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Abstract

Computer networks security is a topic that has been extensively researched.
This research is fully justified due to the dimensions of the problem faced.
Different kinds of networks and a large quantity of network protocols and
applications conform a vast research field, where it is possible for a researcher
to set his (or her) interests over a set of threats, vulnerabilities, or types of
attacks, so devising mechanisms to prevent the attack, mitigate its effects,
or repair the final damages, based upon the specific characteristics of each
particular scenario.

The Computer Networks Research Group from the Technical University
of Valencia (Universidad Politécnica de Valencia) has been researching on
computer networks security risks, specially those affecting wireless networks.
In previous doctoral works, detection and exclusion methods for dealing with
malicious nodes in Mobile Ad hoc Networks (MANETs) had been proposed,
from the point of view of every individual network node, using a technique
called Intrusion Detection Systems (IDS) based on Watchdog methods. In
this scope, we pretend to optimize network throughput removing misbehaved
nodes from the network communication processes, a task performed specifi-
cally by Watchdog systems.

A way to improve the whole network performance is to use mechanisms
for cooperatively sharing information between well-behaved nodes to speed
up misbehaved node detection and increase accuracy. Obviously, these mech-
anisms will have a cost in terms of network transmission overhead and also a
small computing time overhead needed. The key issue here is to adequately
balance the costs and the benefits related to these cooperation techniques to
ensure that the overall network performance is increased if compared with a
non-collaborative one.

In this doctoral thesis, we have designed a mechanism to allow individual
watchdogs to share reputation information about their neighbour nodes to
characterize them as soon as possible. We call this method Collaborative
Bayesian Watchdog, which is based on a non-collaborative bayesian version



of a watchdog. We have evaluated our approach through simulation methods,
and also by proposing an analytical model to reduce the time and effort
needed to evaluate this kind of solutions in different scenarios.

These evaluations showed that the use of the adequate collaboration
mechanisms between well-behaved nodes could improve the performance of
the watchdog techniques at an affordable cost in terms of computational and
messsage overhead.
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Resumen

La seguridad en redes de computadores es un tema que ha sido extensamente
investigado. Esa investigacion se justifica al observar las dimensiones del
problema que se afronta. Diferentes tipos de redes y una gran cantidad de
protocolos de red y aplicaciones conforman un vasto campo de investigacion,
donde es posible para un(a) investigador(a) fijar su interés en un conjunto
de amenazas, vulnerabilidades o tipos de ataques, disenando mecanismos
para prevenir el ataque, mitigar sus efectos, o reparar los danos causados,
basandose en las caracteristicas especificas de cada escenario en particular.

El grupo de investigacién en Redes de Computadores de la Universi-
dad Politécnica de Valencia ha estado trabajando en ciertos tipos de riesgos
para la seguridad de las redes de computadores, especialmente aquellos que
afectan a las redes inalambricas. En trabajos doctorales previos, se han prop-
uesto métodos de deteccion y exclusion para enfrentarse a nodos maliciosos
en redes moviles ad hoc (MANETS), desde el punto de vista de cada nodo
de la red por separado, utilizando una técnica llamada Sistema de Deteccion
de Intrusiones (IDS, de Intrusion Detection Systems) basada en Watchdogs.
En este ambito, se pretende optimizar la productividad de la red excluyen-
do de la misma a aquellos nodos cuyo comportamiento no sea considerado
adecuado por sus nodos vecinos, de forma que no participen en los diferentes
procesos de comunicacidon de la red. Esta tarea la desarrollaran especifica-
mente los sistemas basado en Watchdogs.

Una posible manera de mejorar el rendimiento puede ser el establecimien-
to de un mecanismo de cooperacién entre nodos legitimos para intercambiar
informacién, de forma que se acelere la deteccién de nodos maliciosos y se
incremente la exactitud de la deteccidon. Obviamente, un mecanismo de este
tipo tiene unos costes en términos de informacién transmitida por la red, y
en necesidades de computacion en el nodo para el analisis de la informacién
recibida y la obtenciéon de una opinién sobre un nodo concreto. La clave
es equilibrar adecuadamente la sobrecarga que estos mecanismos introducen
con las mejoras obtenidas si se les compara con mecanismos no colaborativos.
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En esta tésis doctoral, se ha disefiado un mecanismo que permita a los
watchdogs individuales intercambiar informacién de reputaciéon sobre sus
nodos vecinos, de forma que se puedan caracterizar lo antes posible. Hemos
llamado a este método un Watchdog Bayesiano Colaborativo, porque se basa
en una versiéon no colaborativa de un watchdog bayesiano. Hemos evaluado
nuestra propuesta no sélo mediante simulacién, sino también se ha propuesto
un modelo analitico que permita reducir el tiempo y el esfuerzo necesarios
para evaluar este tipo de soluciones en diferentes escenarios.

Estas evaluaciones han mostrado que el uso de un mecanismo adecuado
de colaboracién entre nodos legitimos puede mejorar el rendimiento de las
técnicas basadas en watchdogs con un coste asumible en términos de carga
computacional y de transferencia de mensajes.
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Resum

La seguretat en xarxes de computadors és un tema que ha estat extensament
investigat. Aqueixa investigacié es justifica a I'observar les dimensions del
problema que s’afronta. Diferents tipus de xarxes i una gran quantitat de
protocols de xarxa i aplicacions conformen un vast camp d’investigaci6, on
és possible per a un(a) investigador(a) fixar el seu interés en un conjunt
d’amenaces, vulnerabilitats o tipus d’atacs, dissenyant mecanismes per a
prevenir l'atac, mitigar els seus efectes, o reparar els danys causats, basant-
se en les caracteristiques especifiques de cada escenari en particular.

El grup d’investigacié en Xarxes de Computadors de la Universitat Politéc-
nica de Valéncia ha estat treballant en certs tipus de riscos per a la seguretat
de les xarxes de computadors, especialment aquells que afecten a les xarxes
sense fils. En treballs doctorals previs, s’han proposat métodes de deteccid
i exclusié per a enfrontar-se a nodes maliciosos en xarxes mobils ad hoc
(MANETS), des del punt de vista de cada node de la xarxa per separat,
utilitzant una teécnica anomenada Sistema de Deteccié d’'Intrusions (IDS,
de Intrusion Detection Systems) basada en Watchdogs. En aquest ambit,
es pretén optimitzar la productivitat de la xarxa excloent de la mateixa a
aquells nodes el comportament dels quals no siga considerat adequat pels
seus nodes veins, de manera que no participen en els diferents processos de
comunicaci6 de la xarxa. Aquesta tasca la desenvoluparan especificament els
sistemes basat en Watchdogs.

Una possible manera de millorar el rendiment pot ser 'establiment d’un
mecanisme de cooperacié entre nodes legitims per a intercanviar informa-
ci6, de manera que s’accelere la deteccié de nodes maliciosos i s’incremente
Iexactitud de la deteccio. Obviament, un mecanisme d’aquest tipus té uns
costos en termes d’informacié transmesa per la xarxa, i en necessitats de
computacié en el node per a ’analisi de la informaci6é rebuda i I'obtencié
d’una opinié sobre un node concret. La clau és equilibrar adequadament la
sobrecarrega que aquests mecanismes introdueixen amb les millores obtin-
gudes si se’ls compara amb mecanismes no col.laboratius.
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En aquesta tési doctoral, s’ha dissenyat un mecanisme que permeta als
watchdogs individuals intercanviar informacié de reputacié sobre els seus
nodes veins, de manera que es puguen caracteritzar com més prompte millor.
Hem anomenat a aquest métode un Watchdog Bayesia Col-laboratiu, perqué
es basa en una versié no col-laborativa d’'un watchdog bayesia. Hem avaluat
la nostra proposta no només mitjancant simulaci6, siné també s’ha proposat
un model analitic que permeta reduir el temps i I'esfor¢ necessaris per a
avaluar aquest tipus de solucions en diferents escenaris.

Aquestes avaluacions han demostrat que I'as d’un mecanisme adequat
de col-laboraci6 entre nodes legitims pot millorar el rendiment de les téc-
niques basades en watchdogs amb un cost assumible en termes de carrega
computacional i de transferéncia de missatges.
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Chapter 1

Objectives, Contributions and
Organization of the Thesis

Periodically, certain research topics catch the attention of a significative
percentage of researchers in a particular research field. Once the major
advances on the research topic are achieved, only minor advances can be
obtained, and the task becomes more difficult. There is a time when, instead
of evolving previous solutions, researchers must bridge a major gap to explore
other possible paths to address an unresolved issue or to climb a big step in
the performance or realiability of existing solutions. Additionally, exploring
the applicability of existing solutions to new issues is also a common research
activity.

When we started this work, MANETs were a well known research field,
with lots of routing protocols and security schemes introduced by very active
researchers worldwide. Nevertheless, some small issues in this field remained
unaddressed, like the selfish node problem. A selfish node is a MANET node
that makes use of the cooperative nature of the MANET for its own benefit
but it does not cooperate for the MANET benefit. There are different moti-
vations for this behaviour, like battery savings or additional fees on the use
of WAN networks. But once started the study of this topic, we noticed that
there was a bigger set of misbehaved nodes in MANETs whose behaviour
must be addressed. Of course, not all misbehaviours can be addressed by
the same technique, so our focus was set in those nodes which do not for-
ward packets in behalf of other nodes, called generically black hole nodes, a
behaviour which could deeply impact the MANET performance.

Some work had been done with certain routing protocols and with some
security mechanisms to detect and isolate this misbehaved nodes, but we

1



CHAPTER 1. OBJECTIVES, CONTRIBUTIONS AND
ORGANIZATION OF THE THESIS

detected that there were room for improvements and extensions that could
lead to better solutions in terms of performance and/or scope.

1.1 Objectives of the Thesis

The main research objective of this thesis is to explore the applicability
and performance level that cooperative (or collaborative) mechanisms could
attain when used in wireless networks nodes to deal with certain types of
security threats, like nodes behaving selfish or nodes developing a black hole
attack. Aligned with previous researches from the Technical University of
Valencia Computer Networks Research Group, we focus our attention over
these security risks in the scope of Mobile Ad hoc Networks (MANETs). This
types of attacks are easily carried out, thus they are expected to severely
affect network performance in community-built MANETS’ deployment sce-
narios. If a set of selfish or malicious nodes enter the MANET, their effect
over the quality of the service provided by the network could be remarkable,
so strategies to cope with this potentially disrupting behaviours should be
designed, implemented and evaluated.

An Intrusion Detection System [O’L92|, “refers to those systems which
are designed to monitor an agent’s activity to determine if the agent is acting
as expected or if the agent is exhibiting unexpected behaviour/...[”. Intrusion
Detection Systems, or IDS, are generally based on statistical data collection
to perform their task, and one of the basic IDS forms is known as Watchdog
[HCCM10]. Watchdog systems analyze network traffic and detect misbe-
haviours. Using watchdogs in infrastructureless wireless networks to detect
misbehaviours usually leads to obtain a large amount of wrong detections,
due to the channel characteristics and node mobility. Wrongly detected mis-
behaved nodes could imply a network partition. Undetected misbehaved
nodes could damage the communication processes between the remaining
nodes. So, research path in this area should focus on enhancing two metrics
of the detection process: accuracy, in the sense of reducing the presence of
wrong detections; and speed, struggling to obtain a characterization of every
suspect node as soon as possible. We expect that cooperative techniques will
help us in achieving our objectives over these two metrics while increasing as
less as possible the network overhead due to message-passing mechanisms.

So the objectives of this thesis are:

e Study the previous works on this research field.

e Confirm the watchdog as an adequate mechanism for detecting misbe-
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1.2. CONTRIBUTIONS

haviours in MANETSs and other networks.

e Introduce collaboration techniques to improve the watchdog perfor-
mance and its applicability to different networks and protocols.

e Evaluate the watchdog results through simulation.
o Detect watchdog weaknesses and limitations.

e Develop an analytical model to speed up the performance evaluation
of the watchdog in changing scenarios.

Summing up, this work is aimed at increasing the security level of MANET
deployments by reducing the negative effect that misbehaved nodes could
introduce in the MANET performance. So, we do not aim our approach
at solving a big set of MANET security threats, because we only will pay
attention to black holes. Additionally, we should accomplish this objective
in a cost-effective way in terms of time, computational requirements, and
communication overhead.

1.2 Contributions

During this doctoral work we have attained the following major achieve-
ments:

e We introduce a Collaborative Bayesian Watchdog to detect black hole
attacks in Mobile Ad hoc Networks. This approach proves that simple
but well designed cooperative mechanisms between individual detec-
tion techniques perform better than its non-collaborative equivalents,
and the cost of this cooperation is worth in terms of network overhead
vs. network performance ratio. This technique has been implemented
and validated through simulation, as a common research methodology.
Additionally, this implementation could be a suitable initial step to
implement this mechanism in a real testbed or commercial product.

e Qur proposal has been able to reduce the time required to detect mis-
behaved nodes while sending a limited amount of packets over the net-
work, resulting in an affordable cost in terms of overall computational
and message overhead.

e We propose an analytical model to evaluate the performance of Collab-
orative Bayesian Watchdogs. Our model has become an efficient and
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accurate method to obtain the required results without using a time-
consuming simulation process and an expensive post-simulation data
analysis. This model is also suitable for other types of networks, such
as Delay Tolerant Networks (DTNs). With this model, it is possible to
change different parameter values to quickly obtain the detection time
and message overhead in different network scenarios.

1.3 Organization of the Thesis

This thesis is organised as follows. In Chapter 2 we introduce the different
concepts, technologies, and protocols involved in the problem we want to
solve, and we describe the different approaches proposed in literature in the
research area.

In Chapter 3 we present our proposal, the Collaborative Bayesian Watch-
dog. We also present in this chapter an evaluation of this technique through
simulation, and we discuss the obtained results.

Chapter 4 shows a basic version of our analytical model to evaluate the
performance of a simple collaborative watchdog.

Chapter 5 is dedicated to improve the previous version of the analyt-
ical model to better suit the complete Collaborative Bayesian Watchdog
approach.

Finally, in Chapter 6 we present a summary of the main results of this
thesis, along with some concluding remarks. We also include a list of the
publications related to the thesis, and we comment on possible future re-
search works that can derive from the work here presented.



Chapter 2

Related Work and Definitions

This chapter reviews the state-of-the-art on the topics related to wireless
peer-to-peer networks, focusing on Mobile Ad hoc Networks, the most com-
mon types of attacks they could suffer, and the different proposals in the
literature to deal with this kind of attacks. We also introduce some security-
related concepts in order to clearly define the scope and area of this thesis.

2.1 Mobile Ad hoc Networks

A Mobile Ad Hoc Network, usually known as MANET, consists of a set of
wireless mobile nodes that functions as a multi-hop mesh network in the
absence of any kind of networking infrastructure and centralized adminis-
tration. In these networks, nodes have the auto-organization capacity, and
they cooperate to achieve each one’s objectives. MANETs have attracted
research efforts in the last years because of the increase on the number of
available wireless devices and its increasing computing capabilities. In a
tipical MANET, a node is a wireless mobile computing device, like a smart-
phone or a tablet, running the appropriate software, which allows the node
to join the network, identify neighbouring nodes, configure the routing pro-
tocol, and participate in forwarding activities. Due to their mobile nature,
these nodes are battery operated, so energy saving is a key design parame-
ter, which could encourage the implementation of techniques aimed at saving
individual node resources against network performance maximization. As a
result of their deployment, MANETS rely on cooperation schemes between
nodes for a correct operation, that is, every network node involved in a data
communications flow not only generates and sends its own packets, but it
also forwards packets on behalf of other nodes. Although there are not many
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MANET implementations in real testbed scenarios, these networks have been

a popular research topic in the last decade, and some technologies developed

for them are applicable to other types of networks, such as Vehicular Ad Hoc

Networks (VANET), which are a type of MANET formed by vehicles with

the aim of implementing Intelligent Transport System platforms [YMF06].
We can characterize a MANET as:

e A network which is based on wireless technologies, forming a non-
regular mesh structure of bidirectional communication links between
nodes which cooperate to achieve communication among nodes.

e A network which is usually built, without any central authority, by
battery-powered mobile nodes with different technical specifications
and different speeds and movement patterns, so it has a dynamic topol-

0gy.

In a MANET, a node labelled as A is a neighbour of node B, or viceversa, if
both nodes are in range of their respective antennas, they publish their pres-
ence and detect the presence the other one. Obviously, nodes in a MANET
can only send packets to their respective neighbours. So, MANET nodes
must use a multi-hop route formed by cooperative nodes which relay packets
in behalf of other nodes to its final destination. We can define the network
diameter as the maximum number of hops between any pair of nodes in
the network. MANET communication protocols implement mechanisms to
detect new neighbours, to discover routes to distant nodes, and to check
whether a packet must be retransmitted to the next hop in a route (Figure
2.1).

As a possible MANET deployment scenario, let’s imagine a big park,
where a wireless network deployed by the City Council provides Internet
access to the citizens who are passing through it only in particular locations,
like hotspots. In that scenario there is no wireless coverage in the major part
of the park. If citizens using their wireless devices near the access points build
a MANET with other citizens who are outside of the access points coverage,
and these aforementioned citizens forward packets from/to farther ones, and
so on, soon almost all the citizens can access the Internet even if they are
far from any of the hotspots. Of course, there is a requirement that all the
participants must meet in their wireless devices: they have to run compatible
MANET protocols which allow this kind of cooperation. But it is even more
important that all the citizens must be willing to share its resources for the
whole network benefit. In return, when a user moves outside of the direct
coverage from any access point, other cooperative nodes, which will be nearer
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Figure 2.1: Example of Multi-hop packet transmission from node S to node
D.

to a hotspot, will forward his (or her) packets, allowing Internet access this
way.

The advantages of this kind of networks come up directly from their
deployment:

e MANETSs do not depend on any pre-existing infrastructure, so they can
be deployed indoors or outdoors, wherever they should be necessary.

e MANETSs are cheap and easy to deploy. In the case of a community-
built MANET, it will be enough with switching on the nodes and
letting them to autoorganize.

e MANET tolerate a certain number of node failures due to their mesh
topology. Depending on the number of nodes, on the number of possi-
ble routes between every source-destination pair, and on the speed and
path of each one of them, MANKETSs are able to readapt them steadily
to maintain ongoing communication between distant nodes even in the
case of some nodes’ failure.

Of course, there are some disadvantages and problems related to the use of
MANETsS:

e Mobile Ad hoc Networks are not general purpose networks, nor high
throughput ones.
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Figure 2.2: (a) Hidden node problem (b) Exposed node problem

o Ags wireless networks, MANETs are affected by certain physical and
medium access level problems, like packet loss, due to interferences or
node mobility, and reduced antenna ranges. Two typical problems in
wireless networks which could affect performance are known as "hidden
node problem’ and ’exposed node problem’:

— The hidden node problem appears when transmissions from two
nodes which do not know each other collide at one common neigh-
bour of those nodes. As these nodes can not detect the other
one and the communication with the common neighbour has not
been acknowledged, they retry to send the packet, colliding again
repeatedly. In Figure 2.2(a), a simultaneous transmission from
nodes A and B will collide in their common transmission range
area near node H.

— The exposed node problem appears when two pairs of nodes try
to send a packet simultaneously and one node of each pair is in
trasmission range of the other one. In Figure 2.2(b), a simultane-
ous transmission from nodes A and B will collide in their common
transmission range area, thus nodes D and C wont receive the
packets sent.

e Node mobility is also a problem for MANET, specially at high speeds,
because it could easily lead to network partitioning. VANETs are very
prone to suffer from this problem.

In the previous big park example, each node belongs to a different user,
they almost certainly have different hardware, and they could be running
different configurations and user software. The absence of a centralized au-
thority has its advantages, but obviously raises some concerns:
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o If the nodes belong to different users, this means that everyone could
rightfully configure his (o her) own node(s) as he (or she) wants,
i.e., prioritizing battery power savings instead of network throughput.
Analogously, one can configure a node(s) to be stricter or more relaxed
when accepting certain protocols or packet classes, based on security
policies or expert advice. The extreme effect of non-centralized admin-
istration or network property is the use of incompatible protocols be-
tween nodes, resulting in a network partition and a whole network poor
performance. In addition to normal people who uncounsciously adds
difficulties to the best network performance, we also have to take into
account those people who explicitly act maliciously, deploying their
nodes in ways that affect the network in terms of lose of information
security properties (see section 2.3).

e Different configurations between nodes could also lead to an easier way
to disseminate some types of malicious software, like viruses, using
those low secured nodes to thrive and to oportunistically infect other
nodes.

e Different hardware implementations could mean different computing
capabilities, different antenna ranges, different battery capacities, and
different driver implementations. In one word, heterogeneity. Every
single aspect has its own influence on the node’s behaviour and it is
able to introduce flaws in some part of every MANET node.

e There are certain drawbacks related to nodes which are near certain
popular resources, because they will forward a lot of traffic from other
nodes, resulting in an excesive power or processor cycles consumption.

All these issues could pose, per se, a wide range of security risks for the
individual node, but also for the whole network. In section 2.3, we will discuss
some computer security-related concepts, in order to clarify the problem
definition and the proposed solutions.

2.2 MANET routing protocols

2.2.1 Taxonomy

One of the most important component of the MANETS autoorganization
feature is the routing protocol. There are lots of them in the literature (see
|Mis09]). In fact it has been one of the most popular research topic in this
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area. Some of them were designed specially for this type of networks, while
others were adapted from protocols developed in other areas. In general, we
can classify routing protocols by several criteria [Bou08, Fee99, Gio02, BK09]:

e Depending on the possibilities of changing the message route once the
message has been injected into the network, a routing protocol could
be:

— Adaptative, if the route can be changed in response to link fail-
ures or congestion while the message is on path to its destination.

— Deterministic, if those changes are not allowed once the initial
routing decision has been made.

e Depending on where the routing decision is made, a routing protocol
could be:

— Source routing, if the decision is made at the source node for
the complete message route, explicitly indicating which nodes the
message should be forwarded to.

— Distributed routing, if the decision is made in every route’s node
from the source node to the destination node. In this case, de-
pending on the information stored in every node to allow the
decision making process, a distributed routing protocol could be:

* a distance vector routing protocol, if every node stores the
next hop and distance (number of hops) for every known des-
tination

x a link state protocol, if every node shares the state of all its
active links with all the network nodes. In this case, every
node is able to build a complete network topology map.

e Depending on the update mechanism of best routes from source to
destination, a routing protocol could be classified as:

— Reactive, if it requires the node to search for the best route when
it is necessary to send a message.

— Proactive, if it enforces the node to continuously update its rout-
ing table to assure the immediate provision of the best route for
a message.
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— Hybrid, where some routes are obtained proactively and others
are obtained reactively. Obviuosly, the criteria to select one tech-
nique or the other is based on the time needed to obtain a new
route (for reactive routes) or the network overhead introduced to
discover new routes (for proactive routes).

e Depending on the parameter used to decide the best route between
two nodes, a routing protocol could be characterized as:

— Shortest path, if it selects the route with the minimum quantity
of hops between source and destination nodes.

— Shortest time, if it selects the route with the minimum latency
between source and destination nodes.

— Shortest weighted path, if it selects the route which present
the shortest weighted path between source and destination nodes,
taking into account battery consumption, or available bandwith
for every link.

e Depending on the use of topological information about the network,
we can find:

— flat routing protocols, if they do not use any topological infor-
mation.

— hierarchical routing protocols, if they use that information
about the network topology.

e Depending on the number of destination nodes, there are:

— unicast routing protocols, if there is only one destination node
for a data communication flow.

— multicast routing protocols, when the destination node set
count is greater than one.

In any case, a good routing protocol for MANETs must fulfill three require-
ments:

e The routing dependences graph for every combination of source-destination
nodes must not contain cycles. To match this requirement several
techniques can be used, like Spanning Tree (Breadth-First Search or
Depth-First Search) mechanisms.
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e [t must operate in a distributed and self-contiguring way, that is, no
entity must act as route server or something similar. Every node must
be able to obtain a route to every destination node by itself, querying
the rest of the nodes in the MANET.

e It must be efficient in front of the dynamic nature of the network,
which triggers that nodes and links appear or dissapear frequently.

Of course, there is no protocol which fulfills in a satisfactory manner all
those requirements, so the MANET routing protocol selection will usually
depend on the number of nodes, its mobility and the amount of traffic which
is expected to be injected into the network. It is interesting to refer to the
existence of a IETF working group on routing protocols for MANETSs [IET).
Although there are a lot of routing protocols for MANETS, in the following
sections we will only present the three most important routing protocols for
this kind of networks: Dynamic Source Routing (DSR) [DJHO07], Ad-hoc
On-demand Distance Vector routing (AODV/DYMO) [CPD03, CP10|, and
Optimized Link State Routing (OLSR) [CJ03|. We must remark here that
our proposal for a Collaborative Bayesian Watchdog (see Chapter 3) has
been implemented over AODV, although it is protocol-agnostic and can be
built over other routing protocols with minor modifications.

2.2.2 DSR: Dynamic Source Routing

As its name denotes, Dynamic Source Routing is a routing protocol where
the decision about the route is made in the source node. We can also classify
this protocol, using the taxonomy defined in section 2.2.1, as a flat, reactive,
deterministic and shortest path routing protocol. In this section we will
introduce the basic functionality of this protocol.

Every node in the network periodically sends a small HELLO message
to announce its presence to the nodes which are in wireless transmission
range, its one-hop neighbours. With this information, every node builds a
one-hop neighbour table, which will be useful for certain protocol activities.
Of course, every route to a distant node will begin in a neighbour node.

In DSR, once established by the route discovery/maintenance mecha-
nisms, the route is formed by the addresses of the nodes which define the
path to reach the target node. In this protocol, the complete route is inserted
in every packet’s header by this source -or initiator- node. In every hop, the
node involved removes its own address from the packet before forwarding the
packet to the next hop. This process is repeated until the packet arrives to
its destination node, or if an intermediate node can not forward the packet

12



2.2. MANET ROUTING PROTOCOLS

due to a route failure caused by a node’s movement, misbehaviour or failure.
In this case, the issue will be notified to the initiator node.

The interesting part of this protocol is the route discovery and main-
tenance mechanisms. Route discovery allows a node in the MANET to dy-
namically discover a route to any other node, whether it is directly reachable
within its antenna range or it is reachable through one or more hops. The
initiator node broadcasts a route request (RREQ) packet, identifying the
target node, which may be received by those nodes within its wireless trans-
mission range. If the route discovery process is successful, then the initiator
receives a route reply (RREP) packet which includes a sequence of network
hops through which it may reach the target node. Each route request packet
also contains a route record, in which the sequence of hops taken by the
route request packet is registered as it is propagated through the MANET.
When a node receives a route request packet, there are four options:

1. The node has recently received another copy of this RREQ, due to the
broadcast nature of this process, so it must discard the current route
request packet without further processing.

2. This node’s address is already included in the route record in the re-
cently received request. In this case, the node also has to discard the
RREQ packet and do not process it further, to avoid route cycles.

3. If the target of the request matches this node’s own address, then it
must return a copy of this route in a RREP packet to the initiator. In
order to do it, the target node must have a route to the initiator. If
the target has an entry for this destination in its route cache, then it
may send the route reply packet using this route in the same way as is
used in sending any other packet. Otherwise, the target may reverse
the route in the route record from the route request packet, and use
this route to send the route reply packet.

4. Otherwise, the node appends its own address to the route record in
the RREQ packet, and re-broadcasts it.

This basic route discovery process has some improvements included in the
standard protocol, related to the route maintenance and the use of a route
cache. For example, if an intermediate node knows a route to the target
node, it completes the route record and sends the route reply packet to the
initiator. This mechanism speeds up the process, but it may introduce route
errors if the cache information is not fresh and routes are stale. Another
optimization included for the route maintenance and discovery process is a
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route learning technique for intermediate nodes. When these nodes forward a
data packet in behalf of other node, they may include the route to the target
node in its own route table. On the same way, when a node participates in a
route discovery process, it may include the routes from it to the initiator and
the target, processing both the route discovery and route reply packets. The
protocol also allows a node to learn new routes by overhearing packets which
are transmitted inside its reception range. Finally, when a node forwards a
route error packet, it takes care of updating its routing table to delete any
route affected by this topology change.

In-transit routing simplicity is the main advantage of DSR. For data
flows, at intermediate nodes there is no need of route decision-making, be-
cause the route is established and explicitly specified in the data packet itself
by the initiator node. So, the nodes can quickly forward the packets with
reduced computational requirements. In the other hand, DSR presents some
disadvantages| HBTT03]:

e The data packet’s header size grows as the network diameter does.
A big network could induce big headers, decreasing the valid data
sent/total bytes trasferred ratio, thus reducing the network through-
put.

e It is not adaptative nor proactive, so a broken link once the packet is in
transit to the target node requires the reporting of the broken route, a
new route discovery process, and the packet to be re-sent through the
new route, all from the source node, not from the node where the link
failure has been detected. Thus, this increases the end-to-end latency
for a particular packet.

e Additionally, stale route cache information could also result in incon-
sistencies, but the protocol includes a mechanism to drop routes which
have not been used for a particular predefined time.

e At high speeds, the network throughput could degrade due to the pro-
liferation of route error packets, bloating the network with them instead
of using the bandwith to transfer valid data.

2.2.3 AODV/DYMO: Ad-hoc On demand Distance Vector/Dynar
MANET On demand routing

Ad-hoc On demand Distance Vector is a routing protocol for MANETSs that
could be characterized as a flat, adaptative, reactive, and shortest path rout-
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ing protocol. Unlike DSR, AODV/DYMO implements Distributed On de-
mand routing instead of source routing, so every node stores the next hop and
distance for every known destination in its routing table. Like DSR, every
node in the network periodically sends a small HELLO message to announce
its presence to the nodes which are in its wireless transmission range. Unlike
DSR, AODV requires that the communication channel betwen every node
must be bidirectional, which commonly represents no problem for wireless
nodes.

The explicitly declared design objective of AODV was to improve DSR,
trying to avoid its disavantages while keeping its strengths. The first im-
provement implemented in AODV was the packet header size reduction,
because the complete route to the target node is no longer needed in the
packet header. In AODV, every node in the path source-destination decides
the next hop by reading its routing table. The route discovery process in
AODYV is very similar to the one outlined for DSR, but must be undertaken
whenever a node needs a next-hop to forward a packet to a destination. In
AODV, the routing tables do not contain complete routes to destinations,
because the only information needed is the next hop and distance for every
known destination. As in DSR, every entry in the routing table has been
assigned a life time. Once exhausted, the routing table entry will be deleted.

AODYV has some advantages if we compare it with DSR. The first one is
the reduction in the packet header size, as said previously. The second one
is related to the fact that AODV is an adaptative routing protocol instead
of a deterministic one, so its reliability is bigger. And finally, the routing
table cleaning process is cheaper in terms of computational costs. But, as
DSR, AODV does not perform well in scenarios where nodes move at a high
speed, and it could have problems dealing with stale routes in its cache.

The TETF MANET working group has proposed some improvements to
AODYV, mostly in the area of route discovery, and this AODV enhanced
version has been called Dynamic MANET On demand (DYMO) routing
protocol [CP10]. The standard specification for DYMO is expected to be
the main body for the IETF Reactive MANET Protocol (RMP) which is
currently under development.

2.2.4 OLSR: Optimized Link State Routing

Optimized Link-State Routing (OLSR) [CJ03] is a MANET routing protocol
that could be characterized, using the taxonomy introduced in section 2.2.1,
as a flat, adaptative, proactive, distributed and shortest path routing pro-
tocol whose routing table is built using the link state information, obtained
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through HELLO messages. The IETF MANET working group has selected
OLSR as the Proactive MANET Protocol (PMP), and they have proposed
it as a standard for this kind of networks. The proactive protocols period-
ically flood the network with topological information, which is needed by
every node to build a complete network topology map in order to correctly
route data packets. The most remarkable OLSR characteristic is its aim to
minimize the overhead introduced in the network by the need of periodically
flooding it with that topological information.

OLSR uses the concept of Multipoint Relay (MPR) to minimize the
overhead of flooding messages in the network by reducing redundant re-
transmissions in the same region. The Multipoint Relays of a node are those
neighbours through which two-hop neighbours are reachable from the ini-
tial node. As HELLO messages in this protocol include the complete list of
neighbours from each node, each one knows its two-hop neighbours. After
every HELLO reception, every node must update its MPR set in conse-
quence. This protocol has the consideration of optimized if the MPR set
for every node is as small as possible, while guaranteeing that every one of
its two-hop neighbours is reachable through each MPR set. The process to
build the optimized MPR. set for node X is outlined in Algorithm 2.1. Every
node includes its MPR set in its HELLO messages.

Algorithm 2.1 OLSR: Building the MPR set for node X

Select one-hop node X’s neighbours (namely set N;(X)) which can be used
to reach isolated two-hop node X’s neighbours (namely Na(X)) which can
not be reached through any other node.

Repeat

Select, from N;j(X), the node which has not been selected in Step one
and from which the maximum number of N(X) set members are reachable.

Until every Na(X) member has been reached through a selected MPR.

The other concept used in OLSR is the Multipoint Relay Selector
(MS). Node X is Multipoint Relay Selector for node Y if Y has chosen X
as MPR. A broadcast message, intended to be diffused in the whole net-
work, coming from any of the MPR selectors of node Y is assumed to be
retransmitted by node Y, if Y has not received it yet. So when a node wants
to publish topology information, it sends Topology Control (TC) messages
only to the nodes pertaining to its MPR and MS sets. Every node builds its
MS set based on the MPR set information received through HELLO mes-
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sages from its neighbours. When node Y, which is a one-hop neighbour of
node X, receives a TC message, it will process this message and it only will
forward it to its own neighbours if X pertains to Y’s MS set. This guar-
antees the minimum amount of retransmissions to propagate link states to
the whole network. When this propagation ends, every node has a complete
list of available links between nodes, useful to update its own routing table
selecting the shortest paths to every possible destination in the network.

The main advantage of OLSR compared to AODV (o DSR) is that the
route discovery process does not introduce additional latency to the packet
transmission, because routes are always available. The exception to this
general case occurs when the need to send a data packet coincide with one
route calculation process. But it is arguable that in OLSR there is a con-
tinuous network overhead due to the Topology Control packet transmission
and the HELLO packet payload. Also, the cost, in terms of power com-
sumption, could be high [HBT*03]. Depending on the network size and the
nodes’ mobility parameters, there is a chance that topological changes wont
be stabilized in every node when other changes will be produced elsewhere.
Additionally, it is also arguable that OLSR introduces computational and
store overhead in nodes to obtain the MPR set and the shortest route for
every destination node. It appears that OLSR has more disadvantages than
advantages for a generic MANET, but there are MANET scenarios where ob-
taining the minimum end-to-end packet latency is the key design parameter,
and in those cases OLSR must be selected instead of AODV/DSR.

2.3 Security concepts

Now, when some routing protocols for MANETs have been introduced, it will
be useful to introduce some basic concepts about computer security before
we can clearly define the problem we aim this thesis to solve: the black hole
attack.

According to the National Institute of Standards and Technology of the
U.S. Department of Commerce, Computer Security [NIS95] (or Informa-
tion Security) is defined as “the protection afforded to an automated informa-
tion system in order to attain the applicable objectives of preserving the in-
tegrity, availability and confidentiality of information system resources |...]".
This definition introduces the three basic properties of Computer Security,
which form the CIA triad [Cha03]:

e Confidentiality: it is a property that assures that private or confi-
dential information is not disclosed to unauthorized individuals.
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e Integrity: it is a property that has two facets: system integrity and
data integrity. System integrity is attained when a computer system
performs its intended function without deliberate or inadvertent unau-
thorized manipulation. Data integrity is a requirement that informa-
tion and programs are changed only in a specified and authorized man-
ner.

e Availability: the system must be in an adequate operating state that
allows it to serve promptly legitimate requests from authorized users.

A computer security professional has to enforce this three triad legs, because
a weakness in one of them weakens the entire system. Using an easy analogy,
computer security is like a Middle Age castled sieged by an enemy army.
The defenders must detect and repair every breach they find to avoid the
enemy to occupy the castle, under pressure and in a stressful daily basis.
But attackers only need one unadverted breach to defeat the defenses and
occupy the castle.

Each one of these security properties have its counterpart in the malicious
hackers’ world, forming which is known as the DAD triad [Cha03]: Disclo-
sure, Alteration and Destruction. These three concepts are the consequences
of breaking the information security properties through attacks. There are
four generic types of attacks [VHO02|, aimed at affecting one or more security
properties of the CIA triad:

e Interruption: if the attacker achieves the loose of a system object, or
if it leaves it unusable or unavailable. Obviously, this kind of attacks
affect the system’s Availability and, in certain cases, also its Integrity.

e Interception: if the attacker gets unauthorized access to a system
object, affecting its Confidentiality.

e Modification: if the attacker not only gets unauthorized access to a
system object but also he (or she) replaces its content. This kind of
attacks damage the system’s Confidentiality and Integrity.

e Fabrication: when the attacker builds a fake system object to con-
vince other system participants that it is a legitimate one. The effects
of this attack depend on the purpose of the system and the intended
function of the fake object, so it potentially could affect the three com-
puter security properties.

These four generic attack schemes are depicted in Figure 2.3, where yellow
(L) squares represent legitimate system participants and red (A) squares
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{(a) Interruption (b} Interception
{c) Modification (d) Fabrication

Figure 2.3: Generic attack classes.

represent malicious attackers. In real world, the generic attacks taxonomy
is materialized in a large amount of specific attacks and techniques aimed
at specific computer system components, but at this point we only want to
outline the most widespread types of attacks:

e Man-in-the-Middle: It is the easiest attack on MANETs. An at-
tacker intercepts the communication between two legitimate system
components, reroutes the communication traffic between them, con-
vincing the attacked components that it is the opposite part of the
communication process. It is also a very common attack aimed to
steal valuable information between web clients and web servers, even
with SSL sessions [Bur02|. In a MANET running the DSR, or AODV
or any other protocol, a malicious node could cheat neighbouring nodes
to convince them that it is the best next hop for forwarding packets
to distant nodes. Once the packets are captured by the attacker, it
could perform a variety of malicious activities with these packets, and
in MANETS every communication between two distant nodes could be
intercepted by any malicious intermediate node.
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e Denial-of-Service (DoS): this is an attack performed to interrupt
the normal service of the attacked system|RH07|, an objective achieved
using a variety of techniques. It is very common nowadays in the form
of a Distributed Denial-of-Service attacks against web servers on the
Internet, when a lot of different malicious clients request service from
the attacked server, preventing it from serving legitimate requests or
even crashing the service. In a MANET, DoS attacks could be subtile,
i.e., when a node does not forward packets in behalf of other nodes (we
will discuss this problem later in section 2.4 as the root of the problem
we want to solve).

All these attacks and malicious techniques represent threats to the system.
This threats could also be associated to known, or unknown, system vulner-
abilities, due to poor programming techniques, system design errors, weak
passwords, etc. The probability associated to the materialization of a threat
on a information system resource is called a risk [VH02]. Computer security
can not achieve an aggregated information system risk value of 0, even in
very simple ones, due to their intrinsic complexity and heterogeneous com-
ponents. If we can not guarantee a risk-free computing, we can not say that
a computer system is secure. That is the reason why, in this scope, the con-
cept security is often replaced by the concept reliability, which better defines
what we can attain: i.e. a computer system state where “the implemented
techniques against threats achieve an affordable level of protection, assuming
a certain risk level, associated to those threats which present a very little
probability of occurrence, negligible from the system owner’s point of view,
or their prevention or mitigation techniques are too expensive compared with
the values of the assets or resources requiring protection” [VHO02].

So, we can say that security is a relative state. In fact, people tend to
think they are in a secure state only in two cases. First, if they are not aware
of some security risks. For example, this case is typically found in babies, who
are not aware of some risks present in their surrounding space and they get
hurt in domestic accidents without appropriate adult surveillance. Second,
which is more usual, if they assume that their risk level is acceptable to feel
secure. For example, when one drives a car, there is an intrinsic risk in speed
and the physics behind an unexpected sudden car detention. If we crash at
a high speed, the probability of being seriously damaged is also high. As
we are aware of this risk, we buy cars with as much security mechanisms as
we can afford to reduce the risk of personal damages, and we try to drive
carefully. In this case, we mitigate a risk, but we do not remove it. The only
way to remove the crash risk is to keep the car stopped and outside the way
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of other cars, which is obviously a nonsense. We buy a car to move from
one place to another, and we assume and accept a certain level of risk in the
task of driving that car as a drawback for the functionality obtained. With
computer security we must then balance risks, costs and benefits.

2.4 Misbehaved MANET nodes

MANETSs are formed by different types of wireless mobile devices, globally
referred as MANET nodes. According to [TKOY10], we will classify those
nodes as:

e Well-behaved nodes, if they cooperate with the MANET forwarding
activities to achieve the community goals. This means that they par-
ticipate in route discovery processes, providing accurate information
to their neighbours, and forwarding data or protocol control packets
whenever it is needed.

e Misbehaved nodes, if they act against the global MANET goals. In
this case, nodes are further classified into three classes:

— Faulty nodes, if they do not cooperate due to a hardware or soft-
ware malfunction. Their misbehaviour is not counscious, because
they are not aware about their disturbing behaviour.

— Selfish nodes, if they drop all the packets whose destination
node are not themselves, but they use other nodes to send their
own packets, motivated by saving their own resources. Thus, they
do not collaborate with the MANET forwarding activities.

— Malicious nodes, if they try to compromise the network security,
disturbing the normal behaviour for their own profit, and maybe
using multiple potentially damaging techniques.

As we stated earlier, MANETS rely on cooperation between nodes to achieve
the maximum network performance. When a MANET is deployed, we have
to assume that there could be a percentage of misbehaved nodes. Their
number, type, position and movement pattern are key issues which deeply
impact the network performance [SS10], but they are a priori unknown. So,
this network performance could be dramatically reduced if nothing is done to
cope with these threats, due to the decreasing packet delivery ratios triggered
by the misbehaved nodes dropping packets. To this end, an effective pro-
tection against these types of MANET nodes will be mandatory to preserve
the correct functionality of the network [KKSWO04|.
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As said previously, in a MANET there are basically two kinds of packet
flows: data packets and control packets that implement route discovery and
maintenance processes. However, not all misbehaved nodes have the same
impact on network performance, due to the type of packet flows they affect.
A really malicious node could damage the network by spoofing routes, flood-
ing the wireless channel, or carrying out a man-in-the-middle attack. These
are classical attacks that every network could suffer, and solutions have been
already devised in literature. It has been clearly stated in section 2.3 that
some of these classical attacks can be easily carried out in MANETS because
of the nature of the wireless communications channel. However, we are in-
terested in those potential attacks which are specific to MANETs [YHM],
and whose effects are significantly worse in this kind of networks. Even if we
can achieve a good protection level against certain types of MANET attacks,
these kind of networks is prone to suffer other attacks, e.g. Eavesdropping
[KN12|, Eclipse [SCDRO4], or Sybil [Dou02| attacks, whose prevention or
remediation techniques would be very interesting but they are outside the
scope of this text.

All types of misbehaved nodes —faulty, selfish and malicious— have a com-
mon behaviour: they do not participate in forwarding activities, a behaviour
which could be classified as a kind of Denial of Service attack. We com-
prise all these misbehaviour types using the term black hole. We define a
black hole [HCC*10] as a node that disrupts, intentionally or not, the com-
munication within its neighborhood, dropping the packets received without
forwarding them to their final destination. We also include in this definition
the concept of grey hole, which is a node that selectively forwards only
some of the packets, but not all of them.

At this point, it is appropriate to analyze which kind of packets a black
hole node could drop. We have to remember that there are two types of
packets that must be forwarded by the intermediate nodes along a packet’s
route from its source node to its destination: control (route request, route
reply and route error) packets, and data packets. To participate in MANET
communications, nodes must be in routes to other nodes, so the black hole
will act again itself if it drops the route request and route reply packets
for routes where it probably will be involved. But if the objective of the
malicious node is to damage the network performance, dropping route error
packets could be a good idea, and dropping data packets is maybe the best
one. Thus, we may expect that the misbehaviours we will find could vary
from dropping everything, for faulty and selfish nodes, to dropping only route
error and data packets, for those intelligent misbehaved nodes.
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Our work is aimed at increasing the security level of MANET deploy-
ments by reducing the negative effect that black holes could introduce in the
MANET performance. So, we do not aim our approach at solving a big set, of
MANET security threats, because we only will pay attention to black holes.
Additionally, we should accomplish this objective in a cost-effective way in
terms of time, computational requirements, and communication overhead.

2.5 Proposed approaches

Removing misbehaviour in community-built MANETSs is not an easy task. A
community-built MANET consists in a set of nodes belonging to a different
owner, but all of them willing to cooperate to achieve their individual objec-
tives. The first step to remove misbehaved nodes in that scenario is to detect
that misbehaviour. Once detected, certain actions must be taken to mitigate
its effects. So, every technique proposed to cope with this threat must have
at least two tasks: detect misbehaved nodes and react in consequence. The
most important of these tasks is the first one. A good detection is a good
start for a good response to a threat, and an efficient detection could be
used with different reaction/response schemes. Thus, in our work we have
set our focus on the detection mechanism to deal with misbehaved nodes that
act as black holes. For the response part of the security scheme, basically
there are two approaches in the literature, i.e., isolation and incentivation.
Isolation methods are intended to keep the misbehaved nodes outside the
network, excluding them from any ongoing communication. Incentivation
methods try to convince the misbehaved nodes to change their behaviour,
being collaborative instead of malicious. Isolation protects the working net-
work, although it could lead to network partitioning. Incentivation tries to
improve the MANET communication capabilities by increasing the number
of collaborative nodes and the general collaboration level. Isolation is the
only suitable method for all classes of black holes. Incentivation is useful
only for selfish nodes (section 2.5.2).

2.5.1 Intrusion Detection Systems

According to [0’L92], the Intrusion Detection System concept “refers to those
systems which are designed to monitor an agent’s activity to determine if
the agent is acting as expected or if the agent is exhibiting unexpected be-
haviour/...[”. This definition exactly matches what we are trying to design:
a technique which can assess if a MANET node is well-behaved or if it is
acting as a black hole. Intrusion Detection Systems, or IDS, are generally
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based on statistical data collection to perform their task, and one of the ba-
sic IDS forms is known as Watchdog [HCCM10|. Watchdog systems analyze
network traffic and detect misbehaviours, so they are widely used in most
of the proposed approaches from other authors that we will introduce in the
next sections.

The main problem that arises at this point when using watchdogs is how
to detect misbehaved nodes avoiding as much as possible wrong diagnostics,
like false positives or false negatives. A false positive appears when the se-
lected technique identifies a well-behaved node as a misbehaved one. A false
negative appears when the technique can not detect a misbehaved node, so
the network believes that it is a legitimate node, with its potentially dis-
ruptive effects. Thus, the accuracy level of a black hole detection technique
can be evaluated using three cuantitative variables: percentage of real black
holes detected (we call it D), percentage of false positives related to the to-
tal amount of detections (we call it FP), and percentage of false negatives
related to the real amount of black holes (we call it FN). Some appreciations
could be done over these metrics:

e D = 100% is the optimal result, but we have to pay attention to the
percentage of false positives, because we can achieve a D=100% declar-
ing as a black hole every node in the network, which, depending on
the specific response part of the security scheme, could take down the
whole MANET. Obviuosly, it is not an adequate strategy, but we have
to note that a very strict detection technique can increase D, but it
usually also increases FP. So, we have to tune the detection technique
to maximize D while minimizing FP to obtain good results.

e The values of D and FN behave oppositely, that is, increasing/decreasing
the value of D will decrease/increase the value of FN in the same
amount, and viceversa. This is because its addition results in the com-
plete set of existing black holes in the MANET.

Obtaining good results from the detection process in terms of accuracy is
one of the desired objectives. But we must select a technique providing a
decision over a particular node as soon as possible. First of all, we must not
to forget that a MANET consists in a set of mobile nodes, so mobility is a
characteristic that makes mandatory to design a quick detection technique
capable of obtaining an assesment over a new neighbouring node in a small
lapse. If the technique obtains a detection result when the node has left the
neighborhood, this technique is useless. So, accuracy and detection speed
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are critical issues when designing an approach for black holes detection in
MANETS, and the ideal metrics to compare different approaches.

A good watchdog implementation for MANET nodes is required to be as
protocol agnostic as possible, that is, no matter which routing protocol the
MANET runs, the watchdog obtains very similar metrics. Thus, this aspect
must be a design requirement when specifying the watchdog technique we
want to build.

2.5.2 Approaches to exclusively deal with selfishness

A selfish node is a MANET node that does not participate in the ongoing
communications, saving its own resources. The origins of this behaviour
could be a variety of circumstances:

e low battery: in this case, the selfish behaviour should dissapear when
the nodes gets their batteries filled up.

e battery saving policy: forwarding packets for other nodes leads to
power consumption, and for reduced battery capacity devices could be
mandatory to save as much battery as they can in normal operations,
avoiding to send packets not belonging to the node.

e misconfiguration: maybe a node should be capable of participate in
forwarding activities, but it has not been correctly configured to do so.

e user requirements: the user has decided that his/her device is not avail-
able to share its resources with other nodes. It is a human selfishness,
not technical.

Anyway, no matter why a node behaves selfish, this behaviour could damage
the MANET performance, as the other types of non-collaborative nodes do.
In section 2.5.3 we will introduce some generic techniques to deal with the
black hole attack, but in this section we will detail two techniques specially
designed to cope with the selfish behaviour. Generally, these are incenti-
vation techniques, aimed at re-integrating selfish nodes to the collaborative
nodes’ set, not to exclude them from the network. In these approaches, the
detection and response parts of the technique are not clearly recognizable.
Buttyan and Hubaux [BH00, BH03] presented a method using a virtual
currency called nuglet. FEvery node has a credit counter which will be in-
creased when the node forwards packets, and decreased when a node sends
his own packets. When a node has no nuglets, it can’t send its packets, so
it is a strong motivation for nodes to forward other nodes’ packets for its
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own benefit, and then, for the whole network benefit. The basic component
of this protocol is a security module executed by every participating node,
which consists in a tamper-proof hardware to store and increase/decrease the
nuglet counter. There are some interesting appreciations for this scheme:

e The initial value inserted in the nuglet counter is not expected to be
so high to drain the node’s battery only sending its own packets.

e At every node, buffers are required to store its own packets, because
when the node wont have nuglets it could not send them.

e Associations between neighbouring nodes must be secured through a
Public Key Infrastructure, to ensure that the flow of messages and
ACK is correctly managed by the security module of each node.

Zhong et al. [ZCY03]| go beyond the virtual currency approach present in
[BHO0, BHO03|, and they proposed SPRITE, a credit-based system to incen-
tivate participation of selfish nodes in MANET communication. It is based
on a Central Clearance System (CCS), which charges or gives credit to nodes
when they send or forward a message. So, if a node wants to send a message,
it must have sufficient credit to do it. That credit is earned by forwarding
messages for other nodes. In essence, their proposal is very similar to the one
proposed by Buttyan and Hubaux, but it is a llitle more flexible due to the
introduction of a sort of ’credit feeding rounds’. In this rounds, nodes will
be rewarded with additional credit by the CCS to ensure that possible lost
receipts sent by the nodes to the CCS may take down the network due to
a credit crisis. Obviously, this technique introduces more network overhead
than the previous one.

As shown, the response module of these two methods is integrated into
the incentivation method, so that if a node does not forward other nodes’
messages, it will not have credit to send its own messages, and it will be
practically excluded from the network until it will have enough credit. How-
ever, in general, incentivation methods proposed for MANKETS present some
basic weaknesses:

e They need some kind of infrastructure to maintain the accounting, so
the MANET will lose its ’infrastructureless’ characteristic and its func-
tionality will depend on additional elements, which could be affected
by other types of vulnerabilities.

e They usually rely on some kind of tamper-proof hardware to store
digital certificates or virtual currency amounts, which could be an un-
affordable requirement.
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e It has been said previously that these techniques do not correctly mit-
igate the effects of other types of misbehaved nodes other than selfish
ones, and it is a risky assumption to believe that this will be the only
type of attacker in a MANET environment.

So, once incentivation methods have been discarded as a general solution
for the black hole attacks, we will concentrate our efforts in the isolation
techniques as a more general response to this problem. We will introduce
some of these techniques in the next section.

2.5.3 Approaches to deal with the black holes in MANETS

Several solutions have been proposed for detecting and isolating misbehaved
nodes in MANETs. Marti et al. [MGLBO00| proposed a Watchdog and a
Pathrater over DSR protocol to detect non-forwarding nodes. Their ap-
proach maintains a rating for every node (Fresh, Member, Unstable, Suspect
or Malicious), based on the surrounding traffic analyzed by the watchdog,
and selects routes with the highest average node rating, avoiding those mis-
behaved nodes. The response module of this technique only relieves misbe-
haved nodes from forwarding packets, because they are excluded from routes
starting and finishing at well-bahaved nodes, but misbehaved node continue
getting their traffic forwarded across the network. This technique is very cou-
pled to DSR protocol, and does not properly isolate the misbehaved nodes;
its merit stands in the fact that it was the first proposal to deal with this
problem.

Another interesting proposal comes from Buchegger and Le Boudec [BLB05].
They proposed the CONFIDANT protocol over DSR, which combines a
watchdog, a reputation system, Bayesian filters, and information obtained
from a node and its neighbours to accurately detect misbehaved nodes. The
system’s response is to isolate those nodes from the network, punishing them
indefinitely. This approach is very interesting, and it must be acknowledged
as the inspiration for our proposal. The basic idea is simple: the system will
build an opinion about a node mixing information collected by the watchdog
and by its neighbours, just as we usually do in our social relationships.

According to these authors, this kind of technique must have the following
functionalities:

e Information representation and classification: to determine how the
monitored events are stored, and how they are translated into reputa-
tion levels to activate the response mechanism.

27



CHAPTER 2. RELATED WORK AND DEFINITIONS

e Second-hand information use: which comes from the neighbouring
nodes, and that will be used as additional data to obtain the repu-
tation value for each node, taking also into account the effects that
malicious nodes could have on the quality of this information.

e Trust: related to reputations, because this trust will be the basis to
compute or not the information received from those nodes.

e Redemption and secondary responses: to avoid that an isolated node
could not re-integrate into the MANET if its behaviour changes to a
well-behaved one.

Other authors, like Kargl, Klenk and others [KKSW04] propose MobIDS as a
detection mechanism for malicious nodes. This sytem is basically composed
of several software sensors, which are running in parallel to obtain a local
evaluation of the surrounding nodes. These local evaluations are shared with
other nodes to obtain a global characterization of the node under evaluation.
MobIDS only works integrated into a security architecture called SAM, and
uses only information from Secure DSR. These are strong prerequisites that
turn this approach into a less useful one, excessively tied to a specific en-
vironment. On the other hand, the novelty of this approach resides in the
utilization of several specialized nodes acting as watchdogs which watch over
the neighbouring nodes.

There are other detection mechanisms, more or less similar to the cited
above, like CORE [MMO02], and SORI [HWXKch], also based in some reputa-
tion information sharing degree. Finally, there are some approaches designed
for certain types of MANETS, like VANETS, whose aim is similar to one re-
ported here [GVKGO09].

2.5.4 Standard Watchdog

Once the response module of our IDS is clearly defined as an isolation
method, we will deepen in our study on the detection element of these meth-
ods, the watchdog, whose basic implementation will be discussed in this
section.

The first step to detect misbehaviours is to capture the traffic which
a node can hear over the wireless channel. To monitor this traffic around
a node, the nodes’ wireless interface must be able to work in promiscuous
mode, capturing all the packets that are sent within the reception range of
the node’s antenna. A simple watchdog implementation, running in a node,
overhears the packets transmitted and received by the node’s neighbours,
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Figure 2.4: Data flow from node A to node C in a MANET.

counting the packets that should be retransmitted by each one, and comput-
ing a trust level for every neighbour as the ratio of “packets retransmitted”
to "packets that should have been retransmitted”. If a node retransmits all
the packets that it should have retransmitted, it will have a trust level of 1.
If a node has a trust level lower than the configured tolerance threshold, that
node will be marked as malicious. This tolerance threshold must be tuned
to optimize the system performance.

These concepts are illustrated in Figure 2.4, where node D is running
a watchdog to detect misbehaved nodes. Node A needs sending a packet
to node C, but since node C is outside the neighborhood of node A, the
message has to be sent through a multi-hop route which includes node B. In
this situation, node D will overhear node A sending the packet to node B,
and node B sending the acknoledgement of that packet. So, node D knows
that B has to forward this packet because its destination is node C. If node B
forwards the packet and node D overhears this forwarding activity, it
will maintain B’s trust level. Otherwise, node B’s trust level will be reduced.
If B’s trust level falls below the tolerance threshold, node D will identify it
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as a black hole.

At this point, we must remember that there are two aspects that affect
the overhearing capacity of the node running the watchdog, thus influencing
the detection process [HCCM10]. They are mobility and transmission errors.
Nodes in a MANET move at variable speeds along unknown paths, so maybe
node B from Figure 2.4 will be outside the reception range of node D when it
forwards the packet from node A to node C. But node D has no way to know
whether B has actually sent the packet, and it reduces the trust level of B.
The second issue that may affect the detection process is the wireless physical
channel, which is prone to transmission errors and interferences. Again, if
an interference or packet collision blocks the reception of these signals at
D when B fowards the packet, the trust level of node B will be reduced,
although its behaviour has been correct. So, if the trust level of node B falls
below a tolerance threshold, node D will wrongly identify B as a black hole,
generating a false positive detection. Now, let us assume that B is really a
black hole node. If B and D are neighbours, there is not enough traffic to let
D characterize B as black hole, causing a false negative detection to arise.

In other words, to use a basic watchdog there will be some assumptions
we have to keep in mind:

e Conclusions about nodes need a certain amount of traffic overheard by
the watchdog for a neighbour to be statistically significative.

e Observations must fade with time, to allow nodes to reintegrate to the
network a certain time after been declared misbehaved. This function-
ality, of course, will only be applicable to those nodes which actually
are forwarding packets and some time ago they were not doing so.

e The accuracy level depends mostly in the established threshold. A
threshold near to one will probably produce a high level of false posi-
tives, leading to a network partitioning. On the other hand, low thresh-
old values will produce many false negatives.

These considerations raise some doubts about if the reliability of this ba-
sic implementation is suitable for MANETS, specially when nodes move at
high speeds. Studies available in the literature [HCCM10]| have shown that
this kind of watchdogs are characterized by a significative amount of false
positives, basically due to mobility and signal noise over the wireless chan-
nel, and that they must be improved to become suitable for a wide range
of MANET scenarios. Therefore, we can conclude that the basic watchdog
technique is feasible, but unsuitable, for this kind of networks in its current
form.
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2.5.5 Bayesian Watchdog

As we stated earlier, to detect misbehaved nodes, network monitoring is
needed. Every node must be aware of its neighbours’ behaviour, and watch-
dogs are a popular component for Intrusion Detection System dedicated to
this task. The main problem is that watchdogs are characterized by a signi-
ficative amount of false positives [HCCM10], basically due to mobility and
signal noise. Previous works from our group have evaluated a bayesian watch-
dog over Ad-hoc On-demand Distance Vector (AODV) routing in MANETS.
This bayesian watchdog results from the aggregation of a bayesian filter with
a standard watchdog implementation like the one presented in section 2.5.4.
Bayesian filters have been widely used in image treatment software and in
anti-SPAM filters for mail systems. The CONFIDANT approach [BLBO5|
also uses this technique.

The role of the bayesian filter in the watchdog is to probabilistically esti-
mate a system’s state from noisy observations [HCC*10|. The mathematical
foundation of the bayesian filter is the following: at time t, the state is es-
timated by a random variable ¥, which is unknown, and this uncertainty is
modeled by assuming that ¥ itself is drawn according to a distribution that is
updated as new observations become available. It is commonly called belief
or Beli(0). To illustrate the concept, let’s assume that there is a sequence of
time-indexed observations z1, 22, ..., Zn, ..., 2t. The Bel;(0) is then defined by
the posterior density over the random variable ¥ conditioned on all sensor
data available at time t:

Bely(0) = p(V|z1, 22, ..., Zn, ..., 2t) = Beta(ay, B;, 1) (2.1)

In this approach, the random variable § belongs to the interval [0,1]. Bayesian
filtering relies on the Beta distribution|Wal96|, a family of probability distri-
butions that stretch from 0 to 1, which is suitable to estimate the belief in
this interval, as shown in expression 2.1; o and {3 represent the state of the
system, and they are updated according to the following equations:

Ot4+1 = g “+ 2 (22)

Bri1 =P+ 2 (2.3)

The Beta function only requires two parameters that are continuously up-
dated as observations are made or reported. In this approach, the observation

31



CHAPTER 2. RELATED WORK AND DEFINITIONS

Algorithm 2.2 Bayesian Watchdog detection algorithm.
Every observation time Do
For all Node_j which is a neighbour
Node j is well-behaved
If (BayesianDetection())
Then Node j is malicious
EndIf
EndFor
EndEvery

Function BayesianDetection()
Obtain observations
Compute o and {3
Devaluate observations according to y
If relationship between o and (3 exceeds tolerance ®
Then return true
Else return false
EndIf
EndFunction

z; represents the information from the local watchdog obtained in time inter-
val [t,t + At] about the percentage of non-forwarded packets. The bayesian
watchdog uses three parameters: the first two parameters are o and {3, which
are handled over to the Beta function to obtain an estimation of the node’s
behaviour. Thus, we can say that o and 3 are the numeric representation of
a node’s reputation. The third parameter is v, which represents the devalua-
tion that old observations must suffer to adapt the watchdog’s behaviour to
a continuously changing scenario without penalizing certain nodes forever.
It is a mechanism to re-integrate nodes into the MANET if they change their
behaviour into a more cooperative one.

The general functionality of the Detection Module for the Bayesian Watch-
dog is outlined in Algorithm 2.2. As seen, every configured time lapse, the
watchdog evaluates through a bayesian filter all the observations obtained
from the traffic overheared. If the relationship between computed o and (3
exceeds the tolerance threshold, the node is marked as malicious, and the
Response Module will act in consequence, generally isolating it from any
network communication.

As a result of their work, Hortelano et al. [HCCT10] found that, com-
pared to the standard one, the bayesian watchdog reached a 20% accuracy
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gain, and it presents a faster detection on 95% of times. This enhancements
allow this technique to be feasible and suitable for MANETS, unlike the stan-
dard watchdog. However, although these were good results, a question arises
about if they can be enhanced in any way, because this watchdog implemen-
tation produces a moderate amount of false negatives and false positives
yet.

2.6 Summary

In this chapter we have introduced the MANET concept and its most impor-
tant routing protocols. We also have presented some basic security-related
concepts and we have characterized the different types of MANET nodes
from a security-concerned point of view. Finally, it has been presented the
state-of-the-art on approaches to deal with different kinds of node misbe-
haviours. One of this techniques, the Bayesian Watchdog, has been pre-
sented as a suitable solution for detecting black holes using locally collected
information. But this solution still presents room for improvements in the
area of false positives and false negatives production. In the next chapter,
we will introduce our proposal to deal with the threat that black hole attacks
represent for the MANET existence and performance, which is based in the
Bayesian Watchdog.
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Chapter 3

A Collaborative Bayesian
Watchdog

In this chapter we present our proposal to deal with the generic concept of
misbehaving nodes in MANETs. Then we will continue with the implemen-
tation details of our Collaborative Bayesian Watchdog. And finally, we will
evaluate our proposal through simulation in different scenarios.

3.1 Our approach

In the previous chapter we have claimed that the Bayesian Watchdog tech-
nique is good enough to detect black hole attacks in MANETs. However, this
technique still presents a lack of accuracy, because it produces a moderate
amount of false positives and false negatives. Additionally, detection speed
is a performance metric that it could be enhanced. So, in this Chapter we
will introduce a Collaborative Watchdog to improve the detection speed and
accuracy of the watchdog. Cooperation, or collaboration, is a trademark
in MANET environments, so why not combine individual watchdog results
with information coming from other nodes to obtain a collaborative detection
system?. This is the basic concept behind the proposal of our collaborative
bayesian watchdog. Every single node running an instance of a bayesian
watchdog combines its direct observations with reputation information re-
ceived from its neighbouring nodes. The basic assumption in this approach
is the honest majority principle [PP05|, which assumes that the majority of
nodes are likely to be well-behaved. It is arguable that this approach could
be affected by other types of attacks (as we analyze in section 3.5) and, as a
message passing technique, it will generate a little amount of traffic overhead
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in the MANET. Nevertheless, this technique has shown to be an excellent
solution for the black hole attack problem in these networks. This assevera-
tion does not only come from our simulation results [SOHOC'12, SO11], but
also from an analytical model [HOSOC™12b] that we developed to evaluate
the system performance, as we will show in following chapters.

3.2 Our Collaborative Bayesian Watchdog

Using the Bayesian Watchdog as the building block, we want to implement
a collaborative bayesian watchdog; a technique based on a message-passing
mechanism running in every individual node that allows publishing both self
and neighbour reputations [SO11]. Similarly to the bayesian watchdog, the
collaborative bayesian watchdog overhears the network to collect information
about the packets that its neighbours send and receive. Finally, it obtains
the o and 3 values for its whole neighbourhood, exactly in the same way
as those obtained by the bayesian watchdog. We call o and (3 “first hand
information” or “direct reputations”. In addition, periodically, the watchdog
shares its first hand information with its neighbours, for example, stuffing
HELLO messages with this information. We call this information “second
hand information” or “indirect reputations”. Of course, indirect reputations
must be modulated using a parameter 6, which represents the confidence
degree that a node will put on other node’s information about its common
neighborhood. Whenever required, every node running the collaborative
bayesian watchdog calculates, using expressions 3.1 and 3.2, the values of
o’ and ', which in this case are passed to the Beta function to obtain an
estimation of the maliciousness of a node.

VoV a(i), = a(i); + 6-mean(a(i)¥;)

JEN; kEN; J 2 (3.1)
L, Bi); + d-mean(B(i)*))
jeVNi keij B); = ’ 2 ’ (3:2)

where
e 4 is the node which is performing detection
e N; is the neighbourhood of node 1

e o(i); is the value of a calculated for every neighbour j of i, obtained
from direct observations at
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e (3(i); is the value of B calculated for every neighbour j of i, obtained
from direct observations at i

e a(i)¥; is the value of o calculated for every neighbour j of i, obtained

from observations of every neighbour k of j

° ﬁ(i)kj is the value of  calculated for every neighbour j of i, obtained
from observations of every neighbours £ of j

e § represents the level of trust or the relative importance that a neigh-
bour’s observed reputations have for node i

Basically, according to expressions 3.1 and 3.2, each node computes the
weighted average reputations for every one of its neighbours, based on the
reputation information received from the rest of them (i.e., the term &-mean(a(i)*;
in expression 3.1). This calculated values are then operated to average them
with the direct reputation data obtained by the node itself.

When indirect reputations arrive at a node from one neighbour node, it
only processes those reputations for its own neighbours, since reputations
about nodes that are not in its neighbourhood are not very useful at that
moment. Once the reputations for every neighbour have been obtained, the
watchdog obtains the ratio between o’ and 3’. Then, the detection only needs
a predefined tolerance threshold to compare with, thus identifying whether
a node is a misbehaved one.

Collector Detector

Direct Data Collector > Bayesian Filter

' Black Hole Detector

Indirect Data Collector » Collaborative Filter

Figure 3.1: Main components of the Detection Module for the collaborative
bayesian watchdog.

Figure 3.1 shows the main components of the Detection Module for our
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Algorithm 3.1 Black Hole Detector processing algorithm for the Collabo-
rative Bayesian Watchdog.
Every observation time Do
For all Node j which is a neighbour
Node_j is well-behaved
If ( BayesianDetection() or CollaborativeDetection() )
Then Node j is malicious
EndIf
EndFor
EndEvery

Function BayesianDetection()
Obtain observations
Compute o and {3
Devaluate observations according to vy
If relationship between o and (8 exceeds tolerance ®
Then return true
Else return false
EndIf
EndFunction

Function CollaborativeDetection()
Obtain neighbourhood reputations
Compute o’ and p’
If relationship between o and 3’ exceeds tolerance ®
Then return true
Else return false
EndIf
EndFunction

collaborative bayesian watchdog. First, each individual watchdog overhears
the network to make direct observations of its neighbours, thereby detecting
black holes as the bayesian watchdog does. Periodically, it receives reputa-
tion information coming from its neighbours and evaluates their behaviour
taking into account this second hand information as well as its direct obser-
vations.

The functionality of the detector module is outlined in Algorithm 3.1.
Basically, the BayesianDetection function performs an analysis over direct
observations, obtaining o and 3, as seen previously. If the relationship be-
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tween o and 3 exceeds a predefined tolerance level ®, the watchdog identifies
that node as malicious. These values of a and 3 for every neighbour are then
passed to the CollaborativeDetection function, which operates them with
second-hand information weighted with parameter 8, according to expres-
sions 3.1 and 3.2, to obtain o’ and {3’ for the same neighbours set.

For the sake of clarity, we will describe how our watchdog works through
the following example based on the MANET from Figure 3.2. Table 3.1

shows the second hand information received by node A from its neighbours!.

Figure 3.2: MANET for describing the Collaborative Bayesian Watchdog
functionality.

Node A combines data from Table 3.1 with the direct reputations ob-
tained by itself, and, for the sake of simplicity, it uses a & value of 1 in this
example; the tolerance threshold @ is set to 50?. These operations are ex-
ecuted in every node running our collaborative bayesian watchdog with its
own received and produced data, but in this example we show in Table 3.2

!Information received about itself by node A is discarded, and it is not shown here
2The tolerance threshold configured here raises a black hole detection alarm if o’ is 50
times bigger than (3’
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Neighbour ‘ Reputations received ({a(A)%;, B(A)%;}) ‘
F: {51}, G:{11,1}

E:{14}, G181}, {L,1]

E:{12}, P71}

C:{34,1}, D:{1,6}, F:{15,1]

B:{L,1}, D:{14}, E{1,3}, G:{13,1)
B:{1,2}, C:{52,1}, F:{27,1}, H:{1,6}
C:{21,2}, G:{2,13}

==l >l Neol RwiN@]livs)

Table 3.1: Second hand information received in node A

only the values obtained at node A.

. Reputations Detected as Black Hole?
Neighbour Direcf Indirect {a(A);», B(A);} Bayesian | Collaborative

B {1, 2} | {1, 1.5} | {1, 1.75} No No

C {43, 1} | {57, 1} | {50, 1} No Yes

D {1,4} | {1, 5} {1, 4.5} No No

E {1, 1} | {1, 3} {1, 2} No No

F {1,4} | {14, 1} | {7.5, 2.5} No No

G {3, 1} | {14,1} | {85, 1} No No

H {68, 1} | {44,1} {56, 1} Yes Yes

Table 3.2: Values of collaborative reputations calculated at node A of the
example

As Table 3.2 shows, node A will identify node H as a black hole using the
bayesian and collaborative versions of the watchdog, because both o and o’
are 50 times bigger than 3 and 3’, respectively. However, only node C will be
detected as malicious by the collaborative version, reducing the false negative
ratio, and thus improving the watchdog accuracy. In the next section we will
evaluate the improvements of this approach through simulations.

3.3 Simulation Performance Evaluation

The goal of this section is to evaluate the local improvements of our Collab-
orative Bayesian Watchdog compared to previous versions of watchdog im-
plementations. The main objectives of the collaborative bayesian watchdog
are shown graphically in Figure 3.3. In that Figure, we show a set of nodes,
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Figure 3.3: Graphical representation of the evaluation objectives for the
Collaborative Bayesian Watchdog.

classified as well-behaved and misbehaved. Over them, we draw three sub-
sets representing which nodes are detected as misbehaved by the two types
of non-collaborative watchdogs shown previously in sections 2.5.4 and 2.5.5,
and the expected results for our collaborative watchdog. Additionally, in
Table 3.3 we summarize these expectations.

We have implemented our collaborative bayesian watchdog as a Network
Simulator 2 (ns-2) extension to the AODV routing protocol, although this
implementation is protocol-agnostic. Once implemented, we have evalu-
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Node # ‘ Positives | Negative | False Positives | False Negatives

Standard 3 8,9,10 5,6,7 1,2,4
Bayesian 2,3 7,8,9,10 9,6 1,2
Collaborative 1,23 6,7,8,9,10 5) 4

Table 3.3: Summary of detection results for the three types of watchdogs in
Figure 3.3.

ated the impact that this approach has over the accuracy and the detection
speed, comparing the results from our collaborative bayesian watchdog with
those obtained with the non-collaborative version, the bayesian watchdog?.
Table 3.4 shows the characteristics of the scenarios we have selected for our
performance evaluation.

Parameter Value
Nodes 50
Area 1000 x 1000 m.
Wireless interface and bandwith 802.11 at 54 Mbps
Antenna Onmidirectional
Antenna range 250m.
Node speed 5,10, 15 and 20 m/s.
% of black holes 10%
3 0.8
Y 0.85
d 50
Fading 1
Neighbour time 1s.
Observation time 0.2s.
UDP Unicast traffic Three flows
UDP Broadcast traffic every bs.
Simulation time 352 s.
Scenarios 20

Table 3.4: Simulation parameters

3Comparing the Colaborative Bayesian Watchdog to the Standard Watchdog lacks of
interest, because as it has been demonstrated in [HCC'10], even the non-collaborative
Bayesian Watchdog performs much better than the Standard Watchdog. Thus, it makes
sense to compare our collaborative version only to the non-collaborative one.
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Some of these parameters, like the area, the number of nodes or the
speed, are needed by ns-2 to execute the simulation. Others, like 6, Y,
®, or Observation time, are needed by our code as input parameters. For
each test, we averaged the results of 20 independent simulations. To obtain
normalized results, we simultaneously executed a simulation of the bayesian
watchdog, and the collaborative bayesian watchdog with the same scenarios
and parameters.

3.3.1 Evaluating the detection speed

Accuracy is a key issue when detecting black holes, but speed is also impor-
tant. A watchdog that detects 100% of black holes but requires 10 minutes
is a useless watchdog. So, it is crucial that accuracy and speed will be well
balanced. In that sense, watchdog enhancements will target both speed and
accuracy issues.

Table 3.5 shows that, on average, 7% of the times our approach detected
black holes before the bayesian watchdog, with the same traffic pattern. For
the rest of the cases, it detects the malicious nodes at the same time. When
a node B enters* node A’s neighbourhood, our approach allows node A to
identify node B as a black hole with only a reputations sharing phase with
its common neighbours. This means that even if node B does not send or
receive any data or routing packet when it enters node A’s neighbourhood,
if it has been previously detected as black hole, node A will quickly mark it
as a black hole too.

Node Speed (m/s.) ‘ Percentage of earlier detections

5 1.04%
10 11.88%
15 9.66%
20 5.72%

Table 3.5: Percentage of detections where the Collaborative Bayesian Watch-
dog detects the black holes before the Bayesian Watchdog

In dense networks with traffic load equally balanced between malicious
and well-behaved nodes, both watchdog versions will perform nearly equally,
despite of the smaller number of packets that the collaborative bayesian

*In this context, entering a node’s neighbourhood means that this node is within com-
munication range and it announces its presence, for example, through a standard HELLO
message.
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watchdog needs to perform detections. This is because the interval between
packets is very short. Nevertheless, in networks with low traffic load and with
black holes that transmit a very small amount of packets, the performance
difference between the two approaches could be more significant in terms of
time. A single packet would make the difference between detecting a black
hole or not, and the collaborative bayesian watchdog obtains better results
in those cases.

Additionally, we can say that the collaborative bayesian watchdog obtains
the best results at a node speed of 10 m/s. In fact, when nodes move at 10
m/s. and 20 m/s. our approach introduces improvements of nearly 12%
and 6%, respectively. These results lead to the conclusion our collaborative
bayesian watchdog could be suitable for Vehicular Ah Hoc Networks.

3.3.2 Evaluating the detection accuracy

We now present and evaluate the results about the accuracy of our approach.
Tables 3.6-3.9 summarize the results of our simulations. The meanings of
the different rows are the following:

o “(A) % of Accuracy”: it shows the ratio of right detections with respect
to the total number of detections. Note that (100 — Accuracy) is the
% of false negatives.

e “(B) % of Coverage”: it denotes the percentage of real black holes
present in the MANET that have correctly been detected.

e “(C) % of False Positives”: it indicates the percentage of detected black
holes that are not real black holes.

e “(D) % Only detector”: it shows the percentage of total detections
(right or wrong) where the collaborative bayesian watchdog has been
the only one doing that detection

The results show that the detection accuracy (A in Tables 3.6-3.9) is also
slightly better than that for the non-collaborative bayesian watchdog, since
it is able to reduce the number of false negatives. For example, in Table 3.6,
our collaborative bayesian watchdog reduces the false negatives by 1.17%.
The fact is that a small amount of black holes, which are not detected by the
bayesian watchdog, are now detected by the collaborative bayesian watchdog
(row D). In fact, our approach is able to detect cases where a black hole
enters and exits from the range of a watchdog quickly. Although there is not
a big difference between them, the collaborative bayesian watchdog performs
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better in terms of accuracy compared to the bayesian watchdog, despite of
the node speed. With respect to the standard watchdog, our approach clearly

surpasses it in terms of detection accuracy.

‘ Standard | Bayesian ‘ Collaborative | Difference

(A) % of Accuracy 61.19 91.15 92.23 1.17

(B) % of Coverage 24.00 30.00 30.00 0.00

(C) % of False Positives 64.00 17.00 17.00 0.00

(D) % Only detector 0.78
Table 3.6: Simulation results for nodes moving at 5 m/s.

‘ ‘ Standard | Bayesian ‘ Collaborative ‘ Difference
(A) % of Accuracy a7.27 96.88 97.39 0.53
(B) % of Coverage 13.00 26.00 26.00 0.00
(C) % of False Positives 37.00 20.00 20.00 0.00
(D) % Only detector 3.77

Table 3.7: Simulation results for nodes moving at 10 m/s.

‘ Standard | Bayesian ‘ Collaborative ‘ Difference

(A) % of Accuracy 5545 | 9541 96.06 0.67
(B) % of Coverage 22.00 33.00 33.00 0.00
(C) % of False Positives 42.00 18.00 18.00 0.00
(D) % Only detector 0.78

Table 3.8: Simulation results for nodes moving at 15 m/s.

‘ Standard | Bayesian ‘ Collaborative ‘ Difference

(A) % of Accuracy 140.45 01.57 92.25 0.74
(B) % of Coverage 17.00 37.00 37.00 0.00
(C) % of False Positives 42.00 29.00 29.00 0.00
(D) % Only detector 0.55

Table 3.9: Simulation results for nodes moving at 20 m/s.
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3.4 Cost estimations

It is obvious that a message-passing technique introduces overhead in the
network, because the information shared by the nodes executing the col-
laborative bayesian watchdog competes for the channel with data packets
and control packets. We propose that this reputation information will be
included in standard HELLO packets, used by DSR, AODV, and OLSR pro-
tocols. In this case, if we compare the number of messages sent by a node
using a non-collaborative watchdog and those sent by a node running our
collaborative watchdog, there will be no difference between them. However,
the key issue here is how to reduce the total amount of bytes transferred
between nodes when they exchange reputation information, affecting as low
as possible the data packets’ transmission. The amount of information that a
node will send to its neighbours depends only on two dimensions: the size of
the neighbourhood and the interval established for the sharing process. The
bigger its neighbourhood is, and the shorter the interval is set, the greater
the total amount of data transferred. Also, the way individual watchdogs
send this information could increase the total amount of data exchanged.
In an in-band protocol, this information is attached to other protocol mes-
sages. In an out-of-band protocol, the reputation information will be sent
using special-purpose packets. Since each packet introduces overhead due
to headers and trailers introduced by the different network layers, we pro-
pose compressing the reputations data and insert them in standard HELLO
packets (in-band protocol). Let be

o Sp: size of standard HELLO messages (bytes).
e Sp: size of a single node’s reputation record (bytes).

e H: overhead introduced in the network by protocols at lower layers for
every packet transmitted (bytes).

e N: total number of nodes in the MANET.

e n: average number of neighbouring nodes for every node during the
life of the network or simulation time.

e t5,: interval between two consecutive HELLO messages sent by a single
node (seconds).

e t,,: interval between two consecutive sharing reputation messages sent
by a single node in a out-of-band protocol (seconds).
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e r: compression ratio (r:1). On average, a compresion ratio of 2:1 re-
duces the size of data by 50%.

e TC;: total cost of an in-band protocol (bytes).
e TC,: total cost of an out-of-band protocol (bytes).

In order to compare the incurred overhead we need to introduce the cost of
transmitting the HELLO messages and the special packets. Equations 3.3
and 3.4 analyze the generalized overhead generated by an in-band protocol
and out-of-band protocol for a given time T, respectively.

TC; = (H+SH+(SR'”))-N-£ (3.3)
TC, = (H + SH)-N-S; + (H + (51;?”)).1\7.75z (3.4)

Note, that the out-of-band equation 3.4 includes the cost of transmitting
the HELLO message. Let’s denote (@) as Sc, the average size of com-
pressed complete neighbourhood reputations, and substitute it in expressions
3.3 and 3.4. To compare the costs for each alternative, let’s substract T'C;
from T'C,, as:

T T T
TC,=TC; = (H+Sn)-N-—+(H+S)-N-——) ~(H+Su+5c)-N--— (3.5)
h m h

Next, we operate Expression 3.5 to simplify it:

H+5¢ Sc

TCo—TC; = N-T-(— -
m

) (3.6)

For a similar accuracy and speed results between the in-band protocol
and the out-of-band protocol, we have to agree that the average time between
two HELLO messages and the average time between two special reputation
packets must be similar, so we can say® that t; = t,, = t. Making this
substitution in Expression 3.6, the difference between both approaches is
TC,—TC; = N~H~%, that is, the difference in bytes between these proposals
is, at least, equal to the number of nodes, multiplied by the header size for
each packet, multiplied by the average number of times a reputation packet is

% Note that if tn < tm, the performance of the watchdog using the out-of-band protocol
will decrease, and if ty, > tm, its overhead will clearly increase with no guarantee of better
performance.
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sent. This value is obviously greater than zero, because none of the operands
can be zero. Thus, we can say that using an out-of-band protocol to exchange
reputation information is more expensive than using an in-band protocol, not
only if we compare the number of messages transmitted, but also in terms
of bytes transmitted.

As a result, we can conclude that our approach could allow saving a
significant amount of bandwith while achieving the results previously
shown in terms of black hole detection. In some routing protocols, like in
OLSR, HELLO packets are actually stuffed with neighbourhood information,
so it will be easy to develop a minor protocol revision to include reputation
information in those packets. On the other hand, by using HELLO packets
to send reputation information we increase the dependence of our watchdog
proposal to the underlying routing protocol.

3.5 Weaknesses and known limitations

Due to its current definition, our watchdog is not capable to deal with cer-
tain type of attacks closely related to the black hole attack. In this section
we analize those issues that had arisen while trying to use our collabora-
tion technique in different related environments, because we consider that
it is also important to know which weaknesses and limitations our proposal
pesents.

3.5.1 Fabrication attacks and Liars

Our approach relies on collaboration between well-behaved nodes to detect
those misbehaved ones. In our proposal, if a node sends false reputations
about its neighbours or other nodes, acting as an individual liar [WMHil], it
will affect the perception that its neighbours have about the whole neighbour-
hood, no matter if the fake information is positive or negative. Anyway, the
error level introduced in the detection process by this attitude will depend
only on the number of well-behaved neighbours around the liar node which
send correct information[MLB08|. Thanks to the honest majority principle,
and using the 0 parameter to modulate the weight of neighbours’ opinions in
the characterization of surrounding nodes, our approach is almost immune
to this problem.

If liars are present in the MANET, it will be very easy to deploy a defense
against them using its own reputation. Let node L be a liar node, and let
nodes A, B, C, and D their neighbours. If node L sends false reputations
about node D to nodes A, B, and C, these nodes can compare the reputation
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about node D they have, and if a big difference exists between these repu-
tations and those received from node L, in a continuous pattern, L could be
marked as malicious and isolated. So reputation information could be useful
not only to detect black holes, but also to detect liars. This technique is not
yvet implemented in our approach.

3.5.2 Cooperative attacks

A cooperative attack is carried out by a set of malicious nodes which act
coordinated to damage the network. In this scope, there are two kinds of
cooperative attacks which must raise our concerns®:

e Cooperative black hole attacks: a group of nodes act as individual
black holes cooperating to isolate other nodes and partition the net-
work [TS08]. A more ellaborated attack could consist in two lines of
malicious nodes, where the first line accept packets from the attacked
well-behaved nodes, and forward them to the black holes in the sec-
ond line. This attitude would make the misbehaviour detection nearly
undetectable from inside the attacked area.

e Cooperative liar attacks: in this case, a group of liars cooperate to
diseminate false reputation information.

Figure 3.4: Cooperative attack.

50f course, there are other cooperative attacks, like those against the route discovery
process, but they are not detailed here because they are out of the scope of this text.
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Those nodes must cooperate and move together to stay in touch with
each other to perform their attack, surrounding well-behaved nodes, and
they can also run a mix of cooperative attacks, lying and dropping packets
at a time. In Figure 3.4, red nodes (C, D, E, I, and K) cooperate to disrupt
the network. In this example, nodes F and H will be disconected from the
rest of the network if malicious nodes act as black holes or if they distribute
false reputation information about F and H.

Regrettably, our proposal is not capable, in its current implementation,
to detect, prevent or mitigate these types of attacks, except if the attack-
ers are in the limits of the attackers’ group, where true reputations can be
collected from well-behaved nodes and individual black holes should be de-
tected. However, those detections will not stop the attack, because malicious
nodes will continue affecting surrounded nodes, and watchdogs running in-
side the affected area will not be able to detect them, and surely they will
be isolated from the rest of the network. Then, when the group of attackers
leave the area, those affected nodes will be isolated until their reputations
will not be recalculated by its new neighbours.

3.6 Summary

In this chapter we have introduced our approach to deal with the black
hole attack in MANETs. We also have evaluated it through simulation
scenarios, and analyzed its costs and weaknesses. In general, our Collab-
orative Bayesian Watchdog has performed better than the non-collaborative
bayesian watchdog, both in terms of detection speed and accuracy, in this
latter case, by reducing the amount of false negatives.

But performing these studies in a simulator is a very time-consuming
task. First, the simulation parametrization, the scenario generation and the
simulation execution. Next, the collected data analysis. Thus, it is a con-
siderable effort behind a detailed study of a moderate amount of scenarios.
That the motivation for us to go further in our research to obtain perfor-
mance results in a efortless way. In the next chapters we will present a model
to evaluate these watchdog systems without the need of extensive simulation
and post-simulation data analysis.
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Chapter 4

An Analytical Model for
Collaborative Watchdogs

In the previous chapter we focused on evaluating the local performance of
the collaborative bayesian watchdog to detect black hole attacks. In order
to evaluate the global behaviour we found that simulation was not feasible,
due to its cost in terms of time. Simulating realistic scenarios is a complex
and time consuming task, which in addition to the also expensive analysis
activities on collected data, lead us to develop an analytical model. Thus,
the goal of this task is to model and evaluate the performance of our col-
laborative bayesian watchdog taking into account the effect of collaboration,
false positives and false negatives, using Markov chains.

In this chapter, we introduce the first version of our model for evaluating
the detection of black hole nodes, which only takes into account the effect
of collaboration and detection probabilities. In the next chapter, a more
accurate but complex model is introduced to evaluate the impact of false
positives and false negatives.

4.1 A brief introduction to Markov chains

Classical probability studies deal with independent events, where the knowl-
edge of the outcome of previous experiments does not influence the predic-
tions about the outcomes of the next experiment. If we consider the 'Heads
or Tails’ (coin tossing or throwing a coin in the air) experiment, the prob-
ability of every possible result is not influenced in any way by the result
of the previous throwing. If we know that the last result was 'Heads’, the
probability of the 'Heads’ result in the next throwing is the same in this
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case that if it has been ’'Tails’ previously. This kind of probability scenario
is called an independent trial process.

But not all chance processes are independent. Modern probability the-
ory studies chance processes for which the knowledge of previous outcomes
influences predictions for future experiments|GS97|, and Markov Chains are
a fundamental part of these studies. A Markov Chain could be described as
follows: we have a set of states S = {s1, s2,..., 87}, and the process starts
from one state s; and moves to other state s; with a transition probability
pij- Every move is called step, but it is possible that a step does not imply a
state transition, so it exists p;; as the probability of no transition. Often an
initial state is specified as the starting state of the chain, but it is possible
to define a probability vector for every possible starting state. Usually, the
complete set of transition probabilities is denoted by a square 7 X 7 transi-
tion matrix P. If the chain is in state s;, we denote the probability that it
will be in state s; n steps after as pgl). In general, if a Markov chain has r

states, the transition probabilities for two steps after the current state will
be [GS97]

pg‘) = Zpikpkj (4.1)
k=1

In fact, the probabilities for n steps after the current state are obtained
as the n-th power of matrix P (P").

When the probability of every transition from a state s; to any other state
is zero, so it is impossible to leave it, this state is called absorbing state, and
that chain is called absorbing Markov chain. In this type of chains, every
non-absorbing state is called {ransient. There are some interesting questions
related to absorbing Markov chains:

e What is the probability that the system will reach an absorbing state?
e How long will it take for the process to be absorbed, on the average?

e How many times will the process be in each transient state, also on the
average?

In general, the answers to these questions depend on the initial state and the
probability matrix, but we need to address them because they will be useful
for the evaluation of our model.

For an absorbing Markov chain, if the transitional states and absorbing

states are reordered and grouped, the transition matrix P in canonical
form is [GS97|
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P—(Cg ?) (4.2)

If v is the number of absorbing states and 7 is the number of transient
states, I is a v x v identity matrix, 0 is a v X 7 zero matrix, Q is a 7 X 7 matrix
whose elements p;; denote the transition probability between transient states
+ and j, and R is a 7 X v matrix whose elements p;; denote the transition
probability between a transient state ¢ to an absorbing state j. It is not
difficult to derive that the transition matrix after n steps, P", is in the

following form:
n_ [ Q" *
P" = ( 0 I (4.3)

where submatrix * could be expressed in terms of Q and R but it is too
complex to show it here and does not contribute to our goals at this time.
Q", which represent the transition probabilities between transient states,
tends to 0, because transition probabilities p;; in P are in the range [0, 1]
and the probability of not being absorbed in n steps is monotone decreasing.
So, as n increases, the probability of being in a transient state after n steps
approaches zero, so the probability of absorption approaches to 1.

For an absorbing Markov chain P, the matrix N = (I — Q)~! is called
the fundamental matriz for P. The entry n;; of N gives the expected number
of times that the process is in the transient state s; if it is started in the
transient state s;.

Additionally, given that the chain starts in state s;, it will be necessary for
us to know what is the expected number of steps before the chain is absorbed.
Using the fundamental matrix, we can derive that t; is the expected number
of steps before the chain is absorbed, given that the chain starts in state s;.
This t; is the ith element of vector t in expression 4.4

t=Nc (4.4)

where ¢ is a column vector all of whose entries are 1. This is because if we
add all the entries in the ith row of N, we will have the expected number of
times the process arrives at any of the transient states, given starting state
s;. Thus, ¢; is the sum of the entries in the sth row of N.

Since this point, we have studied the principal aspects of Discrete Time
Markov chains, characterized by the transition between states at every step.
But we must introduce now the concept of Continuous Time Markov
chain. In this type of chains, after the previous transition, the process
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remains in the current state for some random amount of time and then
transitions to a different state. At this point, it is important to cite two
additional types of Markov chains, which are not directly implied in our
work but are somewhat interesting:

e Regular Markov chains: those processes that long-range predictions for
them are independent of the starting state, that is, no matter which
was the starting state, a long term prediction on its outcome will always
be the same.

e Ergodic (or irreducible) Markov chains: those chains where it is possi-
ble to go from every state to every other state, but not necessarily in
one move.

Once introduced the mathematical foundations of our model evaluation, in
the next section we present the basic model.

4.2 Modelling collaborative detection

It is commonly accepted that building a model of a system requires some
simplifications. In our case, the main difference between the watchdog im-
plemented in the simulator and its model relies on the fact that the model
does not allow that nodes previously detected as misbehaved could re-enter
the well-behaved nodes set after a certain amount of time. This means that
if a node B is detected as misbehaved by other node A, this node A will
retain this information during its pertenence to the network and it will share
it with every node it will contact afterwards, spreading the bad reputation
of node B. In this case, we say that node A has a positive about node B’s
maliciousness. So collaboration, in this scope, does not rely on sharing nu-
merical representations of reputations, but relies on sharing a positive for
every misbehaved node known, no matter if it has been directly contacted
by the reporting node or not.

A collaborative node can have a positive about another node by one of
the following ways:

e Misbehaved (or malicious) contact: when a collaborative node detects
a misbehaved node through its local watchdog. Our model also allows
that even when a contact between a misbehaved! node and a well-
behaved node occurs, there is a probability that the well-behaved node

!Following what we introduced in section 2.4, in this scope we will interchangeably
continue using the expressions ’misbehaved node’, 'malicious node’ and ’black hole’ to
denote the node whose behaviour must be detected by the watchdog.
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does not detect the other node as a malicious one. We model this
behaviour as the probability of detection (pgq), which depends on the
efectiveness of the watchdog and other parameters like the relative
node speed.

e (Collaborative contact: when two well-behaved nodes contact each other,
they share their own list of misbehaved nodes. As in the previous case,
we model the probability of collaboration (p.), because a contact does
not always imply collaboration. This parameter allows us to adjust the
general level of collaboration in the network, from 0 (no collaboration
at all) to 1 (full collaboration).

First at all, we model the network as a set of IV wireless mobile nodes, with
C collaborative nodes and S black hole nodes (N = C + S) [HOSOCT12b|.
Our goals are: (i) to obtain the time required by all collaborative nodes to
realize who are the S black hole nodes in the network, and (ii) to calculate
how many reputation messages are generated. To do so, when a contact oc-
curs between two nodes, each one shares the information about which black
holes it knows that exist in the MANET. For our model, we assume that
the occurrence of contacts between two nodes follows a Poisson distribu-
tion with rate A\. This has shown to be valid for both human and vehicle
mobility patterns [GNKO05, ZFX 10, LSWT11]. There is some controversy
about whether this exponential distribution can reflect some real mobility
patterns. Empirical results have shown that the aggregated inter-contact
times distribution follows a power-law and has a long tail [CHCT07]. In
[CE09] it is shown that, in a bounded domain (such as the one selected
along this thesis), the inter-contact distribution is exponential but, in an un-
bounded domain, it follows a power-law distribution. The dichotomy of this
distribution is described in [KLBVO07]: where a truncated power law with
exponential decay appears in its tail after some cut-off point. The work in
[GLZC09] analyzed some popular mobility traces, and found that over 85%
of the individual pair distribution fits an exponential distribution. Therefore,
we consider that using an exponential fit is a good choice to model inter-
contact times. Moreover, using exponential distributions we can formulate
analytical models using Markov chains.

4.2.1 Our basic model

Our basic model asumes that there is only one black hole in the network
(S=1), so every node in the network will only be in one of two possible
states: NOINFOQ, if it has no information about the misbehaved node; and
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POSITIVE, if it knows which is the black hole node. In our model, at the
beginning the collaborative nodes have no information about the rest of the
network nodes, so all of them are in a NOINFO state which may change
when a contact occurs (see Figure 4.2). In Figure 4.1 (and its associated
Table 4.1), at the beginning, nodes 1, 2 and 3 are in the NOINFO state (see
Figure 4.1.(a)). After some time, node 2 detects the black hole node using
its watchdog (see Figure 4.1.(b)), which is a malicious contact. Some time
after, node 3 receives a reputation message from node 2 by a collaborative
contact and learns which is the black hole node (see Figure 4.1.(c))?.
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Figure 4.1: Obtaining positives.

*Looking at this Figure, node 1 could be in POSITIVE state because it is very close
to the black hole, but there is a probability of (1 — pgq) that the black hole will not be
detected by the running watchdog at node 1.

26



4.2. MODELLING COLLABORATIVE DETECTION

‘ Node ‘ Status in (a) ‘ Status in (b) ‘ Status in (c) ‘

1 NOINFO NOINFO NOINFO
2 NOINFO POSITIVE | POSITIVE
3 NOINFO NOINFO POSITIVE

Table 4.1: Status table for Figure 4.1

NOINFO » POSITIVE

Figure 4.2: State transition diagram when updating information about con-
tacted nodes.

Using a contact rate A, we can model the network using a Continuous
Time Markov Chain (CTMC) with states s; = (¢), where ¢ represents the
number of collaboratives nodes in the POSITIVE state. When a contact
occurs, ¢ may increase by one if one of the intervening nodes has a POSI-
TIVE. Thus, the final, or absorbing, state is ¢=C, and the system could be
modelled using a CTMC from initial state s; = (0), 7 = (C'—1) intermediate
states (which include s1) , and an absorbing state s.+1 = (C).

Next, we need to obtain the probabilities associated to every possible
transition (p;;). Given a state s; = (c), the possible transitions which can
occur are:

e (c) to (c+1): this transition takes place when a collaborative node
changes from NOINFO state to POSITIVE state. So the probability
of this transition could be derived as t. = (A-pg + A-c:p.)(C —¢). In
this expression, the term A-pg represents the probability of detection
due to the accuracy of the local watchdog. On the other hand, A-c-p,
represents the probability of transmission of the information about the
black hole node. This latter term depends on ¢ because the proba-
bility of transmission increases as the number of nodes in POSITIVE
state does. Of course, factor (C-c¢) represents the number of nodes in
NOINFO state.
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e (c) to (c): this occurrence represents 'no changes’. The probability of
this event obviously is to = (1 — t.).

Once we know the probablities associated to every transition, and using the
transition matrix P, it is possible to derive for the detection time 7'y and
the overall overhead or cost M, thanks to the mathematical foundations
introduced in the section 4.1. For the detection time Ty, we can use a
modified version of expression 4.4, as we only need the absorption time for
state s; = (0):

Td = leU (4.5)

where v1 = [1,0,0, ....,0].

To obtain the overall overhead or transmission cost, we have to obtain
the amount of messages transmitted to publish the information about black
holes in the network in each state s;. It is obvious that in state s; all the
nodes are in state NOINFO, so the amount of transmitted messages is zero
(m1 = 0). State sz starts when a node enters the POSITIVE state, so this
POSITIVE could only be sent by one sender to potentially all the other
nodes except himself for the duration of the state (this duration is denoted
as fy) with a rate A\ and probability p.. We can obtain the duration of
every state using the fundamental matrix IN, whose first row elements are
the expected times in each state starting from state 0. Thus, the expected
duration of state s; will be f; = N(1,i) Then, the number of messages sent
in this state could be obtained as mo = fo:A-(C-1)-p.. Analogously, for state
s3 , the number of messages will be mg = 2- fo-A-(C-1)-p., because there will
be two possible senders. Then, for state s;, the number of messages will be
m; = (i — 1)-fi-A-(C-1)-p.. Summing up all the messages sent in each state:

Mg = A(C-1)-pe: Z ®(si)-N(1,i) (4.6)
i=1
where ®(s;) is the number of senders in state s;, that is (i-1).

4.2.2 Enhancing the model to deal with more than one black
hole

We can easily extend this model to a more complex one where the number
of black holes is larger than one (S>1) [HOSOC*12b|. To do it, we must use
a S-dimensional Continuous Time Markov chain, starting with S=2, which
conforms a two-dimensions CTMC (for short, a 2D-CTMC). In this case,
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every state has two values, s; = (¢, ¢1), instead of one as introduced in the
previous section. The first value represents the number of nodes which have a
POSITIVE for black hole 1 and, analogously, the second value represents the
number of nodes which have a POSITIVE for black hole 2. When a contact
occurs, ¢; and ¢y can increase by one, and the absorbing state s,11 = (C,C).
So this 2D-CTMC has an initial state s; = (0,0), (C + 1)® — 2 transient
states, and a final state s,y; = (C,C). The transition rates p;;, given the
state s; = (c2,c1) are the following:

e (ca,c1) to (ea,c1 4+ 1): it is the same as when S=1, replacing ¢ by ¢y,
that is, te1 = (Apg + A-c1-pe) (C — c1).

o (ca,c1) to (ca + 1,c1): it is like the previous case, replacing c¢; by ca,
that is, te2 = (A-pg + A-c2:pe)(C — c2).

e (ca,c1) to (c2,c1): analogously to the S=1 case, tog = (1 — ta — te2).

With these values we can build the transition matrix P and the fundamental
matrix N. Then, the detection time T'; can be obtained using expression 4.5
for the initial state s; = (0,0). Once obtained the expressions for S=2, we
can derive them for S>2. In general, we have 7 = (C' + 1)° — 1 transient
states and, for every state s; = (cg,¢s—1, ..., ¢2, 1), the transition rate from
¢j to ¢j + 1 will be tej = (A-pg + A-¢jpe)(C — ¢j).

The only thing which remains to be complete for this model is the generic
expression for the overhead. It is assumed that every node transmits only
one message with all its POSITIVES when there is a contact. So, to use
expression 4.6, we need to establish the number of senders in every state,
which could be very complex for high values of S, because the number of
messages depends on the distribution of POSITIVES. So another simplifi-
cation is needed here: we must approximate the value of senders (®(s;)) by
bounding it. It is easy to observe that the number of senders in each state is
between the maximum of ¢; and the minimum between the sum of ¢; and C.
That is, max(s;) < ®(s;) < min(sum(s;),C), where maz(s;) = ma:c}9 1(c)

and sum(s;) = ZS

j=1¢;- Estimating that

S

D (s;) = average( maac ,Z cj) (4.7)
7j=1

that is, estimating ®(s;) as the average between the lower and upper
bounds, the number of messages could finally be calculated by using expres-
sion 4.6.
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4.3 Model validation

In this section we describe the validation process of the models presented in
the previous sections. In order to validate these models, the results obtained
with the models were compared with the simulation results. We implemented
all the models and the simulator in Matlab. The simulator is a simple event
driven simulator. The network model of this simulator has C collaborative
nodes, D destination nodes and S selfish nodes. This simulator generates
contact events with a given A rate. All the nodes have a vector of size S that
stores the information about each black hole node. This vector is initialized
with no state info and it can change to a positive state. When a contact
event occurs, it implements the behavior of the different models, using the
probabilities of detection (pg) and collaboration (p.) to change the state of a
node. The simulation finishes when all the destination nodes have a positive
for all the black hole nodes.

Inputs Results
Random Waypoint Model
. > Simulator > Td', Md'
=
N,C,5
T
; CTMC Model —> Td, Mmd
Pd,Pc | |
Contact Trace /
S
A

Figure 4.3: Model validation process.

‘ ‘ Ty Error (%) ‘ My Error (%) ‘
S—1 0.60 [0.14, 2.5] | 140 [2.32, 5.2]
S=1 | 5.00 [2.84, 12.4] | 9.31 [3.42, 153]

Table 4.2: Validation results for 100 random tests, presenting mean error
and 95% confidence intervals (in brackets)
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The model obtains the time and overhead (T'3,M4) from a set of inputs:
the rate of contacts (A), the network (N ,C,S) and the watchdog parameters
(pa,pc). The correctness of the model was validated by comparing the results
obtained from the model with simulation results. A graphical representation
of this process is shown in Figure 4.3. We used a random waypoint model
(RWP) generator to create a contact trace, which is used, on the one hand to
fit the A value that is used in our performance model and, on the other hand,
to simulate the contacts to obtain the simulation results. The tests have
different parameter values that are randomly generated within a pre-defined
range. Each simulation was repeated 1000 times in order to obtain a reliable
mean value for the detection time and cost (Tf,MdS,...). For example, for

the detection time, the relative error is € = Td;deS-IOO. The validation of
the models was based on a set of 100 repeated random tests. For each
test, a relative error ¢; of the detection time and cost were obtained. The
final result of the validation is the mean and the 95% confidence intervals.
For example, in the first validation, the values pg and p. were randomly
distributed between 0.1 and 1, the number of nodes N between 5 and 100,
and finally the A value has a random distribution of 0,1" with n from 1 to
5. In order to evaluate the accuracy of the mean max approximations for
S > 1, we performed different test for S = 1 and for S > 1. The results
are shown in Table 4.2. We can see that the differences between the models
and the simulation results are low. For S = 1 the results are very accurate
for all the models. For S > 1 the results show that the model is accurate.
The greatest error values take place for higher values of S and N since the
number of mathematical operations is huge, and so the precision is reduced.

4.4 Basic Model evaluation

To evaluate our model it is mandatory to use a known and suitable contact
rate. The value of A = 0.0135 contacts per hour (that is, 3.71 x 1076s71),
obtained in [ZFX*10], is a very good one for our purposes, because it is
based on real motion traces from about 2100 operational taxis in Shanghai
city. Using this rate, we studied the influence of the degree of collaboration,
the number of nodes and the number of misbehaved nodes in the results
obtained using our model.

Figure 4.4 shows how the probability of collaboration p. affects the de-
tection time and the message overhead for three different values of the prob-
ability of detection pg (0.1, 0.5, and 1.0). It is clear that a small increase in
pe from 0 to 0.2 exponentially decreases the detection time and increases the
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message overhead as well, and this behaviour is more visible for lower values
of pg. We must remark that with no collaboration at all (p. = 0), detection
time could reach to 3300 hours with pg = 0.1. So, watchdog accuracy (which
affect pg) and collaboration between nodes (with better p.) both reduce the
detection time in this scenario with only one black hole. The best collabo-
ration scenario, correspond to p. = 1, where every node runs a collaborative
watchdog, and the detection time is very low. On the other hand, message
overhead reaches its maximum, but we must say that it is lower than 7 mes-
sages per hour. Finally, we want to remark that increasing the probability
of collaboration from 0.4 to 1 has a low impact on the detection time and
message overhead.
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Figure 4.4: Influence of the degree of collaboration, for S=1 and N=50

To analyze the impact of the number of nodes in the network (see Fig-
ure 4.5), we have set three fixed pairs of p. and pg values. This analy-
sis shows that message overhead increases proportionally to the number of
nodes, while detection time reduces exponentially using any of the three pairs
of values. As expected, reducing collaboration and/or accuracy increases de-
tection time and message overhead.

To end with this basic model evaluation, we also studied the influence
that the number of black hole nodes will have on the results (see Figure 4.6).
As expected, the higher their number is, the higher the detection time is.
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Figure 4.5: Influence of the number of nodes, for S=1

Regarding to the message overhead, there is a exponential increase even for
small number of mishehaved nodes, but it begins to decay for S>10, due to
the reduced set of collaborative nodes, which can not perform collaborative
contacts as often as when the number of misbehaved nodes was lower. So
if there are less collaborative contacts, there will be less messages transmis-
sions.

4.5 Summary

In this chapter we have introduced and evaluated a basic model for the perfo-
mance evaluation of collaborative watchdogs for the detection of black holes
in MANETs. The aim of this work is reduce the effort needed to evaluate the
performance of these tools without simulating or building a real testbed. The
core of our model is a Continuous Time Markov chain, parametrized with
the degree of collaboration and the accuracy of the watchdog. The evalu-
ated metrics have been detection time and message overhead, and numerical
results showed that our collaborative watchdog can reduce the overall detec-
tion time with reduced costs in terms of message overhead. This reduction
can be obtained even with a moderate degree if collaboration.
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Figure 4.6: Effect of the number of black holes (S).

Our basic model does not deal with false positives or false negatives
events. Also it does not work well if we need to evaluate the performance
when only certain nodes must have the information about who the black
hole nodes are, which could be useful for applying our model to DTNs. In
the next chapter, we will propose and evaluate a more sophisticated model
including these functionalities.
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Chapter 5

Enhancing the Model for the
Collaborative Watchdog

As introduced in the previous chapter, there are some immediate improve-
ments which will allow us to better model the Collaborative Bayesian Watch-
dog. In sections 2.5.4 and 3.3, we paid attention to two undesired results
from the watchdog techniques: the appearance of false positives and false
negatives, so we must deal with them in our model. Thus, we will introduce
in our models the pernicious effect of false positives and false negatives. As
in the basic model previously proposed, the network is modeled as a set of N
wireless mobile nodes, where C of them are collaborative, D are the destina-
tion nodes (that is, the nodes that are going to receive the packet), and S=1
is the black hole node [HOSOC™12a]. Our goal will be to obtain the time
and overhead that a set of destination nodes need to detect who the black
hole is. The case when S>1 is not modeled, because the number of states
increases exponentially with S, so it can be computationally intractable.

5.1 System Model

In this model, every node has a list with the nodes it knows, and the state of
each one. Initially, each node has no information about the network. When a
contact occur, the black hole detection module of the watchdog can generate
the following events:

e PosEwvt (positive event): if the watchdog detects the contacted node
as a black hole.

e NegEut (negative event): if the watchdog believes that the contacted
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node is not a black hole.

e NolInfoEvt (no info event): if the watchdog has not been able to
decide wheter the contacted node is a black hole. This could be caused
by a very short contact time or a very small amount of overheared
messages.

Due to the generation of this events, a node can update its states table for
the other nodes in the MANET according to Figure 5.1. Every entry has an
expiration time, so the information about a particular node is deleted after
some time without contacting the node.

NegEwt POSITIVE
PosEwt
osEvt
NOINFO
egEvt
MNegEvt
PosEwvt
NolnfoEvt MNEGATIVE

Figure 5.1: State transition diagram when updating information about con-
tacted nodes.

Other major difference between the model we are proposing and the basic
model proposed in Chapter 4 is the reputation information diffusion. When
a contact between two nodes occurs, there is a transmission and reception of
information about known nodes between these contacted nodes. The infor-
mation about the positives is always transmitted, but information about the
negatives is troublesome, because it will produce excessive messaging or fast
false negatives diffusion. Thus, we have introduced a negative diffusion
factor ~, that is the ratio of negatives that a node sends when it contacts
another node. The value of v ranges from 0 (no negatives transmission) to 1
(all the negatives are transmitted). The importance and influence of v will
be detailed in section 5.3.
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Now, our watchdog is modelled using four parameters: the probability of
detection (pgq), the ratio of false positives (pyp), the ratio of false negatives
(pfn) and the probability of collaboration (p.). The first parameter, pg, re-
flects the probability that, when a node contacts another node, its watchdog
has enough information to decide whether a node is a black hole or not, that
is, to generete a PosFEut or a PosNeg events. This value depends mainly
on the observation time, and the transmission and mobility pattern of the
nodes, as we have demonstrated when evaluating the detection speed of the
Collaborative Bayesian Watchdog in section 3.3.1. Because the watchdog
can generate false positives and false negatives, we have introduced two new
parameters which can be expressed as a ratio or probability: py, is the ratio
of false positives generated when a collaborative node contacts other col-
laborative node, and pyg, is the ratio of false negatives generated when a
node contacts a black hole node. These values depend on the accuracy of
the watchdog (see section 3.3.2). The fourth parameter, p., as in the basic
model, models the probability of collaboration between two contacted nodes.

Finally, we must remark that this extended model, like the previous
one and the simulator, does not support liars which spread false reputation
information, thus all the nodes are considered collaborative nodes or black
holes.

Using the previous four parameters, we can derive the associated proba-
bilities of the PosEvt and NegEvt events when a contact occurs [HOSOC12a]:

e PosEuvt event:

— The node contacts a misbehaved node and its watchdog detects
it with probability pg-(1 — psn).

— The node contacts a collaborative node that has a POSITIVE
state about a black hole with probability p..

— A false positive can also be generated in a contact with a collab-
orative node with probability pg-py,.

o NegFEut event:

— The node contacts a collaborative node with probability pg-(1 —

Pfp)-
— The node contacts a collaborative node that has a NEGATIVE
state about a collaborative node with probability v-pc.

— A false negative can also be generated if a contact with a misbe-
haved node occurs with probability pg-pyn.
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Now, we are going to introduce several models that take into account the
effect of false positives and false negatives.

5.2 New analytical models

First, we are going to study the impact of false negatives. To ease the
exposition, we will initially assume that D = C, and later we will extend the
model to the generic case when D < C.

5.2.1 The model for D=C

Using A we can model the network using a 2D Continuous Time Markov
chain (2D-CTMC) with states (cp(t), cn(t))i>0, where c¢,(t) represents the
number of collaborative nodes that have a POSITIVE about the black hole
at time ¢, and ¢, () represents the number of collaborative nodes that have a
NEGATIVE about the black hole (note that, in this case, is a false negative).
At the beginning all nodes have no information. Then, when a contact
occurs, ¢p(t) and ¢, (t) can be increased by one. Note, that ¢, and ¢, are not
independent: ¢, + ¢, < C, so some states are not reachable. The absorbing
state is achieved when ¢,(t) = C. This 2D-CTMC model has an initial state
s1 = (0,0), afinal state (C,0) and 7 transient states, which are all the possible
permutations that sum C or less. In general, 7 = P5(C) = 0.5(C+1)(C+2).
Again, v is the number of absorbing states (v = 1). This model can be
expressed using the transition matrix P in the canonical form as the basic
model (see 4.2).

Now, we derive the transition rates p;;. Given the state s; = (¢p, ¢,) the
following transitions can occur:

e (cp,cn) to (¢p + 1,¢,): A new collaborative node has a POSITIVE.
The transition probability is tp = A(pa(1 — pfn) + Pecp)(C — ¢p — cn).
The term pq(1 — pyy) represents the probability of a PosEvt from the
watchdog and p.c, the probability of a PosEvt from collaboration.
Finally, the factor (C' — ¢, — ¢p) represents the number of pending
collaborative nodes. If there are no pending nodes, this value is 0.

e (¢p,cn) to (cp,cn +1): A new collaborative node has a NEGATIVE
(note that it is a false negative). The transition probability is ty =

)‘(pdpfn + ’chcp)(c —Cp — Cn)-

e (cp+1,cy) to(cp,cpn): A collaborative node that has a POSITIVE state
changes to NOINFO due to a NegEwvt. So, the transition probability is
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si—s; | 0,0 0,1 0,2 1,0 1,1 2,0
0,0 to tN 0 tp 0 0
0,1 tn to tn 0 tp 0
0,2 0 tn to 0 0 0
1,0 tpr 0 0 to tN tp
1.1 0 tp 0 tnr to 0
2,0 0 0 0 0 0 1

Table 5.1: Transition matrix for N=3.

similar to the new negative case: tpr = )\(pdpfn + Ypecn)cp.

e (cp,cn+1) to (cp,cn): A collaborative node that has a NEGATIVE
changes to NOINFO due to a PoskEvt. The transition probability is
similar to the new positive case t ' A(pa(1l — pgn) + YPeCp)Cn.

e (cp,cn) to (cp,cp): This is the probability of no changes, and it is
to=1—tp—tny —tpr —tn.

For example, for N=3, we have C=2, so 7 = 5 and v = 1, and the transition
matrix is shown in Table 5.1:

At this point, we are able to obtain how long will it take for the 2D-
CTMC to be absorbed using the transition matrix P with these rates p;;
and the same expression we used in the basic model (see expression 4.5):

Td = ’UlNU (5.1)

where v; = [1,0,0,....,0] and v is a column vector of 1s.

Regarding the overhead, again we need to obtain the number of messages
sent in each state s;, so we need first to know the duration of each state using
the fundamental matrix N. By definition, the elements of the first row of
N are the expected durations in each state starting from state s, so the
duration of state s; is f; = N(1,1).

More difficult is to obtain the expected number of messages m;, because
it depends on the diffusion model. Again, to ease the exposition we start
with v = 0 (only positives are transmitted):

e From state s; = (0,0) to state sc+1 = (0, C), no node has a POSITIVE
state, so no messages are transmitted and m; = 0.

e From state scio = (1,0) to state sascro = (1,C — 1), only one node
has a POSITIVE state that can be transmitted to all the rest of the
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collaborative nodes. for the duration of each state i (N(1,7)) with a
rate A and probability p.. So, m; = N(1,9)A\(C — 1)p..

e From state socys = (2,0) to state s3cro = (21,C — 2), there are two
nodes which have a POSITIVE state that can be transmitted to all
the rest of the collaborative nodes. for the duration of each state 4
(N(1,4)) with a rate A and probability p.. So, in this case the value of
m; is 2N (1,7)A(C — 1)pe.

Summing up, we can conclude that the overhead due to message transmission
is:

O = M(C-1) e 37 B(s:)-N(L) (52)
i=1

where ®(s;) = ¢, is the number of nodes with a POSITIVE in state s;.
Now, if v > 0, the ratio of nodes that will transmit information about their
negatives is exactly v, so finally ®(s;) = ¢, + ycn.

5.2.2 The model for D < C

Before we can evaluate the new model, we have a pending task, which cor-
responds to extend the model for the generic case when D < C. In this
generic case, the collaborative nodes set is divided into two separate subsets:
a set with D detecting nodes, and a set of M=C-D middle (or non-detecting)
nodes. This division is intended to analytically obtain the time and the over-
head required for the subset of detecting nodes to be aware of which the black
nodes are. For this task we will make use of a Four Dimensional Continu-
ous Time Markov Chain (4D-CTMC) with states (dp(t), dn(t), mp(t), mn(t)),
where

e d,(t) represents the number of detecting nodes with a POSITIVE state
at time t.

e d,(t) represents the number of detecting nodes with a NEGATIVE
state at time t.

e m,(t) represents the number of middle nodes with a POSITIVE state
at time t.

e m,(t) represents the number of middle nodes with a NEGATIVE state
at time t.
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There are two condition that these states must verify: d,(t)+d,(t) < D and
myp(t)+my,(t) < M. There will be v = P¥(M) absorbing states, which occur
when d,(t) = D, and 7 = (P¥(D) — 1) — P5(M) transient states. Again, we
can derive the transition rates p;;, given the state s; = (dp, dn, mp, my,) as
follows:

(dp, dp, mp, my) to (dp, dn, mp+1,my): A new middle node has a POS-
ITIVE. The transition probability is T5,p = A(pa(l — psn) + pe(my +
dp)) (M —my, — my).

(dp, dp, mp, my) to (dp, dp, my, mp+1): A new middle node has a NEG-
ATIVE (note that it is a false negative). The transition probability is
TN = /\(pdpfn + ’ch(mn + dn)(M — My — mn)

(dp,dp,mp + 1,my) to (dp,dpn, mp, my): A middle node that has a
POSITIVE state changes to NOINFO. The transition probability is
Tpr = )\(pdpfn + Vpc(mn + dn)mp'

(dp,dp,mp,my, + 1) to (dp,dpn, mp, my): A middle node that has a
NEGATIVE state changes to NOINFO. The transition probability is
TmN’ = A(pd(l - pfn) +pc(mp + dp)mn-

(dp,dp,mp,my) to (dp + 1,dp, mp, my): A new detecting node has a
POSITIVE. The transition probability is Typ = A(pa(1—pfn)+pe(mp+
dp))(D — dp — dy).

(dp, dp, mp, my) to (dp,dy, +1,mp, m, +1): A new detecting node has
a NEGATIVE (note that again it is a false negative). The transition
probability is Tyny = A(papfn + YPe(Mmn + dp)(D — dp — dy,).

(dp — 1,dp, mp,my,) to (dp,dy, mp,my): A detecting node that has a
POSITIVE state changes to NOINFO. The transition probability is
Typr = )‘(pdpfn + 'ch(mn + dn)dp~

(dp,dp — 1,mp,my) to (dp,dy, mp,my): A detecting node that has a
NEGATIVE state changes to NOINFO. The transition probability is
Tan' = Apa(1 = pyn) + pe(mp + dp)dn.

dy, dp, My, My to (dy, dy, My, my): This is the probability of no changes
‘ P P P
(pii), and it is Tp = 1 — z#ipij.

Using the transition matrix P with these rates p;; and expression 5.1, we
can obtain the expected detection time. Analogously, using expression 5.2,
we can obtain the message overhead.
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5.2.3 The effect of false positives

When a node has a false positive, the problem is that, due to the diffusion
of positives, this false positive can be quickly distributed in the network. A
way to evaluate this diffusion is to obtain the time when all nodes have a
false positive about a given node. Following the same process that in the
false negatives’ model, we have a 2D-CMTC with the same states (cp, ¢y),
but in this case ¢, represents the number of nodes with false positives, and
¢, the number of nodes with a negative. The transition rates (p;;) of the
transition matrix P are:

(papsp) + fep(cp, cn)(C = cp — cn) (cp = cp+1)
(pa(l _pfp)"'fcn(cpvcn)(c_cp_Cn) (en = cn+1)
)\(pd(l - pfp) + fcn(cpvcn) “Cp (C;D — Cp — 1)
(pdpfn + f(ip(cpvcn) *Cp (Cn — Cp — 1)

pi]’ = (53)

where (z — z+1) denotes a transition from state (...,x,...) to state (....x+1,...),
and, analogously (x — x — 1) denotes a transition from state (...,x,...) to
state (...,x-1,...). From these expressions, we can observe that the transition
rates are the same than in the false negative model in section 5.2 by replacing
Pfp = 1 — ppn. Therefore, we can use the previous models for obtaining the
detection time Ty and the overhead Oy, since false positives do not affect the
model itself.

5.3 Model evaluation

To finish our work with the analytical model, in this section we will evaluate
it. Specifically, we evaluate the effect that false positives and false negatives
will have on the performance of the collaborative bayesian watchdog using
our extended model. First, we will focus on evaluating the impact of false
negatives. Next, the influence of false positives. And at the end, we will
compare our contact-based message diffusion approach to a classical periodic
diffusion approach. All the experiments have been performed using a A value
of 0.01 contacts/s., which has been shown to be a valid value for vehicular
scenarios [ZFXT10].

In this evaluation we will not repeat the study on the influence of the de-
gree of collaboration and the number of nodes in the watchdog performance,
because it has been done for the basic model (see section 4.4) for v = 0,
that is, no transmission of false negatives at all, and it is still valid for the
extended model.
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Figure 5.2: Impact of false negatives for p; = 0.1 with v = 0 for several
values of pe.

5.3.1 Influence of false negatives

To analyze the influence of the transmission of false negatives, we started
with the experiments where there was no false negatives’ transmissions (y =
0), as in Figure 5.2. In this case, where S=1, D=1 and N=25, it is very
clear that the detection time is greatly reduced when p. is greater than zero.
Additionally, Figure 5.2 shows that the probability of false negatives does not
affect the detection time. This experiment showed that, as expectect, false
negatives had no influence on overhead where v = 0, with a value around 20
messages.

With the same parameters, but with v = 1, Figure 5.3 shows the effect of
full transmission of false negatives. For py, = 0, the results are very similar
for the v = 0 case, because if there is no possibility of appearance of a false
negative it does not matter if the nodes transmit them, because there will
not be anything to transmit. However, we can observe that for low degrees
of collaboration the detection time decreases and overhead increases in a
similar way that in the v = 0 case. But when p,. increases, the detection time
increases again and the overhead increases exponentially. The conclusion is
that it seems that collaboration amplifies the impact of false negatives. To
confirm this assumption, Figure 5.4 shows that the curves for greater values
of p. have a greater exponential slope. A similar behaviour has been observed
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Figure 5.3: Full transmission of negatives v = 1: Detection time and over-
head depending on collaboration.

for the overhead, because, in general, a greater detection time implies a
greater overhead.

Summing up, if only positives are transmitted, the detection time is
greatly reduced and the impact of false negatives is also reduced. However,
when all known negatives are transmitted, collaboration amplifies the effect
of false negatives on the watchdog performance. The results of these exper-
iments in the preliminary stage of the enhancement of our basic model lead
us to propose that not all the negatives must be transmitted (0 <y < 1).

5.3.2 Influence of false positives

To evaluate the influence of false positives in the watchdog, we will now
use the model developed in section 5.2.3. We expect that the diffusion of
negatives will reduce the influence of false positives. In order to understand
the following experiments, we must note that a greater detection time means
that the effect of false positives is reduced, because the difussion speed of
this false positives is also reduced. If we are not wrong, when v = 0 the
influence of false positives on the watchdog performance will increase when
compared to scenarios where v > 0.

In Figure 5.5a, we can observe that the detection time experiments a
drastic reduction due to the fast spreading of false positives, when v = 0.
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Figure 5.4: Impact of false negatives for v = 1 for several values of pe.

This behaviour is clear for those curves when p. > 0. This means that exists
an undesired effect which increases the false positives rate (pysp), so we must
also transmit the negatives to reduce this effect.

On the other hand, Figure 5.5b shows the results for v = 1. In this case,
the detection time is highly increased when the collaboration increases, thus
reducing the effect of false positives. The main conclusion of this analysis
is that we have the inverse case that in the false negatives case. If only
POSITIVES are transmitted, the effect of false positives is magnified, so we
need to transmit the NEGATIVES to reduce their impact, modulating it
with the v factor.

Finally, we evaluated the same scenario with v = 0.25, and presented
the results in Figures 5.6 and 5.7. Figure 5.6 shows that the detection time
is reduced even if the ratio of false negatives is high. Finally, Figure 5.7
depicts how the detection time increases when the collaboration increases,
which effectively reduces the effect of false positives.

The main conclusion is that the v parameter must be tuned up to achieve
the desired behaviour. A « values near to zero reduces the detection time,
but increases the diffusion of false positives. On the other hand, a values of v
near to one increases the detection time (due to the effect of false negatives)
while reducing the difussion of false positives.
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Figure 5.5: Impact of false positives for several values of p..

5.3.3 Contact-based difussion vs. other approaches

Finally, we compare our contact-based difussion scheme with a classical pe-

riodic message diffusion, like the one used in [BLB05, PW02|.

We only
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Figure 5.6: Results for a controlled diffusion of false negatives (7 = 0.25):
impact of false negatives.

compare the diffusion protocol, where when a node has information to share
it spreads it with a given period P. This reputation message will be received
by all the nodes present in the originator’s neighborhood. The performance
of this protocol clearly depends on the particular period P, because a short
period reduces the detection time but increases the overhead. A bigger pe-
riod P will increase the detection time while reducing the overhead.

The comparison between the two approaches, i.e. our contact-based dif-
fusion model and the periodic diffusion model, has been done through sim-
ulation, using ns-2, with mobility scenarios generated by setdest. We must
note that in the periodic approach only positives are sent. The parameters
we used in simulation are detailed in Table 5.2.

Figure 5.8 shows the results for the simulations, with period P rang-
ing from 1 to 30 seconds, in scenarios with 30 to 50 nodes. These results
confirm that increasing P implies a higher detection time and a smaller over-
head. Comparing these results with the ones obtained by our Collaborative
Bayesian Watchdog, included in Figure 5.8, the periodic diffusion scheme
has a lower detection time for periods below 4s, but with a higher overhead.
If P=2s, the detection time for the periodic approach is 963s (a 9% less than
the contact-based one), while the overhead is 5212 messages (an increase of
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Figure 5.7: Results for a controlled diffusion of false negatives (y = 0.25):
impact of false positives.

Parameter Value
Nodes 30, 40 or 50
Psp 0.17
Din 0.08
Dd 0.11
De 0.2
vy 0.25

Table 5.2: Simulation parameters to compare contact-based and periodic
diffusions.

4378% over the contact-based protocol). For similar detection times between
the two approaches (when P=4s), the periodic difussion approach shows an
overhead increment of 2972% compared to our contact-based approach.
Finally, regarding to the difussion time of false positives, although it
is reduced, the result show that it presents a false positive rate of 0.72,
which is unacceptable. This leads to the conclusion that using periodic
diffusion slightly reduces the detection time at the cost of highly increasing
the overhead, while it also exhibits a high impact of false positives on the
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Figure 5.8: Detection time and overhead for the periodic approach when
varying period P.

performance of this strategy, which leads us to consider it as a non viable
strategy.

5.4 Summary

In this chapter we have presented an enhanced version of the model presented
in Chapter 4. These enhancements consist on including into the model three
interesting aspects: modelling false positives, modelling false negatives, and
allowing that the detecting nodes set to be smaller than the collaborative
nodes set. This model spreads information about all the POSITIVES, but
only a fraction of the information about the NEGATIVES, indicated by the
~ factor, when a contact between collaborative nodes occurs. We have eval-
uated our extended model to conclude that the utilization of + reduces the
harmful impact of false negatives and also the impact of false positives. This
means that the effect of controlled collaboration proposed in our approach
can reduce the detection time, while increasing the detection accuracy at a
moderated message cost. This statement has also been validated by com-
paring our contact-based approach to a periodic diffusion approach, showing
that our proposal offers better results.
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Chapter 6

Conclusions, Publications and
Future Work

To finish this work, in this chapter we introduce our conclusions and out-
comes, the detailed list of publications generated during the reseach period,
and an outline of the tasks that could follow this thesis.

6.1 Conclusions

Throughout this thesis, two main contributions have been made: a security
technique, classified as an Intrusion Detection System, called Collaborative
Bayestan Watchdog, and an analytical model to evalute its performance in
different scenarios.

The first contibution has been the implementation of our Collaborative
Bayesian Watchdog, a security mechanism which allows to cooperatively de-
tect black hole attacks in Mobile Ad hoc Networks. In addition, we have
evaluated it, comparing the results with those obtained from other non-
collaborative watchdog versions. To easily compare the outcomes of the
different approaches, we have set two main metrics: detection speed, and
accuracy. The results showed that our approach improves previous non-
cooperative versions at an affordable cost in terms of computational com-
plexity, and message overhead. In terms of detection speed, in average, our
proposal detects earlier the black hole in 7% of times compared to previous
proposals. In terms of accuracy, in average, our approach reduces the amount
of false negatives by 1.17%. That is, our watchdog detects black holes which
are not detected by other approaches. This technique has produced good
results, but it takes a big amount of time and effort to obtain statistically
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significative results in large scenarios.

The second main contribution we made has been the proposal of an ana-
lytical model to evaluate the performance of collaborative watchdogs. With
these models, we dramatically reduced the time needed to evaluate this tech-
nique in different network scenarios. Initially, we presented a basic model,
where we only take into account the probabilities of detection and collabora-
tion. We obtained the detection time needed for all the collaborative nodes
to know who are the black holes present in the MANET, and how many
messages they have sent to achieve this state.

Once this model has been validated, our next step has been to improve
it to take into account the presence of false positives and false negatives in
the detections.

We have demonstrated that these models are suitable not only for MANETS,
but also for DTN systems. At this point, our models deal with the probabil-
ity of detection, the probability of collaboration, the effect of false negatives,
and the effect of false positives, thus allowing us to extensively study the
impact of every modelled parameter.

The evaluations done with this model show that if only information about
the positive detections are transmitted, the detection time is greatly reduced
and the impact of false negatives is also reduced. However, when all known
negative detections are transmitted, collaboration amplifies the effect of false
negatives on the watchdog performance. Thus, a controlled diffusion of in-
formation, as the one proposed in this thesis, can reduce the detection time,
while increasing the detection accuracy at a moderated message cost, re-
ducing the harmful impact of false negatives and also the impact of false
positives.

Overall, we explored and evaluated cooperation techniques that lead to
enhance the results of non-cooperating security techniques, like the watch-
dog, at an affordable cost. Throughout this work, with the Collaborative
Watchdog, we have demonstrated that using the adequate cooperative tech-
nique could be suitable, in terms of efficiency, to solve certain problems re-
lated to misbehaving nodes in MANETs and DTNs. Additionally, our model
has allowed us to quickly study and demonstrate that contact-based diffusion
strategy, like the one implemented in our Collaboration Bayesian Watchdog,
obtains better results than the classical periodic diffusion strategy proposed
in some previous approaches. Related to this subject, we can say that our
studies show that for similar detection times, periodic diffusion scheme has a
2972% more of message overhead than our proposed contact-based diffusion
scheme.
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6.2 Publications Related with this Thesis

The research work related to this thesis has resulted in nine publications;
among them we have three journal articles listed in the Journal Citation
Report, one book chapter, four international conference papers, some of them
indexed by the Computer Science Conference Ranking or the Computing
Research and Education (CORE), and one paper in national conferences.
We now proceed by presenting the publications list.

6.2.1 Journals

e Hernandez-Orallo, E.; Serrat-Olmos, M.D.; Cano, J.; Calafate, C. T ;
Manzoni, P.; "Improving Selfish Node Detection in MANETs Using a
Collaborative Watchdog" IEEE Communications Letters , vol.16, no.5,
pp-642-645, May 2012. JCR Impact Factor: 1.060.

e Serrat-Olmos, M.D.; Hernadndez-Orallo, E.; Cano, J.; Calafate, C. T ;
Manzoni,P.; “A Novel Approach for the Fast Detection of Black Holes
in MANETs* SAGE Concurrent Engineering Research and Applica-
tions journal (accepted, 2013). JCR Impact Factor: 0.478.

e Hernandez-Orallo, E.; Serrat-Olmos, M.D.; Cano, J.; Calafate, C.T.;
Manzoni, P.; “A Fast Model for Evaluating the Detection of Selfish
Nodes Using a Collaborative Approach in MANETS” Wireless Personal
Communications journal (accepted, 2013). JCR Impact Factor 2011:
0.503.

6.2.2 Book Chapter

e Serrat-Olmos, M.D.; Hernadndez-Orallo, E.; Cano, J.; Calafate, C. T ;
Manzoni,P.; “Fighting against black hole attacks in Mobile Ad Hoc
Networks” Book chapter (accepted, 2013), in the book “Security for
Multihop Wireless Networks”, to be published by Auerbach Publica-
tions, Taylor & Francis Group, USA .

6.2.3 International Conferences

e Hernandez-Orallo, E.; Serrat-Olmos, M.D.; Cano, J.; Calafate, C. T ;
Manzoni, P.;"Collaborative watchdogs: A fast and efficient approach to
deal with selfish nodes in MANETs," Fourth International Conference
on Ubiquitous and Future Networks (ICUFN), 2012, pages 68-73, 4-6
July 2012, Phuket (Thailand).
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e Serrat-Olmos, M.D.; Herndndez-Orallo, E.; Cano, J.; Calafate, C.T.;
Manzoni,P.; “A Collaborative Bayesian Watchdog for Detecting Black
Holes in MANETS” Proceedings of the 6th International Symposium
on Intelligent Distributed Computing (IDC), 2012. ISBN 978-3-642-
32523-6, pages 221-230 September 2012 Calabria (Italy).

e Hernandez-Orallo, E.; Serrat-Olmos, M.D.; Cano, J.; Calafate, C.T.;
Manzoni, P.; “Evaluation of collaborative selfish node detection in
MANETS and DTNs”. Proceedings of the 15th ACM international
conference on Modeling, analysis and simulation of wireless and mo-
bile systems (MSWiM '12), 2012, pages 159-166. October 2012, Paphos

(Cyprus).

e Serrat-Olmos, M.D.; Hernandez-Orallo, E.; Cano, J.; Calafate, C.T.;
Manzoni,P.; “Accurate Detection of Black Holes in MANETS using
Collaborative Bayesian Watchdogs 7 Wireless Days (WD), 2012 TFIP
, vol., no., pp.1-6, 21-23, November 2012, Dublin (Ireland).

6.2.4 National Conferences

e Serrat-Olmos, M.D.; Hernandez-Orallo, E.; Cano, J.; Calafate, C.T.;
Manzoni,P.; “Collaborative Watchdog to Improve the Detection Speed
of Black Holes in MANETYS”, Actas de las XXIII Jornadas de Par-
alelismo (JS 2012), Elche (Spain), September 2012

6.3 Future Work

In the development of this thesis several issues emerged which deserve further
scrutiny in the future. The ones we consider more relevant are the following:

e [s it feasible to enhance the collaborative bayesian watchdog we have
implemented on the simulator to detect black hole attacks even better
and quicker? That is, we have to analyze if we can obtain better results
with different watchdog parametrizations or with different statistical
functions over the collected data, thus enhancing the bayesian detector.
Also, there are open issues over the message overhead optimization.

e Which weaknesses and related attacks could be addressed with en-
hanced versions of our collaborative bayesian watchdog? In section
3.5 we cited some related attacks which our model does not properly
address, so this area is conducive for watchdog enhancements.
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e Small aspects of the implemented watchdog are not already included in
the models proposed, like the § parameter (see section 3.2), to allow the
model to weight the trust on the cooperating nodes. Also, in the early
stages of the model development we had to focus on simple network
models, and some simplifications had been done to start our work.
For example, our model currently does not support the obvervations
devaluation, which allow a node to be reinserted into the well-behaved
node set if it starts to behave well after been previously detected as a
black hole. Thus, these model enhancement are pending.

e Could our analytical model evolve to include all the new functional-
ities? Maybe some improvements in the watchdog performance, like
those related to better parametrizations, could not have a counterpart
in the analytical model, but we have to work on adapting the model
to the future watchdog implementations.

e Is it feasible to implement this techniques over a real testbed? Another
pending work consists on implementing the collaborative bayesian watch-
dog in a real hardware environment, like our MANET testbed “Cas-
tadiva” [HNCT07]. Tt would be very interesting to compare the results
obtained by using real hardware with those obtained in simulation, and
so, with those obtained with the analytical model.
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