΘ is

Θ = (p(1), . . . , p(t), . . . , p(T );Θ′)t (1.34)

where
Θ

′ = (Θ1, . . . ,Θt, . . . ,ΘT )t. (1.35)

We can provide an equivalent representation of the finite mixture model presented
above using an indicator vectorz,

z = (z1, . . . , zt, . . . , zT )t (1.36)

with 1 in the position corresponding to thetth component generatingx, and zeros
elsewhere

z = (0, . . . , 0, 1, 0, . . . , 0)t. (1.37)

⇑

t

Therefore, the domain of the hidden variablez is composed of vectors with1 in a
single position and zeros elsewhere.

This indicator vector replaces the integer latent variablet introduced in Eq. (1.33),
simplifying the derivation of the EM algorithm, while beingequivalent to the inte-
ger representation.

Then, the mixture model in Eq. (1.33) is rewritten in terms ofan indicator
vector as

p(x;Θ) =
∑

z

p(x,z;Θ)

=
∑

z

p(z) p(x |z;Θ′) (1.38)

wherep(z) is a multinomial p.f.,

p(z) =

T∏

t=1

p(t)zt (1.39)

JCS-DSIC-UPV 19



Chapter 1. Preliminaries

beingp(z) = p(t) whenz values1 in the tth position and zeros elsewhere, and
p(x |z) is a component-conditional p.f. overx,

p(x |z;Θ′) =
T∏

t=1

p(x | t;Θt)
zt . (1.40)

being p(x |z;Θ′) = p(x | t;Θt) whenz values1 in the tth position and zeros
elsewhere. Thus, the general form for a finite mixture model becomes

p(x;Θ) =
∑

z

T∏

t=1

[p(t) p(x | t;Θt)]
zt . (1.41)

which is equivalent to Eq. (1.33).
Now, letX be a set of samples available to learnΘ that governs a finite mix-

ture model as described above. This is a statistical parameter estimation problem
since the mixture is a p.f. of known functional form, and all that is unknown is a
parameter vector including the priorsp(t) and component-conditional parameters
in Θt. The optimal parameter values maximise the log-likelihoodfunction ofΘ
w.r.t.X,

L(Θ;X) =
N∑

n=1

log
∑

zn

∏

t

[p(t) p(xn | t;Θt)]
znt . (1.42)

that can be estimated with an instantiation of the EM algorithm presented in Sec-
tion 1.8.

The EM algorithm for a finite mixture model entails the application of the E
step in Eq. (1.32). Here, we consider the indicator vectorz to be the missing data
zn drawn fromZ in Eq. (1.29), but redefined as

Z = {z1, . . . ,zn, . . . ,zN}. (1.43)

So, the E-step computes the expected value of the logarithm of p(xn,zn;Θ) given
the observed dataxn and the current estimation ofΘ, Θ(k)

Q(Θ |Θ(k)) =

N∑

n=1

E(log p(xn,zn;Θ) |xn,Θ
(k))

=

N∑

n=1

T∑

t=1

z
(k)
nt [log p(t) + log p(xn | t;Θt)] . (1.44)

wherez(k)
nt is the posterior probability ofxn being generated from thetth compo-

nent,

z
(k)
nt =

p(t) p(xn | t;Θ
(k)
t )

∑T
t′=1 p(t

′) p(xn | t′;Θ
(k)
t′ )

. (1.45)
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The M-step maximises the functionQ in Eq. (1.44) subject to the constraint
that mixture coefficients must sum up to one, along with additional constraints im-
posed by the normalisation of the parameters defined inΘt. These constraints are
incorporated into the maximisation problem in Eq. (1.28) via Lagrange multipliers,

Θ
(k+1) = arg max

Θ

max
λ

Q(Θ |Θ(k)) + Λ (1.46)

with

Λ = −λ

(
T∑

t=1

p(t) − 1

)

. (1.47)

whereλ is the Lagrange multiplier to normalise the mixture coefficients. Addi-
tional Lagrange multipliers are usually needed to enforce the normalisation con-
straints of the parameters defined inΘt.

In the case of mixture coefficients, we take derivatives ofQ+ Λ w.r.t. p(t) and
λ and equate them to zero in order to obtain their corresponding update equation,

p(t)(k+1) =
1

N

N∑

n=1

z
(k)
nt ∀t (1.48)

that can be understood as the average contribution (responsibility) of the tth com-
ponent to generate the training set, or alternatively, as the relative count of training
samples drawn from thetth component. Similarly, the derivative ofQ w.r.t. Θt

and its Lagrange multipliers (if any) must be equal to zero, so as to obtain the
corresponding update equations forΘ

(k)
t .

In this thesis, we exclude the problem of the estimation of the optimal number
of components per mixture. Instead, we prefer to study the evolution of the eval-
uation metrics as a function of the number of components for the different tasks
in bilingual TC and statistical MT. This study is constrained by memory require-
ments.

1.10 Scientific contributions

The objective of this thesis is to present new applications of existing technology
in TC and CAT, as well as new models in TC and statistical MT based on the
paradigm of mixture modelling. More precisely, the scientific contributions of this
thesis are:

1. Bilingual TC . Bilingual TC is proposed as a new application in TC along
with novel models that are capable to deal with bilingual information and
learn word correlation across languages. Five models basedon the uni-
gram model and its corresponding mixture extension are presented. These
models were tested on three tasks of increasing complexity going from a
semi-artificial task, over a real small task, to a real complex task. The two
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first tasks were assessed in terms of CER, while the latter task was evalu-
ated on precision-recall figures due to its multilabel nature and the working
conditions from which it is extracted. As a natural evolution of the five
unigram models previously mentioned, we derived a novel model that com-
bines a unigram distribution with the well-known M1 translation model. The
unigram-M1 model incorporates word correlation constraints into the bilin-
gual classification model in order to fully exploit the bilingual information.
This model was assessed on the first two proposed tasks. Alongwith these
models, smoothedn-gram language models, support vectors machines and
boosting techniques are included in the evaluation for comparative purposes
and for the study of variable-size word-context information in the framework
of bilingual TC.

2. Context-specific word alignment translation models. Three fundamental
word alignment statistical translation models, M1, M2 and HMM, were ex-
tended to incorporate context information by applying mixture modelling.
The word alignment translation models proposed so far in theliterature ig-
nore the context information from which bilingual sentences are extracted,
however it is unanimously accepted that a word has differentmeanings de-
pending on the semantic domain in which is found. The mixturemodels
presented in this thesis aim at capturing domain information by develop-
ing context-specific word alignment translation models without supervision.
The M1, M2 and HMM mixture models proposed were evaluated from two
points of view on real shared tasks. On the one hand, we assessed the qual-
ity of the Viterbi alignments generated by these models and on the other
hand, we indirectly measure the translation quality of these models by feed-
ing its Viterbi alignments into a statistical phrase-basedsystem. In the case
of the M2 mixture model, we also developed a mixture extension of an itera-
tive dynamic-programming search algorithm for the conventional M2 model.
This search algorithm allows us to directly gauge the translation quality of
the M2 mixture model on a semi-artificial translation task.

3. Interactive and predictive CAT based on SFST technology. Current MT
technology is still far from producing fully-automatic high quality transla-
tion. Alternatively, CAT systems seek to integrate MT techniques in the hu-
man translator activity in order to increase their productivity and guarantee
high quality translations. Following this idea, our proposal is to perform such
a human-computer synergy mediating the target sentence that is being trans-
lated, that is, the translator guides the translation process by correcting the
suggestions that the system offers. More precisely, in our case the backend
MT technology for such an interactive and predictive CAT system is pow-
ered by SFSTs. The capability of this formalism to provide adequate trans-
lations and the existence of efficient parsing algorithms justify its selection
given the tight usability and real-time constraints that these interactive sys-
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tems require. The work carried out in this part of the thesis is focused on the
adaptation, development and integration of existing algorithms in the field of
finite-state machines to construct an interactive and predictive CAT system.
The resultant system is automatically evaluated in terms ofoff-line transla-
tion quality and on-line typing effort reduction in two corpora of different
complexity. Furthermore, this system was manually assessed by translators
in controlled user-trial session. This latter work was externally developed in
the framework of a European project.
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CHAPTER 2

BILINGUAL TEXT

CLASSIFICATION

2.1 Introduction

The proliferation of multilingual documentation in our Information Society has
become a common phenomenon in many official institutions (EUparliament, the
Canadian Parliament, UN sessions, Catalan and Basque Parliaments in Spain, etc.)
and private companies (user’s manuals, newspapers, books,etc.). In many cases,
this textual information needs to be categorised by hand, entailing a time-consuming
and arduous burden.

As mentioned in Section 1.2, monolingual TC has received most of the at-
tention of the scientific community compared to bilingual (multilingual) or cross-
lingual TC. Among the diverse approaches to monolingual TC the well-known
naive Bayes classifier [Lew98, MN98] is one of the most popular. Being so,
there have been several instantiations and generalisations of this classifier, from
Bernoulli mixtures [JV02] to multinomial mixtures [N+00, NM03]. Both general-
isations seek to relax the naive Bayes feature independenceassumption made when
using a single Bernoulli or multinomial distribution per class.

The unrealistic assumption of the naive Bayes classifier is one of the main rea-
sons explaining its comparatively poor results in contrastto other techniques such
asboosting-based classifier committees(boosting) [SS00] andsupport vector ma-
chines(SVM) [BGV92, CV95, Vap95]. However, the performance of thenaive
Bayes classifier is significantly improved by using the generalisations mentioned
above. Moreover, there are other recent generalisations (and corrections) that also
overcome the weaknesses of the naive Bayes classifier and achieve very competi-
tive results [SW02, R+03, V+04, P+04a, P+04b].

The accuracy of the single-class text classifiers presentedabove is considered
to be fairly good [Seb02]. However, the performance of multi-label text classifiers
is far from being acceptable, and it is more convenient to look at these classifiers
as the backend of a MAI system [HH96, LH00, LD02, P+03], as commented in
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Section 1.2.2.
This chapter is devoted to bilingual TC, a novel applicationin the field of TC,

that considers the case in which bilingual parallel texts are to be classified. The
organisation of this chapter is as follows. We first introduce the unigram mixture
modela and its maximum likelihood estimation in Section 2.2, performing analo-
gously with the bilingual unigram mixture model in Section 2.3. Then, we derive
five bilingual text classifiers grounded on the unigram and bilingual unigram mod-
els in Section 2.4. The presentation of these bilingual classifiers is followed in
Section 2.5 by a series of experimental results on three tasks of different complex-
ity, together with comparative results SVM and boosting techniques. Finally, we
state the conclusions and future work in Section 2.6.

2.2 Unigram mixture model

2.2.1 The model

Let us consider the p.f. over sequences of words of the formx = x1 . . . xj . . . x|x|
of known length|x|

p(x) =

|x|∏

j=1

p(xj |x
j−1
1 ). (2.1)

For the unigram model, we assume that the probability of eachword to occur does
not depend on any previous wordb,

p(xj |x
j−1
1 ) := p(xj). (2.2)

Thus, the unigram model becomes

p(x;Θ) =

|x|∏

j=1

p(xj). (2.3)

where
Θ = (p(u) : u ∈ X ) . (2.4)

A unigram mixture modelis an instance of the general mixture model defined
in Eq. (1.41), wherep(x | t;Θt) is a component-dependent version of the unigram
model presented in Eq. (2.3)

p(x | t;Θt) =

|x|∏

j=1

p(xj | t). (2.5)

aA unigram language model is just a multinomial word distribution.
bWe do not distinguish between the general probability function and the model itself, since it is

clear by the context or the introduction of the parameter vector Θ.
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where each component has its own vector of unigrams

Θt = (p(u | t) : u ∈ X ) (2.6)

beingX , the vocabulary from which the wordu is drawn andp(u | t), the proba-
bility of word u to occur at componentt.

2.2.2 Maximum likelihood estimation

LetX = (x1, . . . , xN )t be a set of samples available to learn the unigram mixture
model presented in Section 2.2.1. Following the maximum likelihood principle,
optimal parameter values maximise the log-likelihood function of Θ

L(Θ;X) =

N∑

n=1

log
∑

zn

T∏

t=1

[p(t) p(xn | t;Θt)]
znt (2.7)

as in Eq. (1.42). Here, we consider an specific instantiationof the EM algorithm for
mixture models presented in Section 1.9, for the unigram mixture model. TheQ
function is defined as in Eq. (1.44), withz(k)

nt in Eq. (1.45) being the posterior prob-
ability of xn being actually generated by thetth component-conditional unigram
model, as defined in Eq. (2.5).

In the M step we compute Eq. (1.28), in order to find a new estimate for the
mixture coefficients as in Eq. (1.48), and for the component-conditional unigram
parameters,

p(u | t)(k+1) =
N(u, t)∑

u′∈X

N(u′, t)
∀t, u ∈ X (2.8)

where

N(u, t) =
N∑

n=1

z
(k)
nt

|xn|∑

j=1

δ(xnj = u) (2.9)

and

δ(b) =

{
1 if b is true
0 if b is false.

(2.10)

The δ function will be used throughout this thesis to simplify themathematical
notation. Eq. (2.8) can be understood as weighted relative counts of unigrams for
each componentt, in which the weighting termznt accounts for how much thenth
sample contributes to the counts of thetth component. The asymptotic cost of the
training algorithm per iteration isO(N · T · |x|), where|x| is the sentence average
length.
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2.3 Bilingual unigram mixture model

2.3.1 The model

Bilingual texts are pairs of sentences or documents(x, y) that are mutual transla-
tions, i.e.x is a sentence in a source language, andy is its corresponding translation
in a target language. In this section, we present a bilingualmixture model based
on the unigram distribution to tackle the modelisation of bilingual texts.

To this purpose, let us consider the joint p.f. overx andy,

p(x, y;Θ) =
∑

z

T∏

t=1

[p(t) p(x, y | t;Θt)]
zt (2.11)

where, similarly to Eq. (1.41),p(t) andp(x, y | t;Θt) are the mixture coefficient
and the component-conditional p.f. of thetth component, respectively. In what
follows, we assumex andy to be two conditionally independent variables given
the mixture componentt from which they were drawn

p(x, y | t;Θt) = p(x | t;Θt) p(y | t;Θt). (2.12)

Plugging Eq. (2.12) into Eq. (2.11) results in thebilingual unigram mixture model

p(x, y;Θ) =
∑

z

T∏

t=1

[p(t) p(x | t;Θt) p(y | t;Θt)]
zt (2.13)

wherep(x | t;Θt) is the component-dependent unigram model for the source lan-
guage as defined in Eq. (2.5), andp(y | t;Θt) is the component-dependent unigram
model for the target language

p(y | t;Θt) =

|y|∏

i=1

p(yi | t). (2.14)

Thus, the global vector of parametersΘ is of the form of Eq. (1.34) where

Θt =

{
p(u | t) u ∈ X
p(v | t) v ∈ Y

. (2.15)

is the source and target language unigrams, respectively.

2.3.2 Maximum likelihood estimation

The maximum likelihood estimation of this model is similar to that of the unigram
mixture model in Section 2.2.2. Generally speaking, this reduces to substituting
xn by (xn, yn).
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Let (X,Y ) = ((x1, y1), . . . , (xN , yN ))t be a set of samples available to learn
Θ. The optimal parameter values maximise the log-likelihoodfunction ofΘ w.r.t.
(X,Y ), that can be expressed in terms of the indicator vectorzn as

L(Θ;X,Y ) =
N∑

n=1

log
∑

zn

T∏

t=1

[p(t) p(xn | t;Θt) p(yn | t;Θt)]
znt (2.16)

As shown in Section 1.9 for finite mixtures in general, we revert to the EM algo-
rithm to obtain a maximum likelihood estimation ofΘ. To this purpose, we replace
xn by (xn, yn) in Eq. (1.44) to compute the expected value ofp(X,Y,Z;Θ) w.r.t.
the posteriorp(Z |X,Y ;Θ(k)),

Q(Θ |Θ(k)) =

N∑

n=1

T∑

t=1

z
(k)
nt [log p(t) + log p(x | t;Θt) + log p(y | t;Θt)] (2.17)

where

z
(k)
nt =

p(t)(k) p(x | t;Θ
(k)
t ) p(y | t;Θ

(k)
t )

∑T
t′=1 p(t

′)(k) p(x | t;Θ
(k)
t ) p(y | t;Θ

(k)
t )

. (2.18)

In the M step, equivalently to Eq. (1.46), we maximise Eq. (2.17) so as to find a
new estimate forΘ, Θ(k+1). This results in updating equations that are analogous
to those in Section 2.2.2. Specifically, the mixture coefficients are calculated as in
Eq. (1.48) and the source-language component-conditionalunigram parameters as
in Eq. (2.8). The update equation for the target-language component-conditional
unigram parameters is

p(v | t)(k+1) =
N(v, t)∑

v′∈X

N(v′, t)
∀t, v ∈ Y (2.19)

where

N(v, t) =

N∑

n=1

z
(k)
nt

|yn|∑

i=1

δ(yni = v) . (2.20)

The asymptotic cost of the training algorithm per iterationisO(N ·T · (|x|+ |y|)),
where|x| and|y| are the source and target average lengths, respectively.

2.3.3 Smoothing

Two major problems in parameter estimation are zero probabilities due to model
overfitting, and the occurrence of infrequent events whose probabilities are poorly
estimated. The usual solution to this problem is what is known in the literature as
smoothing. Smoothing basically consists in the interpolation of a specific proba-
bility distribution, which we are estimating in our training process, with a more
general distribution.
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In this chapter, we smooth the component-conditional unigram distribution af-
ter each M step, interpolating the estimated probability distributionp(u | t) with a
uniform probability distribution

p̂(u | t) = (1 − ǫ) p(u | t) + ǫ
1

|X |
(2.21)

where ǫ is an interpolation parameter that weighs the contributionof each dis-
tribution. A different interpretation of theǫ parameter would be the amount of
probability mass that we discount from the specific distribution to be uniformly
shared among all the words. Theǫ parameter was manually fixed in order to obtain
smoothed CER and log-likelihood curves as we increase the number of components
in the mixture model.

2.4 Bilingual text classification using unigram models

The mixture models explained in Sections 2.2 and 2.3 are the basis for supervised
bilingual text classifiers depicted in this section.

2.4.1 Decision rules

Let us consider the task in which we have to classify a bilingual pair (x, y) into
one ofC supervised classes. As shown in Section 1.2, the optimal classification
decision is the Bayes rule that assigns(x, y) to a class with maximum posterior
probability. The Bayes rule in Eq. 1.4 requires a class-conditional p.f. that in our
case is instantiated inp(x, y | c). This fact involves the definition of supervised
class-conditional versions of the unigram mixture model inSection 2.2 and the
bilingual unigram mixture model in Section 2.3.

In this thesis we consider five bilingual classification rules, the first four of them
are based on the unigram mixture model and the last one, on thebilingual unigram
mixture model. Firstly, the monolingual source-language rule simply ignores the
target text

c(x, y) = arg max
c

log p(c) + log

T∑

t=1

p(t | c) p(x | t, c;Θct). (2.22)

A similar rule holds for the monolingual target-language model. Alternatively we
could think of a unigram model trained on the concatenation of source and target
texts

c(xy) = arg max
c

log p(c) + log

T∑

t=1

p(t | c) p(xy | t, c;Θct) (2.23)

wherexy represents the concatenation of the source and target texts. This model is
referred as to thebilingual bag-of-words(BBoW) model in this thesis.
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Furthermore, we could carry out aglobal decomposition of the bilingual p.f.
into two unigram mixture p.f.

p(x, y) =
T∑

t=1

p(t) p(x | t)
T∑

t′=1

p(t′) p(y | t′) (2.24)

so the classification rule becomes,

c(x, y) = arg max
c

log p(c)+ log
T∑

t=1

p(t | c) p(x | t, c;Θct)+

+ log

T∑

t′=1

p(t′ | c) p(y | t′, c;Θct). (2.25)

Finally, a local decomposition of the bilingual p.f. yields a classificationrule
based on the bilingual unigram mixture model

c(x, y) = arg max
c

log p(c) +

T∑

t=1

p(t | c) p(x | t, c;Θct) p(y | t, c;Θct). (2.26)

2.4.2 Maximum likelihood estimation for supervised classification

The unigram-based models can be used as class-conditional models in supervised
classification. To this purpose, we can extend the E and M steps of the EM al-
gorithm in order to carry out the training process for several supervised classes
simultaneously. This simple extension of the EM algorithm is equivalent to the
usual practise of applying its basic version to each supervised class in turn. How-
ever, we prefer to adopt the extended EM, mainly to have a unified framework for
classifier training in accordance with the log-likelihood criterion.

For the sake of simplicity, we just present the derivation for the unigram mix-
ture model. In a supervised setting, training samples come with their correspond-
ing class labels,(X,C) = ((x1, c1), . . . , (xN , cN ))t, and the vector of unknown
parameters is

Ψ = (p(1), . . . , p(C);Θ1, . . . ,ΘC) (2.27)

where, for each supervised classc, its prior probability is given byp(c) and its
class-conditional probability function is a unigram mixture controlled by a vector
of the form of Eq. (1.34),Θc. The log-likelihood ofΨ w.r.t. the labelled data is

L(Ψ;X,C) =

C∑

c=1

Nc log p(c) + Lc(Θc;Xc) (2.28)

whereXc is the set of samples inX labelled as belonging to classc, andNc is
the number of samples inXc. The functionLc is as the log-likelihood function in
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Eq. (2.7), but only for the parameter vector of classc, Θc, w.r.t. the samples in
classc,

Lc(Θc;Xc) =
N∑

n=1

δ(cn = c) log
∑

zn

T∏

t=1

[p(t | cn) p(xn | t, cn;Θcnt)]
znt (2.29)

which can be optimised by a simple extension of the EM algorithm given in Sec-
tion 2.2.2.

More precisely, the E step computes Eq. (1.45) usingΘcn for thosexn belong-
ing to classcn,

z
(k)
nt =

p(t | cn)(k) p(xn | t, cn;Θcnt)
(k)

T∑
t′=1

p(t′ | cn)(k) p(xn | t′, cn;Θcnt′)(k)

. (2.30)

The M step computes the conventional estimates for class priors,

p(c) =
Nc

N
∀c, (2.31)

class-dependent versions of the update equation for mixture coefficients in Eq. (1.48),

p(t | c)(k+1) =
1

N

N∑

n=1

z
(k)
nt δ(cn = c) ∀c, t (2.32)

and class-dependent versions of the update equation for component-conditional
unigrams in Eq.(2.8),

p(u | t, c)(k+1) =
N(u, t, c)∑

u′∈X

N(u′, t, c)
∀c, t, u ∈ X (2.33)

where

N(u, t, c) =

N∑

n=1

δ(cn = c) z
(k)
nt

|xn|∑

j=1

δ(xnj = u) . (2.34)

Note that the estimation computed in Eq. (2.31) is invariantover the estimation
process.

2.5 Experimental results

The five models considered were assessed and compared on three bilingual text
classification tasks known as the Traveller dataset, the BAF(French acronym for
English-French Bitext) corpus and the JRC-Acquis corpus. This section first de-
scribes these datasets and then provides the experimental results obtained on them.
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2.5.1 Datasets

Traveller dataset

The Traveller dataset comes from a limited-domain Spanish-English machine trans-
lation application for human-to-human communication situations in the front-desk
of a hotel [ABC+00]. It was semi-automatically built from a small “seed” dataset
of sentence pairs collected from traveller-oriented booklets by four persons; A, F,
J and P, in accordance with the subdomain assignment given inTable 2.1. Note
that each person had to cater for a (non-disjoint) subset of subdomains, and thus
each person can be considered a different (multimodal) class of Spanish-English
sentence pairs. Therefore, the task will be to classify sentence pairs into one of
the four disjoint classes A, F, J or P, that is, to identify theauthorship of a given
sentence pair. Subdomain overlapping among classes would foresee that perfect
classification is not possible, although in our case, low CERwill indicate that our
mixture model has been able to capture the multimodal natureof the data in each
class. Unfortunately, the subdomain of each pair was not recorded, and hence we
cannot train a subdomain-supervised unigram mixture in each class to see how it
compares to mixtures learnt without such supervision.

The Traveller dataset contains8, 000 sentence pairs, with2, 000 pairs per class.
The size of the vocabulary and the number of singletons reflect the relative simplic-
ity of this corpus. Some statistics are shown in Table 2.2.

Table 2.1: Subdomain assignment in the Traveller dataset.

Persons Subdomain
A F J P # Description
✓ ✓ 1 notifying a previous reservation
✓ 2 asking about rooms
✓ 3 having a look at rooms
✓ ✓ 4 asking for rooms
✓ 5 signing the registration form
✓ 6 complaining about rooms
✓ 7 changing rooms

✓ 8 asking for wake-up calls
✓ 9 asking for keys
✓ ✓ 10 asking for moving the luggage

✓ 11 notifying the departure
✓ 12 asking for the bill

✓ ✓ 13 asking about the bill
✓ 14 complaining about the bill
✓ 15 asking for a taxi

✓ ✓ ✓ ✓ 16 general sentences
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BAF corpus

The BAF corpusc [Sim98] is a compilation of bilingual “institutional” French-
English texts ranging from debates of the Canadian parliament (Hansard), court
transcripts and UN reports to scientific, technical and literary documents. This
dataset contains 11 documents trying to be representative of the types of text that
are available in multilingual versions. They are organisedinto 4 natural disjoint
genres:institutional, scientific, technicaland literary. Institutional andscientific
classes comprises documents from the original pool of 11 documents, which were
theme-related, but devoted to heterogeneous purposes or written by different au-
thors. This fact provides the multimodal nature to the BAF corpus that can be
adequately modelled by mixture models. The BAF corpus was aligned at the sen-
tence level by human experts. It was initially thought to be used as a reference
corpus to evaluate automatic alignment techniques in machine translation.

Prior to performing the experiments, the BAF corpus was simplified in order
to reduce the size of the vocabulary and discard spurious sentence pairs. This pre-
processing mainly consisted in three basic actions: downcasing, replacement of
those words containing a sequence of numbers by a generic label, and isolation
of punctuation marks. This basic procedure halved the size of the vocabulary and
significantly simplified this corpus. Neither stopword lists, nor stemming tech-
niques were applied since, as shown in [V+04], it is unclear whether this further
preprocessing may be convenient. As seen in Table 2.2, this corpus is much more
complex than the Traveller dataset.

JRC-Acquis corpus

The JRC-Acquis corpusd[SPW+06] is a multilingual parallel corpus in more than
20 languages containing documents extracted from the Acquis Communautaire that
constitutes the body of common rights and obligations whichbind all the Member
States together within the European Union.

Like most other official documents of the European Commission and the Eu-
ropean Parliament, the Acquis texts have been classified according to the multilin-
gual, hierarchically organised EuroVoc thesaurus [EC95],which is a classification
system with over 6,000 hierarchically organised classes. The main subject domains
assigned to the document collection cover economy, health,information technol-
ogy, law, agriculture, food, politics and more. However, each document receives
a variable number of specific descriptors (class labels) that are found at the lowest
level of the Eurovoc hierarchy, reflecting the multi-topic nature of these documents.

The JRC-Acquis corpus was aligned at the paragraph level using the Vanilla
alignere which implements the Gale and Church alignment algorithm [GC93], and

cAvailable at http://rali.iro.umontreal.ca/Ressources/BAF
dVersion 2.2. employed in this thesis is available at http://wt.jrc.it/lt/Acquis
eAvailable at http://nl.ijs.si/telri/Vanilla
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Table 2.2: Traveller task (top) and the BAF (bottom) corpus statistics,
for all classes, respectively, in the form of ”Spanish/English” for Trav-
eller and ”French/English” for BAF. Abbreviations used:SENTS=sentences;
AVGSLEN=average sentence length;RUNKW=running Kilo-words; VO-
CAB=vocabulary size; andSTONS=singletons;

Traveller task
CLASS A F J P ALL

SENTS 2,000 2,000 2,000 2,000 8,000
RUNKW 19/17 25/23 20/17 21/22 86/80
VOCAB 329/311 442/317 179/140 142/51 679/503
AVGSLEN 9/8 12/11 10/8 10/11 10/10
STONS 95/106 78/71 0/0 1/0 47/43

BAF corpus
CLASS INST LITE SCIE TECH ALL

SENTS 10,988 2,435 2,295 3,021 18,739
RUNKW 351/301 56/51 61/53 48/40 516/445
VOCAB 14,046/10,858 7,124/5,607 5,975/4,997 2,542/2,053 20,454/15,471
AVGSLEN 31/27 22/20 26/23 16/13 27/23
STONS 5,329/3,709 4,034/2,548 2,791/2,099 939/628 8,205/5,353

the HunAlign aligner [V+05]. However we only made use of the alignment infor-
mation at the document level, since our task is descriptor assignment at that level.

Before training our text classifiers, the JRC-Acquis corpusunderwent the same
basic preprocessing as the BAF corpus. Here we also preferred not to apply any
language-dependent preprocessing such as stemming techniques or stopword lists.

In our experiments, we only used those documents drawn from the French-
English partition of the JRC-Acquis corpus, retaining those descriptors occurring at
least 5 times. As a result, there are 990 different descriptors in this partition. Some
statistics of the preprocessed French-English partition of this corpus are shown in
Table 2.3. Comparing these figures to those of the BAF corpus,we can observe that
the ratio between singletons and vocabulary is similar, while the number of running
words and the average length is about two orders of magnitudesuperior in the
case of the JRC-Acquis corpus. This longer average length comes to compensate
somehow the scarcity of samples per class. However, the number of classes in
the JRC-Acquis is almost three orders of magnitude greater than that of the BAF
corpus.

2.5.2 Experimental results on Traveller and BAF

A series of experiments were carried out to analyse the behaviour of each individual
classifier in terms of log-likelihood and CER as a function ofthe number of mixture
components per class (T ∈ {1, 2, 5, 10, 20, 50, 100}). This was done for a training
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French English
Number of documents 5108
Average length (in words) 1,819 1,564
Vocabulary 36.6K 32.5K
Singletons 10.6K 10.5K
Running words 9.3M 8.0M

Table 2.3: Basic statistics of the preprocessed French-English partition of
the JRC-Acquis corpus (K = ×103 andM = ×106).

and test sets resulting from a random dataset partition (1/2-1/2 split for Traveller
and 4/5-1/5 for BAF).

Figure 2.1 shows the evolution of CER (lefty axis) and log-likelihood (righty
axis), on training and test sets, for an increasing number ofmixture components (x
axis). From top to bottom rows we have: the best monolingual classifier (English in
both datasets), the BBoW classifier, and global and local classifiers. Each plotted
point is an average over values obtained from30 randomised trials.

From the results in Figure 2.1, we can see that the evolution of the log-likelihood
on the training and test sets is as theoretically expected, for all classifiers in both,
Traveller and BAF. The log-likelihood in training always increases, while the log-
likelihood in test increases up to a moderate number of components (20 − 50 in
Traveller and5 − 10 in BAF). This number of components can be considered as
an indication of the number of “natural” subclasses in the data. About this num-
ber of mixture components is also commonly found the lowest classification test
error rate, as it occurs in our case. As the number of components keeps increasing,
the well-known overtraining effect appears, the log-likelihood in test falls and the
accuracy degrades. For this reason we decided to limit the number of mixture com-
ponents to100. Additional informal trials (not reported here) with an increasing
number of mixture components confirmed this performance degradation.

Figure 2.2 shows competing curves for test error-rate as a function of the num-
ber of mixture components for the English-based, BBoW, global and local clas-
sifiers; there are two plots, one for Traveller and the other for BAF. Error bars
representing95% confidence intervals are plotted for the English-based classifiers
in both plots, and the global classifier in BAF.

From the results for Traveller in Figure 2.2, we can see that there is no sig-
nificant statistical difference in terms of error rate between the best monolingual
classifier and the bilingual classifiers. The reason behind these similar results can
be better explained in the light of the statistics of the Traveller dataset shown in
Table 2.2. The simplicity of the Traveller dataset, characterised by its small vocab-
ulary size and its large number of running words, allows for areliable estimation of
model parameters in both languages. This is reflected in the high accuracy (∼95%)
of the monolingual classifiers and the little contribution of a second language to
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Figure 2.1: Error rate and log-likelihood curves in training and test sets as
a function of the number of mixture components, in Traveller(left column)
and BAF (right column) for the four classifiers considered. Classifiers: the
best monolingual, the BBoW, the global and the local classifier.
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boost the performance of bilingual classifiers. Nevertheless, bilingual classifiers
seem to achieve systematically better results.

In contrast to the results obtained for Traveller, the results for BAF in Fig-
ure 2.2 indicate that bilingual classifiers perform significantly better than mono-
lingual models. More precisely, if we compare the curves forthe English-based
classifier and the global classifier, we can observe that there is no overlapping
between their error-rate confidence intervals. Clearly, the complexity and data
scarcity problem of the BAF corpus lead to poorly estimated models, favouring
bilingual classifiers that take advantage of both languages. However, the different
bilingual classifiers have similar performance.

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

1 2 5 10 20 50 100

Error (%)

Mixture components

Traveller dataset

English-based classifier
BBoW classifier
Global classifier
Local classifier

 3.0

 4.0

 5.0

 6.0

 7.0

 8.0

1 2 5 10 20 50 100

Error (%)

Mixture components

BAF dataset

English-based classifier
BBoW classifier
Global classifier
Local classifier

Figure 2.2: Test-set error rate curves as a function of the number of mixture
components, for each classifier in Traveller and BAF
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2.5.3 Experimental results on JRC-Acquis

In the previous section, we evaluated our bilingual models on two single-class
classification tasks, the Traveller task and the BAF corpus.In the case of the JRC-
Acquis corpus, we tackle a multi-label classification problem from the viewpoint
of a MAI tool as presented in Section 1.2.2.

The evaluation was performed using the bilingual local and the English mono-
lingual classifiers, on random 80%-20% train-test splits ofthe French-English
JRC-Acquis partition. In this task, the average computing timef for the bilingual
local classifier is 8 minutes per iteration and component.

Also, it should be noticed that the number of EuroVoc descriptors varies from
one document to other, so a strategy to select the right number of descriptors for
each document is required. In Figure 2.3, we have simply extracted five descriptors
per document, which is the average number of descriptors in the whole corpus.
This figure shows macro-averaging precision and recall curves as a function of
the number of mixture components per class, for the best monolingual (English-
only) and the bilingual local classifier. Each plotted pointis an average over values
obtained from 6 randomised trials.

 44.0
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 49.0
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1g R

Mixture components
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Figure 2.3: Macro-averaging precision (P) and recall (R) curves as a func-
tion of the number of mixture components (x axis) for the English-only (1g)
and bilingual (1g1g) unigram mixture classifiers.

From the results in Figure 2.3 clearly outstand the benefits of multiple compo-
nent over single component modelling. This fact is statistically significant when
we use 5 or more components. However, the figures of bilingualclassifiers are not
statistically significantly better than those of their monolingual counterparts. We

fOn a 2.0 GHz Intel Xeon machine
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Number of labels 1 5 10 |R|

Precision 62.0 45.7 31.1 46.7
Recall 13.4 47.8 64.3 46.7

Table 2.4: Macro-averaging precision and recall figures as a function of the
number of labels offered by the MAI system.

believe this is because the length of the texts in the JRC-Acquis corpus is two or-
ders of magnitude longer than inTraveller andBAF corpora. Therefore, it seems
that the additional information of the second language is not so essential as it is
in other tasks with shorter texts, in which the contributionof a second language is
more significant.

Table 2.4 presents macro-averaging precision and recall asa function of the
number of labels offered by the MAI system.|R| stands for the number of labels
of the test sample, i.e., an ideal fictitious scenario in which the MAI system always
provides the right number of labels for each document. For this reason, precision
and recall are equal. As expected, precision degrades whilerecall improves, as we
increase the number of labels.

The excellence of these results should be assessed bearing in mind the com-
plexity of this task and how MAI systems work. On the one hand,professional
indexers do not completely agree on the most suitable descriptors for a given doc-
ument. Indeed, previous studies [P+03] on annotator agreement maintain that key-
word overlapping among indexers is about 70% to 80%.

On the other hand, MAI systems work by providing a lengthy list of descriptors
from which an indexer would select those ones considered most appropriated. For
evaluation purposes we decided that our MAI system should provide only 5 de-
scriptors for each document, seeking a balance between precision and recall. How-
ever, in a MAI scenario, we would be more interested in recallsince we would like
that our system provides a longer list of descriptors, from which a indexer would
filter out those unsuitable descriptors.

Taking this into account, the figures in Figure 2.4 revealed that our MAI system
would be offering up to 64.3% of the correct descriptors for alist of 10 descriptors.
This figure conveys the possibility of a MAI system which suggests many of the
desired descriptors.

2.5.4 Comparative results

In this section, we compare the performance of the bilinguallocal classifier to that
of state-of-the-art techniques in TC. More precisely, we study SVM implemented
in theSVM light toolkit and boosting instantiated in BoosTexter.

Regarding the experiments with SVM, we focused on the conventional vector-
based kernels, however some authors have proposed the use ofstring-based ker-
nels. In string kernels, the conventional term frequency features in vector-based
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Table 2.5: Test-set CERs (in percentage) on Traveller and BAF, and macro-
averaging precision and recall figures on JRC-Acquis for thebilingual local
decomposition,SVM light and BoosTexter classifiers.

Traveller BAF JRC-Acquis
CER precision recall

Bilingual Local 1.4 3.0 45.9 47.7
SVM light 1.5 9.0 N/A N/A
BoosTexter 1.2 5.8 43.2 44.9

kernels are replaced by all possible ordered subsequences of characters or words in
the document. While the well-known dot product is substituted by a string similar-
ity measure efficiently computed with a dynamic programmingalgorithm [Wat00,
LSST+02, CGGR03].

The experiments reported with SVM were carried out with linear kernel func-
tions, although the polynomial kernels were informally evaluated with poorer re-
sults. As regards the feature representation, we utilised unigram (term) frequency.
For BoosTexter, we trained decision trees (weak learner) onthe presence or ab-
sence of unigrams. SVM and boosting classifiers were trainedon the bilingual
training set resulting of the concatenation of source and target sentences, as we did
in the BBoW model .

In order to tune the different parameters ofSVM light and BoosTexter, we per-
formed a 10-fold cross-validation on the training set of theTraveller task and BAF
corpus, although this tuning procedure was not feasible forthe JRC-Acquis due to
excessive running time. In the latter corpus, for BoosTexter, we also considered as
objective functionranking instead of Hamming loss, but the results were inferior.
Once these parameters were adjusted, we run the same configuration on the test
set.

The results on the test set are shown in Table 2.5.SVM light and BoosTexter
offer similar performance to the bilingual local classifieron the Traveller, although
BoosTexter achieves the best result on this task. However, the bilingual local clas-
sifier statistically significantly outperformsSVM light and BoosTexter on the BAF
corpus. On the JRC-Acquis task, the bilingual local classifier obtained better pre-
cision and recall figures than BoosTexter. However, it was not possible to run
experiments withSVM light on this corpus due to memory constraints.

2.6 Conclusions and future work

We have presented three extensions of the unigram mixture-based model for bilin-
gual text: the BBoW model, and the global and local decomposition models. The
performance of these extensions was compared to that of SVM and boosting clas-
sifiers.

JCS-DSIC-UPV 53



Chapter 2. Bilingual text classification

Two outstanding conclusions can be stated from the results presented in this
chapter. First, mixture-based classifiers surpass single-component classifiers in all
cases (monolingual, BBoW, global and local). In fact, we have taken advantage of
the flexibility of the mixture modelisation over the single-component approach to
further improve the error rates achieved. Second, bilingual classifiers outperform
their monolingual counterparts in the Traveller task and the BAF corpus. How-
ever, this is not the case on the JRC-Acquis corpus in which the monolingual and
bilingual classifiers show similar performance. This leadsus to think that the incor-
poration of a second language into a text classifier is significant in the presence of
data scarcity. In the Traveller task and BAF corpus we have only 10-12 and 20-30
words per sentence on average, respectively. So, if we duplicate this small number
of words by adding a second language, it notably helps to improve the accuracy
of the classifier. However, in the JRC-Acquis the average length is 1,500-1,800
words per document, so it seems that the contribution of the second language is not
so significant.

Moreover, we have compared the performance of our bilingualunigram-based
classifier to state-of-the-art techniques in TC: SVM and boosting. We have ob-
served that the bilingual local classifier obtains similar results to these latter tech-
niques on the Traveller task, but it outperforms them on the BAF corpus. This is
also the case on the JRC-Acquis.

Furthermore, the accuracy of the bilingual local classifieron the JRC-Acquis is
good enough to support a MAI system, that would be providing on average about
65% of the correct descriptors associated with a document.

A direct extension of the models presented in this chapter would be to go
beyond the unigram representation and take advantage of thecontext informa-
tion [SW02, P+04b]. In appendix A, we scratch the surface of this approach by
considering smoothedn-gram language models andn-gram features to train SVM
and boosting methods.

As future work, we plan to investigate the application of mixture modelling to
smoothedn-gram models which has been successfully tested in automatic speech
recognition [IO99]. Furthermore, it would also be worth evaluating alternative
smoothing techniques as that proposed in [Hie00]. This smoothing technique can
be interpreted as the well-known TF-IDF term weighting in information retrieval,
and its application to the unigram mixture-based models presented in this chapter
is an interesting open problem.

Nonetheless, the bilingual approaches described in this chapter are relatively
simple models for the statistical distribution of bilingual texts. More sophisticated
models, such as IBM statistical translation models [B+90, B+93], may be better
describing the statistical distribution of bilingual, correlated texts. This latter ap-
proach is explored in Chapter 3.

Regarding multi-label text classification, we would consider alternative clas-
sifiers that directly address the multi-label problem [McC99, EW05, ZJXG05].
Although our first experience with such classifiers, represented by the BoosTexter
toolkit, was rather disappointing.
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Finally, the working procedure described in Section 1.2.2 can be seen as a post-
processing of the output of a TC system with no actual interaction between human
and computer. However a more intelligent approach would be to take advantage of
the user feedback in order to refine the classification process. This process is well-
studied in information retrieval and is known as relevance feedback [BYRN99].
This idea opens an appealing research line that can be explored as future work.

The bilingual models and the single-class TC results presented in this chapter
were published in an international workshop:

• J. Civera and A. Juan. Multinomial Mixture Modelling for Bilingual Text
Classification. InProceedings of the 6th International Workshop on Pattern
Recognition in Information Systems, PRIS 2006, pages 93–103, INSTICC
Press, Paphos (Cyprus), May 2006.

The multi-label TC results of this chapter were published inan international
conference:

• J. Civera and A. Juan. Bilingual Machine-Aided Indexing. InProceedings
of the fifth international conference on Language Resourcesand Evaluation,
LREC 2006, pages 1302–1305, Genoa (Italy), May 2006.
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CHAPTER 3

M IXTURE OF M1 MODELS

3.1 Introduction

In this chapter, we present a mixture extension of the M1 model, already intro-
duced in Section 1.4, in order to define context-specific M1 models. One of the
most interesting properties of mixture modelling is its capability to learn a specific
probability distribution in a multimodal dataset that better explains the general data
generation process. In MT these multimodal datasets are notan exception, but the
general case. Indeed, it is easy to find corpora from which several topics could be
drawn. These topics usually define sets of context-specific lexicons that need to be
translated taking into account the semantic context in which they are found.

However, there have not been until very recently that the application of mix-
ture modelling in statistical MT has received increasing attention. In [ZX06], three
fairly sophisticated bayesian topical translation models, taking M1 model as a base-
line model, were presented under the bilingual topic admixture formalism. These
models capture latent topics at the document level in order to reduce semantic am-
biguity and improve translation coherence. The models proposed provide in some
cases better word alignment and translation quality than HMM and superior IBM
models on an English-Chinese task.

In this chapter, we introduce the conventional M1 model and its EM deriva-
tion in Section 3.2, along with its mixture extension in Section 3.3. Then, two
applications of the M1 model are presented: bilingual TC andstatistical MT.

As regards bilingual TC, we present in Section 3.4 the M1 model in combi-
nation with the unigram language model, as an evolution of the relatively simple
unigram models presented in Chapter 2. An appealing property of the unigram-M1
model is its capability to exploit the structural information contained in word cor-
relation across languages in bilingual texts. The resultant bilingual classifier will
be evaluated on the Traveller task and the BAF corpus.

As far as the application of the M1 mixture model to MT is concerned, in
Section 3.5 we will focus on the Viterbi alignments obtainedas a byproduct of the
training process of this model. These Viterbi alignments allow us to assess the
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alignment and translation quality of the M1 mixture model. Finally, Section 3.6 is
devoted to the conclusions of this chapter and an outlook forfuture work.

3.2 The M1 Model

3.2.1 The model

Following the notation introduced in Section 1.4, letx = x1 . . . xj . . . x|x| be a sen-
tence in a certain source language of known length|x| and lety = y1 . . . yi . . . y|y|
be its translation of known length|y| into a different target language.

For the M1 word alignment model we start from the target-conditional prob-
ability distribution p(x | y), for which we define the alignment hidden variable
a = a1 · · · aj · · · a|x|, as introduced in Section 1.4. The alignment variable con-
nects each source word to exactly one target wordaj = {0, · · · , i, · · · , |y|}, being
0 the position of the NULL (empty) word

p(x | y) =
∑

a∈A(x,y)

p(x, a | y) (3.1)

whereA(x, y) denotes the set of all possible alignments betweenx andy. Now,
we can decompose the termp(x, a | y) at the word-level from left to right

p(x, a | y) =

|x|∏

j=1

p(xj , aj |x
j−1
1 , a

j−1
1 , y)

=

|x|∏

j=1

p(aj |x
j−1
1 , a

j−1
1 , y) p(xj |x

j−1
1 , a

j
1, y) (3.2)

wherep(aj |x
j−1
1 , a

j−1
1 , y) is an alignment p.f. andp(xj |x

j−1
1 , a

j
1, y) is a lexical

p.f. or statistical dictionary. In order to define the well-known M1 model [B+93],
we make the following two assumptions. First, we assume thatthe probability of
aligning a source position to a target position is uniform

p(aj |x
j−1
1 , a

j−1
1 , y) :=

1

|y| + 1
. (3.3)

Then, we also assume that the probability of translating a source word does only
depend on the target word to which is aligned

p(xj |x
j−1
1 , a

j
1, y) := p(xj | yaj

) (3.4)

wherep(xj | yaj
) is a statistical bilingual dictionary. Thus, we can rewriteEq. (3.2)

under assumptions in Eqs. (3.3) and (3.4) as

p(x, a | y;Θ) =

|x|∏

j=1

1

|y| + 1
p(xj | yaj

) (3.5)
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where
Θ =

{
p(u | v) u ∈ X , v ∈ Y

}
(3.6)

is a statistical bilingual dictionary.

The model using indicator vectors

As we did in Chapter 2, we change the nature of the original alignment variable
aj ∈ {0, . . . , |y|}, from an integer value into an indicator vector

aj = (aj0, aj1, . . . , aj|y|)
t. (3.7)

The vectoraj values one in theith position and zeros elsewhere, if the source
positionj is aligned to the target positioni. Equivalently to Eq. (3.5), we have

p(x, a | y;Θ) =

|x|∏

j=1

|y|∏

i=0

[
1

|y| + 1
p(xj | yi)

]aji

. (3.8)

According to this notation, the initial model in Eq. (3.1) can be rewritten as follows

p(x | y;Θ) =
∑

a

p(x, a | y;Θ)

=
1

(|y| + 1)|x|

∑

a1

. . .
∑

a|x|

|x|∏

j=1

|y|∏

i=0

p(xj | yi)
aji

=
1

(|y| + 1)|x|

∑

a1

|y|∏

i=0

p(x1 | yi)
a1i




∑

a2

. . .
∑

a|x|

|x|∏

j=2

|y|∏

i=0

p(xj | yi)
aji





=
1

(|y| + 1)|x|

|x|∏

j=1

∑

aj

|y|∏

i=0

p(xj | yi)
aji

=

|x|∏

j=1

|y|∑

i=0

1

|y| + 1
p(xj | yi). (3.9)

Eq. (3.9) is the usual form of the M1 model that only depends ona bilingual dic-
tionary. The M1 model makes the naive assumption that sourcewords are condi-
tionally independent giveny

p(x | y;Θ) =

|x|∏

j=1

p(xj | y) (3.10)

where

p(xj | y) =

|y|∑

i=0

1

|y| + 1
p(xj | yi) (3.11)

is the average probability ofxj to be translated into a target word iny.
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3.2.2 Maximum likelihood estimation

In this section we derive an EM algorithm for the maximum likelihood estima-
tion of Θ in the M1 model w.r.t. a set of independent samples. Let(X,Y ) =
((x1, y1), . . . , (xn, yn), . . . , (xN , yN ))t beN samples independently drawn accord-
ing to the probability distribution defined by an M1 model of parametersΘ, being
xn =

(
xn1, . . . , xnj , . . . , xn|x|

)
andyn =

(
yn1, . . . , yni, . . . , yn|y|

)
the sequence

of source and target words of thenth sample. The log-likelihood function ofΘ is

L(Θ;X,Y ) =
N∑

n=1

|xn|∑

j=1

log

|yn|∑

i=0

1

|yn| + 1
p(xnj | yni). (3.12)

Now, letA be the set of alignment indicator vectors associated with the bilingual
pairs(X,Y ) with

A = (a1, . . . , an, . . . , aN )t . (3.13)

The variableA is the missing data in the M1 model, playing the role ofZ in Sec-
tion 1.8. As in Eq. (1.27), the E step computes the expected value of the logarithm
of p(X,A |Y ), given the (incomplete) data samples(X,Y ) and a current estimate
of Θ, Θ

(k). Given that the alignment variables inA are independent from each
other, we can compute the E step equivalently to Eq. (1.44),

Q(Θ |Θ(k)) =

N∑

n=1

|xn|∑

j=1

|yn|∑

i=0

a
(k)
nji

[
log

1

|yn| + 1
+ log p(xnj | yni)

]
(3.14)

with

a
(k)
nji =

p(xnj | yni)
(k)

∑|yn|
i′=0 p(xnj | yni′)(k)

. (3.15)

That is, the expectation of wordxnj to be connected toyni is our current estimation
of the probability ofxnj to be translated intoyni, instead of any other word inyn

(including the NULL word).
In the M step, we maximise Eq. (3.14), as seen in Section 1.8, in order to obtain

the standard update formula for the M1 model,

p(u | v)(k+1) =
N(u, v)∑

u′∈X

N(u′, v)
∀u ∈ X , v ∈ Y (3.16)

where

N(u, v) =

N∑

n=1

|xn|∑

j=1

|yn|∑

i=0

δ(xnj = u) δ(yni = v) a
(k)
nji . (3.17)

The estimation ofp(u | v) can be seen as a normalised partial count of how many
times the source wordu is aligned to the target wordv.
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3.3 Mixture of M1 models

3.3.1 The model

Eq. (3.9) is a relatively simple parametric model for distributions of bilingual pairs
of sentences. Then, it is a good choice to describe simple distributions, but it might
not be so good to approximate complex distributions, such asthose comprising
many topically-unrelated groups of pairs. To deal with suchcases, we will use the
idea of finite mixture modelling and replace our simple modelin Eq. (3.9) by ay
conditional finite mixture.

Considering that our bilingual pairs are drawn from different topics (contexts),
we can rewrite the conditional translation p.f.p(x | y) as ay-conditional finite
mixture, similarly to Eq. (1.41),

p(x | y;Θ) =
∑

z

T∏

t=1

[p(t) p(x | y, t;Θt)]
zt (3.18)

where we have implicitly assumed thatz does not depend ony when modelling
p(t). On the other hand,p(x | y, t;Θt) is a component-dependent version of an
alignment translation model,

p(x | y, t;Θt) =
∑

a

p(x, a | y, t;Θt). (3.19)

playing the role of the component-conditional p.f. in Eq. (1.41). Now, we can plug
Eq. (3.19) into Eq. (3.18) and reorganise the resulting expression

p(x | y;Θ) =
∑

z

T∏

t=1

[

p(t)
∑

a

p(x, a | y, t;Θt)

]zt

=

T∑

t=1

p(t)
∑

a

p(x, a | y, t;Θt)

=
∑

a

T∑

t=1

p(t) p(x, a | y, t;Θt)

=
∑

z

∑

a

T∏

t=1

[p(t) p(x, a | y, t;Θt)]
zt (3.20)

to ease the presentation of the EM algorithm in the current and subsequent transla-
tion mixture models in Chapters 4 and 5.

In the M1 mixture model, the component-conditional p.f.p(x, a | y, t;Θt) in
Eq. (3.20) becomes a component-dependent version of Eq. (3.8),

p(x, a | y, t;Θt) =

|x|∏

j=1

|y|∏

i=0

[
1

|y| + 1
p(xj | yi, t)

]aji

(3.21)
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whereΘt is a component-dependent dictionary

Θt =
{
p(u | v, t) u ∈ X , v ∈ Y

}
. (3.22)

3.3.2 Maximum likelihood estimation

The log-likelihood function ofΘ w.r.t.N independent samples is

L(Θ;X,Y ) =

N∑

n=1

log
∑

zn

∑

an

T∏

t=1

[p(t) p(xn, an | yn, t;Θt)]
znt . (3.23)

For the application of the EM algorithm, we considerZ andA, as defined in
Eqs. (1.43) and (3.13) respectively, to be the missing dataZ in Eq (1.27). Thus,
equivalently to Eq. (1.44), the functionQ becomes

Q(Θ |Θ(k)) =

N∑

n=1

T∑

t=1

z
(k)
nt log p(t)

+

|xn|∑

j=1

|yn|∑

i=0

(znt anji)
(k)

[
log

1

|yn| + 1
+ log p(xnj | yni, t)

]
. (3.24)

So, the E step requires the calculation ofz
(k)
nt and(znt anji)

(k). The computation

of z(k)
nt is similar to that of Eq. (1.45), substituting the component-conditional p.f.

by a component-conditional M1 p.f., that is,

z
(k)
nt =

p(t)(k) p(xn | yn, t;Θ
(k)
t )

∑T
t′=1 p(t

′)(k) p(xn | yn, t′;Θ
(k)
t′ )

(3.25)

wherez(k)
nt is the posterior probability of thetth-component having generated the

nth sample(xn, yn). Regarding(znt anji)
(k), we have,

(znt anji)
(k) = p(znt = 1, anji = 1 |xn, yn)

= p(znt = 1 |xn, yn) p(anji = 1 | znt = 1, xn, yn)

= z
(k)
nt a

(k)
njit (3.26)

with a(k)
njit being a component-dependent version ofa

(k)
nji in Eq. (3.15),

a
(k)
njit =

p(xnj | yni, t)
(k)

∑|yn|
i′=0 p(xnj | yni′ , t)(k)

(3.27)

wherea(k)
njit can be thought of the posterior probability of the source position j to

be aligned to the target positioni in thetth component for thenth sample(xn, yn).
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In the M step, we maximise Eq. (3.24) to obtain a new set of parameters
Θ

(k+1). The new component priors are computed as in Eq. (1.48), and the up-
date equation for the component-dependent dictionaries is

p(u | v, t)(k+1) =
N(u, v, t)∑

u′∈X

N(u′, v, t)
∀t, u ∈ X , v ∈ Y (3.28)

where

N(u, v, t) =
N∑

n=1

z
(k)
nt

|xn|∑

j=1

|yn|∑

i=0

δ(xnj = u) δ(yni = v) a
(k)
njit . (3.29)

The estimation ofp(u | v, t) can be understood as a normalised partial count
of how many times the source wordu is aligned to the target wordv, weighted by
the posterior probability (responsibility) of thetth component having generated the
nth sample. The asymptotic cost of the training algorithm periteration isO(N ·T ·
|x| · |y|), where|x| and|y| are the source and target average lengths, respectively.

3.3.3 Smoothing

The component-conditional dictionary is smoothed at two levels to avoid overfit-
ting problems and zero probabilities for rare words. On the one hand, we smooth
the estimated statistical dictionary interpolating with auniform distribution over
the source vocabulary

p̂(u | v, t) = (1 − ǫ) p(u | v, t) + ǫ
1

|X |
. (3.30)

This smoothing technique follows the same idea that we presented in Section 2.3.3
to smooth the unigram distribution and so, theǫ parameter was manually set in
order to obtain smoothed error and log-likelihood curves aswe increase the number
of components in the mixture model.

On the other hand, we smooth the component-conditional statistical dictio-
nary (specific distribution) interpolating with the conventional statistical dictionary
(general distribution)

p̂(u | v, t) =

[
1 −

α

α+ p(v)

]
p(u | v, t) +

α

α+ p(v)
p(u | v). (3.31)

The interpolation coefficient depends on the interpolationparameterα, and on the
unigram probability of the target wordv, that is, the relative frequency of the target
word v on the training set.

This interpolation parameterα defines the target-word unigram probability
threshold at which the specific and general distribution areequally weighted. For
those target words above this threshold (higher unigram probability), the specific
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distribution will dominate, while for those target words below the threshold (lower
unigram probability), the general distribution dominates. See Figure 3.1 to observe
the evolution of the interpolation coefficient, as a function of the unigram proba-
bility of the target word for a givenα = 1e − 3. It should be noticed that the
interpolation coefficient is equal to0.5 whenp(v) = α.
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Figure 3.1: Interpolation coefficient curve with interpolation parameterα =
1e− 3 as a function of the unigram probability of the target word. It should
be noticed that the interpolation coefficient is equal to0.5 whenp(v) = α.

Intuitively, the interpolation parameter is a powerful wayto control at which
relative frequency is worth considering a component-dependent statistical dictio-
nary for a target word. The idea behind this smoothing technique is that, target
words with high frequency may have different translations depending on the con-
text and, given their high frequency on the training set, their context-specific dictio-
nary can be correctly estimated. On the contrary, low frequency target words might
have fewer translations, and in any case, their corresponding dictionary cannot be
adequately estimated due to their few occurrences.

During the EM training of the M1 mixture model, smoothing is applied at the
end of each M step. Besides, the parameterα is manually tuned to optimise the
evaluation metric in question on the development set. This smoothing technique is
inspired on that of the fertility distribution presented in[ON03].

3.4 Bilingual text classification using the M1 model

In this section, we present the application of the M1 model tobilingual TC. Our
goal is to study the contribution of cross-lingual structural information in order to
improve the accuracy of bilingual text classifiers. To this purpose, we combine the
unigram and M1 models under the finite mixture modelling. As we did in Chap-
ter 2, we first derive the model and its maximum likelihood estimation, followed
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by the view of this model as a bilingual text classifier and itsmaximum likelihood
estimation in the framework of supervised classification.

3.4.1 Mixture of unigram-M1 models

The model

Let (x, y) be a bilingual pair of source-target sentences coming from aT -component
mixture model, equivalently to Eq. (1.41),

p(x, y;Θ) =
∑

z

T∏

t=1

[p(t) p(y | t;Θt) p(x | y, t;Θt)]
zt (3.32)

where, for theunigram-M1mixture model,p(t) is its mixture coefficient as in
Eq. (1.39),p(y | t;Θt) is a component-conditional unigram model as in Eq (2.5)
and p(x | y, t;Θt) is a component-conditional M1 model as in Eq (3.19). The
parameter vectorΘ has the usual form of a mixture model in Eq. (1.34), and each
component has its own vector of parameters

Θt =

{
p(v | t) v ∈ Y
p(u | v, t) u ∈ X , v ∈ Y

. (3.33)

It is important to note the substantial difference between the bilingual unigram
mixture model in Eq. (2.13) and theunigram-M1mixture model in Eq. (3.32), in
whichx depends ony as a result of the inclusion of a translation model.

Maximum likelihood estimation

As in previous models, we use the EM algorithm to compute a maximum likelihood
estimation ofΘ w.r.t.N independent samples(X,Y ) = ((x1, y1), . . . , (xN , yN ))t.
The log-likelihood function ofΘ is

L(Θ;X,Y ) =
N∑

n=1

log
∑

zn

T∏

t=1

[p(t) p(yn | t;Θt) p(xn | yn, t;Θt)]
znt (3.34)

and consideringZ andA to be the missing data in Eq. (1.27), we have the following
Q function

Q(Θ |Θ(k)) =
N∑

n=1

T∑

t=1

z
(k)
nt log p(t) +

|yn|∑

i=1

z
(k)
nt log p(yni | t)

+

|xn|∑

j=1

|yn|∑

i′=0

(znt anji′)
(k)

[
log

1

|yn| + 1
+ log p(xnj | yni′ , t)

]
(3.35)
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where we need to calculate the expected value ofznt and znt anji′ , as in Sec-

tion 3.3.2. However, the computation ofz(k)
nt differs from that in Eq. (1.45) in the

underlying component-conditional p.f.,

z
(k)
nt =

p(t)(k) p(xn, yn | t;Θ
(k)
t )

∑T
t′=1 p(t

′)(k) p(xn, yn | t′;Θ
(k)
t′ )

(3.36)

wherez(k)
nt is the posterior probability of(xn, yn) being actually generated by the

tth component of a unigram-M1 mixture model. On the other hand, the decompo-
sition of (znt anji′)

(k) is analogous to that of Eq. (3.26), wherea(k)
nji′t is computed

as in Eq. (3.27).
In the M step, we obtain an updated set of parametersΘ

(k+1). The com-
ponent priors are computed as in Eq. (1.48), the component-conditional unigram
language model are updated according to Eq. (2.19), and an update equation for
the component-conditional M1 model is given in Eq. (3.28).

3.4.2 Bilingual text classification using the unigram-M1 model

The decision rule

As we did in Section 2.4.1 for the unigram and bilingual unigram models, the
unigram-M1 model can be also used as a class-conditional model in supervised
bilingual TC tasks. Here, the Bayes’ rule for the unigram-M1mixture model is

c(x, y) = arg max
c

log p(c) + log p(x, y | c) (3.37)

where

p(x, y | c) =
T∑

t=1

p(t | c)

|y|∏

i=1

p(yi | t, c)

|x|∏

j=1

|y|∑

i′=0

1

|y| + 1
p(xj | yi′ , t, c) (3.38)

Maximum likelihood estimation for supervised classification

As in Section 2.4.2, we extend the single supervised class training presented in
Section 3.4.1 to train several supervised classes at the same time.

Let (X,Y,C) = ((x1, y1, c1), . . . , (xN , yN , cN ))t be the set of training sam-
ples, and letΨ be the vector of unknown parameters as defined in Eq. (2.27). where
the class-conditional p.f. is a unigram-M1 mixture model controlled by a vector
Θc, as defined in Section 3.4.1 forΘ. The log-likelihood ofΨ w.r.t. the labelled
data is, equivalently to Eq. (2.28),

L(Ψ;X,Y,C) =
C∑

c=1

Nc log p(c) + Lc(Θc;Xc, Yc) (3.39)

70 JCS-DSIC-UPV



3.4. Bilingual text classification using the M1 model

whereYc is defined analogously toXc, and

Lc(Θc;Xc, Yc) =

N∑

n=1

δ(cn = c) log
∑

zn

T∏

t=1

[p(t | cn) p(xn, yn | t, cn;Θcnt)]
znt

(3.40)
which is optimised by extending the EM algorithm presented in Section 3.4.1.

The E step computes Eqs. (3.36) and (3.27) usingΘcn for those training sam-
ples of the form(xn, yn, cn). So we have

z
(k)
nt =

p(t | cn)(k) p(yn | t, cn)(k) p(xn | yn, t, cn)(k)

∑T
t′=1 p(t

′ | cn)(k) p(yn | t′, cn)(k) p(xn | yn, t′, cn)(k)
(3.41)

and

a
(k)
njit =

p(xnj | yni, t, cn)(k)

∑|yn|
i′=0 p(xnj | yni′ , t, cn)(k)

. (3.42)

The M step computes the new set of parametersΨ
(k+1). More precisely,

we calculate class priors as in Eq. (2.31), class-conditional mixture coefficients
as in Eq. (2.32), class-conditional unigram parameters as in Eq. (2.33) and class-
conditional statistical dictionaries as

p(u | v, t, c)(k+1) =
N(u, v, t, c)∑

u′∈X

N(u′, v, t, c)
∀c, t, u ∈ X , v ∈ Y (3.43)

where

N(u, v, t, c) =
N∑

n=1

δ(cn = c) z
(k)
nt

|xn|∑

j=1

|yn|∑

i=0

δ(xnj = u) δ(yni = v) a
(k)
njit . (3.44)

3.4.3 Experimental results

The unigram-M1 mixture model described in the previous section was assessed on
the two tasks described in Chapter 2: the Traveller dataset and the BAF corpus.

Several experiments were carried out to analyse the behaviour of the unigram-
M1 classifier in terms of log-likelihood and classification error rate as a function
of the number of mixture components per class (T ∈ {1, 2, 5, 10, 20, 50, 100}).
These experiments were carried out on the same training and test partitions defined
in Chapter 2 for Traveller and BAF.

Figures 3.2 and 3.3 shows the evolution of the error rate (left y axis) and log-
likelihood (right y axis), on the training and test sets of the Traveller and BAF,
respectively, for an increasing number of mixture components (x axis). Each plot-
ted point is an average over values obtained from30 randomised trials.

From the results in Figures 3.2 and 3.3, we can see that the evolution of the
log-likelihood on the training set is as theoretically expected, in both Traveller
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Figure 3.2: Error rate and log-likelihood curves in training and test sets as a
function of the number of mixture components, in Traveller for the unigram-
M1 classifier.
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Figure 3.3: Error rate and log-likelihood curves in training and test sets as a
function of the number of mixture components, in BAF for the unigram-M1
classifier.

and BAF. In the test set of the Traveller task, the log-likelihood increases up to a
moderate number of components20, while the best error rate is obtained with50
components.
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Table 3.1: Summary error table of monolingual and bilingual classifiers on
the Traveller task and the BAF corpus.

mix 1g mix 1g1g mix 1gM1 SVM light BoosTexter
Traveller 1.5 1.4 1.3 1.5 1.2
BAF 4.1 3.0 2.5 9.0 5.8

However, in the test partition of the BAF corpus, the log-likelihood keeps in-
creasing (and the error rate decreasing) even after 100 components per mixture.
This uncommon behaviour may be explained in the light of the statistics of the
BAF corpus where one third of the words occurs only once in thecorpus as a
whole and even less than that in some of the classes. This datascarcity feature
makes very difficult for a model such as M1 to learn word correlations across lan-
guages resulting in an expected overfitting effect.

Figure 3.4 compares the performance of the best monolingual(English-based),
the bilingual local, both of them presented in Chapter 2, andthe unigram-M1 clas-
sifiers. As shown, the unigram-M1 classifier outperforms themonolingual and
bilingual local classifiers, but the difference is not so important in the Traveller as
in the BAF corpus. Therefore, the word correlation across languages that provides
the M1 model helps to improve the accuracy of its classifier.

Table 3.1 presents a summary of the error figures of the different classifiers on
the Traveller task and the BAF corpus. As we can observe, the unigram-M1 (mix
1gM1) mixture model supersedes the other two unigram models, being statistically
significant better in the case of the BAF corpus, but not beingso for the Traveller
task. The unigram-M1 mixture model obtains similar performance to SVM and
boosting methods in the Traveller task, and statistically significantly better in the
BAF corpus. These experiments show the benefits of learning word correlation
across languages in bilingual TC.

3.5 Mixture of M1 models applied to MT

In this section, we describe the computation of the Viterbi alignments for the M1
mixture model and then, we directly and indirectly evaluatethis model on well-
known MT tasks.

First, we decided to carry out the direct evaluation in termsof alignment er-
ror rate (AER) using the Hansard shared task. Although it is unclear the relation
between alignment quality (AER) and translation quality (BLEU), if any [AD06,
FM07b]. Being that as it is, this measure is still a useful instrument to directly
gauge the quality of novel models as its ability to map sourceto target posi-
tions [ZX06, FM07a].

Secondly, we indirectly assess the translation quality of the proposed model
by training a phrase-based system from its Viterbi alignments. We are aware that
this evaluation procedure of the models may mask their actual performance, but it
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Figure 3.4: Competing curves: %error vs. mixture components for Trav-
eller and BAF.

allows us to compare the translation quality of the proposedmodels to other trans-
lation system trained in a similar fashion. Moreover, we cananalyse the evolution
of the translation quality of the system, in terms of BLEU score, as a function of
the number of components in the mixture.

3.5.1 Viterbi alignment

In Eq. (3.1) we introduced the concept of alignment as an assignment between
source and target words, more precisely between source and target positions. How-
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ever, this alignment information was missing in the translation process, and we had
to marginalise over all possible values of the alignment variable.

In practise, we are interested in the most probable alignment, also known as
the Viterbi alignment, given the source and target sentences and an estimate of the
model parameters,

â = arg max
a

p(a |x, y;Θ) (3.45)

that, considering that we are maximising overa, can be easily rewritten as

â = arg max
a

p(x, a | y;Θ). (3.46)

Assuming a conventional M1 model, Eq. (3.46) can be transformed into

â = arg max
a

|x|∏

j=1

1

|y| + 1
p(xj | yaj

)

= arg max
a

|x|∏

j=1

p(xj | yaj
) (3.47)

whose maximisation is trivial

â = â1, . . . , âj , . . . , â|x| (3.48)

with
âj = max

aj

p(xj | yaj
).

In other words, the Viterbi alignment for the M1 model is computed as a local
maximisation for each source position, being its asymptotic costO(|x| · |y|).

Nevertheless, the computation of the Viterbi alignment forthe M1 mixture
model

â = arg max
a

T∑

t=1

p(t)

|x|∏

j=1

1

|y| + 1
p(xj | yaj

, t) (3.49)

is approximated by maximising over the components in the mixture,

â ≈ arg max
a

max
t=1,...,T

p(t)

|x|∏

j=1

p(xj | yaj
, t) (3.50)

being its asymptotic costO(T · |x| · |y|).

3.5.2 Evaluation of alignment quality

Corpora

The corpus employed in the experiments was the French-English Hansard task
consisting on the debates of the Canadian parliament. This corpus is one of the
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Table 3.2: Statistics on the French-English Hansard task (K denotes
×1.000, andM denotes×1.000.000)

Training set Trial set Test set
Fr En Fr En Fr En

sent. pairs 1.1M 37 447
average length 20 17 19 17 17 15
vocabulary size 87K 68K 344 322 1943 1732
running words 24M 20M 721 661 7761 7020
singletons 27K 20K 265 238 1323 1103

resources that were used during the word alignment shared task organised at the
HLT/NAACL 2003 workshop on ”Building and Using Parallel Texts”. See statis-
tics in Table 3.2.

The measures defined above are computed on an independent test set randomly
drawn that was manually labelled by two annotators. Each annotator comes up with
aS andP alignment set. TheS alignment sets from each annotator are intersected
to defined the referenceS alignment set, while the referenceP alignment set is the
result of the union of theP alignment sets from both annotators. The definition of
theS andP alignment sets in this ways guarantees an alignment error rate of zero
percent when we compare theS alignments of each annotator with the reference
alignment.

The training partition was filtered according to the GIZA++ standards to ease
the comparison with this toolkit, that is, sentences whose length is above 100 words
were truncated and those sentence pairs whose ratio betweenthe source and target
length is more than 9 were shortened to the minimum of the source and target
length.

Experimental results

The objective of these experiments is to study the evolutionof AER as a func-
tion of the number of components in the M1 mixture model on theHansard task.
The results reported with the GIZA++ toolkit are mostly for sanity check reasons.
For this reason, this kind of experiments were not carried out for the evaluation
of translation quality in Section 3.5.3. The smoothing parameters were manually
tuned on the trial partition to minimise AER.

Table 3.3 presents AER figures on the test partition for the M1mixture model.
Each number in Table 3.3 is an average over values obtained from 10 randomised
initialisation. These experiments were performed for bothdirections, English-
French (En-Fr) and French-English (Fr-En) and varying the number of components
in the mixture model (T = 1, 2, 3). The training scheme (number of iterations per
model) wasmix15. The computation of the Viterbi alignments was calculated ac-
cording to Eq. (3.50). As observed in Table 3.3, it does not seem to be a clear
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Table 3.3: AER figures on the test partition of the Hansard corpus for the
M1 mixture model varying the number of components in the mixture (T =
1, 2, 3) and the conventional M1 model implemented in the GIZA++ toolkit.

GIZA++ 1 2 3

Fr-En 27.8 27.3 27.3 27.4
En-Fr 24.3 24.4 24.4 24.4

contribution by applying mixture modelisation to the M1 model on either of the
two directions.

3.5.3 Evaluation of translation quality

Corpora

The dataset that was used in the experiments for the M1 mixture model was ob-
tained from the shared-task of the ACL 2007 statistical MT workshop on “Machine
Translation for European Languages” [CB+07]. This dataset includes four parti-
tions devoted to different purposes:

• Training sets for translation models.

• Development sets to tune translation systems (see statistics in Tables 3.4
and 3.5).

• Test development sets to evaluate translation systems (seestatistics in Ta-
bles 3.4 and 3.5).

• Monolingual training sets for language models (see statistics in Table 3.6).

The first three partitions include data coming from both corpora, Europarl and
News-Commentary, however the last partition only includesdata coming from the
Europarl corpus. It would be possible to enrich the latter partition with data from
other training partitions [KS07], but we decided not to do sosince our focus is the
study of context-specific translation models.

The shared task described above is composed of two corpora, the Europarl ver-
sion 3 and the News-Commentary, although the number of sentences of the latter
constitutes less than 5% of the number of sentences of the former. It is important to
remark that the domain of the Europarl and News-Commentary corpora is differ-
ent, and this is an interesting characteristic that our mixture model can exploit in or-
der to learn domain-specific translation models. To this purpose, we concatenated
the training sets for translation models of the Europarl andthe News-Commentary
corpora (see statistics in Table 3.7), letting the mixture model distinguish which
sentence pairs should contribute to learn a given M1 component in the mixture.
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Table 3.4: Statistics of the English, Spanish, French, German development
and test partitions for the Europarl corpus (K denotes×1.000, andM de-
notes×1.000.000).

Europarl development set test set
En Es Fr De En Es Fr De

sentences (K) 2 2 2 2 2 2 2 2
average length (words) 29 30 32 28 29 30 32 27
running words (Kwords) 59 61 64 55 58 60 63 54
perplexity 74 75 63 118 72 76 63 117

Table 3.5: Statistics of the English, Spanish, French, German development
and test partitions for the News-Commentary corpus (K denotes×1.000,
andM denotes×1.000.000).

News-Commentary development set test set
En Es Fr De En Es Fr De

#sentences (K) 1 1 1 1 1 1 1 1
average length (words) 24 28 29 25 24 28 29 25
running words (Kwords) 26 29 31 26 26 30 31 27
perplexity 225 155 120 322 248 164 134 339

The language pairs involved in the experiments were{Spanish,French,German}-
English. Both corpora were preprocessed as suggested for the baseline system by
tokenising, filtering sentences longer than 40 words and lowercasing. This same
corpora will be employed in the evaluation of the M2 and HMM mixture models
(see Chapters 4 and 5, respectively).

Regarding the statistics of Table 3.7, it should be noticed the ratio between
vocabulary size and singletons (words that occur only once)ranging from 35% in
English to 50% in German, indicates somehow the complexity of the task, while
the number of sentence pairs and running words give a clear idea of the magnitude

Table 3.6: Statistics of the English, Spanish, French, German monolingual
training partitions used to train language models (K denotes×1.000, and
M denotes×1.000.000).

Europarl En Es Fr De
sentences (M) 1.4 1.4 1.4 1.5
average length (words) 27 28 30 25
running words (Mwords) 38 40 43 37
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Table 3.7: Statistics of the concatenation of the{Spanish,French,German}-
English training partitions of the Europarl (EU) and the News-Commentary
(NC) corpora (K denotes×1.000, andM denotes×1.000.000).

EU+NC En Es En Fr En De
sent.pairs (M) 1.0 1.0 1.0
average length (words) 21 22 21 23 22 21
vocabulary size (Kwords) 88 121 85 96 82 246
running words (Mwords) 21 22 20 22 23 21
singletons (Kwords) 37 46 35 35 32 124

of the task.
A special comment needs the perplexity figures in Tables 3.4 and 3.5. These

figures were obtained with language models trained in their corresponding parti-
tions, being these models also used in the translation process. Perplexity figures
are an appealing indicator of the complexity of the development and test sets from
the point of view of the language model. For instance, they reflect the complex-
ity of German in the Europarl corpus and the out-of-domain nature of the News-
Commentary corpus with respect to the partition on which thelanguage model was
trained.

Experimental setting and results

As mentioned before, the M1 mixture model was indirectly evaluated on the trans-
lation quality of a phrase-based system generated from the Viterbi alignments of
this model. The publicly available Moses toolkit [K+07], which implements the
log-linear approach to statistical MT, was employed to train phrase-based systems
from Viterbi alignments.

In our experiments, the log-linear combination involved the conventional base-
line components integrated into the Moses multi-stack decoder:

• Phrase model (direct and inverse phrase and lexical scores,and phrase penalty).

• Distance-based reordering model.

• Lexicalised reordering model.

• Language model.

• Word penalty.

Apart from the decoder, this toolkit provides a series of powerful scripts, which are
abundantly employed in this thesis with the following functionality:

• Training of phrase and lexicalised reordering tables from Viterbi alignments.
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• Adjustment of weights of the log-linear model according to minimum error
rate training (MERT) criterion.

• Phrase and lexicalised reordering table filtering.

• Automatic evaluation of translation quality using BLEU score.

Phrase and lexicalised reordering tables were trained withViterbi alignments com-
puted after 5 iterations of the M1 mixture model (mix 15). The average comput-
ing timea is approximately 15 minutes per M1 iteration and component.As far
as the language model is concerned, we trained smoothed word-based 5-gram in-
terpolated models with modified Kneser-Ney discount [CG96]using the SRILM
toolkit [Sto02] on the monolingual version of the Europarl corpora for English
(En), Spanish (Es), French (Fr) and German (De).

Concerning the weights of the components of the log-linear model, we tuned
those weights on the development set according to the MERT criterion for the
phrase-based system resulting from the HMM Viterbi alignments (see chapter 5).
Then, the same weighting scheme was employed for all the experiments in the same
language pair throughout the different translation models(M1, M2 and HMM) and
over different number of components (T = 1, 2, 3), as well as for the baseline
system. The same experimental conditions were used to translate both test devel-
opment sets, Europarl and News Commentary.

At this point, we would like to make clear that statistical phrase-based systems
are not one of the scientific goals of this thesis. Therefore,we will be using Moses
as a black boxb in which first we input the Viterbi alignments for the training set
provided by our word alignment translation models (M1, M2 orHMM mixture
models), then we tune the weights of the log-linear model (ifnecessary), and finally
we obtained as an output a translation for each sentence in the test set.

BLEU scores are reported in Tables 3.8 and 3.9 as a function ofthe number of
components in the M1 mixture model on the preprocessed development test sets
of the Europarl and News Commentary corpora, respectively.The column labelled
asbaselinestands for the baseline system proposed in the shared-task ACL 2007
statistical MT workshop, training the translation model onthe concatenation of
the Europarl and News-Commentary corpora. The basic difference between the
baseline system and our system is the training scheme of the word-based alignment
models employed to compute the Viterbi alignments. In the case of the baseline
system, the training scheme is153343, that is, 5 iterations of the M1 model, 3
iterations of the M3 model and 3 iterations of the M4 model using the GIZA++
toolkit, and mkcls [Och99] to generate word classes needed in the training process.
The baseline system provides BLEU reference figures at the level of state-of-the-art
in statistical MT to which we can compare the translation quality of our translation
models (M1, M2 and HMM mixture models).

aOn a 2.0 GHz Intel Xeon machine
bDefault parameters are used, unless it is explicitly statedotherwise.
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The results offered by the M1 mixture model are far from thoseof the baseline
system, as we could foresee from the dissimilar training schemes. However the
analysis of the evolution of the BLEU score as a function of the number of com-
ponents in the M1 mixture model is the focus of the study of thefigures presented
in Tables 3.8 and 3.9. In Table 3.8, we can observe a slight improvement, not sta-
tistically significant, when we move from the conventional single-component M1
model to the multiple-component M1 mixture model on the Europarl test. Never-
theless, this is not the case for the News-Commentary test set (see Table 3.9) in
which there is no gain when increasing the number of components in the M1 mix-
ture model, except for the English-French direction that shows an increase of half
a point in BLEU.

Table 3.8: BLEU scores on the Europarl development test partition for the
baselinesystem and the M1 mixture model (T = 1, 2, 3).

BLEU baseline 1 2 3

En-Es 31.6 29.1 29.2 29.2
Es-En 32.1 29.9 30.0 30.0
En-Fr 31.1 28.4 28.6 28.6
Fr-En 32.2 29.0 29.1 28.1
En-De 19.1 17.4 17.5 17.5
De-En 26.8 24.4 24.4 24.5

Table 3.9: BLEU scores on the News-Commentary development test parti-
tion for thebaselinesystem and the M1 mixture model (T = 1, 2, 3).

BLEU baseline 1 2 3

En-Es 31.2 24.7 24.7 24.6
Es-En 32.5 27.6 27.6 27.6
En-Fr 24.7 19.4 19.5 19.9
Fr-En 25.2 21.0 20.8 20.8
En-De 14.1 11.4 11.4 11.4
De-En 20.8 17.6 17.4 17.4

3.6 Conclusions and future work

In this chapter, we have reviewed and derived the well-knownM1 model, before
introducing its mixture version. The M1 mixture model aims at capturing context-
specific translation processes that are common in natural languages, but had not
been directly addressed so far in the literature. The M1 model presented in this
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chapter bridges the gap between bilingual TC and statistical MT by being a com-
mon ingredient in both applications.

In bilingual TC, the M1 model is revealed as an effective approach to appre-
hend the word correlation across languages in bilingual documents. Doing so, we
outperformed the accuracy of those bilingual classifiers that considers each lan-
guage separately. To be precise, the unigram-M1 model was statistically signifi-
cantly superior to the bilingual unigram classifier on the BAF corpus.

Apart from the unigram-M1 mixture model, we experienced with evolutions
of this model replacing the M1 model by the M2 model, defining in this way a
non-uniform alignment probability distribution. Specifically, the unigram-M2 and
the bigram-M2 mixture models were derived, implemented andinformally evalu-
ated. Both of them suffer even more severely from data scarcity problems than the
unigram-M1 model, and their performance was worse than thatof the unigram-M1
model. Nevertheless, they served as inspiration of the M2 mixture model that will
be introduced in Chapter 4.

A straightforward extension of the model presented in this chapter is the re-
placement of the unigram language model by higher order language models with
richer context information. We believe that this extensioncould provide an ade-
quate tradeoff between cross-lingual word correlation andcontext information with
promising results. Furthermore, we plan to incorporate bilingual classes [Och99]
in order to control the model complexity in the presence of data spareness by ad-
justing the number of word classes.

In statistical MT, we revisited the computation of the Viterbi alignments for the
M1 model and explained how we extended it for the M1 mixture model. As shown
in Chapter 1, the Viterbi alignments are the foundations forstatistical phrase-based
systems, therefore we exploited this idea in order to assessthe alignment and trans-
lation quality of the M1 mixture model. The evaluation of alignment quality on the
Hansard task did not show a clear contribution of applying mixture modelisation to
the M1 model. In the case of the evaluation of the translationquality, we employed
the Moses toolkit to generate phrase-based systems from theViterbi alignments
trained on the concatenation of the Europarl and News-Commentary corpora. The
results obtained reflect minor, but systematic improvements in BLEU scores on the
Europarl development test, that encouraged us to develop the M2 mixture model in
Chapter 4.

The work related to the unigram-M1 mixture model for bilingual TC have been
submitted to an international conference:

• J. Civera and A. Juan. Bilingual Text Classification using the IBM 1 Trans-
lation Model. Accepted for publication in the sixth international conference
on Language Resources and Evaluation, LREC 2008.
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CHAPTER 4

M IXTURE OF M2 MODELS

4.1 Introduction

In this chapter we describe a mixture extension of the M2 model, second model of
the well-known IBM translation models [B+90, B+93], along with its correspond-
ing EM parameter estimation. The M2 model is a refinement of the M1 model in
which the uniform alignment probability distribution is replaced by a probability
distribution depending on the source position and the target sentence lengtha.

The M2 mixture model was evaluated on two statistical MT tasks. For the first
task, a dynamic-programming search algorithm for the M2 mixture model was
implemented, as a mixture extension of that presented in [GVCN98, GVC01]. For
the second task, as we did for the M1 mixture model, we computed the Viterbi
alignments for the M2 mixture model that were employed to train a phrase-based
system.

The organisation of this chapter is as follows. Section 4.2 introduces the M2
model, and its mixture extension is studied in Section 4.3. Then, we discuss the
dynamic-programming search algorithm in Section 4.4, presenting results on a
small task in Section 4.5. Further experimental results on two large scale tasks
are reported in Section 4.6. Finally, we conclude in Section4.7.

4.2 The M2 model

4.2.1 The model

The derivation of the M2 model is almost the same to that of theM1 model in
Section 3.2.1. The main difference between M1 and M2 models resides in the
assumption that is made to define the alignment probability distribution

p(aj |x
j−1
1 , a

j−1
1 , y) := p(aj | j, |y|) (4.1)

aActually, the alignment probability distribution also depends on the source sentence length, but
we have dropped this dependency to simplify the model.
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wherep(aj | j, |y|) is the alignment probability distribution, replacing the uniform
alignment distribution of the M1 model in Eq. (3.3). So, in contrast to Eq. (3.5),
we have

p(x, a | , y;Θ) =

|x|∏

j=1

p(aj | j, |y|) p(xj | yaj
) (4.2)

whereΘ is defined to also include the alignment parameters of the M2 model

Θ =

{
p(i | j, |y|) ∀ i ∈ {0, 1, . . . , |y|}, j ∈ {1, . . . , |x|} and|y|
p(u | v) u ∈ X , v ∈ Y

(4.3)

in contrast to the parameter vector of the M1 model in Eq. (3.6).
As we did in Eq. (3.9) for the M1 model, we can express the M2 model in terms

of indicator vectors

p(x | y;Θ) =

|x|∏

j=1

∑

aj

|y|∏

i=0

[p(i | j, |y|) p(xj | yi)]
aji (4.4)

so, the M2 model becomes

p(x | y;Θ) =

|x|∏

j=1

|y|∑

i=0

p(i | j, |y|) p(xj | yi) (4.5)

that is the conventional form of this model.

4.2.2 Maximum likelihood estimation

The maximum likelihood estimation of the parameters of the M2 model is per-
formed in an analogous way to that of the M1 model in Section 3.2.2 using the EM
algorithm. Generally speaking, we just need to substitute the uniform alignment
distribution of the M1 model by the alignment distribution of the M2 model.

The E step computesa(k)
nji as in Eq. (3.15), incorporating the M2 alignment

distribution

a
(k)
nji =

p(i | j, |yn|)
(k) p(xnj | yni)

(k)

∑|yn|
i′=0 p(i

′ | j, |yn|)(k) p(xnj | yni′)(k)
. (4.6)

In the M step, we obtain the same update equation for the statistical dictionary as
in Eq. (3.16) for the M1 model. Moreover, we need an additional equation for the
alignment parameters

p(i | j, |y|)(k+1) =
N(i, j, |y|)

|y|∑
i′=0

N(i′, j, |y|)

∀i, j and|y| (4.7)

where

N(i, j, |y|) =

N∑

n=1

δ(|xn| ≥ j) δ(|yn| = |y|) a
(k)
nji . (4.8)
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Intuitively, Eq. (4.7) can be understood as a normalised partial count of how
many times positionj is aligned to positioni for target sentences of length|y|.

4.3 Mixture of M2 models

4.3.1 The model

The M2 mixture model is straightforward given the derivation of the M1 mixture
model in Section 3.3.1 and the conventional M2 model in Section 4.2.1. Here, we
introduce a component-dependent version of the alignment parameter in Eq. (4.1)
to replace the uniform alignment distribution of the component-conditional M1
model in Eq (3.21),

p(x, a | y, t;Θt) =

|x|∏

j=1

|y|∏

i=0

[p(i | j, |y|, t) p(xj | yi, t)]
aji (4.9)

where the component-conditional parameter vectorΘt in Eq. (3.22) for the M1
mixture model is substituted by

Θt =

{
p(i | j, |y|, t) ∀ i ∈ {0, 1, . . . , |y|}, j ∈ {1, . . . , |x|} and|y|
p(u | v, t) u ∈ X , v ∈ Y

(4.10)

4.3.2 Maximum likelihood estimation

The estimation of the E and M steps of the EM algorithm for the M2 mixture model
and the M1 mixture model in Section 3.3.2 are alike.

The E step computesz(k)
nt in a similar fashion to Eq. (1.45), but using the un-

derlying component-conditional M2 model. On the other hand, the terma(k)
njit is

computed similarly to Eq. (3.27), but incorporating the component-conditional M2
alignment distribution

a
(k)
njit =

p(i | j, |yn|, t)
(k) p(xnj | yni, t)

(k)

∑|yn|
i′=0 p(i

′ | j, |yn|, t)(k) p(xnj | yni′ , t)(k)
. (4.11)

In the M step, mixture coefficients are updated as shown in Eq.(1.48) and sta-
tistical dictionaries, as in Eq. (3.28). Finally, component-conditional alignment
parameters are newly estimated using

p(i | j, |y|, t)(k+1) =
N(i, j, |y|, t)

|y|∑
i′=0

N(i′, j, |y|, t)

∀i, j, |y|andt (4.12)

where

N(i, j, |y|, t) =

N∑

n=1

δ(|xn| ≥ j) δ(|yn| = |y|) z
(k)
nt a

(k)
njit . (4.13)

The asymptotic cost of the M2 mixture training process per iteration is the same
that that of the M1 mixture model, i.e.O(N · T · |x| · |y|).
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4.3.3 Smoothing

As we did for the component-conditional statistical dictionary in Section 3.3.3,
the component-conditional alignment distribution is smoothed at two levels. First,
we smooth the component-conditional alignment distribution interpolating with a
uniform distribution over the target positions

p̂(i | j, |y|, t) = (1 − ǫ) p(i | j, |y|, t) + ǫ
1

|y|
. (4.14)

Secondly, we smooth the component-conditional alignment distribution (specific
distribution) interpolating with the conventional alignment distribution (general
distribution)

p̂(i | j, |y|, t) =

(
1 −

β

β + p(j, |y|)

)
p(i | j, |y|, t) +

β

β + p(j, |y|)
p(i | j, |y|).

(4.15)
In this case, the interpolation coefficient depends on the relative frequency of the
event, source positionj and target sentence length|y|, in the training set, and on
the interpolation parameterβ. The interpretation of the interpolation parameter
β is similar to that of the parameterα in Section 3.3.3, that is, the interpolation
coefficient is0.5 whenβ is equal to the relative frequency of the event, source
position j and target sentence length|y|. The parameterβ is manually tuned to
optimise the evaluation metric in question on the development set.

4.4 Decoding algorithm

In this section, we introduce a mixture extension of a dynamic-programming de-
coding algorithm of that presented in [GVCN98, GVC01] in order to directly eval-
uate the translation quality of the M2 mixture model.

In statistical MT, the aim of the decoding algorithm is to search for a target
sentencêy given a source sentencex

ŷ = arg max
y

p(y |x)

= arg max
y

p(y) p(x | y). (4.16)

The search for̂y has been demonstrated to be an NP-hard problem [Kni99,
UM06]. However, several search algorithms have been proposed in the literature
to solve this ill-posed problem efficiently:A∗ [B+90], stack-decoding [WW97,
AO+99], integer-programming [G+01] and dynamic-programming [GVC01, TN03].

In [GVCN98, GVC01], a dynamic-programming search algorithm for the M2
model is proposed, along with some heuristics to acceleratethe search process.
This same algorithm has been extended in this thesis to deal with the M2 mix-
ture model. The idea behind this extension to the mixture case is straightforward
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by considering an extra-dimension in the search trellis to independently store the
translation score for each component in the mixture.

Specifically, the translation modelp(x | y) in Eq. (4.16) is instantiated as a M2
mixture model andp(y), for the sake of simplicity in the notation, will be assumed

to be a bigram language model. Then, the score associated to the hypothesisy|y|1 ,
given the source sentencex and the target-sentence length|y| is

|y|∏

i=1

p(yi|yi−1)

T∑

t=1

p(t)

|x|∏

j=1

|y|∑

i=0

p(i | j, |y|, t) p(xj | yi, t). (4.17)

The expression in Eq. (4.17) can be reformulated in terms of two recursive
functionslm andtm

lm(y|y|, |y|)

T∑

t=1

p(t)

|x|∏

j=1

tm(y|y|, |y|, j, t). (4.18)

The definition of the recursive functionslm andtm for any partial hypothesisyi
1

beingyi = v is

lm(v, i) = lm(v̂(v, i), i − 1) p(v|v̂(v, i)) (4.19)

tm(v, i, j, t) = tm(v̂(v, i), i − 1, j, t) p(i | j, |y|, t) p(xj | v, t) (4.20)

for all v ∈ Y, j = {1, . . . , |x|} andi = {1, . . . , |y|}. The functionv̂(v, i) returns
the previousbestwordv′ given thatv is going to appear next in the target sentence
at positioni,

v̂(v, i)) = arg max
v′∈Y

[
lm(v′, i− 1) p(v|v′)×

×
T∑

t=1

p(t)

|x|∏

j=1

(
tm(v′, i− 1, j, t) + p(i | j, |y|, t) p(xj | v, t) + ftm(j, i+ 1, t)

) ]

beingftm a function that estimates the cost of translating from position i + 1 to
the end of the target sentence,

ftm(j, i, t) =

|y|∑

k=i

p(k | j, |y|, t) p(xj | ỹk, t) (4.21)

whereỹ|y|1 is an estimation of the best translation forx. Doing so, this decoder
computes the most probable translation ofx using the maximum approximation.

The base case of recursion for functionslm andtm is

lm(v, 1) = p(v|$) (4.22)

tm(v, 1, j, t) = p(0 | j, |y|, t) p(xj |NULL, t) + p(1 | j, |y|, t) p(xj | v, t) (4.23)
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for all v ∈ Y andj = 1, . . . , |x| and where$ represents the starting symbol for the
language model.

The estimation of the functionftm poses a problem when the target sentence
is unknown. A mixture extension of the initial optimistic estimation offtm, pro-
posed in [GV03], can be calculated as

ftm(j, i, t) =

|y|∑

k=i

max
v∈Y

p(k|j, |y|, t) p(xj |v, t). (4.24)

Once a translation has been computed, the functionftm can be re-estimated
using this translation. Therefore, the search process includes an iterative refine-
ment process that updatesftm in each iteration. This iterative translation process
runs until convergence (when the functionftm remains the same between two
consecutive iterations) or for a fixed number of rounds, whatever comes first.

The asymptotic cost of the decoding algorithm for each roundisO(|y| ∗ Ym),
wherem is the order of the smoothedn-gram language model. As can be deduced
from this cost, the size of the target vocabulary is a critical factor in the decoding
time of the algorithm.

4.4.1 Decoding parameters

The decoding algorithm defined in the previous section presents two main difficul-
ties in order to be able to run experiments in a reasonable period of time, even with
simple tasks.

First, the search space explores all the words in the target vocabulary, even if
many of these words are improbable translations of the wordsin the source sen-
tence. In order to reduce the cost of the algorithm, only a setof promisingtarget
words will be considered during the search process. The sizeof this set is indirectly
defined by means of the number of most probable translationsW for each word in
the source sentence, and the number of “zero-fertility” wordsWZ.

The set ofW -most probable translationsSw is computed according to the in-
verse translation probability [AO+99]

p(v |u) =
p(u | v) p(v)∑

u′

p(u′ | v) p(v)

that has been adapted for the case of our mixture model

p(v |u) ≈

T∑
t=1

[p(t) p(u | v, t)] p(v)

∑
u′

T∑
t=1

[p(t) p(u′ | v, t)] p(v)

(4.25)
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wherep(v) is a unigram language model learnt on the training partition. The com-
putation ofSw for a source sentencex is

Sw =

|x|⋃

j=1

arg max
S⊂Y :|S|=W

min
v∈S

p(v |xj) (4.26)

where we just take the union of the set ofW -most probable inverse translations
of each source word in the sentence to be translated. The set of “zero-fertility”
wordsSwz is constituted by theWZ-least aligned target words to any source word
in the training set, according to the Viterbi alignment for the M2 mixture model.
It is necessary to take into account those target words that rarely occur as direct
translation of words in the source sentence, otherwise theywould not appear in the
translated sentence.

The Viterbi alignment for the M2 mixture model is computed inthe same way
to the M1 mixture model (see Section 3.5.1)

â ≈ arg max
a

max
t=1,...,T

p(t)

|x|∏

j=1

max
aj

p(aj | j, |y|, t)p(xj | yaj
, t) (4.27)

Thus, the set ofWZ-least aligned target words is defined as

Swz = arg max
S⊂Y :|S|=WZ

min
v∈S

N∑

n=1

|yn|∑

i=1

δ(v, yni)φ(ân, i) (4.28)

where

φ(a, i) =

{
0 ∃ j : aj = i j = 1, . . . , |a|
1 otherwise

(4.29)

is the condition that says whether the positioni is connected to any source position
j or not, andδ is the Kronecker functionb.

Finally, the union of the setsSw andSwz defines the final bag-of-words of
candidate target words.

Secondly, the alignment distribution of M2 model depends onthe target sen-
tence length, so the decoding algorithm needs to knowa priori the length of the
target sentence that will be output. In practise, this fact implies the need of explor-
ing a range ofpromisingtarget sentence lengths given the source sentence.

The adopted solution considers a Gaussian distribution over the target sentence
length depending on the source sentence length. So, the range goes from|y||x|−L

to |y||x| + L, where|y||x| is the average length of the target sentence given the
length of source sentence to be translated andL is a parameter that controls the
range width. This range width is a factor that multiplies theasymptotic cost of the
algorithm.

bδ(a, b) is 1 if a = b and zero otherwise.
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Another useful parameter to control the response time of thedecoding algo-
rithm is the maximum number of search roundsD. This parameter defines the
number of times that the same source sentence is going to be translated for a fixed
target-sentence length. For each round the functionftm is recomputed.

Finally, a beam-search parameterB is set in order to prune those hypotheses
whose score was lower than the best score multiplied by this parameter.

All the parameters presented in this section were tuned in order to control the
trade-off between translation quality and response time, preserving the benefits of
using more components in the M2 mixture model.

4.5 Experimental results

The Spanish-English TOURIST task [ABC+00] was selected to assess the M2
mixture model. It is composed of sentence pairs corresponding to human-to-
human communication situations at the front-desk of a hotelwhich were semi-
automatically produced using a small seed corpus compiled by four persons from
travel guides booklets dealing with different topics. A corpus of10, 000 random
sentences pairs was selected for training purposes and a test partition was defined
using2, 996 random sentence pairs generated independently from the training par-
tition. The basic statistics of this corpus are shown in Table 4.1.

Table 4.1: Basic statistics of the Spanish-English TOURIST task (K denotes
×1.000).

Training Set Test Set
Es En Es En

sentences 10.000 2.996
average length 9 9 11 11
vocabulary size 686 513 611 468
singletons 10 8 63 49
running words 97K 99K 35K 36K
perplexity - - - 4.92

This multimodal corpus defines an excellent test bed to evaluate the M2 mixture
model, since its simplicity will bring about the pros and cons of the model.

Several experiments were carried out with the Spanish-English TOURIST task
to analyse the evolution of the error rate as a function of thenumber of mixture
components (T ∈ {1, 2, 5, 10, 20}). On the one hand, the training process starts
by iterating with the M1 mixture model from a random initialisation until conver-
gence. Then, the parameters learnt in the M1 mixture model are transferred to the
M2 mixture model that is also trained until convergence. This two-step procedure
favours a smoothed parameter learning from a simpler model to a more complex
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model. On the other hand, the search parameters were fixed in order to not interfere
in the study of the translation model itself, so that a large number of hypotheses
were explored. The language models used in these experiments were smoothed
bigrams and trigrams based on back-off with Witten-Bell discount [WB91].

Figure 4.1 shows the evolution of the WERc (left y axis) and BLEU score (right
y axis), on the test partition of the TOURIST task, for an increasing number of
mixture components (x axis). Each curve represents the progress of an evaluation
measure, WER (W) or BLEU (B), when using a smoothed bigram (2g) or trigram
(3g) language model. Each plotted point is an average over values obtained from
10 randomised trials.
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Figure 4.1: WER (W) and BLEU (B) curves in the test partition as a func-
tion of the number of mixture components using smoothed bigram (2g) and
trigram (3g) language models.

When analysing the results in Figure 4.1, it is clearly observed a systematic
WER decrease (BLEU increase) as more components are added tothe M2 mixture
model. This positive trend reverts at different parameter settings depending on the
language model we are using. In the case of bigrams that happens when the model
incorporates20 components into the mixture, while in trigrams this trend reverts
when using10 components. The reason behind this behaviour is mainly due to the
fact that a trigram language model leaves less space for improvement than a simple
bigram language model. So, the refinement of the translationmodel through the
incorporation of more components produces greater benefit in a simpler bigram
model, than in an already sophisticated trigram model.

cAs a reference, the single-component version of these results are correlated with those obtained
in [GV03].

JCS-DSIC-UPV 93



Chapter 4. Mixture of M2 models

A summary of single-component and best mixture results for bigram and tri-
gram language models is shown in Table 4.2. These figures reflect that the M2
mixture model provides an average relative improvement in WER of 15% for the
bigram language model and 11% for the trigram language model, w.r.t. the single-
component M2 model. These improvements are statistically significant.

Table 4.2: Baseline and best mixture results on the Spanish-English
TOURIST task. The n-column indicates the n-gram order of the language
model, while the T-column denotes the number of components in the M2
mixture model.

n T WER BLEU

2
1 21.3 67.7

10 18.0 72.8

3
1 14.2 78.1
5 12.6 80.0

We are aware that the results reported in this section are farfrom those obtained
in the same corpus with state-of-the-art phrase-based models, specifically Align-
ment Templates [Och99], and stochastic finite-state transducers, more precisely
GIATI [CV04]. However, these experiments allow us to study the behaviour of the
M2 mixture model under controlled experimental conditions, i.e. simple task and
customised decoder, avoiding so the influence of other external factors that could
mask the results.

4.6 Further evaluation

The evaluation of the M2 mixture model presented in the previous section provides
a direct insight into the capabilities and properties of themodel. However, as we
said before, the results reported are far from those obtained with state-of-the-art
phrase-based systems. Furthermore, the conclusions drawnfrom the results on
the small synthetic TOURIST task are difficult to be extrapolated to other corpora.
To have a broader view of the alignment and translation quality of the model, we
performed a throughout evaluation on the shared tasks presented in Section 3.5.

The corpora and experimental setting of this chapter are identical to that of
Section 3.5, except for the training scheme that was used to compute the Viterbi
alignments. In this case, the training scheme wasmix 1525, that is, 5 iterations
of the M1 mixture model followed by 5 iterations of the M2 mixture model. As
usual, the statistical dictionary learnt by the M1 mixture model are transferred to
the M2 mixture model. For the joint Europarl and News Commentary training
corpus, the average computing timed is approximately 20 minutes per M2 iteration

dOn a 2.0 GHz Intel Xeon machine
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and component. It should be borne in mind that the weights of the log-linear model
integrated in Moses are the same to those in Chapter 3.

4.6.1 Evaluation of alignment quality

Table 4.3 presents AER figures on the test partition for the M2mixture model. As
in case of the M1 mixture model, each number in Table 4.3 is an average over
values obtained from10 randomised initialisation. The computation of the Viterbi
alignments was calculated according to Eq. (4.27).

Table 4.3: AER figures on the test partition of the Hansard corpus for the
M2 mixture model varying the number of components in the mixture (T =
1, 2, 3) and the conventional M2 model implemented in the GIZA++ toolkit.

GIZA++ 1 2 3

Fr-En 20.0 19.6 19.0 18.8
En-Fr 18.3 17.6 17.2 16.8

As seen in Table 4.3, there is a statistically significant improvement when we
go from the conventional single-component M2 model to the multiple-component
M2 mixture model for both language directions. Furthermore, the decrease in AER
on the English-French direction when we increase from two tothree the number of
components is also statistically significant.

4.6.2 Evaluation of translation quality

BLEU scores are reported in Tables 4.4 and 4.5 as a function ofthe number of
components in the M2 mixture model on the preprocessed development test sets
of the Europarl and News Commentary corpora, respectively.As it happened in
the M1 mixture model, the BLEU scores reported are far from the baseline system.
This is due to the more refined models (M3 and M4) employed in the baseline
system compared to the relatively simple M2 model.

Furthermore, in contrast to the appealing results presented in Section 4.5, there
is little gain in BLEU score on the Europarl development testset when increasing
the number of components per mixture. Nonetheless, there isan average systematic
increase of half a point in BLEU score on the News-Commentarydevelopment test
set (except for the English-German direction), when using the Viterbi alignments
provided by 2-component or 3-component M2 mixture models atthe backend of
Moses. These improvements are not statistically significant.

4.7 Conclusions and future work

In this chapter we presented a mixture extension of the M2 model together with its
maximum likelihood parameter estimation and a specific decoding algorithm.
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Table 4.4: BLEU scores on the Europarl development test partition

BLEU baseline 1 2 3

En-Es 31.6 30.7 31.1 30.2
Es-En 32.1 31.4 30.9 31.5
En-Fr 31.1 30.4 30.5 30.8
Fr-En 32.2 31.3 31.5 31.5
En-De 19.1 19.0 18.9 19.0
De-En 26.8 26.0 26.1 26.0

Table 4.5: BLEU scores on the News-Commentary development test parti-
tion

BLEU baseline 1 2 3

En-Es 31.2 29.2 29.6 29.6
Es-En 32.5 31.2 30.9 31.7
En-Fr 24.7 23.4 23.9 23.9
Fr-En 25.2 23.7 23.9 24.3
En-De 14.1 13.0 12.8 12.9
De-En 20.8 19.3 19.6 19.5

The experiments conducted on a small synthetic task, clearly indicate the ben-
efits of the mixture approach over the single-component M2 model. Even though
these results are not competitive enough compared to those obtained by state-of-
the-art phrase-based models in the same task. These experiments were comple-
mented with results on alignment and translation shared-tasks, already introduced
in Chapter 3, in order to study the behaviour of the model in real tasks. The results
on alignment quality showed a statistically significant improvement as we increase
the number of components in the mixture model. Regarding thetranslation quality
of the M2 mixture model, the BLEU figures revealed a systematic average increase
of half a point in most of the language pairs of the News-Commentary development
test, although this improvement was not conveyed to the Europarl development test
set.

The BLEU scores reported in this chapter are still behind those of the baseline
system. This fact leads us to consider superior word alignment translation mod-
els to bridge this gap in performance. However, the complexity of these superior
models should be moderate so as to avoid overtraining. Taking this concern into
account, we introduce the HMM alignment model in Chapter 5.

The work related to the M2 mixture model using the dynamic-programming
search algorithm presented was published in an international conference:

• J. Civera and A. Juan. Mixtures of IBM Model 2. InProceedings of the 11th
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annual conference of the European Association for Machine Translation,
EAMT 2006, pages 159–167, Oslo (Norway), June 2006.

The AER results on the Hansard task presented in this chapterwill be published
in an international workshop:

• J. Civera and A. Juan. Word alignment quality in the IBM 2 mixture model.
In Proceedings of the 8th International Workshop on Pattern Recognition in
Information Systems, PRIS 2008, INSTICC Press, Barcelona (Spain), June
2008.
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versidad Politécnica de Valencia, Valencia, España, Diciembre 2003.

[GVC01] I. Garcı́a-Varea and F. Casacuberta. Search algorithms for statisti-
cal machine translation based on dynamic programming and pruning
techniques. InProc. of MT Summit VIII, pages 115–120, Santiago de
Compostela, Spain, 2001.

[GVCN98] I. Garcı́a-Varea, F. Casacuberta, and H. Ney. An iterative, DP-based
search algorithm for statistical machine translation. InProc. of IC-
SLP’98, pages 1235–1238, Sydney, Australia, October 1998.

[Kni99] K. Knight. Decoding complexity in word-replacement translation
models.Computional Linguistics, 25(4):607–615, 1999.

99



Bibliography

[Och99] F. J. Och. An efficient method for determining bilingual word classes.
In Proc. of EACL’99, pages 71–76, Morristown, NJ, USA, June 1999.
Association for Computational Linguistics.

[TN03] C. Tillmann and H. Ney. Word reordering and a dynamic program-
ming beam search algorithm for statistical machine translation. Com-
putational Linguistics, 29(1):97–133, March 2003.

[UM06] R. Udupa and H. K.r Maji. Computational complexity ofstatistical
machine translation. InProc. of EACL’06, April 2006.

[WB91] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37:1085–1094, 1991.

[WW97] Y. Wang and A. Waibel. Decoding algorithm in statistical translation.
In Proc. of ACL’97, pages 366–372, Morristown, NJ, USA, July 1997.
Morgan Kaufmann / Association for Computational Linguistics.

100 JCS-DSIC-UPV



CHAPTER 5

M IXTURE OF HMM
ALIGNMENT MODELS

5.1 Introduction

The HMM alignment model was initially proposed in [V+96] and refined in [ON03].
This model possesses appealing properties, like the simplicity of the first-order
word alignment distribution, and the efficient and exact computation of the E-step
and Viterbi alignment using a dynamic-programming algorithm. These properties
have made this model suitable for extensions [TIM02, LR05] and integration into
a phrase-based model [DB05] in the past.

In this chapter, we present a mixture extension of the HMM alignment model,
as we did in Chapter 3 for the M1 model, and in Chapter 4 for the M2 model.
Similarly to Chapters 3 and 4, an indirect evaluation of the translation quality was
carried out on the Europarl and News-Commentary corpora by utilising the Viterbi
alignments of the HMM model to train a phrase-based system.

The structure of this chapter is as follows. We first present the HMM align-
ment model in Section 5.2 and its mixture extension in Section 5.3. We report
experimental results on alignment quality for the Hansard task, and on translation
quality for the Europarl and News-Commentary corpora in Section 5.4. Finally,
conclusions and future work are stated in Section 5.5.

5.2 The HMM alignment model

5.2.1 The model

For the HMM model, we derive the conditional probabilityp(x | y), as we did in
Eqs. (3.1) and (3.2). However, the assumption that we make for the alignment
probability distribution in the HMM model differs from thatin the M1 and M2
models, shown in Eqs. (3.3) and (4.1) respectively. The alignment p.f. in the
HMM model includes a dependency on the previous alignment, also known as a
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first-order dependency, while the lexical p.f. remains the same as in Eq. (3.4).
More precisely, the original formulation of the HMM alignment model assumes

that the alignmentaj depends on the previous alignmentaj−1 and the length of the
target sentence|y|, so the alignment p.f. becomes

p(aj | a
j−1
1 , x

j−1
1 , y) := p(aj | aj−1|y|). (5.1)

It is interesting to observe the evolution of the alignment p.f. from the M1
model in Eq (3.3) represented by a simple uniform distribution, over the M2 model
in Eq. (4.1) that considers a zero-order dependency alignment, to the HMM model
in Eq. (5.1) modelling a first-order dependency.

The HMM alignment model can be either derived from the M1 model in Eq. (3.5),
or the M2 model in Eq. (4.2), substituting their alignment p.f. by that defined in
Eq. (5.1). Thus, we have

p(x, a | y;Θ) =

|x|∏

j=1

p(xj | yaj
) p(aj | aj−1, |y|) (5.2)

where we suppose thata0 = 0 and

Θ =

{
p(i | i′, |y|) 1 ≤ i ≤ |y|, 0 ≤ i′ ≤ |y| and∀ |y|
p(u | v) ∀u ∈ X andv ∈ Y

(5.3)

is the set of unknown parameters comprising the first-order dependency alignment
parameters and the conventional statistical dictionary.

As we proceeded in the previous models presented in this thesis, we can express
Eq. (5.2) in terms of indicator vectors as

p(x, a | y;Θ) =

|x|∏

j=1

|y|∏

i=1

p(xj | yi)
aji

|y|∏

i′=1

p(i | i′, |y|)aj−1i′aji (5.4)

with a00 = 1.

5.2.2 Maximum likelihood estimation

As we did in previous chapters, we revert to the EM algorithm to estimateΘ ac-
cording to the maximum likelihood criterion w.r.t. a set ofN independent samples
(X,Y ) = ((x1, y1), . . . , (xN , yN ))t. The log-likelihood function ofΘ is

L(Θ;X,Y ) =

N∑

n=1

log
∑

an

p(xn, an | yn;Θ). (5.5)

Taking (X,Y ) as the observed dataX, and the alignment dataA in Eq. (3.13) as
the missing dataZ, the E step computes the expected value of the logarithm of
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p(X,A |Y ) w.r.t. the posteriorp(A |X,Y ;Θ(k)), analogously to Eq. (1.32),

Q(Θ |Θ(k)) =
N∑

n=1

|xn|∑

j=1

|yn|∑

i=1

a
(k)
nji log p(xnj | yni)

+

|yn|∑

i′=1

(anj−1i′ anji)
(k) log p(i | i′, |yn|) (5.6)

with

a
(k)
nji =

αnjiβnji

|yn|∑
ı̃=1

αnj ı̃βnj ı̃

(5.7)

(anj−1i′ anji)
(k) =

αnj−1i′ p(i | i
′, |yn|)

(k) p(xnj | yni)
(k) βnji

|yn|∑
ı̃′=1

|yn|∑
ı̃=1

αnj−1̃ı′ p(̃ı | ı̃′, |yn|)(k) p(xnj | yñı)(k) βnj ı̃

(5.8)

being (anj−1i′ anji)
(k), the posterior probability of aligning the source position

j− 1 to the target positioni′ and the positionj to the positioni for thenth sample.
So, the recursive functionsα andβ are defined as

αnji =






p(i | 0, |yn|)
(k) p(xnj | yni)

(k) j = 1
|yn|∑
ı̃=1

αnj−1̃ı p(i | ı̃, |yn|)
(k) p(xnj | yni)

(k) j > 1
(5.9)

βnji =






1 j = |xn|
|yn|∑
ı̃=1

p(̃ı | i, |yn|)
(k) p(xnj+1 | yñı)

(k)βnj+1̃ı j < |xn|.
(5.10)

The M step finds a new estimate ofΘ, Θ(k+1), maximising Eq. (5.6), as in Eq. (1.28),
resulting in update equations for the alignments parameters,

p(i | i′, |y|)(k+1) =
N(i, i′, |y|)

|y|∑
ı̃=1

N (̃ı, i′, |y|)

∀i, i′ and|y| (5.11)

where

N(i, i′, |y|) =

N∑

n=1

δ(|yn| = |y|)

|xn|∑

j=1

(anj−1i′ anji)
(k) (5.12)

and for the statistical dictionary in Eq. (3.16). Intuitively, Eq. (5.11) is a normalised
partial count of how many times target positions to which arealigned two consec-
utive source positions areaj−1 = i′ andaj = i for target sentences of length
|y|.

JCS-DSIC-UPV 103



Chapter 5. Mixture of HMM alignment models

5.3 Mixture of HMM alignment models

5.3.1 The model

In a similar fashion to Sections 3.3.1 and 4.3, let us consider that p(x | y) has
been generated by aT -component mixture as in Eq. (3.18), in this case a mix-
ture of HMM alignment models. Here, we rewritep(x, a | y, t) in Eq. (3.21) as a
component-conditional version of the HMM alignment model in Eq. (5.4). Thus,
we have that the component-conditional HMM model is

p(x, a | y, t;Θt) =

|x|∏

j=1

|y|∏

i=1

p(xj | yi, t)
aji

|y|∏

i′=1

p(i | i′, |y|, t)aj−1i′aji (5.13)

wherea00 = 1 and the parameter vectorΘt is defined as

Θt =

{
p(i | i′, |y|, t) ∀1 ≤ i ≤ |y|, 0 ≤ i′ ≤ |y| and|y|
p(u | v, t) ∀u ∈ X andv ∈ Y.

(5.14)

being a component-dependent version of Eq. (5.3).

5.3.2 Maximum likelihood estimation

The log-likelihood function ofΘ w.r.t.N independent samples for the HMM mix-
ture model is the same to that in Eq. (3.23).

Instantiating the EM algorithm for the HMM mixture model, wecompute the
Q function as in Eq. (1.44),

Q(Θ |Θ(k)) =

N∑

n=1

T∑

t=1

z
(k)
nt log p(t) +

|xn|∑

j=1

|yn|∑

i=1

(znt anji)
(k) log p(xnj | yni, t)

+

|yn|∑

i′=1

(znt anj−1i′ anji)
(k) log p(i | i′, |yn|, t). (5.15)

that involves the computation ofz(k)
nt , (znt anji)

(k) and(znt anj−1i′ anji)
(k). First,

z
(k)
nt is calculated as in Eq. (1.45) using the underlying component-conditional

HMM model. Secondly,(znt anji)
(k) is decomposed as in Eq. (3.26) where

a
(k)
njit =

αnjitβnjit

|yn|∑
ı̃=1

αnj ı̃tβnj ı̃t

(5.16)
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is a component-dependent version of Eq. (5.7). Lastly, the term(znt anj−1i′anji)
(k)

is similarly decomposed to Eq. (3.26)

(znt anj−1i′ anji)
(k) = p(znt = 1, anji = 1, anj−1i′ = 1 |xn, yn)

= p(znt = 1 |xn, yn) p(anji = 1, anj−1i′ = 1 | znt = 1, xn, yn)

= z
(k)
nt (anj−1i′ anji | t)

(k) (5.17)

where

(anj−1i′ anji | t)
(k) =

αnj−1i′t p(i | i
′, |yn|, t)

(k) p(xnj | yni, t)
(k) βnjit

|yn|∑
ı̃′=1

|yn|∑
ı̃=1

αnj−1̃ı′t p(̃ı | ı̃′, |yn|, t)(k) p(xnj | yñı, t)(k) βnj ı̃t

(5.18)
is a component-dependent version of Eq (5.8). In this case, theα andβ functions
are component-dependent versions of those in Eqs.(5.9) and(5.10).

The M step finds an update estimate ofΘ, Θ
(k+1), as a result of maximising

Eq. (5.15). The update equation for the mixture coefficientsis that of Eq. (1.48).
The new estimate for the component-dependent alignment parameters is a component-
conditional version of Eq. (5.11)

p(i | i′, |y|, t)(k+1) =
N(i, i′, |y|, t)

|y|∑
ı̃=1

N (̃ı, i′, |y|, t)

∀i, i′, |y|andt (5.19)

where

N(i, i′, |y|, t) =
N∑

n=1

δ(|yn| = |y|) z
(k)
nt

|xn|∑

j=1

(anj−1i′ anji | t)
(k) (5.20)

and the component-dependent dictionaries are updated as inEq. (3.28). The asymp-

totic cost of the training procedure per iteration isO(N · T · |x| · |y|
2
), where|x|

and|y| are the source and target average lengths, respectively.

5.3.3 Viterbi alignments

As we did in Eq. (3.48) for the M1 model and in Eq. (4.27) for theM2 model, it
is possible to compute the Viterbi alignment for a bilingualpair according to the
HMM model. To this purpose, we need to use an efficient dynamic-programming
algorithm that can be derived from a recursive functionα̃

â = arg max
a=a1...a|x|

α̃|x|a|x|
(5.21)
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where

α̃ji =

{
p(i | 0, |y|) p(xj | yi) j = 1
max

ı̃=1...|y|
α̃j−1̃ı p(i | ı̃, |y|) p(xj | yi) j > 1 (5.22)

whose complexity isO(|x| · |y|2). As we did in the M1 and M2 mixture models,
we approximate the Viterbi alignment by maximising over thecomponents of the
mixture. Therefore, we have that the complexity of the computation of the Viterbi
alignment in aT -component HMM mixture model isO(T · |x| · |y|2).

5.4 Experimental results

According to [V+96], we consider that HMM alignment probabilitiesp(i | i′, |y|)
depend only on the jump width. Also the treatment of the NULL word is the same
to that presented in [ON03], as well as the probability of aligning to the NULL
wordp0, that is optimised on held-out data. In addition to these simplifications, we
drop the dependency on the previous alignment and the targetsentence length

p(aj | aj−1, |y|) := p(aj). (5.23)

It should be noticed that the way in which the alignment parameters are defined
makes this model be deficienta. However, this assumption greatly simplifies the
alignment parameters, while still representing the vital HMM jump width infor-
mation. As we did in previous models, the alignment distribution was interpolated
with a uniform distribution for smoothing purposes.

The evaluation of the HMM mixture model was carried out with the same cor-
pora and experimental setting to that of Sections 3.5 and 4.6, except for the training
scheme that was used to compute the Viterbi alignments. The training scheme was
mix 15H5, that is, 5 iterations of the M1 mixture model followed by 5 iterations
of the HMM mixture model. As in the M2 mixture model, the statistical dictio-
naries are transferred from the M1 to the HMM model. The computation of the
Viterbi alignments employed in these experiments is described in Section 5.3.3.
For the joint Europarl and News Commentary training corpus,the average com-
puting timeb is approximately 2.5 hours per HMM iteration and component.

5.4.1 Evaluation of alignment quality

Table 5.1 presents AER figures on the test partition for the HMM mixture model.
As in Tables 3.3 and 4.3, each number in Table 5.1 is an averageover values ob-
tained from10 randomised initialisation.

As shown in Table 5.1, the HMM model exhibits a minor, not statistically sig-
nificant, reduction in AER when we train a 2-component HMM mixture model on

aIn the sense that this model reserves probability mass for target positions outside the target
sentence boundaries.

bOn a 2.0 GHz Intel Xeon machine
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Table 5.1: AER figures on the test partition of the Hansard corpus for the
M1, M2 and HMM mixture models varying the number of components in
the mixture (T = 1, 2, 3) and the conventional M1, M2 and HMM models
implemented in the GIZA++ toolkit.

GIZA++ 1 2 3

Fr-En 8.9 8.9 8.8 9.0
En-Fr 8.4 9.1 9.3 9.4

the French-English direction. Although AER increases as itdoes the number of
components on the English-French direction. In the case of the HMM model, the
parameterp0 that defines the probability of aligning to the NULL word, is vital in
the performance of the HMM model and is necessary to adjust this parameter on
held-out data. We believe that this high dependency of the AER on the value of the
parameterp0 interferes with the possible benefits of mixture modelisation.

5.4.2 Evaluation of translation quality

BLEU scores are reported in Tables 5.2 and 5.3 as a function ofthe number of
components in the HMM mixture model on the preprocessed development test sets
of the Europarl and News Commentary corpora, respectively.The weights of the
log-linear model in Moses are the same that those in Sections3.5 and 4.6. The
first conclusion, which we can draw from the figures in Tables 5.2 and 5.3, is that
there is not significant difference between the BLEU scores of the baseline system
and those of the HMM-based system. As observed in Table 5.2, if we compare
the BLEU scores of the conventional single-component HMM model to those of
the HMM mixture model, it seems that there is little or no gainfrom incorporating
more components into the mixture for the Europarl corpus. Nevertheless, Table 5.3
offers a minor, but systematic improvement in BLEU scores when we increase from
one to two the number of components per mixture.

5.5 Conclusions and future work

In the same line to previous chapters, we introduced a mixture version of the HMM
alignment model. This model was employed to generate context-specific Viterbi
alignments that were directly evaluated, and also input into a phrase-based system
to be indirectly assessed. Regarding the direct evaluationof the HMM mixture
model through AER figures, we obtained a minor, not statistically significant, re-
duction when we increase the number of components.

The BLEU scores reported by the HMM-based system are at the level of state-
of-the-art in this task, while the benefits of mixture modelling are minor but, as in
the M1 and M2 mixture model, systematic in some cases. All in all, we are fully
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Table 5.2: BLEU scores on the Europarl development test partition

EU baseline 1 2 3
En-Es 31.6 31.5 31.6 31.7
Es-En 32.1 31.8 31.9 31.9
En-Fr 31.1 31.1 31.2 30.9
Fr-En 32.2 32.2 32.2 32.1
En-De 19.1 19.9 19.8 20.0
De-En 26.8 27.0 26.9 26.8

Table 5.3: BLEU scores on the News-Commentary development test parti-
tion

NC baseline 1 2 3
En-Es 31.2 30.9 31.1 31.1
Es-En 32.5 32.2 32.4 32.4
En-Fr 24.7 25.0 25.3 24.4
Fr-En 25.2 24.7 24.7 24.6
En-De 14.1 14.1 14.2 14.1
De-En 20.8 20.7 20.8 21.0

aware that indirectly assessing the translation quality ofa model through a phrase-
based system is arguable because of the different factors involved that could mask
the results [AD06].

One of the challenges of training a mixture of translation models, is the linear
growth of the number of parameters to be learnt as we increasethe number of
components. This is a specially delicate issue in the case ofthe statistical dictionary
due to the potential quadratic number of parameters and its sparcity. In this thesis,
we have proposed smoothing techniques to alleviate this problem, although other
ideas grounded on the incorporation of monolingual and bilingual classes [Och99]
would also be interesting to consider.

Nonetheless, in the advent of larger open-domain corpora, the idea behind
context-specific translation models seem to be more than appropriate, necessary.
We believe that the idea behind mixture modelling is inherent to the nature of large
corpora in which multimodal distributions are frequent. Indeed, the convenience
of using a weighted combination of models, instead of a single model trained on
massive scale data has already been proved in [BPX+07].

The HMM mixture model and some of the results presented in this chapter
were published in an international workshop:

• J. Civera and A. Juan. Domain adaptation in statistical machine translation
with mixture modelling. InProceedings of the Second Workshop on Statis-
tical Machine Translation, pages 177–180, Association for Computational
Linguistics, Prague (Czech Republic), June 2007.
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CHAPTER 6

COMPUTER -ASSISTED

TRANSLATION BASED ON

STOCHASTIC FINITE -STATE

TRANSDUCERS

6.1 Introduction

Information technology advances in modern society have ledto the need of more
efficient methods of translation. It is important to emphasise that current MT sys-
tems are not able to produce ready-to-use text. Indeed, MT systems are usually
limited to specific semantic domains and the translations provided require human
post-editing in order to achieve a correct high-quality translation.

A way of taking advantage of MT systems is to combine them withthe knowl-
edge of a human translator constituting the so-called CAT paradigm. CAT offers
different approaches in order to benefit from the synergy between humans and MT
systems. In this thesis we focus on the interactive and predictive MT approach to
CATa. Under this approach the user can amend the translation offered by the MT
system, while the system takes into account these corrections to improve its trans-
lation. This protocol of interaction is more comfortable for the translator that can
work with a greater freedom to make changes at any time while the translation is
in progress.

The interactive and predictive MT approach to CAT has two important aspects:
the models need to provide adequate completions and they have to do so efficiently
under usability constrains. To fulfil these two requirements, stochastic finite-state
transducers (SFST) [V+05b] have been selected since they have proved to be able
to provide adequate translations [KAO98, A+00, BR95] and there exist efficient

aIn this thesis, we will refer to the interactive and predictive MT approach to CAT simply as CAT,
whenever it is clear in the context and does not lead to confusion. However, we are aware that there
are other approaches to CAT, such as those based on post-editing.
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parsing algorithms [V+05a] that can be easily adapted in order to provide comple-
tions.

The adaptation, integration and implementation of these parsing algorithms in
a CAT framework is the original contribution of this thesis,since they were already
introduced and studied in previous work [Wag74, JM99] in which the details of the
algorithms can be found. The inference algorithm and the preprocessing module
were implemented by external software, but they are presented here to provide a
complete view of the CAT system to the reader.

The structure of this chapter is as follows. Next section introduces the general
setting for finite-state models in statistical MT. In Section 6.3, the search proce-
dure for interactive and predictive translation is explained. Experimental results
are presented in Section 6.4. Finally, conclusions and future work are exposed in
Section 6.5.

6.2 Machine translation with finite-state transducers

In contrast to the usual language and translation models of the translation rule in
Eq. (1.8), SFSTs [Cas00, PC01, CV04] model the joint distribution p(x, y). Thus
this rule becomes,

ŷ = arg max
y

p(x, y). (6.1)

SFSTs constitute an important framework in syntactic PR andNLP. The sim-
plicity of finite-state models has given rise to some concerns about their applicabil-
ity to real tasks. Specifically in the field of language translation, it is often argued
thatnatural languagesare so complex that these simple models are never able to
cope with the required source-target mappings. However, one should take into ac-
count that the complexity of the mapping between the source and target domains
of a transducer is not always directly related to the complexity of the domains
themselves. Instead, a key factor is the degree ofmonotonicityor sequentiality
between source and target subsequences of these domains [CVP05]. Finite-state
transducers have been shown to be adequate to handle complexmappings effi-
ciently [Ber79]. Also, SFSTs have been successfully applied to many translation
tasks in the past [A+00, C+04a].

A SFSTT is defined as a tuple〈Σ,∆, Q, q0, qf , δ, p, f〉 whereΣ and∆ are
finite sets of source and target symbols respectively,Q is a finite set of states,q0 is
the initial state,qf ⊆ Q is the set of final states,δ ⊆ Q×Σ×∆⋆ ×Q is the set of
transitions,p and f are two functions

p :Q× Σ × ∆⋆ ×Q→ [0, 1] (6.2)

f :Q→ [0, 1] (6.3)
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being p, the transition probability function andf , the final-state probability func-
tion that satisfy,

f(q) +
∑

(x,y,q′)∈Σ×∆⋆×Q

p(q, x, y, q′) = 1 ∀q ∈ Q. (6.4)

Givenφ(x, y), a path with|x| transitions associated with the translation pair(x, y) ∈
Σ∗ × ∆∗ is a sequence of transitions

φ(x, y) = (q0, x1, y1, q1)(q1, x2, y2, q2) . . . (q|x|−1, x|x|, y|x|, q|x|), (6.5)

such thatx1x2 . . . x|x| = x andy1y2 . . . y|x| = y. The probability of a path is the
product of its transition probabilities, multiplied by thefinal-state probability of
the last state in the path

p(φ(x, y)) =

|x|∏

j=1

p(qj−1, xj , yj, qj) · f(q|x|). (6.6)

The probability of a translation pair(x, y) according toφ(x, y) is then defined as
the sum of the probabilities of all the paths associated with(x, y)

p(x, y) =
∑

φ(x,y)

p(φ(x, y)). (6.7)

Therefore Eq. (6.1) could be rewritten as

ŷ = arg max
y

∑

φ(x,y)

p(φ(x, y)). (6.8)

It should be noted that the maximisation problem stated in Eqs. (6.1) and (6.8)
is NP-hard [CdlH00]. Nevertheless, adequate approximations can be obtained by
means of efficient search algorithms, like Viterbi [Vit67] for the best path

p(x, y) ≈ max
φ(x,y)

p(φ(x, y)) (6.9)

and the recursive enumeration algorithm (REA) [JM99] for then-best paths.

6.2.1 Learning finite-state transducers

There are different families of techniques to train a SFST from a parallel corpus
of source-target sentences [CV07]. One of the techniques that has been adopted
in this thesis is thegrammatical inference and alignments for transducer inference
(GIATI) technique. This technique is in the category ofhybrid methodswhich use
statistical techniques to guide the SFST structure learning and simultaneously train
the associated probabilities.

Given a finite sample of string pairs, the inference of SFSTs using the GIATI
technique is performed as follows [CV04, CVP05]:
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1. Building training strings: each training pair is transformed into a single
string from an extended alphabet to obtain a new sample of strings. The
“extended alphabet” contains words or substrings from source and target
sentences coming from training pairs.

2. Inferring a (stochastic) regular grammar: typically, a smoothedn-gram is
inferred from the sample of strings obtained in the previousstep.

3. Transforming the inferred regular grammar into a transducer: the symbols
associated with the grammar rules are adequately transformed back into
source/target symbols.

The transformation of a parallel corpus into a corpus of single sentences is
performed with the help of statistical alignments: each word is joined with its
translation in the target sentence, creating an “extended word”. This joining is
done taking care not to invert the order of the target words. The third step is trivial
with this arrangement. In our experiments, the alignments are obtained using the
GIZA++ software [ON00], which implements the IBM statistical models [B+93].

An example of a SFST is shown in Figure 6.1. This SFST was generated from
a bilingual corpus composed of two pairs of sentences manually aligned:

the scanner the scanner menu

el escáner el menú del escáner

and trained as a smoothed interpolated bigram model on two sentences of extended
symbolsthe#el scaner#escáner andthe#el scaner# menu#menú del esćaner.

.

A

B

"the" / "el" (0.67)

C

f=0.5

"" / "" (0.33)

"" / "" (0.5)

D

f=0.5

"scanner" / "escaner" (0.25)

E

"scanner" / "" (0.25)

"the" / "el" (0.2)

"scanner" / "escáner" (0.1)

"scanner" / "" (0.1) F

f=0.5

"menu" / "menú del escáner" (0.1)

"" / "" (0.5)

"" / "" (0.5)

"menu" / "menú del escáner" (0.5)

"" / "" (0.5)

Figure 6.1: Example of the resulting SFST trained on two pairs of sen-
tences:the scanner # el escánerandthe scanner menu # el menú del esćaner

6.3 Interactive and predictive search

As commented in Section 6.1, the interactive and predictiveapproach to CAT pro-
poses a way of interaction based on the target sentence through which the CAT
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ITER-0 (yp) ( )

ITER-1

(ŷs) (Haga clic para cerrar el diálogo de impresión)
(a) (Haga clic)
(k) (en)
(yp) (Haga clic en)

ITER-2

(ŷs) (ACEPTAR para cerrar el diálogo de impresión)
(a) (ACEPTAR para cerrar el)
(k) (cuadro)
(yp) (Haga clic en ACEPTAR para cerrar el cuadro)

FINAL
(ŷs) (de diálogo de impresión)
(a) (de diálogo de impresión)
(k) (#)

(yp ≡ y) (Haga clic en ACEPTAR para cerrar el cuadro de diálogo de impresión)

Figure 6.2: Example of a CAT system interaction to translate into Spanish
the English sentence“Click OK to close the print dialogue”extracted from
a printer manual. Each step starts with a previously fixed target language
prefixyp, from which the system suggests a suffixŷs. Then the user accepts
part of this suffix (a) and types some key strokes (k), in order to amend the
remaining part ofys. This produces a new prefix, composed by the prefix
from the previous iteration and the accepted and typed text,(a) (k), to be
used asyp in the next step. The process ends when the user enters the special
key stroke ”#”. In the final translation,y, all the text that has been typed by
the user is underlined.

system and the user exchange portions of it in order to achieve the final correct
translation.

An example of this interaction is shown in Figure 6.2. In eachiteration, a prefix
(yp) of the target sentence has somehow been fixed by the human translator in the
previous iteration and the CAT system computes its best (orn-best) translation
suffix hypothesis (̂ys) to complete this prefix.

Givenypŷs, the CAT cycle proceeds by letting the user establish a new, longer
acceptable prefix. To this end, he or she has to accept a part (a) of ypŷs (or, more
typically, just a prefix of̂ys). After this point, the user may type some key strokes
(k) in order to amend some remaining incorrect parts. Therefore, the new prefix
typically encompassesyp followed by the accepted part of the system suggestion,
a, plus the text,k, entered by the user. Now this prefix,ypak, becomes a newyp,
thereby starting a new CAT prediction cycle.

Ergonomics and user preferences dictate exactly when the system can start its
new cycle, but typically, it is started after each user-entered word or even after each
new user key stroke.

Perhaps the simplest formalisation of the process of hypothesis suggestion of
a CAT system is as follows. Given a source textx and a user validatedprefix of
the target sentenceyp, search for asuffixof the target sentence that maximises the
posteriorprobability over all possible suffixes:

ŷs = arg max
ys

p(ys | x, yp) . (6.10)
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Taking into account thatp(yp, x) does not depend onys, we can write

ŷs = arg max
ys

p(ypys, x) , (6.11)

whereypys is the concatenation of the given prefixyp and a suffixys. Eq. (6.11) is
similar to Eq. (6.1), but here the maximisation is carried out over a set of suffixes,
rather than full sentences as in Eq. (6.1). Therefore, the model remains the same,
that is, we can still use SFSTs, while the search procedure needs to be adequately
adapted.

This adapted search procedure has been structured in two phases. The first
one copes with the extraction of a word graphW from a SFSTT given a source
sentencex. In a second phase, the search of the best translation suffix (or suffixes)
according to the Viterbi approach is performed over the wordgraphW given a
prefixyp of the target sentence.

6.3.1 Word graph derivation

A word graph is a compact representation of all the possible translations that a
SFSTT can produce from a given source sentencex [C+04c, C+04b]. In fact, the
word graph could be seen as a kind of weighted finite-state automaton in which
the probabilities are not normalised. Intuitively, the word graph generated retains
those transitions in the SFST that were compatible with the source sentence along
with their transition probability and output symbol(s).

Formally, given a SFSTT = 〈Σ,∆, Q, q0, qf , δ, p, f〉 and a source sentence
x = x1, · · · , xj, · · · x|x|, the constructed word graph is defined as a tupleW =
〈∆, Q′, q′0, q

′
f , δ

′, p, f〉:

Q′ = Q× j : 0 ≤ j ≤ |x|

δ′ =
{
((q, j − 1), y, (q′, j)) | (q, xj , y, q

′) ∈ δ
}

q′0 = (q0, 0)

q′f =
{
(q′, |x|) | ((q, x|x|, y, q

′) ∈ δ) ∧ (q′ ∈ qf )
}

There are several minor issues to deal with in this construction. First, the output
symbol for a given transition could contain more than one word. In this case, aux-
iliary states were created to assign only one word for each transition and simplify
the posterior search procedure. Secondly, it is possible tohave words in the source
sentence that do not belong to the source vocabulary in the SFST. This problem
is solved with the introduction of a special generic “unknown word” in the source
vocabulary of the SFST. Lastly, if the SFST was generated using a smoothed inter-
polated language model, then before parsing every word of the source sentence we
have to compute all those states reachable withλ-transitionsb from the set of active
states. Also in this case, the set of final states in the word graph is augmented with
states that are reachable withλ-transitions from final states.

bA λ-transition is a transition of the form(q, λ, y, q′).
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An example of a word graph is shown in Figure 6.3. This word graph was ex-
tracted from the SFST in Figure 6.1 when parsing the source sentencethe scanner.
The initial step computes those states that are reachable with λ-transitions from
the initial stateA, that isC. Therefore the set of initial active statesS becomes
{A,C} in the SFST andW = {A0, C0} in the word graph. Then, for the first
source wordthe and for each state inS, we retain those edges and its associated
destiny state whose input symbol isthe, transferring this information into the word
graph. For instance, the edge with inputtheand outputel going from the stateA to
the stateB in the SFST is mapped into the word graph as the edge with symbol el
going from the stateA0 to the stateB1. As a result of parsingthe, we define a new
set of active statesS = {B} in the SFST andW = {B1} in the word graph, for
which we compute those states reachable withλ-transitions, that is,S = {B,C}
andW = {B1, C1}. Now we parse the source wordscanner, transferring those
compatible edges and associated states in the SFST to the word graph. For ex-
ample, the edge going from the stateB to the stateE with input symbolscanner
and output symbolλ in the SFST, becomes an edge from the stateB1 to the state
E2 with symbolλ. After parsing the last wordscanner, the set of active states
is S = {D,E} andW = {D2, E2}, being these latter states, final states. As
we said before, we consider an extra step computing those states reachable withλ-
transitions, so we have thatS = {D,E,C} andW = {D2, E2, C2} incorporating
the stateC2 in the set of final states.

Once the word graph is constructed, it can be used to find the best completions
for the part of the translation typed by the human translator. Note that the word
graph depends only on the source sentence, so it is repeatedly used to find the
completions of all the different prefixes provided by the user.

.

A0 B1

"the" / "el" (0.67)

C0

"" / "" (0.33) C1
"" / "" (0.5)

D2

f=0.5

"scanner" / "escaner" (0.25)

E2
"scanner" / "" (0.25)

"the" / "el" (0.2)

"scanner" / "escáner" (0.1)

"scanner" / "" (0.1) C2

f=0.5

"" / "" (0.5)

"" / "" (0.5)

Figure 6.3: Word graph extracted from the SFST in Figure 6.1 when parsing
the source sentencethe scanner.

6.3.2 Search forn-best translations given a prefix of the target sen-
tence

Ideally, the search problem consists in finding the target suffix ys that maximises
the posterior probability given a prefixyp of the target sentence and the source
sentencex, as described in Eq. (6.11).

To simplify this search, it will be divided into two steps or phases. The first one
would deal with the parsing ofyp over the word graphW. This parsing procedure
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would end defining a set of statesQ′
p that define paths from the initial state whose

associated translations includeyp. To clarify this point, it is important to note that
each stateq in the word graph defines a set of paths reaching this state

ϕq = {(q0, yq1
, q1)(q1, yq2

, q2), . . . , (pred(q), yq, q)} (6.12)

and so, a set of translation prefixes

ρ(ϕq) = {y′p = yq1
yq2

. . . yq} (6.13)

is defined as the concatenation of the output symbols of the different paths that
reach this stateq from the initial state. Therefore,

Q′
p = {q : yp ∈ ρ(ϕq)}. (6.14)

The second phase would be the search of the most probable translation suffix from
any of the states inQ′

p. Formally,

ψq = {(q, yq, succ(q)), . . . , (pred(q
′), yq′ , q

′) : q ∈ Q′
p ∧ q

′ ∈ q′f} (6.15)

whereys = yq . . . yq′ so
ŷs = arg max

ys

p(ψq). (6.16)

Finally, the complete search procedure extracts a translation from the word graph
whose prefix isyp and its remaining suffix is the resulting translation suffixys.

Error-correcting parsing

In practise, however, it may happen thatyp is not exactly present in the word
graphW. The solution is not to useyp but a prefixy′p that is themost similar
to yp in some string distance metric. The metric that will be employed is the well-
known edit distance based on three basic operations: insertion, substitution and
deletion. Therefore, the first phase introduced in the previous paragraph needs to
be redefined in terms of the search for those states inW whose setρ(ϕq) contains
y′p, that is, the set of statesQ′

p. It should be noticed thaty′p is not unique, but there
exist a set of prefixes inW whose edit distance toyp is the same and minimum.

Given a translation prefixyp, the computation ofQ′
p is efficiently carried out

by applying an adapted version of the error-correcting algorithm for regular gram-
mars [Wag74] over the word graphW. This algorithm returns the edit distance
(ed) with respect toyp for each stateq in W

ξ(yp, q) = min
y′

p∈ρ(ϕq)
ed(yp, y

′
p). (6.17)

However we are interested in those states minimising the edit distance with respect
to yp

Q′
p = arg min

q∈Q′
ξ(yp, q). (6.18)
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The asymptotic cost of this algorithm isO(|yp| · |Q
′| · B), whereB is the (average)

branching factor of the word graphW.
The implementation of the error-correcting parsing is further improved by vis-

iting the states inW in topological order, and incorporating beam-search tech-
niques [Low76] to discard those states whose minimum edit cost is worse than
the best minimum edit cost at the current stage of the parsingby a given constant.
Moreover, given the incremental nature ofyp, the error-correcting algorithm takes
advantage of this peculiarity to parse only the new suffix ofyp provided by the user
in the last interaction, that is, the concatenation ofa andk.

As mentioned before, once the setQ′
p has been computed, the search of the

most probable translation suffix could be calculated from any of the states inQ′
p.

In practise, a subset of statesqp from Q′
p is selected to find the suffixys. These

statesqp maximise the most theposterior probability of the word-graph prefix
y′p computer during the error-correcting parsing process. This maximisation is
performed according to the Viterbi approximation.

Furthermore, it may be the case that a user prefix ends in an incomplete word
during the interactive translation process. Therefore, itis necessary to start the
translation completion with a word whose prefix matches thisunfinished word.
Thus, the proposed algorithm searches for such a word: first,consider the target
words of the edges leaving the nodes returned by the error-correcting algorithm.
If this initial search fails, then a matching word is looked up in the word graph
vocabulary. Finally, as a last resort, the whole transducervocabulary is taken into
consideration to find a matching word, otherwise this incomplete word is treated
as an entire word.

N -best search

The implementation of this CAT system is able to provide a setof different trans-
lation suffixes, instead of a single suggestion. To this purpose, an algorithm that
searches for then-best translation suffixes in a word graph is required. Among
then-best algorithms available, the REA described in [JM99] wasselected. The
main two reasons that support this decision are its simplicity to calculate best paths
on demand and its smooth integration with the error-correcting parsing algorithm.
Basically, the interaction between these two algorithms, error-correcting andn-
best, is carried out by means of the state with the minimum edit distance returned
by the error-correcting parsing, from which then-best translation suffixes can be
calculated.

The version of REA included in the CAT system, which is being described,
stores for each stateq in W, the heap of current best paths (in the form of next
state in the best path) fromq to any final state. The size of this heap depends on
the number of transitions leavingq. During the initialisation of REA, the initial
sorted list of best paths for each state is calculated starting from the final states
and visiting the rest of states in backward topological order. This last condition
imposes a total order inQ′ that favours the efficient calculation of the heap of best
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paths. This is so because each state is visited only once, andonce the best paths of
the preceding states have already been computed.

Then, among the set of states inQ′
p from which then-best translation suffixes

need to be calculated, REA first extracts the 1-best path fromthe set of statesQ′
p,

since it was precomputed during REA initialisation. Ifn > 1, then the next best
path will be obtained. The next best path can be found among the candidate paths
still left in the heap of states inQ′

p, and the second best path computed from the
state from which we extracted the best path.

The computation of the second best path, whenever exists, requires the recur-
sive calculation of this path through the states visited in the 1-best path. This same
rationale is applied to the calculation of subsequent best paths untiln-best different
translation suffixes have been obtained or no more best pathscan be found.

6.4 Experimental framework and results

The CAT system introduced in previous sections was assessedthrough some series
of experiments with two different corpora that were acquired and preprocessed in
the framework of the TransType2 (TT2) project [Ato01]. In this section, these
corpora, the assessment metrics and the results are presented.

6.4.1 XRCE and EU corpora

Two bilingual corpora from different semantic domains wereused in the evaluation
of the CAT system described. The language pairs involved in the assessment were
English/Spanish, English/French and English/German.

The first corpus, namelyXRCEcorpus, was obtained from a miscellaneous set
of printer user manuals. Some statistics of the raw version of the corpus are shown
in Table 6.1. It should be noted that the English manuals are different in each pair
of languages.

The size of the vocabulary in the training set ranges from 25,000 to 37,000
words. In the test set, even though all test sets have similarsize, perplexity varies
abruptly over the different language pairs.

The second dataset was compiled from the Bulletin of the European Union,
which exists in the 11 official languages of the European Union and is publicly
available on the Internet. This dataset is known as theEU corpus. A summary of
its features is presented in Table 6.1.

The size of the vocabulary of EU corpus is at least three timeslarger than that
of the XRCE corpus. These figures together with the amount of running words and
sentences reflect the challenging nature of this task. However, the perplexity of the
EU test set is lower than that of the XRCE. There are two reasons that combines to
explain this phenomenon. First, the different nature of theXRCE and EU corpora,
user manuals that required heavy preprocessing versus informative bulletins rather
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grammatically uniform requiring little preprocessing. Second, the size of the EU
corpus is larger than that of the XRCE corpus.

Table 6.1: The XRCE and EU corpora English(En) to/from Spanish(Es),
German(De) and French(Fr). Trigrams models were used to compute the
test perplexity (K denotes×1.000, andM denotes×1.000.000).

XRCE EU
En/Es En/Fr En/De En/Es En/Fr En/De

T
ra

in

sent.pairs (K) 56 49 53 214 223 215
avg.length (words) 10/12 10/11 10/9 24/27 25/28 26/24
vocabulary (Kwords) 26/30 25/27 25/37 84/97 84/91 86/153
singletons (Kwords) 10/12 9/11 10/18 38/43 38/40 39/75
run.words (Mwords) 0.5/0.7 0.5/0.6 0.5/0.4 5/6 5/6 6/5

Te
st

sentences (K) 1.1 1.0 1.0 0.8 0.8 0.8
avg.length (words) 7/8 10/10 11/10 25/28 25/28 25/24
run.words (Kwords) 8/9 10/10 11/10 20/23 20/22 20/19
run.chars (Kchars) 46/58 55/63 61/71 117/133 117/132 117/132
perplexity 103/61 180/131 90/155 58/46 58/45 57/87

Corpora preprocessing

A preprocessing module was implemented in order to reduce the corpora complex-
ity and ease the learning process of the models.

The preprocessing has three main parts: tokenisation, lower case conversion
and categorisation. Tokenisation basically consisted in the separation of the punc-
tuation marks from the words. After that, all the characterswere lowercased. Fi-
nally, the categorisation of some types of words was carriedout. The idea was
to replace those words that remain invariable in all the languages with a category
label.

Doing so, the vocabulary size was cut down considerably (up to a 70%), im-
plying an increment in the number of running words (less than20%). As a result,
perplexity decreased significantly, which finally allowed abetter transducer infer-
ence.

This preprocessing was also applied to the translation process, since the mod-
els were learnt on the preprocessed version of the corpora. Consequently, prefixes
written by the user had also to be preprocessed. In addition,a postprocess mod-
ule was needed to make the translations given by the system legible by the user,
undoing all the changes introduced by the preprocessing (i.e. uncategorisating,
suitably uppercasing and joining punctuation marks to words). Three examples of
raw sentences along with their corresponding preprocessedversions extracted from
the English partition of the XRCE corpus are shown in Figure 6.4.
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1. Chapter 4 Scanning A Document 4-1
chapter<NUM> scanning a document<OTHERS>

2. PRINTS PER CARTON - 2 PACK 6R849
prints per carton <OTHERS><NUM> pack <OTHERS>

3. 65PPM/230V Sold 109R340
<BULLET> ppm<MIDDLE SLASH> <OTHERS> sold<OTHERS>

Figure 6.4: Three examples of preprocessed sentences extracted from the
English partition of the XRCE corpus. The first line of each pair of sen-
tences shows the raw (original) version of the sentence and the second line,
the preprocessed version. As observed some of the tokens that remain in-
variable were replaced by categorised labels, requiring sometimes a previous
tokenisation process. Besides, all characters were converted into lowercase.

6.4.2 Translation quality evaluation

The CAT system was assessed according to two different criteria and therefore,
two different sets of evaluation measures are employed.

On the one hand, we proceeded to gauge the translation quality provided by
SFST models that lie at the core of the CAT system. These are the so-calledoff-
line metrics. This evaluation was performed using WER and BLEU, as in the case
of pure statistical translation systems. Here we also computed thecharacter error
rate (CER) measure, defined as the edit distance in terms of characters between
the target sentence provided by the system and the referencetranslation. CER can
be thought of the estimated effort of a fictitious user working with adummypost-
editing translation tool that suggests a single translation. This translation would
have to be corrected by this fictitious user applying the minimum number of editing
operations at the character level to achieve the reference translation.

On the other hand, other assessment figures, namelyon-linemetrics, are aimed
at estimating the effort needed by a human translator to produce correct transla-
tions using the interactive system. To this end, the target translations which a real
user would have in mind are simulated by the given references. The first transla-
tion hypothesis for each given source sentence is compared with a single reference
translation and the longest common character prefix (LCP) isobtained. The first
non-matching character is replaced by the corresponding reference character and
then, a new system hypothesis is produced. This process is iterated until a full
match with the reference is obtained.

Each computation of the LCP would correspond to the user looking for the
next error andmoving the pointerto the corresponding position of the translation
hypothesis. Each character replacement would correspond to a key strokeof the
user. If the first non-matching character is the first character of the new system
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hypothesis in a given iteration, no LCP computation is needed; that is, no pointer
movement would be made by the user. Bearing this in mind, we define the follow-
ing interactive-predictive performance measures:

• Key-Stroke Ratio(KSR). Number ofkey strokesthat should be needed to
obtain the reference translation divided by the number of running characters.

• Mouse-Action Ratio(MAR). Number of mouse movementsplus an extra
mouse actionaccounting for the acceptance of the final correct translation.
A mouse movement is assumed to happen between key strokes which are in
non-consecutive positions. It models the effort to position the cursor each
time the user would need to amend a part of the system translation.

• Key-Stroke and Mouse-Action Ratio(KMSR). KSR plus MAR.

KSR reflects the ratio between the number of key-stroke interactions of a ficti-
tious user when translating a given text using a CAT system compared to the num-
ber of key-stroke interactions, which this user would need,to translate the same
text without any aiding translation tool. In contrast, the difference between CER
and KSR gives us an idea of how much typing effort is saved withthe use of an
interactive and predictive MT system with respect to a dummypost-editing tool.

The second measure under consideration is KMSR (the calculation of MAR is
straightforward given KSR and KMSR) offers a better approximation to the total
amount of work that a translator would be saving when translating using a CAT
system. In any case, we should keep in mind that the main goal of automatic
assessment is to estimate the effort of the human translator. The important question
is whether the estimated productivity of the human translator can be increased or
not by the CAT approach.

6.4.3 Experimental results

These experimental results were obtained with GIATI transducers based on smoothed
trigram language models for theXRCEcorpus and smoothed5-gram language
models for theEU corpus (see Tables 6.2 and 6.3). The translation evaluation
measures presented in the previous section were calculatedon an independent test
set when translating from English into a non-English language and vice versa.

Analysing the results achieved in theXRCEcorpus (see Table 6.2), it is ob-
served that the results for English-Spanish are substantially better than those ob-
tained in the rest of language pairs. A possible reason that explains these error
rate discrepancies between English-Spanish with respect to English-German and
English-French could be found in the test perplexity differences shown in Table 6.1.
The Spanish test perplexity is significantly lower than thatof the rest of languages
and this fact is transformed into better translation results.

This rationale is compatible with the results obtained for the EU corpus. In
these results, the English-Spanish experiment exhibits similar error rates to those

JCS-DSIC-UPV 123



Chapter 6. Computer-assisted translation based on stochastic finite-state transducers

of the English-French pairs, but somewhat better than thoseof the English/German
pairs. This same tendency is followed by the perplexity values appearing in Ta-
ble 6.1. As observed, the German language seems to be more complex than the
other languages and this is reflected in Table 6.3.

Table 6.2: Off-line (BLEU, WER[%] and CER[%]) and on-line (KSR,
KSMR) measures on theXRCEcorpora.

off-line on-line
XRCE BLEU WER CER KSR KSMR

En-Es 52.0 37.9 27.9 13.0 21.8
Es-En 38.9 45.3 32.2 15.9 26.9
En-Fr 24.6 70.7 57.5 30.2 43.8
Fr-En 19.2 68.9 56.1 29.5 45.5
En-De 20.2 74.5 62.9 30.6 45.7
De-En 20.5 71.4 60.6 30.6 46.6

The KSR and KSMR figures of Tables 6.2 and 6.3 clearly manifesta productiv-
ity gain if we use the CAT system presented. For example, translating from English
into Spanish on theXRCEcorpus, the user would only need to perform 13.0% of
the key-stroke interactions that would be required withoutthis CAT system. On
the other hand, the KSR results for the English-French and English-German ex-
periments are 30.2% and 30.6%, respectively. Even in these cases, the number of
key-stroke interactions is one third of that that would entail translating the same test
set without a CAT system. The results obtained in the other direction are similar.

If we consider the mouse interaction in the CAT evaluation, we can observe a
50% increment in the interaction rates, key strokes plus mouse actions, for most of
the language pairs in both corpora. These figures reflect the fact that the productivy
gain that CAT systems would theoretically provide is somewhat dependent on the
interaction scheme that is assumed.

In the EU corpus, the best KSR results were obtained for the English-French
experiment, followed by the English-Spanish results and, finally, the worst results
were achieved for English-German. Despite the important difference in size be-
tweenXRCEandEU, the results are similar and for some language pairs even lower
in the EU corpus. As previously mentioned, the perplexity figures of both cor-
pora partially explain these results. For instance, the English-French and English-
German experiments present lower perplexity figures and better results in theEU
corpus than in theXRCEcorpus.

As observed in the result tables, CER figures usually double the KSR figures
bringing to light the benefits of an interactive and predictive CAT system compared
to a dummy post-editing tool. However, it could be argued that this comparison is
not completely fair since the CER measure simulates a very simple post-editing
system. We are aware that a real post-editing tool would incorporate additional
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Table 6.3: Off-line (BLEU, WER[%] and CER[%]) and on-line (KSR,
KSMR) measures on theEU corpora.

off-line on-line
EU BLEU WER CER KSR KSMR

En-Es 39.6 54.6 45.3 21.3 33.0
Es-En 39.8 52.0 43.1 20.0 31.1
En-Fr 41.6 52.8 41.5 19.5 30.1
Fr-En 43.3 47.8 39.2 17.8 28.0
En-De 29.4 64.4 54.6 23.4 35.9
De-En 28.7 66.4 57.7 25.8 39.1

functionalities to reduce the typing effort of the user, forinstance the prediction
of alternatives to the word that is being corrected. Being soas it is, this com-
parative statement should be carefully considered taking into account the working
conditions that were assumed.

Table 6.4: Comparative table 1-best to 5-best for KSR and KSMR [%] on
theXRCEcorpora.

1-best 5-best
XRCE KSR KSMR KSR KSMR

En-Es 13.0 21.8 11.2 19.2
Es-En 15.9 26.9 13.6 23.5
En-Fr 30.2 43.8 27.3 40.1
Fr-En 29.5 45.5 26.9 42.0
En-De 30.6 45.7 27.4 41.8
De-En 30.6 46.6 27.4 42.6

Table 6.4 shows a comparative table between two CAT systems,one of them
providing the best translation and the other, 5-best translations. In the latter sys-
tem, the calculation of KSR and KSMR was conducted considering that translation
out of the five suggested translations that minimises the most the number of key
strokes needed to achieve the reference translation. As expected, there is a notable
improvement when comparing1-best to5-best translation accuracy. This gain in
translation quality diminishes in a log-wise fashion as we increase the number of
best translations.

From a practical point of view, the improvements provided byusingn-best
translations would come at the cost of the user having to ponder which of these
translations is more suitable. In real operation, this additional user effort may or
may not outweight the benefits of then-best increased accuracy. Consequently,
this feature should be offered to the users as an option.
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In the TT2 project, this CAT system based on SFST was exhaustively evalu-
ated by human translators through real test translation rounds [MNS05, Mac06].
The results showed that the actual productivity of human translators depended on
the given test texts. In cases where these texts were quite uncorrelated with the
training data, the system did not significantly help the human translators to boost
their productivity. However, when the test texts were reasonably well correlated
with the training data, a high productivity gain was registered, close to what could
be expected according to the KSR/MAR empirical results.

6.5 Conclusions and future work

In this chapter, SFSTs have been revisited and applied to CAT. SFSTs are learnt
from parallel corpora and in our case, they were inferred by the GIATI technique,
which was briefly reviewed.

Furthermore, the concept of interactive search was introduced along with well-
known algorithms, i.e. error-correcting andn-best parsing, that allow us the cal-
culation of the suffix translation that better completes theprefix previously refined
by the user. It is fundamental to remember that usability andlow response time
are vital features for CAT systems. CAT systems need to provide translation suf-
fixes after each user interaction and this imposes the requirement of very efficient
algorithms to solve the search problem.

The automatic evaluation carried on two different corpora supports the idea that
the incorporation of statistical MT techniques into a CAT system would reduce the
human translator effort, without sacrificing the high quality of the translations. This
thesis was corroborated by an external evaluation conducted by human translators
in real working conditions.

Given the relatively high positioning effort (MAR) observed in the experi-
ments, it seems worth investigating interaction modalities which are alternative
or complementary to the traditional keyboard and mouse. In this respect, the use
of speech interaction has been considered in [VCR+06], with encouraging results.
Finally, the integration of confidence measures [UN05] to guide users’ attention
into the interactive and predictive CAT scenario are topicsstill to be explored in
future research.

Preliminary versions of the CAT system presented in this chapter has been
published in numerous international and national conferences:

• J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casacu-
berta, E. Vidal, D. Picó and J. González. A syntactic pattern recognition ap-
proach to computer assisted translation. In A. Fred, T. Caelli, A. Campilho,
R. P.W. Duin, and D. de Ridder, editors,Advances in Statistical, Structural
and Syntactical Pattern Recognition, Lecture Notes in Computer Science,
pages 207–215, Springer-Verlag, Lisbon (Portugal), August 2004.

• J. Civera, E. Cubel, A. L. Lagarda, D. Picó, J. González, F. Casacuberta,
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E. Vidal, J. M. Vilar and S. Barrachina. From machine translation to com-
puter assisted translation using finite-state models. InProceedings of the
Conference on Empirical Methods in Natural Language Processing, EMNLP
2004, pages 349–356, Association for Computational Linguistics, Barcelona
(Spain), July 2004.

• E. Cubel,J. Civera, J. M. Vilar, A. L. Lagarda, F. Casacuberta, E. Vidal, D.
Picó, J. González and L. Rodrı́guez. From machine translation to computer
assisted translation using finite-state models. InProceedings of the 16th
European Conference on Artificial Intelligence, ECAI 2004, pages 586–590,
IOS Press, Valencia (Spain), August 2004.

• J. Civera, E. Cubel, A. L. Lagarda, F. Casacuberta, E. Vidal, J. M. Vilar and
S. Barrachina. Computer-assisted translation using finite-state transducers.
In Actas del XXI Congreso de la Sociedad Espaola para el Procesamiento
del Lenguaje Natural, SEPLN 2005, pages 357–363, Granada (Spain), Septem-
ber 2005.

• J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casacu-
berta and E. Vidal. A novel approach to computer assisted translation based
on finite-state transducers. In A. Yli-Jyra, L. Karttunen, and J. Karhumaki,
editors, Finite-State Methods and Natural Language Processing, Lecture
Notes in Artificial Intelligence (LNAI-LNCS). Springer-Verlag, Helsinki (Fin-
land), September 2005.

• J. Civera, J. M. Vilar, A. L. Lagarda, E. Cubel, S. Barrachina, F. Casacu-
berta and E. Vidal. A Computer-Assisted Translation Tool based on Finite-
State Technology. InProceedings of the 11th annual conference of the
European Association for Machine Translation, EAMT 2006, pages 33–40,
Oslo (Norway), June 2006.

However, the content of this chapter reflects the final version of the interac-
tive and predictive CAT system based on SFST technology developed in the TT2
project. This system along with two other CAT systems based on state-of-the-art
phrase-based and alignment templates technology and comparative results are to
be published in an international journal:

• S. Barrachina, O. Bender, F. Casacuberta,J. Civera, E. Cubel, S. Khadivi,
A. L. Lagarda, H. Ney, J. Tomás, E. Vidal and J. M. Vilar. Statistical
approaches to computer-assisted translation.Computational Linguistics, In
press.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

The work developed in this thesis covers three different topics in natural language
processing: text classification, statistical machine translation and computer assisted
translation.

In TC, we proposed a novel application called bilingual TC. It basically con-
sists in the classification of bilingual documents that are translation of each other.
This peculiar feature allowed us to present two classes of models (classifiers): on
the one hand those models that naively assume the independence of documents
conveying the same meaning, but written in different languages, and on the other
hand, those models that exploit this characteristic by learning the word correlation
across languages in order to improve the accuracy of their respective classifier.

For the first class of models, those assuming no direct dependency across lan-
guages, we introduced five unigram models presented in Chapter 2. For the second
class of models, those learning the word mapping across languages, we proposed
the unigram-M1 model in Chapter 3. For all these models we applied mixture
modelling as a powerful way to deal with multimodal data.

These two classes of models were evaluated on theTraveller task and theBAF
corpus, reaching the following conclusions. First, mixture-based classifiers are
superior to single-component classifiers. Secondly, bilingual classifiers ourper-
form their monolingual counterparts on theBAF corpus, but this is not the case
on theTraveller task due its simplicity. Lastly, this same conclusion can bedrawn
between the unigram-M1 model and the naive unigram-based models when their
corresponding classification error rate figures are compared. These results were
complemented with comparative experiments with other state-of-the-art learners
from the field of ML, these were support vector machines and boosting techniques.
These techniques offered similar performance to those presented in this thesis on
the Traveller task, but significantly worse on theBAF corpus. Furthermore, Ap-
pendix A contains additional experiments to assess the performance of monolin-
gual and bilingual text classifiers, when its feature representation goes beyond the
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unigram.
In Chapter 2, we also presented a real application of bilingual text classifiers

in the framework of machine-aided indexing. This interesting application dealt
with the automatic assignment of keywords to documents in order to describe their
content. This process is performed under the supervision ofa human expert that
refines the output of the classification system. The satisfactory experimental results
obtained on the JRC-Acquis corpus, suggested the possibility of the integration of
our bilingual classifiers as the backend of a MAI system.

In statistical MT, we introduced three novel context-specific translation mod-
els as a mixture extension of the well-known M1, M2 and HMM models in Chap-
ters 3, 4 and 5, respectively. The Viterbi alignments of these three mixture mod-
els were used to value the benefits of context-specific translation models, in the
framework of two shared tasks devoted to the assessment of alignment and trans-
lation quality. The experimental results aimed at studyingthe alignment quality
on the Hansard task reflected statistically significant reductions in alignment error
rate for the M2 mixture model, showing little or no gain in theother two models.
The experiments to evaluate the translation quality of the mixture models mani-
fested minor, but systematic improvements in BLEU score forthose phrase-based
systems trained on a mixture model with more than one component per mixture.
Moreover, the BLEU figures reported for the HMM mixture modelare at the level
of state-of-the-art systems on the Europarl and News-Commentary datasets.

In the case of the M2 mixture model, an iterative dynamic-programming search
algorithm, designed for the conventional M2 model, was revisited in order to run
additional experiments on a simple semi-artificial task. The purpose of these ex-
periments was to analyse the evolution of the translation quality of the model un-
der controlled experimental conditions, minimising so nuisance factors that could
mask or interfere in the final results. Interestingly, the results achieved in these
conditions show a statistically significant improvement intranslation quality as we
increase the number of components in the mixture.

In Chapter 6, we presented an interactive and predictive CATsystem based on
stochastic finite-state transducer technology. To this purpose, it was necessary to
adapt, implement and integrate efficient error-correctingparsing andn-best trans-
lation algorithms in order to guarantee low response time while preserving ade-
quate translations. This CAT system was automatically evaluated on two tasks,
XRCE and EU corpora, revealing a significant reduction in typing effort for both
tasks. An external human evaluation by translation agencies on the XRCE task, re-
ported productivity boosts when the test texts were reasonably well correlated with
the training data employed to infer the underlying stochastic finite-state transducer
model.

Summarising the main contributions of this thesis are the following:

1. Bilingual TC is proposed as a novel task in text classification. We introduce
four bilingual mixture models: the bilingual unigram model, the local and
global decomposition models and the unigram-M1 model. We obtain good
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results, being comparable or superior to those of state-of-the-art techniques
on two tasks of different complexity.

2. Bilingual MAI is presented as a novel application in machine-aided index-
ing. The results reported on the JRC-Acquis corpus convey the possibility of
a MAI system based on the models previously introduced.

3. Translation models for heterogeneous data are presentedas a mixture exten-
sion of well-known word alignment translation models. Moreprecisely, the
M1, M2 and HMM mixture models are thoroughly evaluated from the view-
point of their translation quality with minor, but systematic improvements in
BLEU score; and complementary experiments to assess the alignment qual-
ity of these mixture models reflected a statistically significant reduction of
AER for the M2 mixture model. The BLEU scores reported for theHMM
mixture model are at the level of state-of-the-art translation systems.

4. Error-correcting andn-best parsing algorithms for stochastic finite-state trans-
ducers were adapted to work under the tight usability and lowresponse time
constraints of a CAT environment. This system was automatically and man-
ually evaluated with satisfactory results.

7.2 Scientific publications

The content of this thesis has been published in international workshops, confer-
ences and journals. In this section, we review those publications pointing out their
relation with this thesis.

The work developed on bilingual TC was published in international confer-
ences and workshops. More precisely, the following set of publications are related
to that work in which bilingual smoothed n-gram language models were used (see
appendix A):

• J. Civera, E. Cubel, A. Juan, and E. Vidal. Different approaches to bilingual
text classification based on grammatical inference techniques. In2nd Iberian
Conference on Pattern Recognition and Image Analysis, volume 3523 of
Lecture Notes in Computer Science, pages 630–637. Springer-Verlag, Estoril
(Portugal), June 2005.

• E. Cubel,J. Civera, and E. Vidal. On the use of grammatical inference
techniques for bilingual text classification. InWorkshop on Grammatical
Inference Applications: Successes and Future Challenges, pages 46–50, Ed-
inburgh (Scotland), August 2005.

• J. Civera, E. Cubel, and E. Vidal. Bilingual Text Classification. In3rd
Iberian Conference on Pattern Recognition and Image Analysis, volume
4477 ofLNCS, pages 265–273. Springer, Girona (Spain), June 2007.
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The content of Chapter 2 was published in an international workshop and an inter-
national conference:

• J. Civera and A. Juan. Multinomial Mixture Modelling for Bilingual Text
Classification. InProceedings of the 6th International Workshop on Pattern
Recognition in Information Systems, PRIS 2006, pages 93–103, INSTICC
Press, Paphos (Cyprus), May 2006.

• J. Civera and A. Juan. Bilingual Machine-Aided Indexing. InProceedings
of the fifth international conference on Language Resourcesand Evaluation,
LREC 2006, pages 1302–1305, Genoa (Italy), May 2006.

The content of Chapter 3 related to the unigram-M1 mixture model for bilingual
TC have been submitted to an international conference:

• J. Civera and A. Juan. Bilingual Text Classification using the IBM 1 Trans-
lation Model. Accepted for publication in the sixth international conference
on Language Resources and Evaluation, LREC 2008.

The M2 mixture model, the extension of the dynamic-programming search al-
gorithm and their corresponding results presented in Chapter 4 were published in
an international conference:

• J. Civera and A. Juan. Mixtures of IBM Model 2. InProceedings of the 11th
annual conference of the European Association for Machine Translation,
EAMT 2006, pages 159–167, Oslo (Norway), June 2006.

The HMM mixture model and some of the results presented in Chapter 5 were
published in an international workshop:

• J. Civera and A. Juan. Domain adaptation in statistical machine translation
with mixture modelling. InProceedings of the Second Workshop on Statis-
tical Machine Translation, pages 177–180, Association for Computational
Linguistics, Prague (Czech Republic), June 2007.

The work carried out in this thesis focused on the development of a search algo-
rithm for interactive and predictive CAT using SFSTs (see chapter 6). This system
evolved over the time in the framework of the TT2 project improving its efficiency
and quality. The scientific community was timely informed ofthe advances of this
system in numerous publications in international and national conferences:

• J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casacu-
berta, E. Vidal, D. Picó and J. González. A syntactic pattern recognition ap-
proach to computer assisted translation. In A. Fred, T. Caelli, A. Campilho,
R. P.W. Duin, and D. de Ridder, editors,Advances in Statistical, Structural
and Syntactical Pattern Recognition, Lecture Notes in Computer Science,
pages 207–215, Springer-Verlag, Lisbon (Portugal), August 2004.
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• J. Civera, E. Cubel, A. L. Lagarda, D. Picó, J. González, F. Casacuberta,
E. Vidal, J. M. Vilar and S. Barrachina. From machine translation to com-
puter assisted translation using finite-state models. InProceedings of the
Conference on Empirical Methods in Natural Language Processing, EMNLP
2004, pages 349–356, Association for Computational Linguistics, Barcelona
(Spain), July 2004.

• E. Cubel,J. Civera, J. M. Vilar, A. L. Lagarda, F. Casacuberta, E. Vidal, D.
Picó, J. González and L. Rodrı́guez. From machine translation to computer
assisted translation using finite-state models. InProceedings of the 16th
European Conference on Artificial Intelligence, ECAI 2004, pages 586–590,
IOS Press, Valencia (Spain), August 2004.

• J. Civera, E. Cubel, A. L. Lagarda, F. Casacuberta, E. Vidal, J. M. Vilar and
S. Barrachina. Computer-assisted translation using finite-state transducers.
In Actas del XXI Congreso de la Sociedad Espaola para el Procesamiento
del Lenguaje Natural, SEPLN 2005, pages 357–363, Granada (Spain), Septem-
ber 2005.

• J. Civera, J. M. Vilar, E. Cubel, A. L. Lagarda, S. Barrachina, F. Casacu-
berta and E. Vidal. A novel approach to computer assisted translation based
on finite-state transducers. In A. Yli-Jyra, L. Karttunen, and J. Karhumaki,
editors, Finite-State Methods and Natural Language Processing, Lecture
Notes in Artificial Intelligence (LNAI-LNCS). Springer-Verlag, Helsinki (Fin-
land), September 2005.

• J. Civera, J. M. Vilar, A. L. Lagarda, E. Cubel, S. Barrachina, F. Casacu-
berta and E. Vidal. A Computer-Assisted Translation Tool based on Finite-
State Technology. InProceedings of the 11th annual conference of the
European Association for Machine Translation, EAMT 2006, pages 33–40,
Oslo (Norway), June 2006.

The final results of the TT2 project including those obtainedwith the SFST
technology presented in this thesis and those of other two state-of-the-art systems
based on phrase-based and alignment templates approaches,will be published in
an international journal:

• S. Barrachina, O. Bender, F. Casacuberta,J. Civera, E. Cubel, S. Khadivi,
A. L. Lagarda, H. Ney, J. Tomás, E. Vidal and J. M. Vilar. Statistical
approaches to computer-assisted translation.Computational Linguistics, In
press.

The SFST system depicted in this thesis was evaluated in realworking condi-
tions by two translation agencies that collaborated as partners in the TT2 project.
A general public presentation of this system and the human evaluation performed
will be published in an international journal for a very broad-based audience of
computing professionals:
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• F. Casacuberta,J. Civera, E. Cubel, A. L. Lagarda, G. Lapalme, E. Macklovitch
and E. Vidal. Human interaction for high quality machine translation.Com-
munications of ACM, In press.

Finally, the integration of this CAT system with an automatic speech recog-
niser in order to dictate translations and corrections in aninteractive manner was
published in an international conference and an international journal:

• L. Rodrı́guez,J. Civera, E. Vidal, F. Casacuberta, and C. Martı́nez. On the
use of speech recognition in computer assisted translation. In Proceedings of
the InterSpeech’05, pages 2269–2272, Lisbon (Portugal), September 2005.

• E. Vidal, F. Casacuberta, L. Rodrı́guez,J. Civera, and C. Martı́nez. Computer-
assisted translation using speech recognition.IEEE Transaction on Audio,
Speech and Language Processing, 14(3):941–951, 2006.

7.3 Future work

There are several research lines that would be interesting to explore as a future
work in the different fields covered in this thesis.

In bilingual TC, the accuracy of the unigram mixture classifier could be signifi-
cantly boosted by incorporating some of the techniques proposed in [R+03, P+04]
from the ML community, or tackling this classification problem from the maxi-
mum entropy viewpoint [NLM99, JVN07]. An obvious continuation of the work
presented is the application of mixture modelling ton-gram models [IO99] in iso-
lation or together with a translation model. We believe thatthis promising line of
research could return interesting results, since it combines the capability of captur-
ing word-context and domain-specific information

In Chapter 2, we circumvented the problem of multilabel textclassification
training a classifier for each class independently, ignoring the overlapping among
classes, and predefining the number of classes to be output. However, there have
been previous works that assume the multilabel nature of thedata designing spe-
cific classifiers to elegantly solve this problem [McC99, EW05, ZJXG05]. One of
these approaches is theBoosTextersystem [SS00] that was already considered in
the experiments of Appendix A.

The M1 model, although proved to be useful in bilingual TC forsmall tasks,
possesses serious limitations that make it counterproductive on large task like the
JRC-Acquis corpus. This limitation is the difficulty to gather word alignment evi-
dence in bilingual documents with excessive source or target length. For example
in the JRC-Acquis corpus, it is almost impossible to learn word correlation across
languages given that the average document length is over 1,500 words. A possible
solution to this problem would be the derivation of a phrase-based model that inte-
grates the M1 model at two levels. The first level would carry out the alignment of
bilingual phrases defined by a segmentation hidden variable, and the second level

138 JCS-DSIC-UPV



7.3. Future work

would align words inside bilingual phrases as the usual M1 model. In this way,
we would reduce the range of the alignment variable to the phrase defined in the
upper-level model.

The M1 model has proved to be a versatile model that have been widely used
in many different MT tasks. However, its applicability to other NLP fields is still
quite unexplored. For example, cross-lingual informationretrieval [PJR07], cross-
lingual plagiarism and other cross-lingual application are suitable to be studied as
future work.

Another interesting problem in TC is the extension of the bilingual scenario
to the multilingual one. This extension is trivial in the case of the decision rules
presented in Section 2.4.1 for the bilingual bag-of-words model, and the global and
local decompositions. This is also the case for the naive combination of smoothn-
gram models presented in Section A.1.1. In the multilingualscenario many ques-
tions arise, how can we efficiently integrate several languages into a classifier?,
how would the classification error rate correlate with the inclusion of an increas-
ing number of multilingual sources into a classifier?, how useful would be to learn
word correlation across more than two languages? These are only some of the
questions that multilingual TC opens for future research.

In statistical MT, the application of mixture modelling to translation models is
a natural evolution of these models in the advent of larger and larger corpora with
greater domain variability. Indeed, the convenience of using a weighted combina-
tion of models, instead of a single model trained on massive scale data has already
been proved to be successful for large-scale language modelling in [BPX+07]. In
the case of language modelling, finite mixtures have been successfully explored
for automatic speech recognition in [IO99], so it would be interesting to study the
use of mixture ofn-grams models for large-scale corpora in statistical MT. Fur-
thermore, the derivation of other context-specific translation models, for example
phrase-based or syntax-based models, or even phrase-basedmodels parametrised
by context-specific word-based translation models, are appealing and challenging
issues that are worth exploring as future work.

In this thesis, finite mixture modelling has been always applied at sentence level
as a continuation of the work developed on text classification, but it would be worth
exploring its applicability at word level, since it directly addresses the common
problem of word ambiguity in natural languages. Sentence-level and word-level
mixture model context-specific p.f. in two different axis. Sentence-level mixtures
consider the context defined by each sample, while word-level mixtures depend on
each word to establish this context.

To conclude, the interactive and predictive approach to CATis a promising ap-
proach, just started to be explored, with many potential users. The leverage of the
statistical translation models underlying these systems is always an active research
area from which CAT systems can benefit. Apart from this, the improvement in
the adaptation capabilities of the CAT system to the user corrections, the incor-
poration of confidence measures [UN05] and the incorporation of on-line learning
techniques to take full advantage of the user amendments into the CAT system,
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are tasks to be tackled to guarantee the usability and efficiency of interactive and
predictive CAT systems.

140 JCS-DSIC-UPV



BIBLIOGRAPHY

[BPX+07] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language
models in machine translation. InProc. of EMNLP-CoNLL’07, pages
858–867, Prague, Czech Republic, June 2007. Association for Com-
putational Linguistics.

[EW05] A. Elisseeff and J. Weston. A kernel method for multi-labelled classi-
fication. InProc. of SIGIR’05, pages 274–281, August 2005.

[IO99] R. M. Iyer and M. Ostendorf. Modelling long distance dependence in
language: Topic mixtures versus dynamic cache models.IEEE Trans-
actions on Speech & Audio Processing, 7(1):30–39, 1999.

[JVN07] A. Juan, D. Vilar, and H. Ney. Bridging the gap between Naive Bayes
and Maximum Entropy Text Classification. InProc. of PRIS’07, pages
59–65, Funchal, Madeira - Portugal, June 2007.

[McC99] A. McCallum. Multi-label text classification with amixture model
trained by EM. InProc. of AAAI’99: Workshop on Text Learning, July
1999.

[NLM99] K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for
text classification. InProc. of IJCAI’99, pages 61–67, July 1999.

[P+04] D. Pavlov et al. Document Preprocessing For Naive Bayes Classifica-
tion and Clustering with Mixture of Multinomials. InProc. of KDD’04,
pages 829–834, New York, NY, USA, August 2004. ACM.

[PJR07] D. Pinto, A. Juan, and P. Rosso. Using query-relevant documents pairs
for cross-lingual information retrieval. InProc. of TSD’07, pages 630–
637, September 2007.

[R+03] J. Rennie et al. Tackling the Poor Assumptions of Naive Bayes Text
Classifiers. InProc. of ICML’03, pages 616–623, August 2003.

[SS00] R. E. Schapire and Y. Singer. Boostexter: A boosting-based systemfor
text categorization.Machine Learning, 39(2-3):135–168, 2000.

[UN05] N. Ueffing and H. Ney. Application of Word-Level Confidence
Measures in Interactive Statistical Machine Translation.In Proc. of
EAMT’05, pages 262–270, Budapest, Hungary, May 2005.

141



Bibliography

[ZJXG05] S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using
maximum entropy method. InProc. of SIGIR’05, pages 274–281, New
York, NY, USA, August 2005. ACM.

142 JCS-DSIC-UPV



APPENDIX A

ADDITIONAL EXPERIMENTS ON

BILINGUAL TEXT

CLASSIFICATION

This appendix presents a series of additional experiments on bilingual TC in order
to assess the performance of monolingual and bilingual textclassifiers, when its
feature representation goes beyond the unigram. These experiments were carried
out on the same datasets introduced in Chapter 2, that is, Traveller, BAF and JRC-
Acquis using smoothedn-gram language models, SVM and boosting techniques.

A.1 Experiments on Traveller and BAF datasets

A.1.1 Smoothedn-gram language models

This set of experiments was performed with the well-known and publicly avail-
able SRILM toolkit [Sto02]. The language models were trained using Witten-Bell
discount [WB91] and back-off as smoothing technique. Otherdiscount algorithms
were also evaluated, but they were discarded because their performance was sig-
nificantly poorer.

The general training procedure consists in generating a language model for
each supervised class separately and for both languages independently. These
class-dependent language models were used to define monolingual and bilingual
naive Bayes classifiers. The results for the Traveller and BAF datasets are given in
Table A.1 while then-gram order ranges from unigram to trigram.

As expected, the general trend of these figures is a decrease in classification
error rate as we enlarge then-gram context window. However, bigram and trigram
classifiers offer similar performance. Additional experiments demonstrated that
smoothedn-gram models beyond trigrams provides no accuracy improvement at
all.
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Appendix A. Additional experiments on bilingual text classification

Table A.1: Test-set error rates for monolingual and bilingual naive classi-
fiers based on smoothedn-gram language models in Traveller and BAF.

Traveller 1-gram 2-gram 3-gram
English classifier 4.1 1.9 1.3
Spanish classifier 2.8 1.2 1.2
Bilingual classifier 3.3 1.2 1.1

BAF 1-gram 2-gram 3-gram
English classifier 5.3 3.5 3.6
French classifier 6.7 4.4 4.4
Bilingual classifier 4.1 2.8 2.6

Table A.2: Competing error table of the best performing bilingual classifiers
on the Traveller task and the BAF corpus

Traveller BAF
1-gram2-gram3-gram 1-gram2-gram3-gram

Bilingual smoothedn-gram 3.3 1.2 1.1 4.1 2.8 2.6
Bilingual local mixture 1.4 - - 2.9 - -
Unigram-M1 mixture 1.3 - - 2.5 - -

Table A.2 shows competing errors for bilingual smoothedn-gram, bilingual lo-
cal mixture and unigram-M1 mixture classifiers. The resultsobtained withn-gram
classifiers withn > 1 are slightly better than the best results obtained with uni-
gram mixtures. More precisely, the best results achieved with n-grams are1.1% in
Traveller and2.6% in BAF, while the best results obtained with unigram mixtures
are1.4% in Traveller and2.9% in BAF.

Furthermore, as we can observe in Table A.2, the unigram-M1 mixture model
supersedes the other two unigram models proving the benefitsof learning the word
correlation across languages. As we move to bilingual bigrams or trigrams on the
Traveller task, the context information in the same language seems to be more
discriminative than the word mapping information between languages. But this
is not the case on the BAF corpus, in which the M1 model is superior to n-gram
models.

Nonetheless, an impartial assessment of the role of translation models when
compared to bilingual smoothedn-gram (n > 1) should be carried out using the
same underlying language models in combination to a translation model, such as
the M1 model.
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Table A.3: Test-set error rates on Traveller and BAF forSVM light and
BoosTexter

Traveller BAF
SVM light 0.0 1.7
BoosTexter 1.0 3.9

A.1.2 Comparative results with SVM and boosting techniques

We also run comparative experiments with SVM and boosting techniques in order
to explore the benefits of context information. More precisely, we studied the in-
fluence of then-gram order and the combination of differentn-gram orders, as a
feature representation in SVM and boosting classifiers.

In order to tune the different parameters and then-gram order combination up
to trigrams inSVM light and BoosTexter, we followed a 10-fold cross-validation
on the bilingual training set. The final results for both datasets, Traveller and BAF,
are shown in Table A.3

SVM light offers the best results on the Traveller and BAF corpora, while
BoosTexter works similarly to smoothedn-gram language models on the Traveller
task and even worse on the BAF corpus.

A.2 Experiments on JRC-Acquis

A.2.1 Smoothedn-gram language models

The comparative results between smoothedn-gram (straight lines) and mixture
(curves) unigram classifiers are shown in Figure A.1, both for the best monolingual
(English-only) and the bilingual classifiers.

From the results in Figure A.1, we can observe that the trigram (3g) classi-
fier performs the best on its monolingual and bilingual versions, followed by the
bigram (2g) classifier, the mixture unigram (mix 1g) classifier and the unigram
(1g) classifier. This performance directly correlates withthe increasing length of
then-gram context window supporting these classifiers. Additional experiments
demonstrated that smoothedn-gram models beyond trigrams provides no accuracy
improvement at all.

A.2.2 Comparative results with boosting techniques

As we did in Section A.2.2, we carried a comparative study with boosting tech-
niques instantiated in the toolkit BoosTexter, varying theorder of then-gram em-
ployed in the weak learner. The objective function to minimise was the Hamming
loss, since ranking as learning criterion provided worse results. The best results
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Figure A.1: Precision (P) and recall (R) curves as a function of the number
of mixture components for the English-only (top) and bilingual (bottom)
unigram (mix) classifiers. Precision and recall straight lines are plotted for
the English-only and bilingual single componentn-gram (ng) classifier.

obtained were a precision value of 44.8% and a recall value of46.6%, that are dis-
tant from the best results using smoothedn-gram language models with a precision
value of 50.7% and a recall value of 52.7%.

Finally, we evaluated the performance of an-gram classifier as the backend of
a MAI system. To this purpose, we compute the recall values that we would obtain
if we considered a longer list of descriptors suggested by the system. The results
were that the system would be offering up to 69.1% of the correct descriptors for
a list of 10 descriptors. This value can be considered fairlygood considering our
MAI system as an external annotator that always returns 10 descriptors and given
that the human annotator agreement is between 70%-80%.
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APPENDIX B

EM DERIVATION

This appendix assumes that the reader is familiar with the chapters in which these
models were initially presented. The objective of this appendix is to provide further
details of the derivation of the models introduced throughout this thesis.

However, the EM algorithm for the bilingual unigram, unigram-M1 and M2
models is not included in this appendix due their similar derivation to the unigram
and M1 models that are presented in this appendix.

B.1 EM algorithm for finite mixture models

This section depicts the E and M steps of a finite mixture modelthat are thoroughly
used in Chapters 2, 3, 4 and 5.

B.1.1 E step for finite mixture models

As seen in Eq. (1.44), we need to compute the expected value ofthe indicator vari-
ableznt. This variable is 1 if thenth sample was generated by thetth component
of the mixture and 0 otherwise. Thus,

z
(k)
nt = E(znt |xn;Θ(k))

=
∑

znt

znt p(znt |xn;Θ(k))

= p(znt = 1 |xn;Θ(k)). (B.1)

So, the expected value of the variableznt in thekth iteration is the posterior prob-
ability of the tth being responsible for the generation of thenth sample given the
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current estimation ofΘ. This posterior is computed as

z
(k)
nt =

p(znt = 1) p(xn | znt = 1;Θ
(k)
t )

∑T
t′=1 p(znt′ = 1) p(xn | znt′ = 1;Θ

(k)
t′ )

(B.2)

=
p(t)(k) p(xn | t;Θ

(k)
t )

∑T
t′=1 p(t

′)(k) p(xn | t′;Θ
(k)
t′ )

(B.3)

B.1.2 M step for finite mixture models

In the M step, we maximise theQ function along with its associated Lagrange mul-
tipliers as in Eq. (1.46). This maximisation entails takingderivatives of Eq. (1.46)
w.r.t. Θ and the associated Lagrange multipliers, and equating themto zero.

In the case of mixture coefficients, we take derivatives w.r.t. p(t) and its corre-
sponding Lagrange multiplierλ equating to zero

∂ Q(Θ |Θ(k)) + Λ

∂ p(t)
=

N∑

n=1

z
(k)
nt

p(t)
− λ = 0 (B.4)

∂ Q(Θ |Θ(k)) + Λ

∂ λ
=

T∑

t=1

p(t) − 1 = 0. (B.5)

Reorganising these equations, so we can substitute one intothe other

p(t) =
N∑

n=1

z
(k)
nt

λ
(B.6)

T∑

t=1

p(t) = 1 (B.7)

then,
T∑

t=1

N∑

n=1

z
(k)
nt

λ
= 1 (B.8)

where

λ =

T∑

t=1

N∑

n=1

z
(k)
nt (B.9)

and replacingλ into Eq. (B.6), we have

p(t)(k+1) =

N∑
n=1

z
(k)
nt

T∑
t′=1

N∑
n=1

z
(k)
nt′

=
1

N

N∑

n=1

z
(k)
nt . (B.10)
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For the component-conditional parameters, we take derivatives w.r.t. Θt and
its Lagrange multiplier (if any) equating to zero

∂ Q(Θ |Θ(k)) + Λ

∂Θt
= 0 (B.11)

B.2 EM algorithm for the unigram mixture model

This section aims at clarifying the EM algorithm applied to the derivation of the
unigram model presented in Section 2.2.2. This derivation is similar to that of
Section B.1, considering the component-conditional p.f. to be a unigram model.
Indeed, the derivation of the E step for unigram mixture model is the same to that
presented in Section B.1.1, and therefore it is omitted.

B.2.1 M step for the unigram mixture model

In the M step, we maximise Eq. (1.46), with an additional constraint
∑

u∈X

p(u | t) = 1 ∀ t. (B.12)

to normalise the unigram parameters. So, we redefineΛ in Eq. (1.46) as,

Λ =






−λ

(
T∑

t=1
p(t) − 1

)

−
T∑

t=1
µt

( ∑
u∈X

p(u | t) − 1

)
.

(B.13)

Now we can take derivatives of Eq. (1.46) w.r.t.Θ andΛ equating to zero. The
derivation of the mixture coefficients was already presented in Section B.2.1, so
here, we focus on the derivation ofp(u | t). First, we take derivatives and equate to
zero

∂Q(Θ |Θ(k)) + Λ

∂p(u | t)
=

N∑

n=1

|xn|∑

j:xnj=u

z
(k)
nt

p(u | t)
− µt = 0 (B.14)

∂Q(Θ |Θ(k)) + Λ

∂µt

=
∑

u∈X

p(u | t) − 1 = 0 (B.15)

Reorganising these equations, so we can substitute one intothe other

p(u | t) =

N∑

n=1

|xn|∑

j:xnj=u

z
(k)
nt

µt
(B.16)

∑

u∈X

p(u | t) = 1 (B.17)
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then,
∑

u∈X

N∑

n=1

|xn|∑

j:xnj=u

z
(k)
nt

µt

= 1 (B.18)

where

µt =
∑

u∈X

N∑

n=1

|xn|∑

j:xnj=u

z
(k)
nt (B.19)

and replacingµt into Eq. (B.16), we have

p(u | t)(k+1) =

N∑
n=1

|xn|∑
j:xnj=u

z
(k)
nt

∑
u′∈X

N∑
n=1

|xn|∑
j:xnj=u′

z
(k)
nt

(B.20)

B.3 EM algorithm for the M1 model

This section provides details of the derivation of E and M steps for the M1 model.
The E step of the M1 mixture model is briefly described in orderto clarify the
computation of the expected value of the product of two hidden variables and its
notation. The derivation of the M step of the M1 mixture modelis straightforward
provided that the updating equation for the mixture coefficients is the same to that
in Section B.1.2, and the derivation of the updating equation of the component-
dependent statistical dictionary is analogous to that of the conventional statistical
dictionary. So, we omit the derivation of the M step of the M1 mixture model.

B.3.1 E step in the M1 model

In the M1 model, the E step reduces to compute the expected value of the indicator
variableanji, as seen in Eq. (3.14). This variable is 1 if there is an alignment
between thejth source position to theith target position in thenth sample and 0
otherwise.

a
(k)
nji = E(anji |xn, yn;Θ(k))

=
∑

anji

anji p(anji |xn, yn;Θ(k))

= p(anji = 1 |xn, yn;Θ(k)). (B.21)

So, the expected value ofanji in thekth iteration is the posterior probability of the
source positionj to be connected to the target positioni given the source and target
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sentence and the current estimation ofΘ. This posterior is computed as follows

a
(k)
nji =

p(xn, anji = 1 | yn;Θ(k))

|yn|∑
i′=0

p(xn, anji′ = 1 | yn;Θ(k))

=

p(xnj, anji = 1 | yn;Θ(k)) p(x j−1
n1 , x

|xn|
nj+1 | yn;Θ(k))

|yn|∑
i′=0

p(xnj , anji′ = 1 | yn;Θ(k)) p(x j−1
n1 , x

|xn|
nj+1 | yn;Θ(k))

=

p(anji = 1 | yn;Θ(k)) p(xnj | anji = 1, yn;Θ(k))

|yn|∑
i′=0

p(anji′ = 1 | yn;Θ(k)) p(xnj | anji′ = 1, yn;Θ(k))

=

p(xnj | yni)
(k)

|yn|∑
i′=0

p(xnj | yni′)(k)

. (B.22)

B.3.2 M step in the M1 model

In the M step, we maximise the functionQ in Eq. (3.14), with the constraint that
the dictionary probabilities sum up to 1

∑

u∈X

p(u | v) = 1 ∀ v. (B.23)

As in Eq. (1.46), we incorporate this contraint with Lagrange multipliers

Λ = −
∑

v∈Y

λv

(
∑

u∈X

p(u | v) − 1

)
. (B.24)

Now we can take derivatives of Eq. (1.46) w.r.tp(u | v) andλv equating to zero

∂ Q(Θ |Θ(k)) − Λ

∂ p(u | v)
=

N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji

p(u | v)
− λv = 0 (B.25)

∂ Q(Θ |Θ(k)) − Λ

∂ λv
=
∑

u∈X

p(u | v) − 1 = 0. (B.26)
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Reorganising both derivatives

p(u | v) =
N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji

λv

(B.27)

∑

u∈X

p(u | v) = 1. (B.28)

and plugging Eq. (B.27) into Eq. (B.28)

∑

u∈X

N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji

λv
= 1 (B.29)

where

λv =
∑

u∈X

N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji. (B.30)

Therefore, substituting Eq. (B.30) into Eq. (B.27), we havethe update equation for
the statistical dictionary in the M1 model

p(u | v)(k+1) =

N∑
n=1

|xn|∑
j:xnj=u

|yn|∑
i:yni=v

a
(k)
nji

∑
u′∈X

N∑
n=1

|xn|∑
j:xnj=u′

|yn|∑
i:yni=v

a
(k)
nji.

(B.31)

B.3.3 E step for the M1 mixture model

In Eq. (3.24), we need to computez(k)
nt and(znt anji)

(k). On the one hand,z(k)
nt is

calculated as ay-conditional version of that in Eq. (B.1). On the other hand,the
computation of(znt anji)

(k) is simplified taking into account that their product is
different from zero when both variable are evaluated to one

(znt anji)
(k) = E(znt anji |xn, yn;Θ(k))

=
∑

znt anji

znt anji p(znt, anji |xn, yn;Θ(k))

= p(znt = 1, anji = 1 |xn, yn;Θ(k))

=z
(k)
nt a

(k)
njit. (B.32)
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as seen in Eq. (3.26), therefore the computation ofa
(k)
njit is a component-conditional

version ofa(k)
nji in Eq. (B.22)

a
(k)
njit =

p(xn, anji = 1 | yn, znt = 1;Θ(k))

|yn|∑
i′=0

p(xn, anji′ = 1 | yn, znt = 1;Θ(k))

=

p(anji = 1 | yn, znt = 1;Θ(k)) p(xnj | anji = 1, yn, znt = 1;Θ(k))

|yn|∑
i′=0

p(anji′ = 1 | yn, znt = 1;Θ(k)) p(xnj | anji′ = 1, yn, znt = 1;Θ(k))

=

p(xnj | yni, t)
(k)

|yn|∑
i′=0

p(xnj | yni′ , t)(k)

(B.33)

B.4 EM algorithm for the HMM model

This section carries out a presentation of the E and M step forthe HMM alignment
model in a similar fashion to the M1 model in Section B.3. Alsoit depicts the com-
putation of the E-step of the HMM mixture model, and as we did in Section B.3, it
omits the derivation of the M step of the HMM mixture model, since it is consid-
ered to be straightforward given the derivation of the M stepin Section (B.4.2).

B.4.1 E step in the HMM model

In the HMM model, the E step in Eq. (5.15) requires the computation of the ex-
pected value of the indicator variableanji for the alignment of the first position
and for the statistical dictionary, and the productanj−1i′ anji for the jump width
alignment parameter.

The computation ofanji andanj−1i′ anji is somewhat more complex given the
first-order dependency of the HMM model and requires the usage of theα andβ
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recursive functions in Eqs. (5.9) and (5.10). The terma(t)
nji is calculated as

a
(k)
nji = p(anji = 1 |xn, yn;Θ(k))

=

p(xn, anji = 1 | yn;Θ(k))

|yn|∑
ı̃=1

p(xn, anj ı̃ = 1 | yn;Θ(k))

=

p(x j
n1, anji = 1 | yn;Θ(k)) p(x

|xn|
nj+1 |x

j
n1, anji = 1, yn;Θ(k))

|yn|∑
ı̃=1

p(x j
n1, anj ı̃ = 1 | yn;Θ(k)) p(x

|xn|
nj+1 |x

j
n1, anj ı̃ = 1, yn;Θ(k))

=

αnjiβnji

|yn|∑
ı̃=1

αnj ı̃βnj ı̃

(B.34)

and(anj−1i′ anji)
(k) as

(anj−1i′anji)
(k) = p(anj−1i′ = 1, anji = 1 |xn, yn;Θ(k))

=

p(xn, anj−1i′ = 1, anji = 1 | yn;Θ(k))

|yn|∑
ı̃′=1

|yn|∑
ı̃=1

p(xn, anj−1̃ı′ = 1, anj ı̃ = 1 | yn;Θ(k))

(B.35)

where

p(xn, anj−1i′ = 1, anji = 1 | yn;Θ(k)) = p(x j−1
n1 , anj−1i′ = 1 | yn;Θ(k))

p(anji = 1 |x j−1
n1 , anj−1i′ = 1, yn;Θ(k))

p(xnj |x
j−1

n1 , anj−1i′ = 1, anji = 1, yn;Θ(k))

p(x
|xn|

nj+1 |x
j

n1, anj−1i′ = 1, anji = 1, yn;Θ(k))

=αnj−1i′ p(i | i
′, |y|)(k) p(xnj |yni)

(k) βnji. (B.36)

Then,

(anj−1i′anji)
(k) =

αnj−1i′ p(i | i
′, |y|)(k) p(xnj|yni)

(k) βnji

|yn|∑
ı̃′=1

|yn|∑
ı̃=1

αnj−1̃ı′ p(̃ı | ı̃′, |y|)(k) p(xnj |yñı)(k) βnj ı̃

(B.37)
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B.4.2 M step in the HMM model

In the M step, we maximise theQ function in Eq. (5.6), under the following con-
straints

|y|∑
i=1

p(i | i′, |y|) = 1 ∀ 1 ≤ i′ ≤ |y| and|y|
∑

u∈X
p(u | v) = 1 ∀ v

(B.38)

that are translated into Lagrange multipliers as

Λ =






−
|y|∑

i′=1

∑

|y|

λi′|y|

(
|y|∑
i=1

p(i | i′, |y|) − 1

)

−
∑
v∈Y

µv

( ∑
u∈X

p(u | v) − 1

) (B.39)

in Eq. (1.46). Then, we can take derivatives of Eq. (1.46) w.r.t. Θ andΛ equating
to zero. Starting withp(i | i′, |y|), we take derivatives and equate to zero w.r.t. this
parameter and its corresponding Langrange multiplier

∂Q(Θ |Θ(k)) + Λ

∂p(i | i′, |y|)
=

N∑

n=1
|yn|=|y|

|xn|∑

j=1

(anj−1i′ anji)
(k)

p(i | i′, |y|)
− λi′|y| = 0 (B.40)

∂Q(Θ |Θ(k)) + Λ

∂λi′|y|
=

|y|∑

i=1

p(i | i′, |y|) − 1 = 0 (B.41)

so

p(i | i′, |y|) =
N∑

n=1
|yn|=|y|

|xn|∑

j=1

(anj−1i′ anji)
(k)

λi′|y|
(B.42)

|y|∑

i=1

p(i | i′, |y|) = 1 (B.43)

then,
|y|∑

i=1

N∑

n=1
|yn|=|y|

|xn|∑

j=1

(anj−1i′ anji)
(k)

λi′|y|
= 1 (B.44)

where

λi′|y| =

|y|∑

i=1

N∑

n=1
|yn|=|y|

|xn|∑

j=1

(anj−1i′ anji)
(k) (B.45)
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and substitutingλi′|y| into Eq. (B.42), we have

p(i | i′, |y|)(k+1) =

N∑
n=1

|yn|=|y|

|xn|∑
j=1

(anj−1i′ anji)
(k)

|y|∑
ı̃=1

N∑
n=1

|yn|=|y|

|xn|∑
j=1

(anj−1i′ anj ı̃)(k)

. (B.46)

Finally, for p(u | v) we follow the same procedure

∂Q(Θ |Θ(k)) + Λ

∂p(u | v)
=

N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji

p(u | v)
− λv = 0 (B.47)

∂Q(Θ |Θ(k)) + Λ

∂λv
=
∑

u∈X

p(u | v) − 1 = 0. (B.48)

Reorganising terms

p(u | v) =

N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji

λv
(B.49)

∑

u∈X

p(u | v) = 1 (B.50)

then,
∑

u∈X

N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji

λv
= 1 (B.51)

where

λv =
∑

u∈X

N∑

n=1

|xn|∑

j:xnj=u

|yn|∑

i:yni=v

a
(k)
nji. (B.52)

As we did before, replacingλv into Eq. (B.49)

p(u | v)(k+1) =

N∑
n=1

|xn|∑
j:xnj=u

|yn|∑
i:yni=v

a
(k)
nji

∑
u′∈X

N∑
n=1

|xn|∑
j:xnj=u′

|yn|∑
i:yni=v

a
(k)
nji.

(B.53)

B.4.3 E step for the HMM mixture model

As seen in Eq. (5.15), we need to computez
(k)
nt , (znt anji)

(k) and(znt anj−1i′ anji)
(k).

First, z(k)
nt is computed in the usual way considering ay-conditional version of
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Eq (B.1), taking component-dependent HMM alignment modelsas component-
dependent p.f. in a finite mixture.

The term(znt anji)
(k) is decomposed as in Eq. (3.26), and the resultant term

a
(k)
njit can be computed as a component-dependent version of Eq. (B.34)

a
(k)
njit = p(anji = 1 |xn, znt = 1, yn;Θ(k))

=

p(xn, anji = 1 | znt = 1, yn;Θ(k))

|yn|∑
ı̃=1

p(xn, anj ı̃ = 1 | znt = 1, yn;Θ(k))

=

αnjit βnjit

|yn|∑
ı̃=1

αnj ı̃t βnj ı̃t

. (B.54)

Finally, the term(znt anj−1i′ anji)
(k) is decomposed as we did in Eq. (5.17), where

(anj−1i′ anji | t)
(k) is computed as a component-dependent version of Eq. (B.35)

(anj−1i′ anji | t)
(k) =

= p(anj−1i′ = 1, anji = 1 | znt = 1, xn, yn;Θ(k))

=

p(xn, anj−1i′ = 1, anji = 1 | znt = 1, yn;Θ(k))

|yn|∑
ı̃′=1

|yn|∑
ı̃=1

p(xn, anj−1̃ı′ = 1, anj ı̃ = 1 | znt = 1, yn;Θ(k))

=

αnj−1i′t p(i | i
′, |y|, t)(k) p(xnj|yni, t)

(k) βnjit

|yn|∑
ı̃′=1

|yn|∑
ı̃=1

αnj−1̃ı′t p(̃ı | ı̃′, |y|, t)(k) p(xnj|yñı, t)(k) βnj ı̃t

. (B.55)
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APPENDIX C

SYMBOLS AND ACRONYMS

C.1 Mathematical symbols

|·| cardinal of a set or word sequence length.

a = a
|x|
1 = a1, . . . , aj , . . . , a|x| alignment sequence.

aj target position to which is aligned thejth
source position.

aj indicator vector for alignment ofjth source
position.

aji indicator variable for alignment ofjth source
position toith target position.

A(x, y) set of all possible alignments fromx to y
A = a1, . . . , an, . . . , aN vector of alignments.
c class label.
C = c1, . . . , cn, . . . , cN vector of class labels.
j index for the source sentence.
ı̃ secondary index for the target sentence.
(k) iteration of EM algorithm.
n index for a set of samples.
N number of samples.
p(·) general probability function.
p(·) model probability distribution.
t index for components in a mixture model.
T number of components in a mixture model.
u word in a source language.
v word in a target language.
xj jth word in a source sentence.

x = x
|x|
1 = x1, . . . , xj , . . . , x|x| sequence of source words.

x source segment or phrase.
X source vocabulary.
X = x1, . . . , xn, . . . , xN vector of source sentences.
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yi ith word in a target language.

y = y
|y|
1 = y1, . . . , yi, . . . , y|y| sequence of target words.

y target segment or phrase.
Y target vocabulary.
Y = y1, . . . , yn, . . . , yN vector of target sentences.
z = z1, . . . , zt, . . . , zT indicator vector for mixture components.
Z = z1, . . . ,zn, . . . ,zN vector of indicator vectors.
ǫ interpolation parameter for uniform smooth.
Θ parameter vector for a model.
Ψ parameter vector for a set of classes.
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C.2. Acronyms

C.2 Acronyms

p.f. probability function
w.r.t. with respect to
ACL association for computational linguistics
AER alignment error rate
BLEU bilingual evaluation understudy
BP brevity penalty
BAF bitextes anglais-français
CAT computer-assisted translation
CER classification error rate
CER character error rate
GIATI grammatical inference and alignments for transducerinference
EM expectation maximisation
EU European Union
HMM hidden Markov model
IBM international business machines
KSR key-stroke ratio
KMSR key-stroke and mouse-action ratio
LCP longest common character prefix
MAI machine-aided indexing
MAR mouse-action ration
MERT minimum error rate training
ML machine learning
MT machine translation
NLP natural language processing
REA recursive enumeration algorithm
SER sentence error rate
SFST stochastic finite-state transducers
SRILM Stanford research institute language modeling
SVM support vector machines
TER translation edit rate
UN United Nations
WER word error rate
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