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Universidad Politécnica de Valencia,

Edificio 8G, 2o, P.O.Box 22012 Valencia, Spain
bCEFyMAP, Universidad Autónoma de Chiapas, México,
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Abstract

This paper deals with the construction of numerical solution of random initial value
problems by means of random improved Euler method. Conditions for the mean
square convergence of the proposed method is established. Finally, an illustrative
example is included where the main statistics properties such as the mean and the
variance of the stochastic approximation solution process are given.
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1 Introduction

Random differential equations are powerful tools to model problems involving
rates of changes of quantities representing variables under uncertainties or
randomness, [1], [2], [3]. Many of these models are based on random differential
equations of the form

Ẋ(t) = F (X(t), t) , t0 ≤ t ≤ te, X(t0) = X0, (1.1)
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where X0 is a random vector and, the unknown, X(t), as well as, the right-hand
side F (X(t), t) are vector stochastic processes. Reliable numerical solutions
for problem (1.1) have been studied recently in [4], [5], [6]. In this paper, we
present a random improved Euler method and we establish its mean square
convergence in the fixed station sense. The proof of its convergence can be
straightforward adapted to the extension of the random framework of others
cases such as the so-called modified Euler and Runge-Kutta schemes [7], taking
advantage of the approach here presented; comments are added to this issue.
Apart from studying latter random scheme in order to obtain approximations
of the solution stochastic process, we are also interested in providing approx-
imations of the average and variance functions of the solution because they
revel important information about the statistical behavior of the solution.

This paper is organized as follows. Section 2 deals with some preliminary
definitions, results, notations and examples that clarify the presentation of the
paper. Section 3 is addressed to the analysis of the mean square convergence
of the numerical schemes here presented. An illustrative example is included
in the last section.

2 Preliminaries

This section deals with some preliminary notations, results and examples that
will clarify the presentation of the main results of this paper. Let (Ω,F , P )
be a probability space. In the following we are interested in second order
real random variables (2-r.v.’s), Y : Ω → R having a density probability
function, fY (y), such that E [Y 2] =

∫∞
−∞ y

2fY (y)dy < +∞, where E [·] denotes
the expectation operator. The space of all 2-r.v.’s defined on (Ω,F , P ) and
endowed with the norm

‖Y ‖ =
(
E
[
Y 2
])1/2

,

has a Banach space structure, denoted by L2. Let Xj, j = 1, ...m be 2-r.v.’s,
a m-dimensional second order random vector is given by XT = (X1, ..., Xm).
The space of all m-dimensional random vectors of second order (2-r.v.v.’s)
with the norm

‖X‖m = max
j=1,...,m

‖Xj‖ (2.1)

is a Banach space and will be called the Lm2 -space. Given an interval T ⊆ R, a
stochastic process {X(t), t ∈ T} defined on (Ω,F , P ) is called a second order
stochastic process (2-s.p.), if for each t ∈ T , X(t) is a 2-r.v. In an analogous
way, if for each t ∈ T , X(t) is a m-dimensional 2-r.v.v., then {X(t), t ∈ T} is
a second order m-dimensional vector stochastic process (2-v.s.p.). The covari-
ance matrix function of {X(t), t ∈ T} is defined by

ΛX(t) = E
[
(X(t)− E [X(t)]) (X(t)− E [X(t)])T

]
=
(
vij(t)

)
m×m

, (2.2)
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where vij(t) = E [X i(t)Xj(t)] − E [X i(t)]E [Xj(t)], 1 ≤ i, j ≤ m, t ∈ T . In
what follows, we shall assume that each r.v., r.v.v. and v.s.p. are of second
order unless the contrary is stated.
We say that a sequence of 2-r.v.v.’s {Xn}n≥0 is mean square (m.s.) convergent

to X ∈ Lm2 , and it will be denoted by Xn
m.s.−−−→
n→∞

X, if limn→∞ ‖Xn −X‖m = 0.

We say that a 2-v.s.p. {X(t) : t ∈ T} in Lm2 is m.s. continuous at t ∈ T , T
an interval of the real line, if limτ→0 ‖X(t+ τ)−X(t)‖m = 0, t, t + τ ∈ T,
and it is m.s. differentiable at t ∈ T , if there exists a 2-v.s.p., denoted by{
Ẋ(t) : t ∈ T

}
, such that

lim
τ→0

∥∥∥∥∥X(t+ τ)−X(t)

τ
− Ẋ(t)

∥∥∥∥∥
m

= 0, t, t+ τ ∈ T.

Definition 2.1 Let S be a bounded set in Lm2 , an interval T ⊆ R and h >
0, we say that F : S × T → Lm2 is m.s. randomly bounded time uniformly
continuous in S if

lim
h→0

ω(S, h)=0,

where ω(S, h) = supX∈S⊂Lm
2

sup|t−t′|≤h ‖F (X, t)− F (X, t′)‖m .

Example 2.2 Consider the function F (X, t) = AX+C(t), 0 ≤ t ≤ te, where
XT = (X1, X2), and

C(t) =

 0

G(t)+αB(t)
L

 , A =

 0 1

− 1
CL

−R
L

 , (2.3)

where B(t) is the Brownian motion, G(t) is a differentiable deterministic func-
tion in the interval [t0, te] and C,L,R, α are positive real constants.

Note that

(F (X, t)− F (X, t∗))T =

(
0,
G(t)−G(t∗) + α(B(t)−B(t∗))

L

)
. (2.4)

Using expression (3.115) of [3, p.63] and (2.4) it follows that, ‖F (X, t) −
F (X, t∗)‖m ≤ 1

L
max

{
0, |G(t)−G(t∗)|+ α|t− t∗| 12

}
. Hence F (X, t) is ran-

domly bounded uniformly continuous.

3 Analysis of the mean square convergence

Let us consider the random initial value problem (1.1) under the following
hypotheses on its right-hand side F : S × T → Lm2 , with S ⊂ Lm2 :
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• H1: F (X, t) is m.s. randomly bounded time uniformly continuous.
• H2: F (X, t) satisfies the m.s. Lipschitz condition

‖F (X, t)− F (Y, t)‖m ≤ k(t) ‖X−Y‖m ,
∫ te

t0
k(t)dt < +∞.

Note that under hypotheses H1 and H2, Theorem 5.1.2. of [3, p. 118] guaran-
tees the existence and uniqueness of a m.s. solution X(t) in [tn, tn+1] ⊂ [t0, te].
Moreover, conditions H1 and H2 guarantee the m.s. continuity of F (X, t) with
respect to both variables.
Now, let us introduce the random improved Euler method for problem (1.1)
defined by

Xn+1 = Xn + Φ(Xn, tn, h), X0 = X (t0) , n ≥ 0, (3.1)

where Φ(Xn, tn, h) = h
2

[F (Xn, tn) + F (Xn + hF (Xn, tn), tn+1)], F (Xn, tn) and
Xn are 2-r.v.v.’s, h = tn+1− tn, with tn = t0 +nh, for n = 0, 1, 2, . . .. We wish
to prove that under hypotheses H1 and H2, the scheme (3.1) is m.s. conver-
gent in the fixed station sense, i.e., fixed t ∈ [t0, te] and taking n such that
t = tn = t0 + nh, the m.s. error

en = Xn −X(t) = Xn −X (tn) , (3.2)

tends to zero in Lm2 , as h→ 0, n→∞ with t− t0 = nh.
With the notation introduced previously, let ejn, Xj

n, F j(X, t) be the j-th entry
of the random vectors en, Xn, F (X, t), respectively. Thus, ejn = Xj

n −Xj(tn),
and by the m.s. fundamental theorem of calculus, see [3, p.104], it follows that

Xj (tn+1) = Xj (tn) +
∫ tn+1

tn
Ẋj(u)du, n ≥ 0. (3.3)

From (3.1)-(3.3) and using that Ẋj(u) = F j (X(u), u), it follows that

ejn+1 =ejn+
∫ tn+1

tn
Gj(u)du, for all n ≥ 0, (3.4)

where Gj(u) = 1
2
F j (Xn, tn) + 1

2
F j(Xn + hF (Xn, tn), tn+1)− F j (X(u), u). As

F (X, t) is a m.s. continuous with respect to both variables, for j fixed, Gj(u)
is also m.s. continuous for each u ∈ [tn, tn+1]. Taking 2-norms in (3.4) and
using property 3 of [3, p.102], it follows that∥∥∥ejn+1

∥∥∥ ≤ ∥∥∥ejn∥∥∥+
∫ tn+1

tn

∥∥∥Gj(u)
∥∥∥ du. (3.5)

Let us bound the integrand appearing in (3.5) in the following way∥∥∥Gj(u)
∥∥∥ ≤ 1

2

∥∥∥F j (Xn, tn)− F j (X(u), u)
∥∥∥

+
1

2

∥∥∥F j(Xn + hF (Xn, tn), tn+1)− F j (X(u), u)
∥∥∥ . (3.6)
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Now, we proceed by bounding the first term of the right-hand side of (3.6) by
considering (2.1)∥∥∥F j (Xn, tn)− F j (X(u), u)

∥∥∥ ≤ ‖F (Xn, tn)− F (X(tn), tn)‖m
+ ‖F (X(tn), tn)− F (X(u), tn)‖m
+ ‖F (X(u), tn)− F (X(u), u)‖m . (3.7)

For the two first terms of latter right-hand side, using hypothesis H2 and (3.2),
one gets the following bounds

‖F (Xn, tn)− F (X(tn), tn)‖m ≤ k(tn) ‖en‖m , (3.8)

‖F (X(tn), tn)−F (X(u), tn)‖m ≤ k(tn)
{

max
j=1,...,m

∥∥∥Xj(tn)−Xj(u)
∥∥∥} , (3.9)

with u ∈ [tn, tn+1]. Note that by applying (3.3) in [tn, u] ⊂ [tn, tn+1] and using
again property 3 of [3, p.102], it follows that

∥∥∥Xj(tn)−Xj(u)
∥∥∥ =

∥∥∥∥∫ u

tn
Ẋj(v)dv

∥∥∥∥ ≤ ∫ u

tn

∥∥∥Ẋj(v)
∥∥∥ dv ≤MẊ (u− tn) , (3.10)

where MẊ = maxj=1,...,m sup
{∥∥∥Ẋj(v)

∥∥∥ ; t0 ≤ v ≤ te
}
. Taking into account

that h = tn+1 − tn > u− tn, from (3.9) and (3.10) one gets

‖F (X(tn), tn)− F (X(u), tn)‖m ≤ k(tn)hMẊ. (3.11)

Let SX be the bounded set in Lm2 defined by the exact theoretical solution
of problem (1.1), SX = {X(t) , t0 ≤ t ≤ te} . Then by hypothesis H1 and
Definition 2.1, we have

‖F (X(u), tn)− F (X(u), u)‖m ≤ ω (SX, h) , (3.12)

and by (3.8), (3.11) and (3.12), it follows that (3.7) is bounding by∥∥∥F j (Xn, tn)− F j (X(u), u)
∥∥∥ ≤ k(tn) ‖en‖m + k(tn)hMẊ + ω (SX, h) . (3.13)

The second term of the right-hand size of (3.6) can be bounded in a similar
manner by considering that∥∥∥F j(Xn + hF (Xn, tn), tn+1)− F j (X(u), u)

∥∥∥
≤ ‖F (Xn + hF (Xn, tn), tn+1)− F (X(tn) + hF (X(tn), tn), tn+1)‖m
+ ‖F (X(tn) + hF (X(tn), tn), tn+1)− F (X(u), tn+1)‖m
+ ‖F (X(u), tn+1)− F (X(u), u)‖m ,
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then, by applying hypotheses H1, H2, Definition 2.1, property 3 of [3, p.102]
and (3.10), one gets the following bound∥∥∥F j(Xn + hF (Xn, tn), tn+1)− F j (X(u), u)

∥∥∥
≤ k(tn+1) {‖en‖m (1 + hk(tn)) + 2hMẊ}+ ω (SX, h) . (3.14)

Hence, by (3.5), (3.6), (3.13) and (3.14) one obtains

‖en+1‖m ≤ ‖en‖m

{
h

2
k(tn) +

h

2
k(tn+1) (1 + hk(tn)) + 1

}
+B (3.15)

where B = h
{
ω(SX, h) + hMẊ

(
k(tn+1) + 1

2
k(tn)

)}
. By (3.15) and lemma 1.2

of [7, p.18], one gets, ‖en‖m ≤ exp(nδ) ‖e0‖m+ exp(nδ)−1
δ

B, where δ = h
2
k(tn)+

h
2
k(tn+1) (1 + hk(tn)). As nh = t − t0, tn+1 = h + t, ‖e0‖m = 0, the last

inequality can be written in the form

‖en‖m ≤
exp

{
t−t0

2
{k(t) + k(t+ h)(1 + hk(t))}

}
− 1

1
2
{k(t) + k(t+ h)(1 + hk(t))}

×
{
ω(SX, h) + hMẊ

{
k(t+ h) +

1

2
k(t)

}}
. (3.16)

From (3.16), it follows that {en} is m.s. convergent to zero as h→ 0. Summa-
rizing the following result has been established:

Theorem 3.1 With the previous notation, under the hypotheses H1 and H2,
the random improved Euler method (3.1) is m.s. convergent and the discretiza-
tion error en defined by (3.2) satisfies the inequality (3.16) for t = t0 + nh,
h > 0, t0 ≤ t ≤ te.

Note that, under hypotheses H1 and H2, the mean square convergence is
straightforward adapted to similar schemes such as Euler modified which
yields by taking Φ(Xn, tn, h) = hF (Xn + 1

2
hF (Xn, tn), tn + 1

2
h), or the clas-

sical Runge–Kutta method (see, [3, p.67]), that is, taking Φ(Xn, tn, h) =
1
6

(k1 + 2k2 + 2k3 + k4), where k1 = F (Xn, tn), k2 = F (Xn + 1
2
hk1, tn + 1

2
h),

k3 = F (Xn + 1
2
hk2, tn + 1

2
h), k4 = F (Xn + hk3, tn + h) in (3.1).

4 Numerical results and conclusions

In this section we apply the Euler improved method and Euler method see [5],
to a second order differential equation. As a first example, we introduce ran-
domness into the equation by means of the initial conditions and source term.
This is because the theoretical solution is available. After that, we consider a
second example where the theoretical solution is not available by introducing
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randomness into the equation through one of its coefficients, initial conditions
and source term. To make more complete this last example, we use the Monte
Carlo (M.C.) method to compare the numerical results.

Example 4.1 Let us consider the random differential equation given by

LQ̈(t) +RQ̇(t) +
1

C
Q(t) = G(t) + αB(t), Q(0) = Q0, Q̇(0) = I0, (4.1)

where Q(t) is the charge at time t, L is the inductance, R is the resistance, C
is the capacitance and H(t) = G(t) + αB(t) represents the potential source at
time t being B(t) a Brownian motion and G(t) = 24 sin(10t). By introducing

the vector X(t)T = (X1(t), X2(t)) =
(
Q(t), Q̇(t)

)
, model (4.1) can be written

as follows: Ẋ(t) = F (X(t), t) = AX(t) + C(t), where C(t) and A are given
by (2.3). By example 2.2, H1 holds, and H2 is easy to check. So, by Theorem
3.1, the random improved Euler method is m.s. convergent and in this case it
is given by

Xn = (RA,h)
n X0 +

1

2
h
n−1∑
i=0

[
(RA,h)

n−1−i
]

[(I + Ah)C(ti) + C(ti+1)] , n ≥ 1,

(4.2)
where RA,h := I+Ah+ h2

2
A2, being I the identity matrix of size 2. Henceforth

we will assume that Q0 and I0 are 2-r.v.’s independent of B(t) for each t ≥ 0
such that E[Q0] = 0.1, E [(Q0)

2] = 0.5, E[I0] = 0, E [(I0)
2] = 0.05. Taking

into account these data, (2.2) and (4.2), one obtains the approximations for
the mean and variance of the charge Q(t) by means of random improved Euler
method. We compare our results with respect to the Euler approximations,
see [5], and the theoretical ones, see [3, p. 154]. Tables 1 and 2 show our
results by taking α = 0.5, C = 0.02, R = 6, L = 0.5. Clearly the improved
Euler method provides better approximations as h goes to zero. Now, suppose
that the resistance R is a r.v. following a uniform distribution on [6, 7] and
the rest of the data as were stated before. Therefore, the matrix A becomes
random and the computations of the mean and variance from (4.2) are more
laborious than the last example. Because R is bounded, condition H2 holds
true. Condition H1 follows from example 2.2. From [5], we see that conditions
H1 and H2 are sufficient for the m.s. convergence of Euler method. Hence the
m.s. convergence of the Euler method as well as Euler improved method are
guaranteed in this last case. As a consequence of this fact and theorem 4.3.1 of
[3], the mean and variance obtained from Euler and Euler improved methods
are also convergent. In tables 3 and 4 we show the numerical results. Column
µ50000
X (t) include M.C. approximations, taking 5×104 silumations. Simulations

for the Brownian motion were made by using the function

SB(r, L) =
√

2
L∑
n=0

sin
(
n+ 1

2

)
πt(

n+ 1
2

)
π

z.
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points Euler improved Euler Euler improved Euler theoretical value

tn = nh h = 1/40 h = 1/40 h = 1/80 h = 1/80

0.2 0.244167 0.276526 0.261959 0.275337 0.274961

0.4 0.288691 0.210613 0.248255 0.213224 0.214190

0.6 -0.460131 -0.393853 -0.424472 -0.393106 -0.39308

0.8 0.022128 0.069489 0.445390 0.064280 0.062646

1.0 0.452318 0.331677 0.388030 0.335071 0.336368

Table 1
Approximations for the mean of Example 4.1

points Euler improved Euler Euler improved Euler theoretical value

tn = nh h = 1/40 h = 1/40 h = 1/80 h = 1/80

0.2 0.011265 0.022419 0.017010 0.023005 0.023149

0.4 0.009948 0.003969 0.004293 0.004403 0.004403

0.6 0.000090 0.000192 0.000074 0.000203 0.000206

0.8 0.000172 0.000097 0.000141 0.000103 0.000105

1.0 0.000094 0.000087 0.000087 0.000087 0.000087

Table 2
Approximations of the variance of Example 4.1

points Euler improved Euler Euler improved Euler µ50000
X (t)

tn = nh h = 1/40 h = 1/40 h = 1/80 h = 1/80

0.2 0.240867 0.270931 0.257344 0.26980 0.26863

0.4 0.277701 0.206378 0.240992 0.208869 0.209859

0.6 -0.423197 -0.365072 -0.39205 -0.364483 -0.364567

0.8 0.017576 0.062072 0.038597 0.057478 0.056053

1.0 0.411907 0.307001 0.357109 0.310004 0.311212

Table 3
Approximations for the mean of Example 4.1

points Euler improved Euler Euler improved Euler µ50000
X (t)

tn = nh h = 1/40 h = 1/40 h = 1/80 h = 1/80

0.2 0.016869 0.029248 0.023341 0.029812 0.030141

0.4 0.006256 0.002112 0.004004 0.002316 0.002405

0.6 0.000480 0.000476 0.000452 0.000486 0.000496

0.8 0.000124 0.000090 0.000107 0.000090 0.000089

1.0 0.000573 0.000269 0.000387 0.000275 0.000277

Table 4
Approximations of the variance of Example 4.1

Where z is a standard normal r.v. and L is the truncation order of the trigono-
metric series. In this calculations L = 100. We can observe the convergence of
the mean and variance by using Euler and Euler Improved methods as h goes
to zero. Also the results of the mean and variance obtained with M.C. method
are alike.
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In this paper, we have presented the proof of the mean square convergence of
an improved Euler random numerical scheme for systems of random differen-
tial equations. The more remarkable contribution of the present work is that
the results here established do not depend on the sample or trajectory behavior
of the data processes which allow us to apply the techniques to further random
differential equations. In addition, we take advantage of the improved Euler
random numerical scheme for computing directly the main statistic properties
such as the expectation and variance of the mean square approximations. An
important feature of this approach is that the mean square calculus guaran-
tees that these approximations converge (in the mean square sense) to the
exact ones. On the other hand, the example shows not only the theoretical
aspects treated throughout the paper but also that the scheme here developed
improves the corresponding approximations obtained from the Euler random
numerical scheme as well as they agree with the theoretical results.
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