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Abstract

The present Thesis employs ideas of set invariance and sliding modes
in order to deal with different relevant problems in control of nonlinear
systems. Initially, it reviews the techniques of set invariance as well as
the more relevant results about sliding modes control. Then the main
methodologies used are presented: sliding mode reference conditioning,
second order sliding modes and continuous approximation of sliding
modes. Finally, the methodologies are applied to different problems in
control theory and to a variety of biologically inspired applications.
The contributions of the thesis are:

e The development of a method to coordinate dynamical systems
with different dynamic properties by means of a sliding mode aux-
iliary loop shaping the references given to the systems as function
of the local and global goals, the achievable performance of each
system and the available information of each system.

e The design of tuning methods for second order sliding mode al-
gorithms. The methods decouple the problem of stability analysis
from that of finite-time convergence of the super-twisting sliding
mode algorithm. A nonlinear change of coordinates and a time-
scaling are used to provide simple, yet flexible design methods
and stability proofs. Application of the method to the design of
finite-time convergence estimators of bioprocess kinetic rates and
specific biomass growth rate, from biomass measurements. Also
the estimators are validated with experimental data.

e The proposal of a strategy to reduce the variability of a cell-to-cell
communication signal in synthetic genetic circuits. The method
uses set invariance and sliding mode ideas applied to gene expres-
sion networks to obtain a reduction in the variance of the commu-
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nication signal. Experimental approaches available to modify the
characteristics of the gene regulation function are described.



Resumen

La presente Tesis emplea técnicas de invarianza geométrica de conjun-
tos y modos deslizantes para tratar diferentes problemas en control de
sistemas. Inicialmente revisa las técnicas existentes de invarianza de
conjuntos, asi como los resultados mas relevantes del control por modos
deslizantes. Luego se presentan las principales metodologias utilizadas:
acondicionamiento de referencia, modos deslizantes de segundo orden,
y aproximacién continua de modos deslizantes. Finalmente las meto-
dologias presentadas son utilizadas para tratar diferentes problemas en
teoria de control y biologia sintética, y utilizadas en una variedad de
aplicaciones.
Las aportaciones de la tesis son:

e Coordinacion de sistemas dindmicos con dindmicas distintas.
Se presenta una metodologia para coordinar sistemas dindmicos
con diferentes caracteristicas y propiedades. Esta nueva meto-
dologia se basa en principios de invarianza y control por modos
deslizantes para modificar las referencias que se envian a los sis-
temas involucrados, teniendo en cuenta las caracteristicas propias
de cada sistema junto con sus restricciones.

e Disefio de algoritmos de control por modo deslizante de se-
gundo orden. Se proponen métodos para disefiar algoritmos de
modos deslizantes de segundo orden desacoplando el problema
de estabilidad del problema de la convergencia en tiempo finito.
Se utilizan un cambio de coordenadas no lineales y un escalado
temporal, con lo que se obtiene una prueba de estabilidad simple
junto con un método de disefio flexible para el algoritmo super
twisting. Se aplica el método propuesto al disefio de observadores
de convergencia finita de tasas cinéticas de bioprocesos y se valida
con datos experimentales.
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Xiv RESUMEN

e Reduccion de la variabilidad celular en circuitos genéticos de
biologia sintética. La metodologia propuesta reduce la varianza
de la sefial de comunicaciéon entre células utilizando ideas de ge-
ometria invariante y modos deslizantes aplicadas a redes de expre-
sion genética. También se describen los enfoques experimentales
con los que se deberia modificar las redes genéticas para obtener
los resultados deseados.



Resum

La present Tesi empra técniques de invariancia geometrica de conjunts i
modes lliscants per tractar differentes problemes en control de sistemes.
Inicialment revisa les técniques existents invariancia de conjunts, aixi
com els resultats més rellevants del control per modes lliscants. Després
es presenten les principals metodologies utilitzades: condicionament
de referéncia, modes lliscants de segon ordre, i aproximacié continua
de maneres lliscants. Finalment les metodologies presentades son util-
itzades per tractar diferents problemes en teoria de control i biologia
sintetica, i utilitzades en una varietat d’aplicacions.
Les aportacions de la tesi son:

e Coordinaci6 de sistemes dinamics amb dinamiques diferents.
Es presenta una metodologia per coordinar sistemes dinamics amb
diferents caracteristiques i propietats. Aquesta nova metodologia
es basa en principis de invariancia i control per modes lliscants
per modificar les referencies que s’envien als sistemes involucrats
tenint en compte les caracteristiques propies de cada sistema jun-
tament amb les seves restriccions.

e Disseny d’algoritmes de control per mode lliscant de segon
ordre. Es proposen meétodes per dissenyar algoritmes de modos
lliscants de segon ordre desacoblant el problema d’estabilitat del
problema de la convergencia en temps finit. Sutilitzen un canvi
de coordenades no lineals i un escalat temporal amb el que s’obté
una prova d’estabilitat simple juntament amb un metode de dis-
seny flexible per l'algorisme super Twisting. S’aplica el métode
proposat al disseny d’observadors de convergencia finita de taxes
cineétiques de bioprocessos. Tambe es valida els estimadors amb
data experimental.
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Xvi RESUM

e Reduccid de la variabilitat cel-lular en circuits genetics de bi-
ologia sintética. La metodologia proposada redueix la variancia
del senyal de comunicacié entre cel-lules utilitzant idees de ge-
ometria invariant i maneres lliscants aplicades a xarxes d’expressio
genetica. També, es descriuen els enfocaments experimentals amb
que s’hauria de modificar les xarxes genetiques per obtenir els re-
sultats desitjats.
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Chapter 1

Introduction

Cominciate col fare cio che é necessario,
poi cio che é possibile.

E allimprovviso vi sorprenderete

a fare Uimpossibile.

Francesco d’Asisi



2 CHAPTER 1. Introduction

Control theory can be dated back to the beginning of last century
when the Wright brothers made their first flight in 1903. Since then,
control theory has received more and more attention, especially during
the World War II when control theory has been developed and applied
to fire-control systems, missile navigation and control, and various elec-
tronic devices. Over the past several decades, modern control theory
has been developed due to the booming of spacecraft technology and
large-scale systems.

During the development of the control theory, control of a single
system has relatively matured and many control methodologies have
been developed, such as proportional-integral-derivative (PID) control,
adaptive control, intelligent control, and robust control.

Invariance and Sliding Modes, as a part of robust control techniques,
have been around for several decades. In one hand, invariance in dif-
ferential equations dates back to Nagumo (1942) with the Nagumo con-
dition. More recently Blanchini (1999) made a survey recognising the
importance of set invariance conditions in control theory. After that in
Mareczek et al. (2002) an invariance control was presented achieving
semiglobal asymptotic stabilization for a class of cascade nonlinear sys-
tems. In Astolfi and Ortega (2003) a method to design asymptotically
stabilizing and adaptive control laws for nonlinear systems was intro-
duced using invariance together with immersion techniques. Also, in
Blanchini and Miani (2008) invariance methods are used in combina-
tion with Lyapunov stability analysis methods to cope with fundamental
problems in control theory from a set-theoretic perspective.

On the other hand, the interest in variable structure systems (VSS)
ans sliding modes (SM) started to grow in the end of the 70’s . And then
there have been great theoretical advances in the field. There are sev-
eral general revisions of VSS (Utkin, 1977; Hung et al., 1993; Edwards
and Spurgeon, 1998; Utkin et al., 1999; Young et al., 1999; Barbot et al.,
2002; Edwards et al., 2006). The interesting properties of the SM and
the last technological development increased the possibilities of prac-
tical implementations of SM algorithms (Herrmann et al., 2003; Chen
and Peng, 2005; Lai et al., 2006; Hung et al., 2007).

In this work, a different approach is taken and an attempt to combine
this two techniques is investigated.



Estimation in System Control and
bioprocesses coordination design in SB

SM Continuous

SOSM Obs. Approximation

Sliding Modes Invariance

Figure 1.1: Thesis Road map. From Theory (bottom) to methodology to
application(top).

Road map. Introduction to the introduction.

In a research project like a Thesis, is common to follow a linear path.
Although, truth to be told is more interesting to follow the path lead
by research itself (Alon, 2009) which is a convoluted path, and is far
away of being a linear path. In this Thesis (Fig. 1.1) the path followed
goes more in agreement with the second one explained. In order to help
understand this path a brief raconteur will be performed.

Mainly all the work presented in this Thesis has a common underly-
ing framework: Invariance and Sliding modes, as in the bottom of the
Fig. 1.1 and this two are the fundamental building bricks of the subse-
quent work.

The first part uses both Invariance and Sliding Modes together with a
methodology called Sliding Mode Reference Conditioning (SMRC, mid-
dle of Fig. 1.1), recently developed by collaborators, which combines
those two building blocks to deal with constrained systems. Moreover,
the work done here goes beyond and applies the SMRC methodology in
order to deal with the problem of interconnected systems coordination
in Part I (top of Fig. 1.1). In the next sections, the basics of Invariance
(Section 1.1) and Sliding modes (Section 1.2) are introduced first and
then SMRC methodology is presented in Section 1.3. This background
is necessary in order to understand the application work which is inte-
grated in Part L.
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Continuing with the roadmap but in parallel, and motivated by the
chattering problem (Section 1.2.5), second order sliding modes (SOSM,
middle of Fig. 1.1) are exploited to design observers in order to robustly
estimate kinetic rates in bioprocesses (top of Fig. 1.1), using different
approaches to the design of the observers in Part II. In Section 1.4 a brief
introduction of higher order sliding modes, with emphasis in second
order sliding mode is performed. This is a key background for the design
of second order sliding modes algorithms in Part II.

As a final stop in this journey, and motivated by the appearance of
sigmoidal functions when modeling biological systems, continuous ap-
proximation of sliding mode control (CA and RD2, middle of Fig. 1.1,
see section 1.5) is explored as an analytical framework for new under-
standing of biological systems. Using also invariance techniques, the
invariance of a set (the boundary layer set) is proven for a system with
a sigmoidal nonlinearity and a relative degree of two between the con-
trolled output and the sigmoidal function. This framework is applied to
the design and control of genetic circuits in synthetic biology approaches
in Part III (top of Fig. 1.1).

1.1 Invariance

Invariant is something that never changes. An invariance property is a
mathematical property of an object or space which remains unchanged
after a number of transformations applied to it.

The concept of invariance in Control Theory naturally arises when
dealing with stability and Lyapunov functions, since any cut of a Lya-
punov function defines an invariant set. However, the invariance con-
cept does not require the introduction of the notion of Lyapunov func-
tions. More precisely, the idea of invariance for a set can be easily un-
derstood using a simple system in state space form:

dx(t)
dt

= f(z(t)) (1.1)

where z € O C R" and that there exist a globally defined solution, for
all t > 0 for every initial condition z(0) € O.

Then aset S C O is said to be invariant with respect to (1.1) if every
trajectory of the system (1.1) with initial condition inside S remains
inside S for ¢ > 0.
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Geometric set invariance

Consider the following dynamical system

¥ . {d::f(a:)—i—g(a:)u, (1.2)

y = h(z)

where x € X C R" is the state vector, u € U C R™ is a control input
(possibly discontinuous), f : R* — R" and g : R — R" are vector
fields, and h : R” — R?, scalar fields; all of them defined in X.

The variable y denotes the system output vector, which has to be
bounded so as to fulfill ; = 1,...,N user-specified system constraints
¢;. The corresponding bounds on y are given by the set:

d={xecX|pi(y) <0},i=1,...,N. (1.3)

From a geometrical point of view, the goal is to find a control input u
such that the region ® becomes a robust controlled invariant set (Blan-
chini and Miani, 2008) (i.e. trajectories originating in ® remain in ® for
all times t).

To ensure the invariance of ® Nagumo’s sub-tangenciality condition
must hold(Blanchini and Miani, 2008):

f(z) + glx)w € To(x), ¥V a € 9. (1.4)

For instance, the control input « must guarantee that the right hand
side of the first equation in (1.2) belongs to the tangent cone 7 (x) at
all points on the boundary of ®, denoted by 0®, defined as:

N
0 = | Jod;, 0%; ={x € ®|i(y)=0}. (1.5)

i=1

The following assumption will be needed for later development, and
will allow us to compute the gradient vector V¢; of the functions ¢;.

Assumption 1.1. All the ¢; functions are assumed to be differentiable
in the boundary 09;

Mathematically, the invariance of ® may be ensured by an input u,
such that, Vi, ¢; < 0, when ¢;(y) = 0. In the context of convex sets, this
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condition can be expressed as:

¢i (z,d,u) = Vo] =|Vi||||f + gul cosd
= Vo' f+Vo' gu
= qubz- + Lg@-u, Ve € 00;,j=1,...,N, (1.6)

which constitute in standard form the implicit invariance condition (Amann,
1990; Mareczek et al., 2002):

inf {¢ (x,d,u) <0, Vmeﬁfbi}, j=1,...,N. 1.7)

Solving equation (1.7) for w, results in the explicit invariance condi-
tion for system (1.2) and a particular constraint ¢;. The set I4; of feasible
solutions is obtained:

w € {U|Ls¢; + Lgdiu <0} : x € 98; A Ly # 0,
empty : & € d0; A Ly = 0, A Ly > 0
u=free:x € 9P; ALy =00, AL <0
u=free :z € ®\ I,

Ui (z,d) =

(1.8)
where 0/ denotes the m—dimensional null column vector, and the first
set corresponding to Ly¢; # 0, is always non empty.

Note that the control w in the interior of ® can be freely assigned.
Particularly, w = 0., could be taken so that the system evolves au-
tonomously throughout the interior of ®. Then, the control action be-
comes active only when some constraint becomes active, i.e. when the
state trajectory reaches the boundary 09 trying to leave the set ®. The
invariance condition will hold if the intersection (), /;(x) for all con-
straints of the solution sets U/;(x) is not empty.

1.2 Sliding modes

A variable structure system (VSS) is composed by two or more sub-
systems and a logic which decides when the switching between those
systems will take place. The resulting control law is a discontinuous
function of the states of the system. When the switching frequency is
elevated, a very interesting operation mode is obtained: the states of
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the system are constrained to a manifold in the state space. This parti-
cular operation mode is named sliding mode (SM), and it presents very
attractive features. Robustness to external disturbances and parametric
uncertainties, the closed loop systems is order reduced and its dynamic
is defined by the switching function.

The SM control principles will be explained in this section, following
the general lines of (Sira-Ramirez, 1988, 1989).

1.2.1 Description of the sliding mode
Consider the following non-linear dynamical system:

dx
o = @) + gla)u

y(t) = h(z),

where z € X C R" is the system state, u € R the control signal (possibly
discontinuous), f : R” — R™ and g : R™ — R" two vectorial fields in
C™ (many times differentiable) and h(z) : R® — R a scalar field also
in C™, all defined in X, with g(x) # 0, Yz € X. This kind of systems are
named affine in control systems.

Define s(x) as a smooth function on X like s : X — R, with Vs #
0,Vzx € X. Then the set

(1.9)

S={zxeX:s(x)=0}, (1.10)

defines a locally regular manifold of (n — 1) dimension on X, named
sliding manifold or switching surface.

A variable structure control law can be defined to enforce the control
action u to take one of two different values according to the sign of the
switching function s(z) (often addressed as an auxiliary output),

ut(z) if sz
uz{“_éxi Z sEx;zg u”(x) # u () (1.11)

where the upper and lower values of u are smooth functions of x and,
without loss of generality, they are assumed to satisfy v~ (z) < u™t(z)
and u~ (z) # u™(z) locally in X.

Then a sliding mode will exist on S, as a result of the switching law
(1.11), when the system reaches the manifold S and stays locally in its
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+

f+gqu

s(x)>0

Figure 1.2: Sliding regime on the switching manifold s(z) = 0

neighborhood. For a sliding regime to exist on S, both controlled vector
fields of each continuous subsystem, (f + gu™) and (f + gu~), should
point locally towards the manifold S.

The geometrical representation of the previous situation is depicted
in figure 1.2. The necessary conditions that must hold will be shown in
the next section.

1.2.2 Sliding mode existence necessary condition

The objective of this section is to determine which conditions must hold
to ensure that a sliding mode sets up in the surface s(z) = 0. It has
been mentioned before that both controlled vector fields switched by
1.11 should point towards the manifold S. This implies mathematically
that:

If the next inequalities hold for the switching function, locally on &
as a result of the control action (1.11):

{.é(:c)<0 if s(z)>0

$(x) >0 if s(x) <0 (1.12)

then the state trajectories of the system (1.9) locally reach the sliding
manifold S and, from there on, their motion is constrained to immediate
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vicinity of S.

Before continuing, it will be useful to know some notions of differen-
tial geometry, to take advantage of the natural geometric interpretation
of some sliding mode related concepts.

Consider a scalar field h(z) : R” — R and a vectorial field f(z) :
R"®™ — R", then the Lie derivative of the scalar field A in the direction
of the field f denoted by

Lih(z) : R" — R

is defined as: "
Ly h(z) = @f

Lets note that Lyh(x) is a scalar operator and it can be applied in a
recursive way:

Lhh(z) = (%(L’Ji_lh(x)) (z)

In this way, a compact notation of scalar function derivatives in the di-
rection of vectorial fields, either in the direction of a single vector field
or various vector fields. For example in the case of two fields f(x) and

g(z):

LyLgh(x) = 3-(Lsh(a)g(a)

Like every derivative, the Lie derivative is a linear operator. Then taking
derivative of the switching function s(z) one gets

$(z) = Lyygus(x) = Lys(z) + Lgs(z)u (1.13)

The using the last differential geometry tools, equation (1.12) can be
rewritten using the first equality of (1.13),

This last equation implies the rate of change of the scalar surface coor-
dinate function s(x), measured in the direction of the controlled field, is
such that a crossing of the surface is guaranteed, from each side of the
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surface, by use of the switching policy (1.11). The same can be written
in a more compact form:

lim s(z)-$(x) <O0. (1.15)
s(xz)—0

Then thanks of the linearity properties of the Lie derivative, equation
(1.13) can be expressed in a equivalent way:

Lys+ Lgsu™ <0 i >0
{ Iz gSU if s (1.16)

Lis+ Lgsu™ >0 if s<0

Note: From now on, we will drop parenThesis unless we want to
expressly show some function dependance from a particular variable.

So in order to establish the sliding mode on s(z) = 0 the following

should be satisfied 5
g0 (1.17)
ox

locally in S. The previous condition is a necessary reaching condition
for sliding mode, and is known as transversality condition.

Lys =

Remark 1.1. Supposing, without loss of generality, that v~ (z) < u™t(z)
is satisfied, then the necessary existence condition of a sliding regime

over S is given by

0s
Lys = %g <0 (1.18)

locally in a vicinity of S.
The demonstration is immediate from (1.16): subtracting both ex-
pressions for $ it must hold

(ut(z) —u(x)) Lygs <0

And as it was u™ (z) — v (z) > 0, the condition becomes Lys < 0.

Anyway, the transversality condition is only a necessary condition,
but not a sufficient one to guarantee the existence of the sliding mode.
In the Section 1.2.4 we will see a necessary and sufficient condition.

1.2.3 Equivalent control method

The system in a sliding regime, ideally implies infinite frequency switch-
ing, i.e., is discontinuous at every time instant. This precludes obtaining



1.2. Sliding modes 11

an analytical solution of the state equation. One way to obtain the slid-
ing mode dynamics consist in finding a continuous system equivalent
to the sliding mode. To this end, the ideal sliding mode is the regime
of ideal operation in which the manifold S is an invariant manifold of
the system. In this conditions, once the system trajectories reach the
manifold, they slide exactly on the manifold and never leave it. The
invariance condition of the manifold S is given by:

{3@) =0 (1.19)
5(x) = Lys(x) + Lgs(x)ueqg =0

The second equation of (1.19) indicates the trajectories will remain
on the surface, meanwhile u.,(z) represents a smooth control law for
which § is an invariant manifold of the system. Then the control u.,(x)
is known as equivalent control and it can be cleared from (1.19), result-
ing:

Lys(z)

— Los(x) (1.20)

Ueqg(T) =

In equation (1.20) it is possible to see the transversality condition (1.17)
is a necessary and sufficient condition for the well definition of the
equivalent control.

1.2.4 A necessary and sufficient condition for existence of
Sliding Mode

By definition, the equivalent control action, is the necessary continuous
control to make the trajectories of the system remain in the invariant
manifold. As a consequence, the derivative of the switching function,
should also be zero along that trajectory:

5(x) = Lys+ Lgsteqg =0 (1.21)

which was established in the invariance condition (1.19) of the manifold
S.

The next theorem, demonstrated in (Sira-Ramirez, 1988), defines a
necessary and sufficient condition for the existence of a sliding mode, in
terms of the equivalent control u.,.
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Theorem 1.1. Let u™ (z) < u™(z) and Lys < 0, a necessary and sufficient
condition for the local existence of a sliding regime on S, that is locally in
X for x € S,

u () < ueg(x) < ut(z) (1.22)

In other words, the equivalent control u.q(x) is a kind of average between
the lower and upper bounds of the control action. The discontinuous con-
trol action can be interpreted as the sum of a low frequency component
(ueq(x)) and a high frequency one which is filtered out by the system.

1.2.5 Discontinuous Control Action in Sliding Mode Control.
Chattering Problem

One of the main drawbacks of the first-order sliding-mode control in
certain applications is the direct use of discontinuous control actions.
In actual implementations, the discontinuous control law, together with
unmodelled dynamics and finite switching frequency, may produce fast
oscillations in the outputs of the system. This effect is known as chatter-
ing phenomenon. During the mid-1980s, the following three main ap-
proaches to reduce chattering in sliding-mode controlled systems were
proposed (Bondarev et al., 1985):

e The use of a saturation control instead of the discontinuous ac-
tion (Slotine and Li, 1991). This well-established approach al-
lows the control to be continuous, restraining the system dynamics
not strictly onto the sliding manifold, but within a thin boundary
layer of the manifold. This method ensures the convergence to the
boundary layer, whose size is defined by the slope of the saturation
linear region.

e The observer-based approach (Bondarev et al., 1985; Utkin et al.,
1999). This method allows bypassing the plant dynamics by the
chattering loop. This approach successfully reduces the problem of
robust control to the problem of exact robust estimation. However,
in some applications it can be sensitive to the plant uncertainties,
due to the mismatch between the observer and plant dynamics
(Young et al., 1999).

e The Higher-Order Sliding-Mode approach (HOSM) (Levant, 2003).
This method allows the finite-time convergence of the sliding va-
riable and its derivatives. This approach was actively developed
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since the 1990s (Bartolini et al., 1998, 2003; Levant, 2003), not
only providing chattering attenuation, but also robust control of
plants of relative degree one and higher. Theoretically, an r-order
sliding mode would totally suppress the chattering phenomenon
in the model of the system (but not in the actual system) when
the relative degree of the model of the plant (including actuators
and sensors) is . Yet, no model can fully account for parasitic
dynamics, and, consequently, the chattering effect cannot be to-
tally avoided. Nevertheless, theoretical results in HOSM, espe-
cially Second-Order Sliding-Mode algorithms, have been success-
fully proven in practice, encouraging the progress of the research
activities.

1.3 Sliding Mode Reference Conditioning

The concept of reference conditioning to achieve a realizable reference,
arises in the context of control with restrictions. Specifically, Hanus
and Walgama (Hanus et al., 1987; Walgama et al., 1992) applied this
kind of solutions to solve the problem of saturation in the actuators
(windup). Based on these approaches and getting advance of the pos-
sibilities of sliding modes, Mantz and De Battista (2002); Mantz et al.
(2004); Garelli et al. (2006b) have applied sliding mode reference con-
ditioning (SMRC) to obtain realizable references under restrictions both
in the actuators, in the outputs or in any state or combination of states.

The sliding control loop appears here as an additional loop that
makes the reference realizable under certain constraints instead of rep-
resenting the main control loop. In that way, in contrast with con-
ventional variable structure controllers and sliding modes, the sliding
regime is intended as a transitional operation mode.

The conditioning loop is inactive until the system state reaches by
itself the sliding surface. It becomes inactive again, when the closed
loop system is able to operate again in the non-constrained zone.

It is important to note that, due to the special characteristic of this
application, the typical drawbacks of variable structure control and slid-
ing modes (i.e. chattering and reaching modes) are avoided.

Now, in order to find the necessary w to achieve the invariance of
some set ®(y) (1.3), with the system ¥ (1.2), consider the following
implementation (Fig. 1.3).
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A

bi

R

Figure 1.3: SM Reference conditioning general scheme.

A discontinuous decision block, will drive the search to find u €
U;(x) so as to fulfill the constraint ®(y) and make r; remain as close
as possible to the external signal ». Also, a filter F' is incorporated. Its
purpose is to filter out the conditioned signal 7, in order to feed the
system 3 with a smooth signal.

The filter F' is implemented as the first-order filter

rr=—-A(rf+u—r), (1.23)

where u € U C R/ is the discontinuous control action, r, ry € R™ are
the input and the conditioned input signal, and A € R is a diagonal
matrix, a design parameter of the filter.

The discontinuous decision block is implemented by means of the
variable structure control law:

L { 0 if ma?(i{ﬁbi(y)} <0 (1.24)
wusH otherwise,

where ¢;(y) are the constraints defined previously, i.e. the boundaries
of the set ®, and wug), is such that u € (), U;(x).

Notice that the block ¥ in Fig. 1.3 represents the entire dynamics
from the constrained variables (y) to the input signal w. Then the sys-
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tem (1.2) becomes:

T = .f(m7d> +g(x)rf7
i’f:—A(rf—i—u—r), (1.25)
y = h(z)

In the case of a control system, (1.2) is the plant dynamic together
with a control loop, in which case r is the reference, and « in (1.2) is
the extended state comprising the plant and controller.

The choice of ugy; depends on whether there is only one active con-
straint or more than one. For a single active constraint, the analysis is
very similar to that of a SMRC in a SISO system (Vignoni et al., 2011,
2012b; Garelli et al., 2011), and is the approach we will use hereafter.
The case of several active constraints (see Gracia et al. (2012)), is not
analyzed in this work since we are defining only one constraint per sys-
tem in the formation control problem.

1.4 Higher Order Sliding Mode

As discussed in Section 1.2, first-order sliding-mode control has certain
properties that make it particularly attractive to apply to uncertain non-
linear systems. Among them, it can be highlighted finite convergence
to the surface, system order reduction and robustness against certain
disturbances. In this context, Higher-Order Sliding-Mode control will
inherit some of these properties. This control approach generalizes the
idea of first-order sliding mode, by acting on the higher-order deriva-
tives of the constraint function s(z), instead of influencing the first
derivative (as in (1.13)).

Keeping the main advantages of the original approach, the HOSM
control works with continuous action over s(z), relegating the discon-
tinuous control to operate on the higher derivatives of s(z). This weak-
ens the effect of chattering in the output, providing greater accuracy
in realization. Additionally, in some applications (namely, plants with
relative degree 1 with respect to s), the resultant physical control input
to the plant is continuous, contributing to the longer service life of cer-
tain actuators. A significant number of these controller proposals can be
found in (Bartolini et al., 1998, 2003; Levant, 2003)
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1.4.1 Sliding Mode order

An important concept in HOSM is the notion of sliding order. If the goal
is to maintain a constraint given by s(z) = 0, the sliding order is defined
as the number of continuous time derivatives of s(z) (including the zero-
order one) in the vicinity of a sliding point.With these considerations, a
sliding mode of order r is determined by the following equalities:

s=s=§=..=s"D =90 (1.26)

Expression (1.26) represents an r-dimensional condition in the dy-
namic system, which implies an order reduction of r (that is, (1.26)
specifies r algebraic equations that bond the state variables).

1.4.2 Regularity conditions

Reconsider the constraint given by s(x) = 0, where s : R” — R is a func-
tion smooth enough. Assume also that the time derivatives of s(x), i.e.
$,5,...,sU1) exist and are single-valued functions of z (which is not
trivial in discontinuous dynamical systems). Recall that the discontinu-
ity does not appear in the first » — 1 derivatives of the constraint function
s, or analogously, s is an output of relative degree r with respect to the
discontinuous input. When these assumptions hold, the sliding set of
order r will be unequivocally determined by (1.26), implying that the
reduced system dynamics has order n — . Now consider a manifold
S given by the equation s(x) = 0. Suppose that s, 3,5,...,s" 1) are
smooth functions of x and

rank{Vs, Vs, V3,..., Vs D} = (1.27)

holds locally. Then, since all S;,7 = 1, ..., — 1, are smooth manifolds, S,
is a differentiable manifold determined by (1.26). Recall that the rank
of a set of vectors indicates the dimension of the subspace they define.
Equation 1.27, together with the requirement that the corresponding
time derivatives of s are smooth functions of z, is referred to as the
sliding regularity condition (Levant, 2001; Fridman and Levant, 2002).

1.4.3 Convergence time

Convergence in HOSM can be either asymptotic or in finite time. Exam-
ples of asymptotically stable sliding-mode algorithms of arbitrary order
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are well known in the literature (Fridman and Levant, 2002). On the
other hand, fewer examples can be cited for r-sliding controllers that
converge in finite time. For instance, these can be found for » = 1 (which
is trivial), for » = 2 (Bartolini et al., 1998, 2003; Levant, 2003) and for
r = 3 (Levant, 2001; Fridman and Levant, 2002). Despite the fact that
some arbitrary-order sliding-mode controllers of finite-time convergence
have already been presented (Levant, 2005), its implementation is not
yet widespread.

1.4.4 Second Order Sliding Mode

Consider the uncertain nonlinear system (initially, not necessarily affine
in the control), explicitly defined as

z = F(x,u,t)
s=s(x,t) R (1.28)
u=U(z,t) eR

with z € R, u the single control input, and F' and s smooth functions.
Note that in this section the possible direct dependence on ¢ has been
explicitly manifested in system (1.28), in order to better explain the
subsequent SOSM design procedure.

As always, the ultimate control objective would be steering the slid-
ing output s to zero. However, the SOSM approach enables not only
that s = 0 and its time derivative s = 0, but also finite time stabilisa-
tion of both, as long as s is of relative degree 1 or 2 with respect to the
control input u. Moreover, in the former case the physical control action
synthesised by the SOSM algorithm is continuous.

The SOSM design procedure depends on the bounds of certain func-
tions that constitute the second time derivative of the sliding output s.
Hence, as a first step, s is differentiated twice, and the following general
expressions are derived:

.0 0

§= as(m, t) + %s(m,t)F(x, u, t) (1.29)
.0, 0, 0, .
§= &s(:ﬁ,t) + %s(x,t)F(x,u,t) + %s(ac,t)u(t) (1.30)

Then, two different cases will be addressed, depending on the rela-
tive degree of s with respect to input u. Systems with relative degree 1
will be considered.
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1.4.4.1 Systems with relative degree 1

In relative degree 1 systems, u appears in $, thus in the expression of
§ the derivative u is explicitly presented in affine form, as in (1.30).
Therefore the last expression can be given as follows:

§=o(z,u,t) +y(x,u, t)u(t) (1.31)

with ¢(x,u,t) and y(z,u, t) uncertain but uniformly bounded functions
in a bounded domain. In order to specify the control problem, the fol-
lowing conditions must be assumed (Levant, 1993):

1. There are bounds I';;, and I"j; such that within the region |s(z,t)| <
s the following inequality holds for all ¢,z € X, u € U:

0
0<Ty <A(z,u,t) = a—é(m,t) <I'y (1.32)
u
The constant sy defines a region of operation around the sliding
manifold, where the bounds are valid. Note that, eventually, an
appropriate control action has to be included in the controller, in
order to attract the system into this validity region.

2. There is also a bound @ that, within the region |s(x,t)| < so,
lo(x,u, t) = —s(x,t) + ;é(x,t)F(x,u,tﬂ <o (1.33)
X

forallt,z e X,ucld

With these bounds at hand, the following differential inclusion can
be proposed to replace (1.31) (Levant, 2005):

5€ [, ] + [T, Taslu(t) (1.34)

This is a very important relation when considering robustness. As
it will be demonstrated in the following subsection, many SOSM con-
trollers ensure finite time stabilisation of both s(z,¢) = 0 and $(z,t) = 0,
not merely for the nominal original system, but for (1.34). Since the
differential inclusion does not remember whether or not the original
system (1.28) is perturbed (it will include both cases, as far as pertur-
bations had been computed into the bounds), then such a controller
will be obviously robust with respect to any perturbation or uncertainty
existing in (1.28) and, consequently, translated to (1.34).
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1.5 SM Continuous approximation and Relative de-
gree 2

As discussed in Section 1.2.5, in first-order sliding-mode control a satu-
ration control can be used instead of the discontinuous action (Slotine
and Li, 1991). This well-established approach allows the control to be
continuous, restraining the system dynamics not strictly onto the slid-
ing manifold, but within a boundary layer neighboring the switching
surface:

B(t)={x e X|s(x,t) <T},T>0 (1.35)

This method ensures the convergence to the boundary layer, whose
size is defined by the slope of the saturation linear region.

Ultimately boundedness of the set B(t) was shown in Esfandiari and
Khalil (1991) for systems where the relative degree between the output
and the control signal is unitary.

In the last part of this work, invariance of a set similar to B(¢) is
shown for systems where the relative degree between the output and
the control signal is two.

1.6 Motivation

In the following lines there is an attempt to motivate the different prob-
lems that have been addressed within this Thesis. As the topics are
broad and apart to some extent, it will be done in a separate way.

1.6.1 Coordination and interconnected systems

When the designer tries to address a control problem, many questions
related to modelling accuracy, controller complexity, kind of design ap-
proach, etc, arise in mind and, therefore, many choices have to be made.

Any system is a group of two or more parts (subsystems) which in-
teract functioning as a whole. In fact the word system, cames from late
Latin systema and from Greek ocvornua “organized whole, body,” from
syn- “together” + root of histanai “cause to stand”. Moreover, when
evolving from systems with simple behavior (at least in the beginning)
to networks of such systems, emerging from the interaction between



20 CHAPTER 1. Introduction

those simple systems, a new emergent behavior arises, more rich and
complex than just the sum of individual ones.

The topology of the interaction network and also how these sys-
tems interact will determine the complexity of the collective behavior
(Jensen, 1998) in such way that understanding this connections and
the coordination of those systems is essential in order to analyze and
perhaps design superior kinds of organization.

Moreover, nature has many examples of individual systems getting
together and organizing to form a superior kind of organization with
its inherent complexity. Fenomena like bird flocking, fish schooling and
consensus in general, are inspirational concepts when the time to ana-
lyze and design coordination strategies. Wise implementation, is much
more easy to go for an electromechanical setup, for instance, of mobile
robots or unmanned aerial vehicles, than a population of ant or a group
of birds. For this reason, but without forgetting the original inspira-
tion by nature, the systems involved in this work will be referred just as
systems in general.

Paraphrasing Richard Feynman’s “What I cannot create I do not un-
derstand.”, creating and designing coordination and control of a collec-
tion / group of systems is an essential part for understanding the inter-
action between systems and the emergence of complexity. In this work,
an attempt to design coordination in electromechanical systems is done.

1.6.2 Estimation in Bioprocesses

White biotechnology, this is using enhanced microorganisms as cell fac-
tories, to produce enzymes and/or high-added values specialty biopoly-
mers is of paramount importance for the future of process industries.
This notion of small-scale, advanced, highly-responsive flexible manu-
facturing facilities for the production of new, low-tonnage, high-added
value products (factories of the future), where competitive advantage is
achieved through innovation and highly automated processes.

The better knowledge about the microorganisms involved and its
optimization using Synthetic Biology tools, needs to be complemented
by knowledge of automatic control methods and estimation allowing the
desired culture profiles and specifications to be achieved in an industrial
setting.

Bioprocesses are characterized by complex dynamic behavior, non-
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linearities, model uncertainty, unpredictable parameter variations, etc..
In addition, most representative variables are typically not accessible for
on-line measurement. Consequently, bioprocess control and monitoring
is a difficult task in general. In this context, the development of robust
and reliable algorithms to estimate key variables and parameters of the
process is of prime interest, and extended work has been carried out in
this field (Bastin and Dochain, 1986).

1.6.3 Control theory in synthetic biology

In the design, optimization and control of bioprocesses, the population
of microorganism has been typically considered as an aggregate quan-
tity, characterized by average properties. Although it is a fact that even
isogenetic (i.e. with the same genetic content) microbial populations
have certain degree of heterogeneity. Indeed, individual microorgan-
isms, even if part of a “clonal” or isogenetic population, may differ
greatly in terms of genetic composition, physiology, biochemistry, or be-
haviour (Elowitz et al., 2002). This heterogeneity at the population
level has been shown to be one of the causes of decrease in produc-
tivity when scaling-up to an industrial production fermentation process
(Lencastre Fernandes et al., 2011).

Thus, it is evident that the appearance of control theory (Sontag,
2004) in synthetic biology approaches is essential and that protein pro-
duction control and indeed heterogeneity and variability reduction at
the microorganisms level are appealing goals for the biotechnology in-
dustry.

1.7 Scope and objectives

The main objective of this work is to explore the possibilities of invari-
ance principles to design new methodologies and to apply them in dif-
ferent fields. With this in mind, this Thesis is focused in contributing to
the following problems:

e Systems Coordination: designing methodologies for coordination
of sets of constrained systems. The systems involved may have
different dynamics and constraints and no need to be identical.
Centralized and decentralized strategies have been developed to
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deal with the coordination problem using sliding modes reference
conditioning and set invariance ideas.

e Unknown input estimation: designing robust observers with sec-
ond order sliding mode algorithms. Moreover, guaranteeing per-
formance indexes in systems with presence of noise, model mis-
matches and disturbances. Applications to estimation of kinetic
rates in bioprocesses.

e Systems and control design in genetic circuits: reducing the vari-
ance in protein production when working with synthetic gene net-
work. Using negative feedback control and quorum sensing strate-
gies to reduce the variance

In the last stages of the work, modelling and experimental data col-
lection from real plants has been undertaken. The estimation method-
ologies have been validated in practice, and there is ongoing work on
testing the theoretical results from this Thesis on these platforms.

1.8 Thesis outline

The manuscript is organized in three blocks:

Part I deals with coordination of dynamical systems using sliding
mode reference conditioning and set invariance ideas. Chapters 2 and
3 are more abstract approaches to systems coordination focusing on the
methodology design. Chapter 2 corresponds to the following journal

paper:

e VIGNONI, A., GARELLI, F. and PicO, J. Coordinacién de sistemas
con diferentes dinamicas utilizando conceptos de invarianza geo-
métrica y modos deslizantes. Revista Iberoamericana de Automdtica
e Informdtica Industral (RIAI), vol. 10(4), pages 390-401, 2013a

It deals with a unified approach, involving global and local solutions to
the coordination problem in SISO systems with no perturbations. As the
article is published in Spanish so will be the chapter 2. This chapter is
based in turn in the following international conferences papers (refer to
them for an English version):

e VIGNONI, A., PIcO, J., GARELLI, F. and DE BATTISTA, H. Dynami-
cal systems coordination via sliding mode reference conditioning.
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In Proceedings of the 18th IFAC ..., vol. 18 of 1, pages 11086-
11091. 2011

e VIGNONI, A., P1c0, J., GARELLI, F. and DE BATTISTA, H. Sliding
mode reference conditioning for coordination in swarms of non-
identical multi-agent systems. In Variable Structure Systems, 12th
IEEE International Workshop on, pages 231-236. Mumbai, India,
2012b. ISBN 9781457720673

The Chapter 3 corresponds to the following journal paper:

e VIGNONI, A., GARELLI, F. and PicO, J. Sliding Mode Reference
Coordination of constrained feedback systems. Mathematical Prob-
lems in Engineering, vol. 2013 (Article ID 764348), page 12 pages,
2013b

Chapter 4, the final chapter of this part, on the contrary deals with a
practical problem on formation control for unmanned aerial vehicles
(UAVs) and is based in the international conference article:

e VIGNONI, A., GARELLI, F., GARCIA-NIETO, S. and Pico, J. UAV
reference conditioning for formation control via set invariance and
sliding modes. In 3rd IFAC Workshop on Distributed Estimation and
Control in Networked Systems, pages 317-322. Santa Barbara, CA,
USA, 2012a

The second Part, focus on the design of second order sliding mode
observers with application to specific growth rate estimation in biopro-
cesses. Chapters 5, 6 and 7 correspond to the following journal papers:

e DE BATTISTA, H., PicO, J., GARELLI, F. and VIGNONI, A. Specific
growth rate estimation in (fed-)batch bioreactors using second-
order sliding observers. Journal of Process Control, vol. 21(7),
pages 1049-1055, 2011. ISSN 09591524

e P1CO, J., PIcO-MARCO, E., VIGNONI, A. and DE BATTISTA, H. Sta-
bility preserving maps for finite-time convergence: Super-twisting
sliding-mode algorithm. Automatica, vol. 49(2), pages 534-539,
2013. ISSN 00051098

e NUNEZ, S., DE BATTISTA, H., GARELLI, F., VIGNONI, A. and PI1cO,
J. Second-order sliding mode observer for multiple kinetic rates
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estimation in bioprocesses. Control Engineering Practice, vol. 21(9),
pages 1259-1265, 2013

These articles are evidently the result of a coordinated effort of a re-
search group and a fruitful collaboration between the present research
group in Spain and the former and alma mater research group in Ar-
gentina. Thus, a short description of the authors respective contribu-
tions will be assessed in order to clarify the actual contribution of the
author of this Thesis in those articles.

In De Battista et al. (2011), H.D.B. had the original transformation
idea; all the authors conceived the research project and H.D.B. and J.P.
supervised the project. H.D.B and F.G. designed the observer. A.V. de-
signed and developed the stability analysis and solved the GEVP prob-
lem. H.D.B. performed the simulations. J.P. provided experimental data
to validate the design and J. P. and A.V. analysed the experimental re-
sults. H.D.B and A.V. wrote the manuscript.

In Picé et al. (2013), J.P. and H.D.B. had the idea and supervised the
project. J.P. and A.V. worked in the constructive design and developed
the stability analysis with support of E.P.M. for the stability preserving
map theorem. A.V. performed the finite time convergence analysis and
the simulations. J. P., A.V. and H.D.B analyzed the results. J.P. and A.V.
wrote the manuscript.

In Nuilez et al. (2013), H.D.B. had the idea; all the authors conceived
the research project and H.D.B. and F.G. supervised the project. H.D.B
and F.G. and S.N. designed the observer. A.V. designed and developed
the stability analysis and solved the BMI problem. S.N. performed the
simulations. J.P. provided experimental data to validate the design and
J. P, H.D.B,, F.G, S.N. and A.V analyzed the experimental results. S.N.
and H.D.B. wrote the manuscript.

At the end of Part II, in Chapter 8 a proof of concept by simulation
is performed in order to test the estimators in a closed loop set up. This
chapter corresponds to the following international conference paper:

e VIGNONI, A., NUNEZ, S., DE BATTISTA, H., P1cO, J., PICO-MARCO,
E. and GARELLI, F. Specific Kinetic Rates Regulation in Multi-
Substrate Fermentation Processes. In 12th International Sympo-
sium on Computer Applications in Biotechnology, in press. 2013c

Finally, Part III changes subject and approaches the design of ge-
netic networks in synthetic biology with a control systems approach and
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set invariance ideas. This chapter corresponds to the following interna-
tional conference paper:

e VIGNONI, A., OYARZUN, D. A., P1c6, J. and STAN, G.-B. Control of
protein concentrations in heterogeneous cell populations. In 2013
European Control Conference (ECC), pages 3633-3639. 2013d

The Thesis ends with a summary of the main conclusions extracted
from the research work and some ideas about interesting problems for
future work.
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Coordination of dynamical
systems
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Chapter 2

Coordinacion de sistemas
dinamicos

Los hermanos sean unidos
Porque esa es la ley primera
Tengan union verdadera

En cualquier tiempo que sea
Porque si entre ellos pelean
Los devoran los de afuera.

La vuelta de Martin Fierro. José
Hernandez.

Note: This chapter is based in the author’s first publication
on dynamical systems coordination using sliding mode ref-
erence conditioning and set invariance ideas. It Is an unified
approach, involving global and local solutions to the coordi-
nation problem in SISO systems with no perturbations. As
the article is published in Spanish so will be this Chapter.
Although the content is similar to the Chapter 3, due to reg-
ulations it should appear as it is published.
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ABSTRACT: Dentro de las posibles acepciones de la palabra, en
este trabajo hablaremos de coordinacion para referirnos a la ac-
cién de actuar sobre las referencias de los sistemas para lograr
algin comportamiento colectivo deseado pero considerando las
restricciones y capacidades de cada sistema. Con este objetivo, se
desarrolla una novedosa metodologia basada en técnicas de acon-
dicionamiento de referencia utilizando invarianza geométrica de
conjuntos y control por modos deslizantes. A partir de un marco
general, se proponen dos enfoques: uno global del tipo sistema
supervisor, y otro local a través de interacciones entre los distintos
sistemas, generando una red de interacciones.

La metodologia desarrollada permite abordar el el problema
de coordinacién de sistemas cuya dindmica no necesariamente
es igual para todos los sistemas, pudiendo ser lineal, no lineal,
de diferente orden, con restricciones, etc. Para ello, la dindmica
propia de cada sub-sistema se mantiene oculta al sistema de coor-
dinacién. Por otro lado, el sistema de coordinacion dispone sélo
de la informacién necesaria sobre las limitaciones y restricciones
de cada sistema. La idea principal de enfoque de este trabajo es
que para coordinar varios sistemas es necesario modular las re-
ferencias locales de cada uno, teniendo en cuenta los objetivos
globales, las interacciones locales y las capacidades de cada uno
de los sistemas.

2.1 Introduccion

La coordinacion de sistemas de dindmicos es un tema muy actual (Ren
et al., 2007; Cao et al., 2013; Antonelli, 2013). Este problema ha sido,
en general. entendido como la accién de lograr consenso entre un grupo
de agentes. En este contexto, consenso se refiere a la idea de alcanzar
un acuerdo sobre un estado de informacion entre un conjunto de sis-
temas individuales con el fin de lograr un objetivo comun, en general,
dependiendo de las condiciones iniciales.

En la literatura se suele suponer que todos los sistemas implicados
son idénticos y que, por lo tanto, tienen la misma dindamica. Por otra
parte, generalmente se considera que estos sistemas son integradores
de primer orden. Recientemente, el problema del consenso se ha abor-
dado mediante la teoria de grafos algebraica y las propiedades de la
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matriz laplaciana de un grafo, para sistemas integradores de primer or-
den, véase (Olfati-Saber et al., 2007; Ren et al., 2007) y sus referencias.
Este enfoque se ha extendido a una cadena de integradores en (He and
Cao, 2011).

El uso de técnicas de control por modos deslizantes (MD) se ha prop-
uesto para el control de sistemas multi-agente para lograr consenso. El
mas popular es el control de formacion de vehiculos aéreos no tripula-
dos (UAV). En esas situaciones, en general se utiliza una configuracién
maestro-esclavo o lider-seguidor. En (Galzi and Shtessel, 2006), se uti-
liza MD de orden superior en configuracion lider-seguidor para contro-
lar formaciones.

En (Cao et al., 2010) se utilizan estimadores de modo deslizantes
de tiempo finito para lograr un consenso en control de formacion de-
scentralizada, con lider virtual. También se ha utilizado una accién de
control discontinua en (Cortes, 2006) elegida de forma proporcional al
gradiente de una funcién definida por el Laplaciano del grafo que for-
man los sistemas, que conduce a un algoritmo de consenso de modo
deslizante.

En este trabajo nos alejamos de algunos supuestos habituales en
la literatura. Utilizamos técnicas de MD para inducir la coordinacién,
sin embargo, no asumimos que los sistemas que van a ser coordinadas
tienen la misma dindmica. Por el contrario, el enfoque aborda el pro-
blema de coordinacién de sistemas con dindmicas posiblemente difer-
entes (por ejemplo, lineales y no lineales, diferentes 6rdenes y limita-
ciones, etc).

La idea detras de nuestro enfoque del problema de coordinacion es
que a fin de coordinar los sistemas, podemos dar forma a sus referen-
cias locales en funcién de los objetivos locales, las capacidades de cada
sistema y la informacidn disponible que cada sistema tiene sobre sus ve-
cinos, siguiendo las ideas originales de la regla del vecino mds cercano
(Tanner et al., 2007). Esto se ha realizado desde dos enfoques difer-
entes. Una global, con un sistema jerarquico supervisor que modifica
las referencias de los sistemas, y otra local, que se basa en interacciones
directas entre los sistemas, y en la que no hay ningun lider.

La estructura del articulo es la siguiente. En la seccion 2.2 se pre-
senta el problema de coordinacién en forma general. Luego en la sec-
cion 2.3 se explican algunos resultados previos conocidos en invarianza
de conjuntos y acondicionamiento de referencia por modos deslizantes
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que se utilizan para plantear la estrategia propuesta para coordinacién
de sistemas con dindmicas diferentes. La seccion 2.4 propone un método
global supervisado para resolver el problema de coordinacion, mientras
que en la seccion 2.5 se reformula el problema de forma descentralizada
y se presenta una solucion alternativa que no asume distintas jerarquias
entre los sistemas, ni necesita la existencia de un lider del grupo. Final-
mente la seccidén 2.6 muestra ejemplos de ambas configuraciones para
clarificar las metodologias propuestas y una secciéon de conclusiones re-
sume las ideas principales del trabajo y presenta algunas lineas futuras.

2.2 Coordinacion de sistemas

En esta seccidn se presenta el planteo general del problema de coor-
dinacién, como asi también definiciones y suposiciones generales rela-
cionadas con la coordinacién de sistemas.

2.2.1 Presentacion del problema

Considere un conjunto de NN sistemas, no necesariamente con la misma
dindmica. Asimismo, considere que cada sistema posee un lazo de con-
trol estable. Los sistema intervinientes, como se ha dicho, pueden tener
diferentes restricciones y capacidades a la hora de seguir su referencia.
En este contexto de control con restricciones aparece el concepto de re-
ferencia realizable (Hanus et al., 1987): la referencia mas rapida que el
sistema es capaz de seguir sin violar sus restricciones, manteniéndose
siempre en lazo cerrado. Por ejemplo, en el caso de un sistema con re-
stricciones de actuador, una referencia realizable nunca intentara llevar
a los actuadores fuera de su rango de operacién, ya que esto dejaria al
sistema en lazo abierto (pudiendo dar lugar al fendmeno de windup).
La coordinacion sera entendida como la accion de lograr un comporta-
miento colectivo deseado para un conjunto de sistemas considerados.
En este trabajo, se aborda el problema actuando sobre las referencias de
los sistemas. De esta manera se tienen dos tipos de referencia sobre las
que actuar: la referencia local de cada sistema y la referencia global.
Entre los comportamientos colectivos deseados podrian encontrarse:

e Mantener una funcién x de las referencias locales lo mas cerca
posible de la referencia global.
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e Mantener una distancia entre las referencias locales de los sis-
temas, una a una o entre centroides de agrupamientos.

e Lograr sincronizacion generalizada, como un caso limite de los
anteriores.

Cabe destacar que la funcion y puede ser cualquier tipo de combinacién
de las referencias locales, por ejemplo el promedio, la moda, el méximo,
el minimo, etc.. En consecuencia, esta definicion de coordinacién es muy
general, y depende de qué tipo de funcién se elija para x. Asimismo la
definicion de la distancia utilizada para medir las referencias, también
puede ser general, dando lugar a una amplia gama de comportamientos
colectivos admisibles.

2.2.2 Intercambio de informacion entre sistemas

Uno de los elementos necesarios para llevar a cabo la coordinaciéon en-
tre sistemas dinamicos, es el intercambio de informacion entre ellos. La
forma en que se ataca dicho problema en este trabajo es uno de sus prin-
cipales aportes. La idea principal es que cada sistema envia informacién
de sus restricciones locales a los otros sistemas intervinientes a través de
su referencia realizable.

Dependiendo del nivel jerarquico al que se transmite la informacién
(ver Fig. 2.1) resulta:

la topologia global cuando la informacion se transmite a un nivel su-
perior tipo supervisor;

la topologia local cuando la informacién se distribuye en el mismo ni-
vel jerarquico a sistemas vecinos.

En cualquiera de las dos topologias, los sistemas individuales ocul-
tan sus estados y salidas al resto de sistemas, enviando solamente la
referencia realizable y minimizando la informacién transmitida. La re-
ferencia realizable refleja en qué situacion se encuentra el sistema con
respecto a sus restricciones fisicas locales.

Aunque la informacién transmitida se minimice, la comunicacion es
en general el cuello de botella de las topologias centralizadas, ya que el
tiempo para recoger toda la informacién de los sistemas depende direc-
tamente del numero de sistemas y no del didmetro de la red, como en
el caso descentralizado.
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Nivel Jerarquico Superior Mismo Nivel Jerarquico

Supervisor

¢ oo
8

Arquitectura global Arquitectura local
tipo supervisor descentralizada

Figure 2.1: Topologia de conexion en las distintas configuraciones.

Asimismo, la topologia global presenta los problemas normales de
vulnerabilidad, puesto que el nodo supervisor centraliza toda la infor-
macién, y es por lo tanto el punto débil de la red, ya que un fallo en el
supervisor acarrea el fallo de todo el conjunto de sistemas.

2.2.3 Suposiciones y definiciones generales
Bajo la siguiente suposicion,

Suposicion 2.1. Cada sistema interviniente es un lazo cerrado interna-
mente estable y puede seguir una referencia realizable,

se puede definir la coordinacion de sistemas de la siguiente manera:

Definicion 2.1. El objetivo de coordinacion se puede definir en términos
de un conjunto al que se desea convertir en un conjunto controlado in-
variante ®. (x, p), a través de modificar la referencia realizable de cada
sistema. El conjunto @, (x, p) mds general se define como:

D (x,p) = {x € X: ¢ (x,p) = [Ir(x) —pl| =0 <0} 2.1

donde x € X € R” son los estados de los sistemas, r(x) es una referen-
cia realizable funcién de los estados x, p es una funcién que depende de
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la informacién que llega de los otros sistemas y § es un valor preestable-
cido. La norma ||-|| puede hacer referencia a cualquier norma definida
en R", sin embargo de aqui en adelante se referira a la norma euclidea.

2.3 Invarianza y Acondicionamiento de Referen-
cia por MD

A continuacion se describe la metodologia utilizada para obtener la re-
ferencia realizable, basada en ideas de invariancia y acondicionamiento
de referencia por modos deslizantes.

La idea del acondicionamiento de referencia, esta basada en el con-
cepto de lograr una referencia realizable, nace originalmente en el con-
texto del control con restricciones. En concreto, Hanus y Walgama
(Hanus et al., 1987; Walgama et al., 1992) han aplicado este tipo de
soluciones para resolver el problema de saturacién en los actuadores
(windup).

Basandose en este enfoque y aprovechando las posibilidades del con-
trol por modos deslizantes, como por ejemplo la robustez frente a per-
turbaciones externas y a incertidumbre en los pardmetros (Sira-Ramirez,
1989; Utkin et al., 1999), Mantz y colegas (Mantz et al., 2004) han apli-
cado acondicionamiento de referencia por modos deslizantes (SMRC)
para obtener referencias realizables teniendo en cuenta las restricciones,
tanto en los actuadores, como en las salidas. En (Garelli et al., 2006a,b,
2011) se ha utilizado SMRC para acotar interacciones cruzadas en sis-
temas lineales MIMO. Luego en (Picé et al., 2009b) se ha utilizado
SMRC para busqueda de consigna en sistemas no lineales con restric-
ciones dependientes del estado. En (Gracia et al., 2012) se ha utilizado
SMRC para resolver redundancia y acondicionar caminos evitando tram-
pas en algoritmos de robdtica movil.

El el contexto de coordinacién de sistemas, en (Vignoni, 2011; Vi-
gnoni et al.,, 2011) se ha realizado un esquema de coordinacién, en
donde se coordinan las referencias de dichos sistemas involucrados uti-
lizando SMRC y una topologia global de modo supervisor. A contin-
uacién, en (Vignoni et al., 2012b) se ha abordado la coordinacion desde
una topologia local, teniendo en cuenta las interacciones entre los dis-
tintos sistemas, como asi también las restricciones de los mismos. En
este trabajo se presenta un esquema unificado para coordinar sistemas
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dindmicos utilizando ideas de invarianza de conjuntos y acondiciona-
miento de referencia.

El modo de funcionamiento basico del acondicionamiento de refe-
rencia por modo deslizante es el siguiente. El control por modos desli-
zantes aparece aqui como un lazo adicional que actia de manera tran-
sitoria para generar la referencia realizable. El lazo de acondiciona-
miento estard inactivo hasta que las trayectorias del sistema alcancen
por si mismas la superficie de deslizamiento (intentando violar alguna
restriccion), pasando el lazo de acondicionamiento al estado activo. Una
vez que las trayectorias dejen de querer violar dichas restricciones y el
lazo principal pueda operar normalmente, entonces el lazo de acondi-
cionamiento pasard nuevamente al estado inactivo.

w . |V
—31  Sistema
—

Restriccion
v <t

Figure 2.2: Sistema con restricciones.

2.3.1 Invarianza geométrica de conjuntos

Considere el siguiente sistema dindmico (Fig. 2.2):

f(x) + g(z)w,
2(x)

Il
>

T
Y
v

Il
>

donde x € X C R" es el vector de estados del sistema, w € R es
la accién de control (posiblemente discontinua), f : R™ — R"™ es el
campo de deriva, g : R — R" es el campo de control, y hy(x), ha(x) :
R™ — R, campos escalares definidos en X, con g(x) # 0, Vo € X.

Las variables y y v son ambas salidas reales del sistema, y es la sal-
ida controlada principal mientras que v es una variable que debe ser
acotada para cumplir con alguna restriccion especificada por el usuario
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del sistema (e.g. algun estado medible, o una funcién de los estados o
acciones de control).

La cota superior sobre la variable v define el siguiente conjunto aco-
tado superiormente:

¢ (x,w,v") ={x e X|p(v*)=v—0v*" <0} 2.3)

El conjunto ® (x,w,v*) especifica una regién en el espacio de esta-
dos compatible con la restriccion ¢(v*). Cabe destacar que esta regién
definida por ®, en general, puede depender de las restricciones, de los
mismos estados del sistema o incluso entradas al sistema. En particular
v* podria ser una funcién variante en el tiempo, y puede depender por
ejemplo de informacion recibida de alguno de los otros sistemas inter-
vinientes.

Remark 2.1. Es importante notar que si se desea definir un conjunto
completamente acotado para la variable v, basta con definir dos restric-
ciones y obtener el conjunto final como la interseccion de estos dos con-
juntos. Por ejemplo, si se desea vi < v < v, es posible definir

o 01 (@w, ) = {@ € X| ¢(v]) = —v+v} <0,
o Oy (:E,w,v;) = {m 6)(| ¢(U§) :U—Ug SO}

y luego & = &1 N .

Desde un punto de vista geométrico, el objetivo es encontrar una
accién de control w, de modo que la regiéon ® se convierta en un con-
junto controlado invariante robusto (Blanchini and Miani, 2008), es de-
cir, que queremos encontrar una accién de control w, tal que para todo
x(0) € ® C X la condicién de que x(t) € ® se cumple para todo ¢t > 0.

Para asegurar la invarianza del conjunto ®, se debe cumplir la condi-
cion de sub-tangencialidad de Nagumo (Blanchini and Miani, 2008):

fx)+ g(x)w € To(x), ¥V € 09. 2.4

Conceptualmente significa que, cuando las trayectorias del sistema
se encuentren sobre 0@ (la frontera del conjunto ®), la accion de control
w debe ser tal que el campo controlado f(x)+g(x)w pertenezca a Tg(x),
el cono tangente del conjunto ®.

Cuando se utilizan conjuntos convexos (con fronteras continuas y
diferenciables), la condicidn anterior se puede reformular (ver Fig. 2.3)
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Region no permitida Vo
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Figure 2.3: Interpretacion geométrica de la condicién de invarianza.

en términos del gradiente de la restricciéon (V¢) que acota al conjunto,
pidiendo que la proyeccién del campo & = f(x) + g(x)w sobre el gra-
diente V¢ sea menor que cero, es decir, que apunte hacia adentro del
conjunto:

Vo' & = ¢(x,w) <0,Va € P (2.5)
lo que constituye una forma estandar de condicién implicita de invari-
anza para conjuntos convexos (Mareczek et al., 2002):

inf ¢E(a:,w) <0, cuando x € 0P (2.6)

Ahora considere la definicién de ¢(x, w) en notacion de derivadas de
Lie, siendo L. ¢ la derivada de Lie en la direccion de un campo vectorial
() de la funcién ¢

¢ (x,w) = Lo+ Lypw. 2.7)
Luego resolviendo para w y con Ly¢ # 0, se obtiene:
w=(Lyp) ™" [qB - Lf¢] =w® + (Lyp) " ¢ (2.8)
con w? = —Ls¢/Ly¢. Luego despejando é se obtiene

b= (w - w¢) Lyo (2.9)



2.3. Invarianza y Acondicionamiento de Referencia por MD 41

De esta manera, utilizando (2.9) para resolver (2.6), se obtiene el
conjunto solucién W (x) al cual debe pertenecer w, para hacer al con-
junto ® invariante, condicion explicita de invarianza (Pico et al., 2009b;
Vignoni, 2011) para el sistema (2.2):

w§w¢ € 0PN Lyp >0

w>w® x€OPALyp<0

W (z) = q vacio: x € 9P ALgp=0ALsp >0 (2.10)
w=libre:x € 0P ANLyp=0ALsp <0

w =libre : x € &\ 09,

en donde se ha tenido en cuenta que si x € 0% y al mismo tiempo
Lsp < 0, las trayectorias del sistema no estdn intentando abandonar
el conjunto ®. Luego para los dos primeros casos de (2.10), se asume
Ly¢ > 0. Asimismo notese que, cuando x € 0@, para que exista w? yla
invarianza del conjunto sea factible, debe cumplirse

d¢
dx
Luego (2.11) constituye una condicion de existencia del control invari-
ante w. En particular, una vez que tanto la frontera del conjunto, 09,
como la campo de control g(x) estan definidos, solo uno de los dos
primeros casos de (2.10) se cumple, es decir, L,¢ es positiva o nega-
tiva, pero no cambia de signo sobre la frontera. Luego la condicion de
invarianza del conjunto ® se cumplird siempre que el conjunto W (x)
no sea vacio. Note que la accidon de control w puede ser tomada arbi-
trariamente del conjunto W (x) (2.10) de modo tal que se cumpla la
condicién de invarianza. En particular, en el interior de ® puede ser
seleccionada w = 0, y permitir al sistema evolucionar libremente en el
interior del conjunto.

Ly = ——g(x) £ 0 (2.11)

2.3.2 Acondicionamiento de referencia por MD

A continuacion se va a proceder a obtener la w necesaria para lograr
en tiempo finito la invarianza del conjunto ® definido en (2.3), con el
sistema ¥ presentado en (2.2). En este trabajo se implementa un lazo
auxiliar con un bloque de decisién discontinuo, que permite encontrar el
valor de referencia que cumple con las restricciones y fuerza al sistema a
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permanecer en el conjunto invariante. También se incorpora un filtro de
primer orden F, cuyo propdsito es suavizar la referencia acondicionada

rf.

En la figura 2.4, se puede ver la implementacién del lazo de acondiciona-

miento de referencia implementado con modos deslizantes.

E—

y

Figure 2.4: Esquema genérico de acondicionamiento de referencia por
modos deslizantes.

El bloque discontinuo es implementado con la siguiente ley de con-
trol de estructura variable:
[ wsm si @g(v*) >0
v { 0 si ¢(v*) <0 (2.12)
donde ¢ es la superficie de deslizamiento o salida auxiliar, definida de
la siguiente forma y de acuerdo con (2.3):

p(v*) =v—0" (2.13)

donde v* es la restriccion impuesta a la sefial v y wgy es la amplitud
de la sefial discontinua. El valor de wsy; debe ser disefiado de forma
tal que cuando las trayectorias del sistema intenten salir del conjunto
®, se establezca modo deslizante sobre la frontera del conjunto, para lo
cual debe cumplirse localmente alrededor de 99 la condicién necesaria
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y suficiente de existencia del modo deslizante (Edwards and Spurgeon,
1998; Barbot et al., 2002):

: Lo+ Lygpwsm <0 si p(v*) >0
dx) = { Lip >0 si (v*) <0 (214
La segunda desigualdad de (2.14) se satisface localmente cuando las
trayectorias del sistema tratan de salir del ®. Mientras que la primera
desigualdad de (2.14) implica que para que se establezca modo des-
lizante en ¢(v*) = 0, se debe cumplir localmente alrededor de 0% la
condicion de transversalidad (Sira-Ramirez, 1989),

_w

L
99 dx

g(x) #0 (2.15)
Cabe destacar también que utilizando el método del control equivalente
(Utkin et al., 1999; Edwards and Spurgeon, 1998), una vez que el modo
deslizante se establece, el control equivalente continuo se obtiene como:

Weq = —Ld/Lyp = w?, (2.16)

el cual de acuerdo con (2.10) es el control requerido para mantener
el sistema justo en la frontera 0®. En consecuencia, el modo desli-
zante realiza el minimo cambio necesario en la referencia para lograr
que el conjunto ¢ sea invariante. Ademads, la condiciéon de necesaria y
sufuiciente para el modo deslizante (2.14) garantiza la existencia del
control invariante en (2.10).

Remark 2.2. En caso de que las trayectorias se inicien fuera del con-
junto @, se puede obtener convergencia en tiempo finito a la frontera
0® tomando wsy tal que L¢p + Lydpwsm < —7, para una determinada
constante positiva v (Barbot et al., 2002). Lo mismo se aplica en caso
de una perturbaciéon abrupta que envie al sistema fuera de la region
permitida.

Por otro lado el filtro F' es implementado como un filtro de primer
orden,

rp=—a(rfp+w-—r), 2.17)

con «, parametro de disefio que representa la frecuencia de corte del
filtro, que debe ser tal, que la dindmica del filtro no interfiera con la
dindmica del sistema (es decir debe ser mas rapido).
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En resumen, el acondicionamiento de referencia obtiene la referen-
cia realizable correspondiente que se aplicard al sistema, en determi-
nado instante de tiempo, para evitar que se violen las restricciones. Una
caracteristica interesante es que no se requiere ningtin modelo del sis-
tema para obtener dicha referencia.

2.4 Topologia global tipo supervisor

En esta seccion se presenta la coordinacién de sistemas utilizando una
topologia global tipo supervisor y constituye uno de los resultados del
presente trabajo, junto con la coordinacion de sistemas con topologia
local que se presentara en la Seccién 5.

El problema que se plantea, es el primero de los presentados en
la Seccién 2.2.1, para lo cual se particulariza la Definicién 2.1 de la
siguiente manera:

Definicion 2.2. El objetivo de coordinacién se puede definir en términos
de un conjunto ®, al que se desea convertir en un conjunto controlado
invariante, modificando la referencia acondicionada . El conjunto ¢,
se define como

Oy (z,rp) ={z e X,rp € RN 1 g (rpy) = |r — x(rpi)| — A <0}
(2.18)
donde x € X € R" son los estados de los sistemas, » € R es la refe-
rencia acondicionada global, y x(r¢;) es una funcién que depende de las
referencias acondicionadas de los sistemas intervinientes, finalmente A
es un valor preestablecido, para el ancho de la banda permitida.

Luego el objetivo de coordinacién es hacer al conjunto ¢, un con-
junto controlado invariante, para lo cual se propone el siguiente es-
quema de coordinacién global.

2.4.1 Esquema propuesto de coordinacion

Considere un conjunto de N sistemas dinamicos, que cumplen con la Su-
posicién 2.1. Se plantea el objetivo de coordinacién como en Definicién
2.2. Si los sistemas cumplen con la proposiciéon 2.1 entonces es posi-
ble lograr coordinacién, entendida como en Seccién 2.2.1 utilizando un
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esquema como el propuesto a continuacién, donde se incorpora el obje-
tivo de coordinacion (Definicion 2.2) en un lazo de acondicionamiento
de la referencia global.

Si bien en la practica cada sistema puede tener restricciones, de en-
trada, estados o salida, a lo largo de este trabajo y a los efectos de clari-
ficar la exposicion del esquema propuesto, se han utilizado sistemas con
saturacion de actuador y controladores bipropios.

Proposiciéon 2.1. Cada sistema interviniente posee un lazo de acondi-
cionamiento de referencia por modos deslizantes, como el presentado
en la seccién 2.3.2. Este lazo permite manejar las restricciones locales
comandando una referencia realizable al lazo cerrado y aporta informa-
cion a través de la referencia condicionada, al resto de los sistemas.

Tfl

: Fl Z1 _:_;

[ I V1
f | W Ug
T ) ] :
byl [ =By | I 2 |
Wy . .
| Tf2 i

T 2 |7,
| W2 Uy
i ul 0P i

Figure 2.5: Topologia del modo supervisado.

En la Fig. 2.5 se muestra el esquema de coordinacién global prop-
uesto. Cada sistema Y;, donde 7 = 1,..., N identifica al sistema en
cuestion, posee su lazo local de acondicionamiento de referencia (¢;, w;
y F}), que genera la referencia acondicionada r; a partir de la referencia
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global r.

En un nivel jerdrquico superior se encuentra otro lazo de acondicio-
namiento, esta vez de la referencia global. Dicho lazo esta formado por
una funcién de conmutacion ¢,, en la que interviene la referencia global
y la funcién x de las referencias locales.

Este lazo, también posee una accién discontinua (w,), la cual a
través del filtro global de coordinacién F y a partir de la consigna global
cq, genera la referencia global suave 7.

Table 2.1: Variables utilizadas en Fig. 2.5

Variable Simbolo
Referencia global T
Consigna global Cqg
Filtro de coordinacién Fy
Funcién de conmutacion global Dx
Accidén discontinua global wg
Sistema < 3,
Referencia acondicionada T
Salida Yi
Sistema ¢ Variable con restriccion u;
Filtro de primer orden F;
Funcion de conmutacion i
Accion discontinua de la funcién ¢; w;

2.4.1.1 Filtro de Coordinacion

El filtro de coordinacién (F;) es el encargado de suavizar la accién dis-
continua global (w,). Ademads, es el encargado de integrar las distin-
tas acciones discontinuas que pueden formar parte de la coordinacién
global, que procedan de las distintas funciones de conmutacion. El filtro
junto con la funcién de conmutacién global ¢, determinard la politica de
coordinacién y la dinamica global. La dinamica del filtro es la siguiente:

i==A(r—cy—k"-wy) (2.19)

donde w, es el vector de acciones discontinuas globales, y k es un vector
de pesos, que define la politica de coordinacién, en caso de que exista
mas de una restriccién global. De aqui en adelante, el vector w, pasara
a ser un escalar wg, ya que sin pérdida de generalidad, trabajaremos con
una sola funcién de conmutacién global.
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2.4.1.2 Definicién de la superficie de deslizamiento ¢,

A partir del conjunto que deseamos hacer invariante, debemos definir a
sus fronteras como restricciones (que luego se convertiran en superficies
de deslizamiento cuando el modo deslizante se encuentre activo). Para
eso definimos las fronteras de ¢, como

¢y =1 —x(rp) — A

* (2.20)
st =T—= X(sz) +A

y la accién discontinua, que forzard al sistema a permanecer dentro del

conjunto ®, en caso de que la dindmica del mismo sistema trate de salir

fuera del conjunto

+ e ot
wy S v > 0
wg = wy st qb; <0 (2.21)
0 caso contrario.

Para asegurar la invarianza del conjunto ®, (2.10) se debe elegir w, <
—wyy w;‘ > wy, siendo wj; la cota obtenida en el A.1.

2.4.2 Funcidn y: el minimo

Un ejemplo interesante de politica de coordinacion es que la funciéon y
sea la funcién minimo de las referencias acondicionadas,

X(7rfi) =rfmin =min{ry i€ {1,...,N}}. (2.22)

Esta funcion se utilizard en el ejemplo de la Seccién 2.6, para lo cual
en el A.3 se demuestra la invarianza de ®, para esta funcién utilizando
andlisis de funciones no suaves.

2.5 Topologia local distribuida

En esta seccion se presenta la coordinacién de sistemas utilizando una
topologia local distribuida. El problema que se plantea, es el segundo
de los presentados en la Seccién 2.2.1, para lo cual se particulariza la
Definicion 2.1 de la siguiente manera:
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Definicion 2.3. El objetivo local entre dos sistemas conectados es man-
tener entre sus referencias una distancia menor que un valor preestable-
cido ¢;;. Con lo que se puede definir el conjunto ®;; como

@ij(w,rfk) = {iL’ € X,Tfk eREk=1,2: ¢ij = |’I“fl — Tfjl — 5ij < 0} (2.23)

donde = € X € R" son los estados de los sistemas, y ry; € Ry rp; € R
son las referencias acondicionadas de los sistemas 7 y j respectivamente.

Ademas, los sistemas estaran conectados segtin la siguiente suposi-
cion:

Suposicion 2.2. La topologia de la red de interconexion de los sistemas
es fija, en el sentido de cual sistema puede conectarse con otro. Esta red
puede ser representada por un grafo dirigido cuya matriz de adyacencia
es A = [a;j], con a;; = 1 cuando el sistema i se puede comunicar con el
sistema j, y a;; = 0 en caso contrario. Se asume que dicho grafo es un
grafo simplemente conexo (Olfati-Saber et al., 2007).

Luego se puede definir el conjunto ¢ como la unién de los conjuntos
anteriores, cuando estén conectados (a;; = 1), para todos los sistemas
integrantes del grupo.

N
o= |J ay®y (2.24)
i=1,j=1i#]

Entonces el objetivo de coordinacién es hacer al conjunto ¢ un conjunto
controlado invariante, para lo cual se propone el siguiente esquema de
coordinacién local.

Esquema propuesto de coordinacion

Considere un conjunto de N sistemas dinamicos, con N > 2, que cum-
plen con la Suposicién 2.1, con una topologia de conexién que cumple
con la Suposicion 4.3, con un lazo de acondicionamiento como en Proposi-
cién 2.1 y un objetivo de coordinaciéon como en Definicion 2.3, entonces
es posible lograr coordinacién, entendida como en Seccién 2.2.1 uti-
lizando un esquema como el propuesto a continuacion, donde se incor-
poran los objetivos de coordinacion (Definicién 2.3) en cada lazo de
acondicionamiento de la referencia local de los sistemas individuales.
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Figure 2.6: Objetivos locales incorporados al esquema de acondiciona-
miento de referencia.
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Table 2.2: Variables utilizadas en Fig. 2.6

Variable Simbolo
Referencia global T
Sistema < 3
Referencia acondicionada T
Salida Yi
Sistema 1 Variable restringida v;
Filtro de primer orden F;
Restriccidon b;
Accidn discontinua de ¢; w;
Restriccién virtual de
coordinacién entre sistemas ¢ y j PDij
Accion discontinua de ¢ ; W

En la Fig. 2.6 se muestra el esquema propuesto, donde aparecen sélo
dos sistemas, por simplicidad. La simbolos que aparecen en dicha figura
se explican en la Tabla 2.2. El lazo cerrado del sistema 4, ¥; incorpora
la planta y un controlador bipropio:

& = fi(xi) + gi(@i)vi
yi = hi(x;)

2.25
Tei = AciTei + bei€; ( )

DIF
Vi = CeiTei + dei€;

con x.; y e; los estados del controlador y la sefial de error definida como
ei =7f — Yi- Aci, beis Ceiy de; SON parametros constantes del controla-
dos.

El objetivo de coordinacién local, incorporado en el lazo de acondi-
cionamiento, junto con el filtro de primer orden, dan lugar a la siguiente
estructura para el filtro F;:

Fi . T"fi = —Ozi(T‘fi —7r+ ﬁ)i) (2.26)

donde w; es una combinacién de las acciones discontinuas provenientes
de las restricciones fisica (w;), y de la virtual que sintetiza el objetivo de
coordinacién (w;;); esta definida de la siguiente manera:

N
J=1j#i
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La accidn discontinua w; se define como en Garelli et al. (2006a):
M; si ¢j:vi—v;>0
w; = —M,; si ¢z_ =V — 1)7;) <0 (2.28)

0 caso contrario

en donde M; es la amplitud de la accién discontinua w;. Asimismo, la ac-
cién discontinua w;; se define de acuerdo con las fronteras del conjunto
®;; que se definen a continuacién como restricciones virtuales (¢;;).

Mij sign(rfi — Tfj) St (bij (Tfi,Tfj> > 0

2.29
0 si ¢ij (Tfi,T’fj> <0 ( )

wij =

con M;; siendo la amplitud de la accién discontinua. Finalmente las re-
stricciones fisica y virtual estdn definidas de la siguiente manera (2.23):
oF = v —vi (2.30)

p

Gij = |rpi — 55| — 6ij (2.31)

con U;;Z y v;, las cotas superior e inferior de la saturacion de actuador y
di; la cota para la diferencia deseada entre las referencias.

En el A.2 se realiza el andlisis correspondiente y se demuestra la
invarianza del conjunto ®;;, de donde se obtienen las siguientes cotas
para las acciones discontinuas w;;:

QT i — Q5T f5 Q; — Qg

My > — _ r (2.32)

a; + a; + a;

y para las acciones discontinuas w;
beivE + Agie;
M; > > M;; — Pb— — i (2.33)
i '

2.6 Simulaciones

En esta seccidon se muestran las caracteristicas principales de las topo-
logia de coordinacién propuestas, para un conjunto de 5 sistemas con
distinta dindmica, controladores y restricciones (ver C.1); a través de re-
sultados de simulacién obtenidos con MATLAB®. Entre los sistemas sim-
ulados hay de primero y de segundo orden. Asimismo las saturaciones
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de actuador consideradas varian en un amplio rango y los controlado-
res fueron ajustados utilizando diferentes criterios. Por otro lado, cada
sistema posee un lazo de acondicionamiento de referencia, con su re-
spectivo filtro ajustado teniendo en cuenta la dindmica del lazo cerrado.
Las amplitudes de las acciones discontinuas fueron ajustadas de acuerdo
con los resultados obtenidos en cada caso.

2.6.1 Topologia Global

Utilizando la topologia global tipo supervisor hay varias posibles politi-
cas de coordinacién dependiendo de que funcidn se elija para x(r;) y
del ancho de la regién permitida para r alrededor de x(r;).

&)
T
1

n Y
% 10+ Cg 1
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< —x(rs)
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3
Tiempo [seg]

Figure 2.7: Topologia global: (a) Consigna global, referencia global y
media de las referencias locales, junto con la banda o regién permitida.
(b) Accién discontinua.

A modo de ejemplo se considera el minimo de de las referencias
acondicionadas como politica de coordinacion y por ende como funcién
X(ryi):

X(7fi) = rfmin =min{ry i€ {1,...,N}}. (2.34)
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La invarianza del conjunto ®, para esta funcién se demuestra en el A.3.

La consigna global ¢, es un escalén positivo en ¢t = 0.5seg, y uno
negativo en ¢t = 3seg. El ancho de la regién alrededor de x(rs;) donde
se quieren mantener a r fue seleccionado como A = 6. Las siguientes
figuras muestran los resultados obtenidos mediante simulacién. En la
Fig. 2.7a se observa la consigna global c,, la referencia acondicionada
global 7 y la funcién x(rf;). Ademds también se puede ver la regién
permitida.
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Figure 2.8: Topologia global: (a) Consigna global y referencias acondi-
cionadas locales. (b) Salidas de los sistemas individuales.

En la Fig. 2.7b se muestra la accién discontinua global w,. En intere-
sante observar que cuando la accién discontinua esta activa, la referen-
cia global acondicionada r se encuentra en la frontera del conjunto &,
es decir r = x(ry;) £ A. Cuando r vuelve dentro del la regién permitida,
llevado por la propia dindmica de los sistemas, la accién discontinua se
desactiva.

En la Fig. 2.8a se muestran las referencias acondicionadas. Aqui se
pueden observar algunas particularidades. En primer lugar, la dindmica
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global es mas lenta, para poder cumplir con las restricciones, y que to-
dos los sistemas puedan seguir la referencia global. Como consecuen-
cia, ocurre un fendmeno de agrupamiento, dividiendo al grupo en difer-
entes subgrupos que comparten alguna caracteristica, en principio rela-
cionada con las restricciones de los sistemas. Este agrupamiento es un
comportamiento colectivo emergente, que aparece cuando se coordinan
sistemas dindmicos.

Finalmente en la Fig. 2.8b se muestran las salidas de los sistemas
individuales. Aqui se aprecia que el transitorio de cada sistema depende
de sus restricciones y parametros de controlador. A pesar de dichas
diferencias, se obtiene coordinacion también a la salida, ya que cada
sistema es capaz de seguir una referencia, siempre y cuando ésta sea
realizable.

2.6.2 Topologia local

Utilizando la topologia local, un factor muy importante es la red de
conexiones. En particular para este ejemplo se ha utilizado la red prop-
uesta en la Fig. 2.1.

En la Fig. 2.9a se muestran las referencias locales de los cinco sis-
temas. Se puede ver como se logran los objetivos de coordinacién, y la
diferencia resultante entre cada referencia concuerda con los paramet-
ros d;; de la tabla 2.3.

En la Fig. 2.9b se observan las salidas de los sistemas individuales,
y cémo se obtiene el objetivo de coordinacion incluso en las salidas,
aunque con pequeilas diferencias debidas a la configuracion de los lazos
cerrados de cada sistema.

A continuacién se muestra una seleccién de acciones discontinuas,
a modo explicativo. Por motivos de espacio, se han seleccionado los
sistemas 2 y 5. En la Fig. 2.10 se muestran las acciones discontinuas wo
y wes junto con las variables restringidas (u2) y objetivo de coordinacion
correspondiente (ry, — ry5). Se observa que, por un lado, la sefial wo
maneja la variable restringida us; por ejemplo ws estd activa cuando
us se encuentra en su limite. Por otro lado, wo5 se encarga de que la
diferencia entre las referencias 7o y 75 sea menor que dz5 = 1.

Finalmente en Fig. 2.11, se muestran las trayectorias de las mis-
mas variables restringidas (us y us) y de la diferencia de las referencias
(rg2 — r¢5) en linea roja continua, y por otro lado, se ha graficado el
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Figure 2.9: Topologia local: (a) Consigna y referencias acondicionadas.
(b) Salidas de los sistemas individuales.
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0o 05 1 15 2 25 3 35 4 45 3
Tiempo [seg]

Figure 2.10: Variable restringida us, objetivo de coordinacién (7o —7¢5)
y sus respectivas acciones discontinuas (ws ¥ wos).
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Table 2.3: Parametros de simulacion.

Sistema é Amplitud de la accién discontinua
1 d13 =1 Mig =2 My =5
2 o5 = 1 Moy = 2 Mo =3
631 =1 Mgy =2

3 634 = 0.7 Mgy = 1.5 Mg =8
635 = 1 M3y = 2.2

4 d43 = 0.7 Mysz = 2 My =4

5 00 = 1 Mso =1 My =
053 =1 M5z =1

conjunto invariante deseado, en linea punteada azul. Es evidente que la
trayectoria comenzando dentro del conjunto nunca lo abandona, ya que
en efecto la metodologia propuesta hace al un conjunto invariante.

0.8
0.6
0.4

0.2

Tf2—Tf5

-0.2

-0.4

-0.6

Figure 2.11: Trayectorias de los estados que involucran a los sistemas 2
y 5.
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2.7 Conclusion

La coordinacion de sistemas es un tema muy actual. En este trabajo se
presenta una metodologia para coordinar sistemas con distintas dinami-
cas utilizando invarianza y acondicionamiento de la referencia por mo-
dos deslizantes. Esta metodologia permite la implementacién con difer-
entes arquitecturas, centralizada o distribuida, y asimismo permite una
gran flexibilidad, ya sea desde el punto de vista de aplicaciones (roboética
movil, UAVs, etc.), como desde el punto de vista de la robustez, que es
inherente al los sistemas de control de estructura variable. El hecho de
que cada sistema interviniente incorpore un lazo de acondicionamiento
de referencia, para hacer frente a sus limitaciones, es de particular rel-
evancia para que los sistemas siempre estén en lazo cerrado y sean ca-
paces de seguir una referencia (realizable), para luego ser coordinados
a través de las mismas. Asimismo, la referencia acondicionada, respon-
sable de la coordinacién, es la tnica informacién que comparten los
sistemas intervinientes ya sea en la topologia global tipo supervisor o en
la topologia local.

Con esta metodologia se minimiza el intercambio de informacién en-
tre sistemas, mejorando la performance del algoritmo de coordinacion,
teniendo en cuenta que la comunicacién suele ser un aspecto limitante
en el rendimiento de los mismos. Debido a que el acondicionamiento
de referencia es un lazo auxiliar, no representa un problema de imple-
mentacion, ya que se puede incorporar a cualquier tipo de controlador
ya existente en el sistema.



Chapter 3

SMRCoord of constrained
feedback systems

El modo de dar una vez en el clavo es
dar cien veces en la herradura.

Miguel de Unamuno

ABSTRACT: This paper addresses the problem of coordinating dy-
namical systems with possibly different dynamics (e.g. linear and
nonlinear, different orders, constraints, etc.) to achieve some de-
sired collective behavior under the constraints and capabilities of
each system. To this end, we develop a new methodology based
on reference conditioning techniques using geometric sets invari-
ance and sliding mode control: the Sliding Mode Reference Coor-
dination (SMRCoord). The main idea is to coordinate the systems
references. Starting from a general framework, we propose two
approaches: a local one through direct interactions between the
different systems by sharing and conditioning of their own refer-
ences; and a global centralized one, where a central node makes
decisions using information coming from the systems references.
In particular, in this work we focus in implementation on multi-
variable systems like Unmanned Aerial Vehicles (UAVs), and ro-
bustness to external perturbations. To show the applicability of
the approach, the problem of coordinating UAVs with input con-
straints is addressed as a particular case of multivariable reference

59
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coordination with both global and local configuration.

3.1 Introduction

Coordination of multi-agents and, in particular, formation control of
multiple Unmanned Aerial Vehicles (UAVs) is a very up to-date topic and
it supports many practical applications, such as surveillance, weather
forecasting, damage assessment, search and rescue, etc.. (Ren et al.,
2007; Cao et al., 2013; Antonelli, 2013).

Recently, the consensus problem was addressed using algebraic graph
theory and properties of the Laplacian Matrix for single integrators (see
(Olfati-Saber et al., 2007; Ren et al., 2007) and references therein). He
and Cao (2011) extended this approach to a chain of integrators, and
Liu (2012) extended to non-linear multi-agent systems.

Sliding mode control is an important topic in nonlinear systems. Re-
search in nonlinear systems goes from stability analysis (for instance
with fuzzy polynomial models and sum of squares tools (Pitarch et al.,
2013)), to estimation (e.g. with second order sliding mode observers
for kinetic rates (Nuilez et al., 2013)) to control (e.g. with bounded L2
gain performance of Markovian jump singular time-delay systems (Wu
et al., 2012)).

The use of sliding mode (SM) techniques are generally used for
control of swarms and multi-agent systems to achieve consensus. In
those situations, a master-slave or leader-follower configuration is im-
plemented, and the discontinuous action is a control signal. In (Galzi
and Shtessel, 2006), higher-order sliding mode controllers are used in
such configuration to maintain the formation shape. In (Cao et al.,
2010) finite-time sliding mode estimators are used to achieve consensus
in decentralized formation control with virtual leader. Also in (Cortes,
2006) a discontinuous control input is chosen to be proportional to the
gradient of a positive semi-definite disagreement function defined by the
graph Laplacian matrix, leading to a sliding mode consensus algorithm.
Recently in (Rao and Ghose, 2010) consensus is achieved in connected
and also in fully connected swarms of idealized and identical first-order
dynamic systems enforced by sliding modes. Also in (Rao and Ghose,
2011) finite-time consensus algorithms for a swarm of self-propelling
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agents based on sliding mode control and graph algebraic theories are
developed. In (Guo et al., 2013) an LMI approach to multiagent sys-
tems control is performed under time-delay and uncertainties. Finally,
in (Jafarian and De Persis, 2013) exact formation control is achieved
with binary information of the position of the other agents.

In a recent proposal from one of the co-authors, sliding mode control
has been used in a non-traditional way: the sliding mode reference con-
ditioning (SMRC) technique (Garelli et al., 2011). This technique com-
bines reference conditioning and sliding mode ideas and has been used
in the beginning to bound cross-coupling interactions in multi-variable
linear systems (Garelli et al., 2006a, 2007) and for set-point seeking in
nonlinear systems with state dependent constraints (Pico et al., 2009b).
In (Revert et al., 2013), a SMRC auxiliary loop has been implemented
to reduce hypoglycemia in a closed loop glucose control for DM type 1
patients. Also in (Gracia et al., 2012) a geometric invariance and sliding
mode ideas have been proposed for redundancy resolution in robotic
systems. And in (Gracia et al., 2013) an integrated solution based on
the same ideas has been proposed for robotic trajectory tracking, path
planning and speed auto-regulation.

In the previous work Vignoni et al. (2011, 2012b,a, 2013a), the au-
thors use Sliding Mode Reference Conditioning to enforce coordination
in multi-agent systems. In (Vignoni et al., 2011) sliding mode reference
coordination in SISO systems is imposed with a global supervisory ap-
proach and two layers of SMRC in a hierarchical structure. In (Vignoni
et al., 2012b), the coordination arise from the local interaction between
the systems, and the information flows in only one level, as the swarm is
assumed to have no leader. In (Vignoni et al., 2012a) the authors make
a multivariable reference coordination for ideal unconstrained systems.
A preliminary unifying work is done in (Vignoni et al., 2013a) with focus
in SISO systems. The present work is a unified approach of the Sliding
Mode Reference Coordination (SMRCoord) integrating both local and
global approaches with focus on implementation in multivariable sys-
tems and robustness to perturbation to the coordination goals.

The rest of the paper is organized as follows. Next section presents
the problem of coordination in a general form. Then in Section 3.3
some previous results in set invariance and reference conditioning used
thereafter to propose coordination strategy are described. In Section 3.4
a decentralized version is proposed to solve the coordination problem
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with only one hierarchical level and no leader. Meanwhile in Section
3.5 the supervised global coordination method is proposed. In Section
3.6 the proposed strategies are used to coordinate UAVs showing the
result obtained by simulations. Finally, in Section 3.7 some conclusions
are presented and open issues for future study are considered.

3.2 Problem statement

In this section a general form of the coordination problem is presented,
together with definitions and assumptions regarding constrained sys-
tems and systems coordination.

Consider N stable closed-loop systems with different dynamic be-
haviour, constraints and performance. In the context of constrained sys-
tems, the feasible reference concept arises (Hanus et al., 1987): the
fastest reference a system can follow without violating its constraints
meanwhile in closed loop. In the case of a system with actuator satu-
ration as a constraint, a feasible reference will never lead the actuators
out of their operation range, otherwise it may open the loop, leaving the
control system without feedback and leading to a windup effect.

Hereafter, coordination will be understood as the action needed in
order to obtain a collective behaviour in a set of considered systems.
In this work, the coordination problem, is approached by acting on the
systems references.

Among the possible collective behaviours one can count:

e To keep a function of the local references () close to the global
reference.

e To maintain a fixed distance between the systems local references,
one to one, or between flock centroids.

e To obtain generalized synchronization, as a limit case of the previ-
ous cases.

Note the function y may be some function of the local references, like
the mean, mode, max or min. As a consequence of this, the resulting
definition of coordination is rather general and broad, depending on the
selected y function.
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Figure 3.1: Network topology of the different architectures shown im-
plemented in quadrotors. A. Local distributed topology. B. Supervised
global topology.

3.2.1 Information exchange

Information exchange is one of the key elements when coordinating a
set of systems. Depending in which level this information is exchanged
the following architectures may arise Fig. 3.1:

local topology when information flows in the same level among neigh-
bours systems;

global topology when information exchange occurs into a higher hier-
archical level, to a supervisory node.

Information exchange still is one of the main bottlenecks of a cen-
tralized topology: the data collection time depends on the number of
systems involved unlike the decentralized one which depends only on
the network radius. Moreover, the global topology presents the common
issues of vulnerability and fragility. If the central node has a communica-
tion problem or if it is under attack, all the network gets compromised.
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3.2.2 Constrained systems

When working with constrained systems, if the constrained variables
take different value than the desired ones, inadequate values of the state
variables = can destroy control performance. In order to restore the
state adequacy, auxiliary inputs r(x), called feasible references are used
(Hanus et al., 1987).

Definition 1. The feasible reference r¢(x) of a closed-loop system is
the closest input to the original reference r such that if r¢(x) had been
applied to the controller instead of r, the system constraints would have
not been violated; that is, the trajectories of the system and in particular
the constrained variables would remain inside (or in the boundary) of a
given set ®, defined by the system constraints.

3.2.3 Assumptions and definitions

Under the following assumption,

Assumption 3.1. Each system has a stabilizing control loop, and can
follow a feasible reference;

the coordination is defined as follows:

Definition 2. The systems are said to be coordinated as long as their ref-
erences belong to the invariant set ®. (x, p), by modifying each systems
feasible reference. The set ®. (x, p) is defined as:

De(x,p) = {x€X:d(x,p) = [r(x) ~p| 6 <0} (B1)

where x € X € R"™ are the system states, r(x) is a feasible reference
function of the states x, p a function depending on the information com-
ing from the other systems and § a predefined value. The norm ||| can
be any norm defined in R"™. However hereafter we will use the Euclidean
norm for simplicity.

3.3 Geometric set invariance and SM reference con-
ditioning
In this section the methodology used in this paper to achieve the coor-

dination of feasible references is described. It is based on concepts of
geometric set invariance and sliding mode reference conditioning.



3.3. Geometric set invariance and SM reference conditioning 65

3.3.1 Geometric set invariance

Consider the following dynamical system

5 { & = f(z)+g(x)u, 3.2)

y = h(z)

where x € X C Rn is the state vector, u € U C Rm is a control input
(possibly discontinuous), f : Rn — Rn and g : Rn — Rn are vector
fields, and h : Rn — Rb, scalar fields; all of them defined in X.

The variable y denotes the system output vector, which has to be
bounded so as to fulfill ; = 1,...,N user-specified system constraints
¢;. The corresponding bounds on y are given by the set:

d={xecX|p(y)<0},i=1,...N. (3.3)

From a geometrical point of view, the goal is to find a control input
such that the region ® becomes invariant (i.e. trajectories originating in
® remain in ¢ for all times t), while y is driven as close as possible to
its desired value r.

To ensure the invariance of ®, the control input « must guarantee
that the right hand side of the first equation in (3.2) points to the interior
of ® at all points on the boundary layer of ®, denoted by 0®, defined
as:

N
0 = | Jod;, 0% ={xc®|i(y)=0}. (3.4
i=1
The following assumption will be needed for later development, and
will allow us to compute the gradient vector V¢; of the functions ¢;.

Assumption 3.2. All the ¢; functions are assumed to be differentiable
in the boundary 0®;

Mathematically, the invariance of ® maybe ensured by an input w,
such that, Vi, ¢; < 0, when ¢;(y) = 0. This condition can be expressed
as:

¢i (¢, d,u)=Ve] & = ||Vill]l f + gul cos 6

=Vo'f+Vo gu
=Ls¢; + Lgpiu, Vo € 0P;, j =1,...,N, (3.5)
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which constitute in standard form the implicit invariance condition (Amann,
1990; Mareczek et al., 2002):

inf {¢ (z,d,u) <0, Vme@@l}, j=1,...,N. (3.6)

Solving equation (3.6) for u, results in the explicit invariance condi-
tion for system (3.2) and a particular constraint ¢;. The set I; of feasible
solutions is obtained:

U; (z,d)
u € {U|Ls¢; + Lgdiu <0} : @ € 0®; A Lgg; # 0.,
empty : x € 09; A Lg¢p; = OII/ ANLsp; >0 (3.7)

u:free:zcE(?(bi/\Lg@-:OL/ALchbiSO
u=free :2€ @\ 09,

where 0/ denotes the m—dimensional null column vector, and the first
set corresponding to Lg¢; # 0/, is always non empty.

Note that the control « in the interior of ® can be freely assigned.
Particularly, w = 0, could be taken so that the system evolves au-
tonomously throughout the interior of ®. Then, the control action be-
comes active only when some constraint becomes active, i.e. when the
state trajectory reaches the boundary 0@ trying to leave the set ¢. The
invariance condition will hold if the intersection (), U;(x) for all con-

straints of the solution sets U/;(x) is not empty.

3.3.2 Sliding mode reference conditioning

Now, in order to find the necessary w to achieve the invariance of some
set ®(y) (3.3), with the system X (3.2), consider the following imple-
mentation (Fig. 3.2).

A discontinuous decision block, will drive the search to find u €
U;(x) so as to fulfill the constraint ®(y) and make r remain as close
as possible to the external signal r. Also, a filter F' is incorporated. Its
purpose is to filter out the conditioned signal ¢, in order to feed the
system > with a smooth signal.

The filter F' is implemented as the first-order filter

rr=—-A(ry+u—r), (3.8
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A

bi

R

Figure 3.2: SM Reference conditioning general scheme.

with w € U C Rm/ is the discontinuous control action, r, r; € Rm/
are the input and the conditioned input signal, and A € R™*™ js a
diagonal matrix, a design parameter of the filter.

The discontinuous decision block is implemented by means of the
variable structure control law:

‘e {USM otherwise, (3.9)

where ¢;(y) are the constraints defined previously, i.e. the boundaries
of the set ®, and ugy, is such that u € (), U;(x).

Notice that the block ¥ in Fig. 3.2 represents the entire dynamics
from the constrained variables (y) to the input signal w. Then the sys-
tem (3.2) becomes:

&= f(z,d)+g(x)ry,
rr=—-A(rj+u—r), (3.10)
y = h(z)
In the case of a control system, (3.2) is the plant dynamic together

with a control loop, in which case r is the reference, and « in (3.2) is
the extended state comprising the plant and controller.
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The choice of ug); depends on whether there is only one active con-
straint or more than one. For a single active constraint, the analysis is
very similar to that of a SMRC in a SISO system (Vignoni et al., 2011,
2012b; Garelli et al., 2011), and is the approach we will use hereafter.
The case of several active constraints (see Gracia et al. (2012)), is not
analyzed in this work since we are defining only one constraint per sys-
tem in the formation control problem.

3.4 Reference coordination under local topology

In this section the local topology scheme for systems coordination is
presented. The coordination problem approached is the second one
described in Section 3.2. To this end, Definition 2 is rewritten in the
following way:

Definition 3. The local objective between two connected systems is to
bound the distance between their references by a predefined value §;;.
The set ®;; is defined by:

@ij(m,rfk.) = {.’13 S X,Tfk eRk=1,2: ¢LJ = |’I“fi — Tfj| — 5” < 0} (3.11)

where € X € R" are the systems states and r¢; € R, r; € R are the
conditioned references of systems i and j respectively.

Moreover, the systems are connected by the assumption:

Assumption 3.3. The topology of the connection network is fixed, in the
sense of which system can communicate with each other. This network
can be represented by a directed graph with adjacency matrix A = [a;;],
with a;; = 1 when i-th system can communicate with j-th one. Other-
wise a;; = 0. This graph is assumed to be connected (Olfati-Saber et al.,
2007).

Then, the set ® is defined as the union of the ®;;, when they are
connected (a;; = 1), for all the systems in the group:

N
o= |J ay®y (3.12)
i=1,j=Li#
The coordination objective is to make the set ® a controlled invariant
set. To this end the following local coordination scheme is proposed.
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Proposed coordination scheme

Consider a swarm of N systems, with N > 2 satisfying Assumption 3.1,
connected in a network topology as in Assumption 3.3, with a sliding
mode reference conditioning auxiliary loop, like in Section 3.3.2. This
loop allows to handle the local constraints of each system, by command-
ing a feasible reference to each systems closed loop. Also, the feasible
reference provides information to the other systems. The systems will
have a goal for every connected neighbor systems as in Definition 3.
Then, it is possible to enforce coordination as in Section 3.2 among the
system references using the following scheme incorporating the local
goal into each system SMRC loop.

> Agent 1
A rfl
W21
r I
<€ ¢21 €
> Agent 2
er

Figure 3.3: Local SMRCoord: Local goal incorporation into the SMRC
scheme.

In Fig. 3.3, an implementation of the proposed scheme is depicted,
with two systems for the sake of demonstration. The i-th system ¥;
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incorporates the plant and a biproper controller:

&i = fi(zi) + gi(xi)vi
i = hi(x;
5.4 Y (2:) (3.13)
Tei = AciTei + bei€;

Vi = Ceiei + deii
with z; and e; the the state of the controller and the error signal of the
control loop defined as e; = 7¢; — yi. Aci, bei, Cei, de; are the parameters
of the i-th system controller.

The local goal, incorporated in the SMRC, together with the actuator
saturation constraint, leads to the following structure for the filter F;:

Fi: 74 = —oi(rp — v+ ;) (3.14)

with the combination function ;. This will combine the discontinuous
actions from the physical constraints (w;) and from the virtual coordi-
nation constraints (w;;), defined as follows:

N
w; = w; + Z Qi Wi (3.15)
J=Llj#i

The discontinuous action w; is defined as in Garelli et al. (2006a):
M; if ¢j:vi—v$>0
w; = —M,; lf gf); =vV; — Ui; <0 (3.16)
0 otherwise

with M; being the amplitude of the discontinuous action. And the dis-
continuous action wj; is defined according to the virtual constraint ¢;;.

M;j sign(ry; —ryj) if  ¢ij (rei,re) >0
wij:{ jsign(ryi —rpg) U bij (rpiry)) 3.17)

0 i ij(ri,r) <0
with M;; being the amplitude of the discontinuous action. Finally the

physical constraint and the virtual coordination one which is defined
following (3.22) are:

oF = v — v (3.18)

% ip

Gij = |rpi — 5] — 04j (3.19)
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with vi‘; and v;, being the upper and lower limits of the actuator satura-
tion and 0;; a preestablished value for the references difference.

In A.2 the corresponding analysis is done to prove the invariance of
the set ®;;, obtaining the following bound:

Qil'fi — Q5T'f5 Qi — Qy

M;; > — - 3.20
K Qi + o Oéi—i-ajr ( )
b -v-i —i—f_l i Lei
M; > ZMU _ w — p;. (3.21)
i#j !

3.5 Reference coordination under global topology

To address the coordination problem under the global topology, Defini-
tion 2 is re-written as follows:

Definition 4. The coordination objective can be defined in terms of a

set ®,, which by changing » becomes an invariant set. The set ®, is
defined by:

Oy (x,rp) ={weX,rpy € RY 2 ¢y (rps) = r — x(rp)| — A < 0}
(3.22)
where x € X € R" are the systems states, » € R is the global condi-
tioned references, and x(ry;) is a function of each system’s reference.
Finally, A is a fix predetermined value, the width of the allowed band
around 7.

Thus, the coordination objective is to make ®, become an invariant
set. To this end, the following coordination scheme is proposed:

Proposed coordination scheme

Consider a set of N dynamical systems. Assumption 3.1 holds for each
system. Defining the coordination objective as in Definition 4, it follows
that coordination understood as in Section 3.2 is enforced using the fol-
lowing scheme and incorporating the coordination objective (Definition
4) in a global reference conditioning loop.

The proposed coordination scheme is shown in Fig. 3.4. Each agent
i has a local reference conditioning loop (¢;, w; and F; like in Fig. 3.2)
to generate the feasible reference r¢; from the global reference .
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rfl
Agent n <€
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Figure 3.4: Coordination scheme for the global topology.

In a higher hierarchical level, there is another reference conditioning
loop, in this case to generate the global reference r. This loop comprises
the switching function ¢,, the function x of the local references, and the
discontinuous action (w,) to create a smooth global reference r from the
global target signal c,.
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3.5.0.1 Coordination filter

The coordination filter (#;) smooths the global discontinuos action (w,)
with the following dynamics:

7= —=X(r—cqg— kwyg) (3.23)

where wy is the discontinuous action and & is a weight to define the
strength of the coordination.

3.5.0.2 Definition of the switching surface ¢,

First we define the boundaries of the set ®, as constraints in the follow-
ing way
¢oF =r—x(rp) —A
¢ =7 —x(rp) +A
The discontinuous action to force the system remain in the set , when
the system dynamics make the trajectories go outside of the set is:

(3.24)

w; if ¢;>O
if ¢, <0 (3.25)

Wy = wg_

0 otherwise.

To ensure the invariance of the set ¢, (3.7) we must choose w, < —wg
and w; > w;, where w; is the bound obtained in A.1.

3.6 Simulation

In this section, the main features of the sliding mode reference coordi-
nation (SMRCoord) and formation control developed in Section 3.5 and
Section 3.4 are illustrated for quadrotors with cartesian control through
simulation results obtained using MATLAB® and using non-linear identi-
fied models from (Blasco et al., 2012). A simplified version of the Parrot
AR-Drone® Quadrotor models and software for development and imple-
mentation of control and navigation strategies can be found in (Garcia-
Nieto et al., 2012). Note the strategy is straightforward to implement
in MIMO systems, as soon as they are decoupled. This is the case of the
quadrotors in cartesian configuration.
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Conditioned references r y[m]

Component

Component y

w Drone 1

w Drone 2

w Drone 3

Figure 3.5: Local topology: Conditioned references and discontinuous
actions of the individual systems.
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3.6.1 Quadrotors and controllers

In this example we considered three quadrotors. The kind of motion
considered is cartesian (planar motion). Each one has its own local
reference conditioning scheme as in Section 3.3.2. Each agent i sends
and receive information from the other agents under the local topology
and to the supervisor under the global topology, and incorporates them
as constraints (Definition 3) in the SMRC as proposed in Section 3.4.

3.6.2 Information exchange in SMRCoord

The way the information exchange is considered in this work is a key
contribution. The main idea is that each system sends key information
regarding its local constraints to the other systems by sending its fea-
sible reference. In any of the two topologies, the individual systems
hide their states and output to only share the feasible reference with the
other systems. Thus minimizing the information exchange. The feasible
reference contains information of the system and its state regarding the
local constraints.

3.6.3 Simulation results
3.6.3.1 UAV formation with SMRCoord under local topology .

First we implement a triangle-shape formation with three Drones us-
ing the SMRCoord under a local topology. The time evolution of the
three agents references (ry;), together with the resulting discontinuous
actions (w) are shown in Fig. 3.5.

It can be seen that the references are coordinated and follow the tar-
get trajectory taking into account the saturation in the drones actuators.

In the resulting discontinuous action (plots 3 to 5 in Fig. 3.5) is pos-
sible to see that the amplitude in each component is varying with time,
as the constraints ¢ also changes, depending on the relative positions of
the agent between them. Also the amplitude of the discontinuous ac-
tion is enough to make (3.21) hold, so as the SM is established in the
boundary d¢.

In Fig. 3.6 is possible to see how, despite the dynamical difference
among the systems and their local controllers parameters, coordination
is also achieved in the output of the systems.
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Trajectories
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Figure 3.6: Local topology: Drones trajectories in time and cartesian
projection. The trajectories are winding along the conditioned refer-
ences.
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3.6.3.2 Formation perturbation rejection with SMRCoord under
local topology.

Simulation results in order to test the formation perturbation rejection
properties of the SMRCoorc under local topology can be seen in Fig. 3.7.
The perturbation consisted of manually stoping the movement of the
Drone 1 (red line) in the coordinate z, and has been incorporated af-
ter 20sec and after 50sec. It appears as a flattop in the reference (sur-
rounded by a black ellipse in the plot). The strategy rejects the pertur-
bation as the other two Drones wait,this is they stop moving as well in
order to keep the formation. As a drawback, comparing with the first
plot of Fig. 3.5, the time it takes to finish the desired trajectory is longer
because the drones had to wait until the perturbation was gone.

3.7 Conclusion

A novel strategy using ideas of set invariance and sliding mode reference
conditioning is developed to deal with the coordination of multi-agents
and formation control problem. The proposed methodology has an in-
teresting potential to be expanded in order to overcome more general
coordination problems. This is inherent to its definition, i.e. the coordi-
nation goals are reflected in the design of the sliding manifolds.

The fact that the individual systems dynamics are hidden to the coor-
dination system, and only the necessary information about the subsys-
tems constraints is communicated to it, makes the proposed methodol-
ogy transparent and allows dealing with a broad kind of systems to be
coordinated, as soon as they can be reference conditioned.

Additionally, the features of the SMRC and the SM itself are inher-
ited by the proposal, such as robustness properties of SM control, but
not the usual problems of SM like chattering, because the technique is
implemented as a part of a numeric algorithm in a digital environment.

Practical applications of the proposed algorithm, for example in AR-
Drone® Quadrotors flying in a controlled formation, can be implemented
as auxiliary supervisory loops to the trajectory planing algorithm for the
virtual leader and stabilizing controllers of the individual agents. The
research group is working towards this implementation.

In the theoretical side, an interesting future research line we are
working is on the extensions of the proposed methodology to deal with
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Figure 3.7: Target and conditioned references for 2 and y components
under perturbations in the formation. The black ellipses show the in-
tervals were the perturbation was introduced to Drone 1 (red), and is
possible to see how the other two conditioned references wait to the
reference of Drone 1 until the perturbation vanishes, then the normal
course continues.

multiple constraint per system, in which case the problem is how to de-
cide the direction of the control action. Also we are working in the case
of constrained systems, and how to incorporate these constraint into
the coordination, in order to have a formation control which also takes
care of the individual systems constraint, resulting in a robust formation
control against disturbances coming from individual limitations in the
multi-agent systems.



Chapter 4

UAV reference conditioning
for formation control

The airplane stays up because it does
not have the time to fall.

Orville Wright

ABSTRACT: A novel methodology is proposed for formation con-
trol of UAVs. The scheme is based on the sliding mode reference
conditioning technique in a sort of supervisory level. The main
idea is to shape the UAVs references in order to keep them coor-
dinated. This implies a virtual leader which has the information
of the formation structure, position of the agents in the formation
and bounds on the distance between its reference and the ones of
the agents. Geometric set invariance techniques together with slid-
ing mode control is used for this purpose in order to make some
set, defined from the reference constraints, invariant. To show the
applicability of the approach, the problem of coordination and for-
mation a number UAVs in cartesian motion is illustrated through
simulation results using non-linear identitled models of the UAVs.
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4.1 Introduction

Coordination of multi-agents and, in particular, formation control of
multiple Unmanned Aerial Vehicles (UAVs) is a very up to-date topic
and it supports many practical applications, such as surveillance, fore-
casting weather, damage assessment, and search and rescue (Ren et al.,
2007).

The use of sliding mode (SM) techniques has been proposed for con-
trol of swarms and multi-agent systems to achieve consensus. In those
situations, a master-slave or leader-follower configuration is in general
used. In (Galzi and Shtessel, 2006), higher-order sliding mode con-
trollers are used in such configuration to maintain the formation shape.
In (Cao et al., 2010) finite-time sliding mode estimators are used to
achieve consensus in decentralized formation control with virtual leader.
Also in (Cortes, 2006) a discontinuous control input is chosen to be pro-
portional to the gradient of a positive semi-definite disagreement func-
tion defined by the graph Laplacian matrix, leading to a sliding mode
consensus algorithm. Recently in (Rao and Ghose, 2010) consensus is
achieved in connected and also in fully connected swarms of idealized
and identical first-order dynamic systems enforced by sliding modes.
Also in (Rao and Ghose, 2011) a finite-time consensus algorithms for
a swarm of self-propelling agents based on sliding mode control and
graph algebraic theories are developed.

In the majority of the literature, the sliding mode control acts directly
as a control action, but in this contribution we depart from some usual
assumptions in the literature, and use invariance ideas and SM tech-
niques to induce coordination. The agents involved are assumed to have
a stabilizing controller. This assumption is a common one when dealing
with trajectory planning and formation control algorithms (Ren et al.,
2007). However, we do not assume that the systems which are going to
be coordinated have the same dynamics. On the contrary, the approach
addresses the problem of coordinating systems with possibly different
dynamics (e.g. linear and nonlinear, different orders, constraints, etc.).

The idea behind our approach to the coordination problem is that
in order to coordinate the systems, we can shape their references as
function of the information from the virtual leader. The systems can
have different dynamics, but they have to be controlled, in order to
follow the multivariable references commanded to them.
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The virtual leader reference in fact can be the reference of any sys-
tem, as the proposed algorithm is easy extendable to different topolo-
gies, when the generated graph is connected.

In the future, the achievable performance of each system and in-
formation each system has about their neighbors in the group will be
considered. Sliding mode reference conditioning (SMRC) is used for
this purpose. Each system has an SMRC structure to handle the infor-
mation coming from the virtual leader. Bounds on the references of each
system and the virtual leader are incorporated as constraint in the con-
ditioning loop, running as a supervisory loop and feeding the reference
to the already existing stabilizer of each system.

The sliding mode reference conditioning technique (Garelli et al.,
2011) is inspired by recent proposals from the co-authors, where they
have combined reference conditioning techniques and sliding mode ideas
to bound cross-coup-ling interactions in multi-variable linear systems,
see (Garelli et al., 2006a, 2007) and for set-point seeking in nonlinear
systems with state dependent constraints (Picd et al., 2009b).

In the previous work (Vignoni et al., 2011), coordination in SISO
systems is enforced with a global supervisory approach and two layers
of SMRC in a hierarchical structure. In (Vignoni et al., 2012b), the co-
ordination arise from the local interaction between the systems and the
information will flow in only one level, as the swarm is assumed to have
no leader. On the other hand in (Gracia et al., 2012) a geometric invari-
ance and sliding mode ideas are proposed for redundancy resolution in
robotic systems. In this work use SMRC to generate multivariable refer-
ences and command a group of systems, in order to coordinate them.

The rest of the paper is organized as follows. Next section present
some previous results in set invariance and reference conditioning. Sec-
tion 4.2 describes the problem statement and the elements conforming
the coordination structure. Section 4.3 describes how the switching sur-
faces are designed inducing coordination and formation control among
the systems. In Section 4.4 the main features of the paper, are illustrated
for quadrotors with cartesian control through simulation results. Finally,
in section 4.5 some conclusions are presented and open issues for future
study are considered.
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4.2 Problem Statement

Consider a group of N mobile agents (UAVs) with planar (cartesian)
dynamics.

The agents involved may have different dynamics and constraints.
A local stabilizing control loop and an SMRC loop are assumed to be
present in each individual agent. The information of the virtual leader
is incorporated as a constraint in the local reference into the SMRC
scheme. The group of agents will follow a virtual leader, according with
the information each agent receive from the leader.

The agents are said to be in a coordinated formation when their local
references remain inside a predefined set ®, as long as each systems
constraints also hold. This set is defined as the intersection

N
o = ﬂ ®; 4.1

Then the ®; sets are defined as:

Definition 5. The bounds on the references of the agents, relative to the
virtual leader reference are given by the sets:

CI)Z-:{CCEX:(Z)Z‘: H""fi_("'le —i—pz‘)H—(SiSO} 4.2)

where z € X € R” is the state vector, ry; € R” is the reference of the
i-th agent, 7. is the references of virtual leader, p; is the predefined
vector relative to the virtual leader the i-th agent will be formed, and §;
is the predefined maximum allowed value for the distance between the
position of the i-th agent and the desired position p, in the formation.

Remark 4.1. The so called virtual leader, in fact can be any other agent
in the formation. The direction of the information flow is the only re-
striction. A leader-follower structure is required, but this can be all the
agents of the formation as followers of a virtual leader, as shown in this
work, or many leader-followers groups, resulting in a connected graph
as network topology (Vignoni et al., 2012b). From hereafter the virtual
leader case will be used without loose of generality. On the other hand,
the bidirectional flow of information, is an interesting challenge and is
one of the future lines emerging from this work.
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The coordination problem becomes a distributed set invariance prob-
lem, where the goal is to maintain the systems reference within some
set, and to make that set invariant. It is possible to formulate the whole
problem as a set invariance - SMRC one.

4.3 Formation control

In this section the algorithms for coordination and formation control are
stated for groups of planar UAVs which may have different dynamics,
with virtual leader configuration. The following assumptions are made
about the agents:

Assumption 4.1. Each agent has a stabilizing controller.

Assumption 4.2. Each system has an SMRC auxiliary loop (as in Sec-
tion 3.3.2) to handle the information from the virtual leader.

Assumption 4.3. Each agent can communicate with the virtual leader.

Remark 4.2. The last assumption seems to be a strong one, but taking in
to account Remark 4.1, it actually becomes the following: The topology
of the connection network is fixed, in the sense of which system can
communicate with each other, and in which direction. This network
can be represented by a directed graph with adjacency matrix A = [a;;],
with a;; = 1 when i-th system can communicate with j-th one, otherwise
a;; = 0. This graph need to be connected (Olfati-Saber et al., 2007).

4.3.1 Proposed coordination scheme.

In the next subsection the main contribution of this work, the coordina-
tion and formation control of a group of multi-agents utilizing SMRC,
is considered. Consider a group of N multi-agent systems, with N > 2
satisfying Assumptions 4.1-4.3, with bounds for every agent reference
as in Definition 5. Then is possible to enforce coordination among the
agents in the group, incorporating the reference bounds (Definition 5)
into each system SMRC loops as is shown in the next subsections.

4.3.2 SMRC analysis and design.

In Fig. 4.1, an implementation of the proposed scheme is depicted, with
two systems for the sake of demonstration, with the respective variables
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Figure 4.1: Virtual leader and reference bounds incorporation into the
SMRC scheme.

explained in Table 4.1.
The reference bounds incorporated in the SMRC, leads to the follow-
ing structure for the filter F;:

Fi : ’f“fi = —Ai(rf,- — Tl + ul) (43)

which can be rewritten in the following way, because is the only dynamic
between the constraints and the discontinuous action.

&= fi(z,d) + g;(x)u; (4.4)
where © = [7piz 74iy] T, d = [Flex Tiey] ! is the state vector, f,(z,d) =
—A;(x —d) and g,;(x) = —A;. Then the constraint ¢; can be rewrite as:

¢i = ||z — (d+p:)|| — 6 (4.5)

The variable control law u; is defined as in Section 3.3.2:

'_{ O i max{gi(y)} <0

ugy Ootherwise

(4.6)

with ugys being the discontinuous action. For only one active constraint
it maybe defined with a vector parallel to Ly, , but with negative di-
rection to point inside the set ®;, as follows:

usy = —MLgo, 4.7
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where M is a positive constant to be chosen high enough to make the
first equation in (3.7) hold, i.e. establish a SM on the boundary 0®,. To
fulfill that, the scalar M must be:

Lyo;
Lg¢iLg¢iT

To make the condition (4.8) hold for constraint ¢; we have from
4.2)

M > (4.8)

%

ox

= [2(szzr — Tlex — px) 2(Tfiy — Tley — py)] (49)
and
Lg¢i = [_2/\z (rfzm — Tlex — pz) - 2/\y(rfiy — Tley — py)] (410)

Then

- 2/\;E (rfm — Tlex — P:c)
— 2Xy(7fiy = Tiey — Py)
Which gives a bound on M in the form of (4.12).

*2>\m(7ﬂfzx — Tlex — pm)(7fiz - rlem) - 2)\y(rf1y - 7'ley - py)(7f1y - T'ley)

M > — 5
4>\% (wa — Tlex 7p'r) + 4)\32,(7"]%1; — Tley 7py)2

(4.12)

4.3.3 Switching frequency and chattering.

As in all SM controls, the theoretically infinite switching frequency can-
not be achieved in practice because all physical systems have finite band-
width. In computer implementations, the switching frequency is di-
rectly the inverse of the sampling period. Finite-frequency commutation
makes the system leave the theoretical SM and, instead, its states oscil-
late with finite frequency and amplitude inside a band around ¢ = 0,
which is known as chattering (Utkin and Lee, 2006).

For active constraints, the chattering band A¢; = 0 is given, using
the Euler-integration, by:

A¢ < |¢i|Ts < || Lggiusnr||Ts < M||AV;||*Ts (4.13)

Therefore, chattering can be reduced if necessary by either decreas-
ing the filters bandwidth ();) or increasing the sampling rate (7).



86 CHAPTER 4. UAV reference conditioning for formation control

4.4 Simulation

In this section, the main features of the coordination and formation con-
trol developed in Section 4.3 are illustrated for quadrotors with carte-
sian control through simulation results obtained using MATLAB® and
using non-linear identified models from (Blasco et al., 2012). A simpli-
fied version of the Parrot AR-Drone® Quadrotor models and software
for development and implementation of control and navigation strate-
gies can be found in (Garcia-Nieto et al., 2012).

4.4.1 Quadrotors and controllers

In this example we considered five quadrotors. The kind of motion con-
sidered is cartesian (planar motion). Each one has its own local refer-
ence conditioning scheme as in Assumption 4.2. Each agent j receive
information from the virtual leader: the reference (r;., the position in
the formation (p;) and the size (J;) of the allowed region around pj-
And incorporate them as constraints (Definition 5) in the SMRC as pro-
posed in Section 4.3.

4.4.2 Virtual leader reference and formation structure

The virtual leader will be considered as a generator of the reference, the
formation structure and its parameters at every time, and will be the
responsible of sending this information to the agents. The virtual leader
reference is given by the following expression:

1 [t
r e — T~ (4.14)
710 | (0.1t —5)2 — 0.5 — 25

and is depicted in Fig. 4.2(a) together with the formation structure
Fig. 4.2(b) and the values of formation parameter p in Fig. 4.2(c). In
Fig. 4.2 red line is the virtual leader, cyan is the first line of the forma-

tion, and blue the second. The parameter § = 0.2 was constant for the
entire simulation.

4.4.3 Simulation results

The five agents references (ry;), together with the virtual leader ref-
erence (7;.) are shown in the following pictures: In Fig. 4.3 the time
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Figure 4.2: Virtual leader. (a) Reference of the virtual leader (r;.). (b)
Formation structure.(c) Formation parameter p.

evolution.

It can be seen that the references are coordinated, i.e. they reach a
formation around the virtual leader, according to the formation param-
eters and reference bounds constraint (4.1).

The resulting discontinuous action, depicted for only one of the
agents (number 2) for the sake of demonstration, are shown in Fig. 4.4.
The original cartesian = and y components are shown in the left. Here is
possible to see, the discontinuous action amplitude in each component
is varying with time, as the constraint ¢- also changes, depending on
the position of agent 2 relative to the virtual leader. On the other hand,
in the right side of Fig. 4.4 the discontinuous action of the same agent
is shown in polar coordinates (p, = ||uz|| and 6 = arctan(uz)) where
is easy to see the amplitude of the vector is constant, but the direction
(0) is the one changing, following the (negative)value of the constraint
¢ gradient as defined in (4.7). Also the amplitude of the discontinuous
action is enough to make (4.12) hold, so as the SM is established in the
boundary d¢s.
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Table 4.1: Variables in Fig. 4.1

Variable Name
Virtual leader reference Tle
Agent 1 2
Conditioned reference T
Position in the formation D;
Allowed region around p; d;
Agent ¢ Output Yi
First order filter F;
Reference bound constraint b
Discontinuous action of ¢; u;

Formation control - references

600
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+ 300

200
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Figure 4.3: Time evolution of the 5 agents (blue) and virtual leader
(red) in formation with varying parameter |p|.

The system outputs also reach coordination and formation, but de-
pending on their local controllers parameters.

4.5 Conclusion

A novel strategy using ideas of set invariance and sliding mode reference
conditioning is developed to deal with the coordination of multi-agents
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Figure 4.4: Discontinuous action uy. Cartesian coordinates (x and y)
and Polar coordinates (p; and )

and formation control problem. The proposed methodology has an in-
teresting potential to be expanded in order to overcome more general
coordination problems. This is inherent to its definition, i.e. the coordi-
nation goals are reflected in the design of the sliding manifolds.

Additionally, the features of the SMRC and the SM itself are inherited
by the proposal, such as robustness properties of SM control.

Practical applications of the proposed algorithm, for example in Par-
rot AR-Drone® Quadrotors flying in a controlled formation, can be eas-
ily implemented as auxiliary supervisory loops to the trajectory planing
algorithm for the virtual leader and stabilizing controllers of the indivi-
dual agents.

In the theoretical side, an interesting future research line we are
working is on the extensions of the proposed methodology to deal with
multiple constraint per system, in which case the problem is how to de-
cide the direction of the control action. Also we are working in the case
of constrained systems, and how to incorporate these constraint into
the coordination, in order to have a formation control which also takes
care of the individual systems constraint, resulting in a robust formation
control against disturbances coming from individual limitations in the
multi-agent systems.






Part 11

Bioprocesses and sliding
modes estimation
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Chapter 5

Specific growth rate
estimation in (fed-)batch
bioreactors using
second-order sliding
observers

La science d’observation est une science
passive;

elle prévoit, se gare, évite, mais ne
change rien activement.

Claude Bernard

ABSTRACT: This paper addresses the estimation of specific growth
rate of microorganisms in bioreactors using sliding observers. In
particular, a second-order sliding observer based on biomass con-
centration measurement is proposed. Differing from other pro-
posals that only guarantee bounded errors, the proposed observer
provides a smooth estimate that converges in finite time to the
time-varying parameter. Stability is proved using a Lyapunov ap-
proach. The observer exhibits also robustness to process uncer-
tainties since no model of the reaction is used for its design. In
addition, the off-surface coordinate of the sliding observer is use-
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ful to determine the convergence time as well as to identify sen-
sor faults and unexpected behaviors. Because of the structure of
the output error injection, chattering phenomena of conventional
sliding mode algorithms are substantially reduced. The features of
the proposed observer are assessed by numerical and experimental
data.

5.1 Introduction

Bioprocesses are characterized by complex dynamic behavior, nonlin-
earities, model uncertainty, unpredictable parameter variations, etc.. In
addition, most representative variables are typically not accessible for
on-line measurement. Consequently, bioprocess control and monitoring
is a difficult task in general. In this context, the development of robust
and reliable algorithms to estimate key variables and parameters of the
process is of prime interest, and extended work has been carried out in
this field Dochain (2003).

The existing algorithms differ each other with respect to the mea-
sured and estimated variables, the parameters which are assumed to
be known, the type of convergence, robustness issues, etc.. A sum-
mary of several approaches under different scenarios can be found in
Dochain (2003); Venkateswarlu (2004). Asymptotic observers for state
and parameter estimations appeared for the first time in Aborhey and
Willamson (1978). Adaptive high-gain observers for the same purposes
were presented in Bastin and Dochain (1986). Applications of high-gain
observers to bioreactors appeared also in Gauthier et al. (1992); Farza
et al. (1998). More recently, hybrid observers combining asymptotic
with exponential observers to estimate states and identify confidence
of the kinetic model were developed Lemesle and Gouzé (2005). Slid-
ing mode observers have been proposed also to deal with model uncer-
tainties Gonzalez et al. (2001); Pico et al. (2009a). An observer that
estimates the substrate consumption rate based on substrate concentra-
tion measurement was designed in Gonzalez et al. (2001). In Pico et
al. (2009a), sliding mode techniques were exploited to estimate kinetic
rates and concentration variables from biomass measurement.

In this paper we focus on the estimation of reaction rates and, par-
ticularly, of specific growth rates. The motivation is that, in many cases,
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specifications are related with the growth rate of microorganisms, whe-
ther the objective is to maximize biomass production or to maintain a
metabolic steady state Zamboni et al. (2009). Besides, growth rate pro-
vides a valuable information to monitor the development of microor-
ganisms in the broth.

Substrate concentrations are the key variables in the kinetic models.
So, by measuring them, good estimates of the specific growth rate can
be obtained by using high-performance observers. However, substrates
are usually very difficult to measure on-line and with good precision,
particularly when they are in low concentrations.

Alternatively, there currently exist reliable biomass sensors (see for
example Navarro et al. (2001a); Kiviharju et al. (2008)). That is why
much research has been oriented to develop observers based on biomass
sensors, although biomass is a much less informative signal from the
point of view of kinetics than substrate. In this approach, the kinetic rate
is traditionally treated as an unknown parameter. High-gain observers
with some kind of adaptation of the unknown parameter have been ex-
tensively used. The observer dynamics are typically enlarged with in-
tegral states to adapt the parameter estimates. Advances in the field
can be traced back to the work of Bastin and Dochain (1986), where
an adaptive Luenberger-like observer is designed so that it achieves bo-
unded error under the assumption that the specific growth rate has bo-
unded time derivative. These results were extended and improved by
further work of the authors and contributions of other colleagues.

A different approach is suggested in Picé et al. (2009a) where re-
action rates are treated as unknown time-varying signals rather than
as unknown parameters. There, a sliding mode observer is designed
to estimate the specific growth rate under the same assumptions as in
Bastin and Dochain (1986) and related papers. The observer includes a
discontinuous term in the estimate that allows achieving finite time con-
vergence to the unknown growth rate. Actually, the estimate converges
to the real signal up to a very high frequency component.

In this paper we further exploit the potentialities of the previous ap-
proach with the aim of obtaining observers with superior convergence
features than the already existing ones. The new observer differs in
the structure of the discontinuous output error injection so that discon-
tinuity does not appear in the estimate but in its derivative. Differing
from any other approach found in the technical literature, the algorithm
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proposed here provides a smooth estimate globally converging to the
unknown signal in finite time. This is a particularly attractive property
in closed-loop applications. In fact, the separation principle applies,
thereby observer and controller can be designed separately. The pro-
posed observer is a variation of the well-known super-twisting sliding
algorithm, thereby sharing its excellent performance against noise Lev-
ant (1998). Additionally, the information about the process required
by the observer is the same as in Bastin and Dochain (1986) and re-
lated papers, thereby similar robustness features are expected. Besides,
the proposed observer has interesting applications in fault detection and
monitoring. Effectively, the switching function is very sensitive to fast
variations in biomass concentration. Therefore, observer divergence can
be associated to bioreactor malfunctioning or sensor failure.

The work is organized as follows. The next section presents some
general assumptions and preliminaries. In section 5.3, the proposed
second-order sliding mode observer is developed and its stability is pro-
ved using Lyapunov theory and semi-definite programming tools. Sec-
tion 5.4 shows the observer performance using numerical analysis whe-
reas experimental results are presented in section 5.5. Finally, the main
conclusions of the work and future research lines are given.

5.2 Problem formulation and background mate-
rial

Consider a biomass growth, whose dynamics accept the following de-
scription in state-space Bastin and Dochain (1990); Dunn et al. (2003):
i = (u— D(z,t
p. 1t (b= D(z, b))z G.1)
= pz,pt)x

where the state variables are the biomass concentration = and the spe-
cific growth rate . The dilution rate D(z, t) is function of time and, pos-
sibly, of x. The specific growth rate x is an unknown nonlinear function
of biochemical and environmental variables such as substrate, biomass
and some product concentration, dissolved oxygen, temperature, pH,
etc. In the second line of (5.1), a biomass-proportional representation
for the u-dynamics has been used. This is a sensible choice, particularly
for batch processes as well as for fed-batch processes with exponential
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growth (in which feeding laws of the form D(x,t) = A(t)x, are used).
An explicit expression for p(-), as function of process parameters, can
be derived for some simple —and most commonly found in literature—
kinetic models such as Monod and Haldane. However, our purpose is to
design robust observers that do not rely on the knowledge of the kinetic
structure and process parameters. Therefore, the function p(x, u,t) is
supposed to be unknown.

5.2.1 Main assumptions

The observer to be presented in the following section is designed under
the following main assumptions:

Assumption 5.1. Biomass concentration is measured.
Assumption 5.2. Uncertainty p is uniformly bounded by |p(-)| < p
Assumption 5.3. The dilution rate D is known and uniformly bounded.

Additionally, to show observer convergence, we state the following
assumptions which are quite obvious and do not restrict the validity of
the proposed observer:

Assumption 5.4. D and p are Lebesgue-measurable functions.

Assumption 5.5. Biomass concentration is strictly positive and boun-
ded, that is, for any initial condition z(0) > 0 there exist x > 0 and
T < oo such that x < z(t) < z Vt > 0.

5.2.2 Preliminaries

High-gain observers are based on the works of Bastin and Dochain Bastin
and Dochain (1986). They have the form

(5.2)

One { &= (fi — D(x,t) + 2Cw(z — &) z
=Wz —3)x

This is a Luenberger observer for the measured signal x with an
integral state that adapts the unknown parameter p. That is, the error
in the estimation of a measured variable is used in turn to estimate
the unknown parameter. The adaptive observer effectively behaves as
a low-pass second-order filter of the unknown growth rate u. Several
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tunings, variations and extensions of this observer have been proposed
in the literature. In any case, perfect tracking of a time-varying p(t)
cannot be achieved and only dc errors in /i can be eliminated. This
sort of observer is said to be non-exact in the sense that the real signal
cannot be recovered even in the absence of noise. In feedback control
loops, these observer dynamics add to the controller dynamics, so that
the separation principle does not apply. In last sections we will use
this traditional observer to make a comparative analysis of the proposed
sliding one.

On other side, the first-order sliding mode observer for (5.1) pre-
sented in Pico et al. (2009a) is of the form:

T = <z —D(z,t) +w(l+alx))(x—2) + % sign(z — :%)) x

Oism : § 2 = (w?a(z)(z — &) + M sign(z — £)) =

A~

M . A
i =z+ — sign(x — )

“ (5.3)
withw >0, M > p and a(z) > 0 Vz.

Note that it has the same form as the B&D observer, but discon-
tinuous terms are added to the observer dynamics and output. Thus,
the estimated biomass perfectly tracks the measured one after a finite
converging time, where the resulting specific growth rate estimate is
discontinuous. Further, this estimate coincides with the real growth rate
except for a very high (ideally infinite) frequency discontinuous error.
Two options have been explored in Picé et al. (2009a) to recover the
continuous signal from the discontinuous estimate. The first, and most
obvious one, consists in passing the observer output through a low-pass
filter of arbitrary order and cut-off frequency. In the second one, the dis-
continuous sign(-) function is replaced by a continuous function with
high gain at the origin. In both cases, the continuous estimate no longer
converges in finite time to the real time-varying growth rate but just to
a ball centered around. Hence, this observer is not exact either. It is
however more flexible and it has been shown to be less noisy in many
circumstances than observer (5.2) Picé et al. (2009a).
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5.3 Second-order sliding mode observer

The new observer differs from (5.3) in the structure of the discontinu-
ous output error injection so that discontinuity does not appear in the
output estimate but only in its derivative. Perfect tracking of biomass
concentration and, more importantly, of the specific growth rate is still
achieved in the absence of noise, whereas noise effects are substantially
reduced. Global finite-time convergence of the observer is proved using
concepts of Lyapunov theory and LMIs.

This new observer falls within the category of second-order sliding
mode observers because the switching argument must be differentiated
twice for discontinuity to appear. Those readers unfamiliar with high-
order sliding modes are referred to the comprehensive works Fridman
and Levant (2002); Levant (2003) where the main concepts used in this
paper can be found.

Consider the biomass dynamic system (5.1), where p and D are in-
put signals satisfying Assumptions 5.3 to 5.4. Therefore, a well-defined
solution exists for any initial condition. Further, any solution to (5.1)
satisfies also the differential inclusion®

z=(u— D(x,t))x
- { (1= Dz 1) 5
e Upx
where U is the set U = [—1,+1]. This differential inclusion represents

the family of solutions for any unknown specific growth rate satisfying
assumption 5.2.

Theorem 5.1. Let (x(t), u(t)) be a solution of the differential inclusion
(5.4), with x(t) satisfying Assumption 5.5. Then, the observer

&= (71— D(w,t) +28(pl(x — #))* sign(z — 7)) =

i = (apsign(z — 2))

OQSM . (55)

converges in finite-time to (x(t), u(t)) for suitable gains « and .

Note. Convergence is understood here in the sense that the estima-
tion error vanishes for any solution to (5.4). Note that weaker concepts

In this paper, solutions are understood in the Filippov sense.
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of convergence are also used in the literature, meaning that the estima-
tion error reaches a neighborhood of the origin for any solution to (5.4),
or that it exponentially or asymptotically approaches the origin for solu-
tions satisfying /1 — 0. Finite-time convergence means that there exists
T < oo such that (z(t), 4(t)) = (x(t), u(t)) Vit > T.

Observer (5.5) is a variation of the super-twisting sliding mode al-
gorithm, modified here to deal with bioprocess nonlinearity. A conven-
tional super-twisting observer could alternatively be used, but at the
cost of using too conservative gains to cope with the large excursions
of biomass concentration along batch and fed-batch processes. Con-
vergence of the super-twisting algorithm was originally proved from a
geometric approach using majorant curves (see for instance Davila et al.
(2005)). Recently, a Lyapunov-based proof was obtained in Moreno and
Osorio (2008). Convergence of the modified super-twisting observer
(5.5) is proved here using the more comprehensive Lyapunov approach
together with semi-definite programming tools.

Proposition 5.1. Consider the politopic linear differential inclusion
2=A(t)z, A{t)e A (5.6)

with
A = conv(Az, Ag)

n=l Gty ]

a—1) 0 (5.7)
_ -8 1/2
Ay = { —(4+1) 0 }

Then, for every a > 1 there exists suitable values of  such that (5.6) is
quadratically stable for all A(t) € A.

Note. The politopic linear differential inclusion is said quadratically
stable if there exists V(z) = 27 Pz, P = 0 that decreases along every
nonzero trajectory of (5.6).

Since V(z) = 2T (A(t)T P 4+ PA(t))z, a necessary and sufficient con-
dition for quadratic stability is

P>0

. (5.8)
AT(#)P + PA(t) <0 VA(t) € A
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This is equivalent to determine the existence of a common Lyapunov
matrix P for all the vertices of the politope A, i.e. that verifies the
following constraints

P > 0;
F={ 012 -(ATP+ PA) = 0; (5.9)
Q22 —(ATP 4 PAy) > 0
Now rewriting A; and A, in a convenient way,
Ay = BAy + A
1= Fdo+ ! (5.10)
Ay = fAg + Aj
where )
-1 0
Ao = 0 0]
« | 0 1/2
Al = | (a—1) 0 } (5.11)
« [ 0 1/2
A = | —(a+1) 0 }

The problem of determining the existence a Lyapunov P can be com-
puted by solving, i. e. determining the feasibility, of following general-
ized eigenvalue problem (GEVP) in P and 3 (5.12) for some fixed o > 1
of interest.

min
beta (5.12)
st. >0 F*
where
P> 0;
F* =< (ATP + PA)) + B(AT P + PAy) < 0; (5.13)

(AT P 4+ PAy) 4+ B(AY P + PAy) < 0;

A GEVP is a quasiconvex problem, and can be solved using a bisec-
tion algorithm on  and determining the feasibility of the remaining LMI
problem.

The problem has been solved using YALMIP Lofberg (2004) and im-
plementing a grid covering the desired values of «.
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Figure 5.1: Set of pairs («, 3) for which Proposition 7.2 holds.

Proof of Th. 5.1. From process (5.4) and observer (5.5), the observer
error dynamics is

{ &= (= 28(2))* sign(@)) a(t) (5.14)

ju € (U — a sign(@)) pa(t)

where 7 2 (x — ) and [ 2 (u — f1). Note that the observer error
dynamics are not independent of the process ones.

Apply now to (5.14) the following global homeomorphism Moreno
and Osorio (2008)

VN S
_ |: (|px|)2~81gnx ] (5.15)
m
Taking into account that sign(§;) = sign(#) and that £ = 2—|g’—1|56,

this coordinate transformation yields

¢ P2 4 (5.16)
|€1]
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with A defined in (5.7). Consider now the energy function V(§) =
T P¢, where P > 0 satisfies (5.8). Then,

px(t)
|€1]

Using (5.8) and recalling assumption 5.5,

V(Et) = M (AT P+ PA(t)) € (5.17)

V(e t) < —%w <OVE#O. (5.18)
where v > 0 is the minimum among all eigenvalues of ); and Q2. That
is, V(&) is a Lyapunov function decreasing along all nonzero solutions
of (5.16). Note that (5.15) is continuously differentiable everywhere
except on the line £ = 0. Anyway, this line is not an invariant set except
the origin. Thus, (5.18) also proves stability of the original observer
error dynamics (5.14).

We will prove now that V' vanishes in finite time. Let L > [ > 0 be
the maximum and minimum eigenvalues of P. Then [||¢||? < V(£,t) <
L||&||* Vt. It then follows, using |& | < ||€]|, that

PIVVL )2 (5.19)

Then, the comparison lemma establishes that any solution £(¢) to the
differential inclusion (5.16) satisfies

pxv

e < VX&) - 22t (5.20)
where A\ = /L/l. This means that the trajectory of the observer
error reaches the origin in finite time:
~ 2L .
)] =0, vt > T = mjﬁ\\u(o)\\ (5.21)

where it has been supposed without loss of generality that the observer
was initialized with #(0) = x(0).
This finishes the proof.
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Remark 5.1. Notice that the proposed observer can be used to estimate
the kinetic rate r(¢) in any reaction of the form

p=r(t)-p+ f(pt) (5.22)

provided p is measured and analogous assumptions to the ones made
here are fulfilled.

5.4 Simulation results

This section presents a pair of numerical examples that illustrate the
previous analysis and theoretical results. In the next section, experi-
mental data is provided to assess the observer performance in a realistic
scenario.

Let consider the fed-batch process

Py { &= (u(s) = Alt)z)x (5.23)

$=(—ysp(s) + Mt)(s; — s))x

with haldane kinetics p(s) = umm and feeding profile D(z,t) =
A(t)z. The parameters are p,,, = 0.22, ks = 0.14, k; = 0.4, ys = 1.43 and
s; = 20. Note that (5.23) can be rewritten as (5.1) after the change of
variable (z, s) — (z, u(s)).

For comparative purposes, both the adaptive (5.2) and the proposed
sliding observer (5.5) have been implemented to estimate .

Open-loop simulation The process input A(t) is a piece-wise constant
signal switching every 2.5 hours. Observers (5.2) and (5.5) are tuned
withw = 1.5, ( =2, p = 4, « = 1.1 and 8 = 1.8. Their initial con-
ditions are (z(0), 1(0)) = (x(0), m). The simulation results are shown
in Fig. 5.2. The top plot depicts the input A(¢) whereas the real and
estimated specific growth rates are displayed in the bottom plot. The
real p(t) is shown in solid line (thick trace), the sliding observer esti-
mate is plotted with solid thin trace and the adaptive observer estimate
is plotted in dashed line. It is seen that the sliding observer output con-
verges in less than 2 hours and perfectly tracks x(t) thereafter, whereas
the adaptive observer (5.2) reaches a neighborhood of ;.(¢) but does not
converge to it. Naturally, since the measurement is not corrupted with
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Figure 5.2: Open-loop simulation results. (a) Input signal A(¢). (b) Real
(1) and estimated specific growth rate using adaptive (fizp) and sliding
(fusar) observers.

noise, the bandwidth of the adaptive observer can be increased to ex-
hibit a faster response. Anyway, the aim of this example is to illustrate
qualitatively and comparatively the theoretical convergence features of
the proposed sliding observer. Performance under real measurement
conditions is evaluated in the next section.

Closed-loop simulation We present here a closed-loop numerical ex-
ample to illustrate the potential advantages of the sliding mode observer
in closed-loop applications. The input signal used in this case is the non-
linear feed-back law:

Yslhr
Mp) = —5 (1 —k(u— ). (5.24)
()= 5=t (ke )
It is shown in De Battista et al. (2006) that A\(u) stabilizes the specific
growth rate. Moreover, global stability can be achieved even in the pres-
ence of kinetic multiplicity by properly tuning the feed-back gain k. Any-
way, the purpose here is not to evaluate the controller performance but
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the sliding-mode observer one. Then, u(t) in (5.24) is replaced by fi(t).
Here, we choose k = 15.

The simulation run is planned to show the convergence and tracking
properties of the observer. With this purpose, the observer is reset at
t = 0 h, whereas a set-point step from p, = .15 to p, = .1 is produced
att =10 h.

The tuning parameters of the sliding observer are p = .1, a = 1.1
and 8 = 1.8. In this example, its performance is compared with the
performance of observer (5.2) for two different tunings (w = 1.5 and
w = 4.5).

Fig. 5.3 shows the growth rate and its estimates when the real yx -not
any of its estimates- is used in the feedback law (5.24). That is, the
loop is not closed through an observer. The thick line, labeled with p;,
is the time evolution of the real growth rate. The estimates provided by
observer (5.2) for both tunings and by observer (5.5) are also plotted.
After restarting, the adaptive observer estimates exhibit large overshoots
that increase with w. After the set-point step, the adaptive observer es-
timate lags the real signal, particularly for low w. On the other hand,
the sliding observer perfectly tracks u(¢) during the transient that fol-
lows the set-point step, whereas initial convergence after restarting is
significantly better.

Fig. 5.4 shows what happens when the observer estimates are used
to construct the feeding law. The first two plots depict responses ob-
tained with the adaptive observer whereas the remaining ones corre-
spond to the sliding observer. Note that the adaptive observer estimates
are out of scale during the first hours after restarting. The top plot shows
that the closed-loop response becomes highly oscillatory when the slow
adaptive observer is used to close the loop. This is because it adds its
slow dynamics to the loop. When the fast adaptive observer is used,
oscillations are almost eliminated, but an undesirable initial transient
still occurs because of the large observer overshoot. In the third plot,
the response obtained with the proposed sliding observer is shown. It is
seen that the observer converges rapidly, whereas the tracking response
is similar to the ideal one. The bottom plot illustrates how the sliding
function, which continuously switches after convergence, can be used to
improve further the initial transient. In this case, the feed-back loop is
closed just after the sliding function switches for the first time.

Fig. 5.5 shows the same responses when gaussian noise is added to
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biomass concentration measurement. All comments regarding the ini-
tial transient remain valid. Regarding tracking after the set-point step,
it is seen that the sliding and fast adaptive observers exhibit similar re-
sponses, but the adaptive observer is noisier. Anyway, since both ob-
servers smooth out the measured signal in two different ways, noise
performance may differ depending on the noise structure. Performance
of these observers in a real scenario is presented in the following section.

Feed-back: A(u)

n -
25 L
' ) s fippa
n o6 Zoom in: v=i= (LB D2
" : —HsM
b 0.15
1
1.5/ 0.14
- e 0.13
— (]
> A 0.12
NI 041
< s ll 0.1
- 1
= i 0% 10 11 12 As
B \ /
055!
o \ /
= /
FY yan\
7 - \ 7
o ‘ N ‘ ‘
0 5 10 15 20
t (h)

Figure 5.3: Closed-loop simulation results when the real 1 is used in the
feed-back law (observers are not in loop). p;: specific growth rate using
ideal feed-back law (5.24); figp1, fipp2: adaptive observer estimates for
w = 1.5 and w = 4.5, respectively; [isps: sliding observer estimate.

5.5 Experimental results

Biomass concentration measurements from a batch fermentation of the
industrial strain Saccharomyces Cerevisiae T73 (wild type) were in-
jected to the proposed sliding observer as well as to a high-gain one.
The measurements were obtained using the sensor described in Navarro
et al. (2001a). Sampling was carried out each 12 seconds, and a fil-
tered value over a window of 2 minutes was provided. Figure 5.6a plots
the evolution of the measured biomass concentration x,,, whereas Fig-
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Figure 5.4: Closed-loop simulation results when observers are in the
loop. a) Adaptive observer with w = 1.5, b) adaptive observer with
w = 4.5, ¢) sliding observer, d) sliding observer in the loop after first
switching. u;: specific growth rate using ideal feed-back law (5.24); u:
real growth rate; [ipp1, fipp2: adaptive observer estimates for w = 1.5
and w = 4.5, respectively; figys: sliding observer estimate.
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Figure 5.5: Closed-loop simulation results when observers are in the
loop, noise added to the measured signal. a) Adaptive observer with
w = 1.5, b) adaptive observer with w = 4.5, c¢) sliding observer, d)
sliding observer in the loop after first switching. pu;: specific growth
rate using ideal feed-back law (5.24); u: real growth rate; jigp1, jip2:

adaptive observer estimates for w = 1.5 and w = 4.5, respectively; fisas:
sliding observer estimate.
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ure 5.6b displays some estimates of the specific growth rate obtained
from x,,. The noisiest estimate was crudely obtained by differentiat-
ing the measured signal: [i4(t) = Z=. The estimate plotted in dashed
line was obtained by the high-gain observer (5.2) tuned with w = 1.5.
This estimate coincides with that obtained by smoothing /i,(¢) with a
2nd-order filter with cut-off frequency wx. The estimate is particularly
noisy —as measurement is— around ¢ = 35h. This noise is hardly filtered
by the observer because their bandwidths overlap. A lower observer
bandwidth would help to reduce noise but at the cost of poorer tracking
response. Finally, the signal plotted in solid line is the output of the slid-
ing observer (5.5) with p = 0.1, « = 1.1 and § = 1.8 as in the previous
example. The estimate is smoother than the previous one, particularly
around ¢ = 35 hours. This is because the observer is less sensitive to fast,
and unfeasible, signal gradients. Fig 5.6¢c displays the biomass estima-
tion error Z smoothed out by a low-pass filter, showing that the observer
converges in 11 hours. During this period, the sliding observer is less
sensitive to large measurement errors that are typical of the initial phase
of batch processes when biomass concentration is too low.

It is of particular interest to analyze the observer outputs around
t = 23h. As observed in the biomass evolution, the growth almost stops
at t = 18h, most probably due to the depletion of some essential sub-
strate. After that, a pulse of conjugated linoleic acid vaccine was ad-
ministered at ¢ = 23h, reactivating the microorganism growth. As seen
in Figure 5.6b this sudden change in behavior clearly affects both ob-
servers. Indeed, from the point of view of the observers, an unpredicted
oscillation of the biomass measurement occurred. It is observed that the
B&D observer responds with a large undershoot that vanishes just after
1.5 hours. On the contrary, the sliding observer is much less sensitive
to this perturbation. In fact, Fig 5.6¢ shows that the observer diverges
and then converges rapidly, putting in evidence the occurrence of an
abrupt fault. Note that the surface coordinate is an effective residual
to indicate bioreactor malfunctions as well as sensor faults or changes
in system behavior (both abrupt and gradual). Thus, on one hand, the
observer output is less sensitive to the perturbation while on the other
its sliding coordinate is very sensitive to it.
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Figure 5.6: Experimental results. (a) Measured biomass concentration
(z,). (b) Estimates of the specific growth rate obtained by sensor out-
put differentiation (ji;) and using B&D (iipp) and sliding (jisys) ob-
servers. (c) Biomass estimation error (Z) of the sliding observer.
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5.6 Conclusions

In the article, a second-order sliding mode observer has been devel-
oped and analyzed for the estimation of the specific growth rate of mi-
croorganisms from measurements of biomass concentration. The resul-
tant observer can be applied to either batch or fed-batch fermentation
processes in which the bioreaction exhibits either monotonic or non-
monotonic kinetics. Actually, the observer does not use any model of
the kinetics of the reaction, just a bound on its time derivative. The
proposed observer is based on high-gain observers, to which discontinu-
ous correcting terms have been added in order to cancel the estimation
error on the measured variable. The structure of the discontinuous out-
put error injection is modified with respect to previous developments,
thus providing a smooth estimate without the need of filtering. In con-
trast with continuous observers, perfect tracking after finite convergence
time can be achieved in the absence of noise. Although convergence to
a small ball can only be guaranteed in the presence of noise, this theo-
retical property has important implications in control. In fact, the sepa-
ration principle applies, so that observer and controller in the loop can
be designed independently. Simulation and experimental results con-
firm the distinctive convergence properties of the observer, as well as its
potential use in fault detection.

Further research is oriented to obtain an estimate of the growth
rate with absolute —rather than biomass-proportional- bound on its time
derivative. Also, the problem of multiple rates estimation is being ad-
dressed. The main problem is that an extra unknown function must be
incorporated to the algorithm in order to avoid too conservative bounds.
Stability proof of the generalized algorithm is the key issue. The semi-
definite programming approach used in this paper provides powerful
tools for this purpose.



Chapter 6

Stability preserving maps for
finite-time convergence

Make everything as simple as possible,
but not simpler.

Albert Einstein

ABSTRACT: The super-twisting algorithm (STA) has become the
prototype of second-order sliding mode algorithm. It achieves
finite time convergence by means of a continuous action, with-
out using information about derivatives of the sliding constraint.
Thus, chattering associated to traditional sliding-mode observers
and controllers is reduced. The stability and finite-time conver-
gence analysis have been jointly addressed from different points
of view, most of them based on the use of scaling symmetries (ho-
mogeneity), or non-smooth Lyapunov functions. Departing from
these approaches, in this contribution we decouple the stability
analysis problem from that of finite-time convergence. A nonlin-
ear change of coordinates and a time-scaling are used. In the
new coordinates and time space, the transformed system is sta-
bilized using any appropriate standard design method. Conditions
under which the combination of the nonlinear coordinates trans-
formation and the time-scaling is a stability preserving map are
given. Provided convergence in the transformed space is faster
than O(1/7) —where 7 is the transformed time— convergence of

113
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the original system takes place in finite-time. The method is illus-
trated by designing a generalized super-twisting observer able to
cope with a broad class of perturbations.

6.1 Introduction

Sliding mode is a powerful technique used both in controller and ob-
server design to reject matched disturbances (Utkin, 1977). The idea
is to drive the state trajectory to a prescribed constraint surface where
specifications are met and, from then on, to slide on it thanks to an in-
tensive switching action. Because of its robustness and other attractive
features, sliding mode has been successfully implemented in a wide vari-
ety of real processes (Hung et al., 1993; Sabanovic, 2011; Chiu, 2012).
However, its underlying chattering phenomenon may be inadmissible
in some control applications and may add severe noise in estimation
(Young et al., 1999). Additionally, the prescribed constraint must have
unit relative degree. Therefore the control action must explicitly ap-
pear in the first time derivative of the constraint function (Sira-Ramirez,
1989). High order sliding mode (HOSM) has been developed to relax
the relative degree limitation and, at the same time, to alleviate chatter-
ing (Levant, 1993; Bartolini et al., 1998). Among all HOSM algorithms
the super-twisting second-order one (SOSM) distinguishes because it
achieves finite time convergence by means of a continuous action with-
out using information about derivatives of the sliding function (Levant,
1998; Ddvila et al., 2005). This algorithm handles a relative degree
equal to one, so it can directly replace standard sliding mode algorithms
when the disturbance is smooth and with bounded gradient. The main
difference with respect to standard sliding mode is that discontinuity
appears in the second derivative of the switching function, whereas a
non-Lipschitz term appears in the first derivative to achieve finite-time
convergence.

For many years, dissemination and acceptance of HOSM have been
resisted due to the lack of powerful design tools and readable stability
proofs. Originally, stability conditions were obtained geometrically us-
ing worst-case trajectory bounds (Levant, 1998). More recently, homo-
geneity concepts have been exploited to prove stability of some HOSM
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algorithms (Levant, 2005). Homogeneous systems have a scaling sym-
metry which allows for stability analysis. Despite its advantages, this
approach does not provide the convergence time and is a limitation
to design new algorithms to deal with broader classes of disturbances
since the homogeneity property may be lost during the design process.
Lyapunov-based stability analysis appeared for the first time in (Moreno
and Osorio, 2008). Since then, very intensive research is being followed
in this area (Polyakov and Poznyak, 2009; Shtessel et al., 2010; Utkin,
2010; Santiesteban et al., 2010; Cruz-Zabala et al., 2011). Different Lya-
punov functions have been proposed for different sliding algorithms. For
instance, in (Moreno and Osorio, 2008), stability of the super-twisting
algorithm (STA) is proved by means of a non-smooth Lyapunov function.
(Utkin, 2010) uses also non-smooth functions for the twisting and super-
twisting algorithms. A strict Lyapunov function to prove stability of the
twisting algorithm is presented in (Santiesteban et al., 2010), and a gen-
eralization of the method of characteristics is presented in (Polyakov and
Poznyak, 2009). In general, the Lyapunov approach allows to obtain less
conservative designs, to compute the convergence time and, most im-
portantly, to generalize the original algorithm to deal with more general
system dynamics and disturbance structures (Moreno, 2010; De Bat-
tista et al., 2011; Pisano et al., 2011; Efimov and Fridman, 2011; Cruz-
Zabala et al., 2011). The main drawback of current Lyapunov-based
approaches is their dependence on complex tools — e.g. non-smooth
analysis, solution of partial differential equations, etc.— to cope with the
requirement of finite-time convergence together with the stability anal-
ysis. The use of time-scale, already used in other contexts —e.g. achiev-
ing feedforward form (Moya et al., 2002), or observer linearization and
design of observers with linearizable error dynamics (Guay, 2002; Re-
spondek et al., 2004) — has not been exploited.

The rest of the paper is organized as follows. In Section 6.2 a non-
linear coordinates transformation, and a time-scale one are used so as
to transform the original system into a new one amenable for construc-
tively finding a smooth control Lyapunov function. This allows to mod-
ify the super-twisting error injection terms so as to cope with a broader
class of perturbations. The time-scale is chosen so that convergence
faster than asymptotic in the transformed space corresponds to finite-
time converge in the original one. In Section 6.3 the technique of sta-
bility preserving maps (Michel and Wang, 1995) is used to prove the
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original system is also stable. In Section 6.4 a bound on the finite-time
convergence is obtained, and simulation results are provided in Sec-
tion 6.5.

6.2 Constructive design of a generalized super-twis-
ting algorithm.

Consider the system:

:’bl = @(t)xQ + ul(‘rla t) + pl(xat)

6.1
Ty = ug(w1,t) + pa(w,t) ©-1

where ¢(t) is a known, possibly discontinuous, bounded positive func-
tion of time. The functions p;(x,t) and pa(z,t) are perturbation terms
for which we assume the structure:

pi(e.t) = o) [n]* @) <pi@) o)
pa(x,t) = ea(t)p2(21, 2) , [[p2(21, w2)|| < Pa(21)

where p;(x1), p2(z1) are known bounded functions for any bounded z;
(e.g. class K functions), and p;(¢) bounded noises with g; = ||;(7) ||
for j = 1, 2. Notice that p2(x,t) may be not vanishing and discontinuous
at x; = 0, while p; (z,¢) vanishes at the origin, and is continuous w.r.t.
x1. System (6.1) may represent a process to be controlled or the error
dynamics for some observer design. In this later case, p;(x,t) allows to
represent the aproximation error of some dynamics on the first process
state to be estimated, and py(z, t) the unknown derivative of the second
process state (De Battista et al., 2011).

The goal is to design the input signals u1, us so as to robustly stabilize
the origin in finite-time. Besides ¢(t), only the state x; is assumed to be
measured. To this end, we first apply the coordinates transformation
given by the homeomorphism (Moreno, 2010):

(21,22) — (\xl\% sign(ml),x2> (6.3)

transforming system (6.1) into:

b= g lal ™ o)z + ualen, )+ i (2, ) ©6.4)

Z9 = ug(z1,t) + p2(z,t)
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Now, apply the time-scaling

t= / |z1] d7 (6.5)
In the new (z, 7)-coordinates:
p(T 1 1
2 = (2)22+2u1(21,7')+291(7')\21|p1(zl) 6.6)

Zé = |z1]ua(21,7) + |21] 02(7)p2(21, 22)

with 2/ £ dz /dr. The goal now is to asymptotically stabilize system
(6.6). Let us apply, for instance, the Lyapunov redesign methodology.
To this end, consider the control signal u; is decomposed as:

uy(21,7) = up(21, 7) — mP1(21)21 (6.7)
with 71 > 01 so that Vz; € IR

Uy(z1,7) = mp1(z1) — 01(7)p1(z1) >0 (6.8)

Now, consider the Lyapunov function V; = %z% The control signals u;

and uy will be designed later to force z5 = 7221 for some constant 75 > 0
and achieve V/ < 0. Taking 7-time derivative:

1 1
Vi= S0(27) 127t + Jub(21)z1 = 523\1:1(217 7) 6.9
Thus, choosing
uip(z1,7) = ~lmep(r) + ka(z1, 7)1 6.10)

the dynamics of the error signal zo = 25 — 1227 are:

2= n2¢(7)

Zo + |z1|ug(21)+
2 (6.11)

+ 21 | 02(7T)p2(21, 22) + %[/ﬁ(zlﬁ) + Wy(21,7)]

where g5(7) = 02(7) sign(z1). Consider now the augmented Lyapunov
function:

1 1_
Vo = 52% + 52% (6.12)
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Taking 7-time derivative, choosing

us(z1,7) = —%[SD(T) + no[k1 (21, T) + mp1(z1)]] sign(z1) (6.13)

and defining z = [21, %], we have:

V2/ S —EZT ]Cl(Zl,T) *Q12(277') A 1 TQZ (614)

Z=—-%
2 —q12(2,7)  m2p(T) 2

. A _ Doty — TR .
with qi2(z,7) = 02p2(21) + %2p1(21) . At this point, it is interesting to
summarize and observe the structure of the injected correction terms in
the original z-dynamics:

ui(z1,t) = — [moe(t) + ki (21,) + mp1 (21)] |21]2 sign(zy)
. (6.15)
uz(z1,t) = 3 [o(t) +m2(k1(21,t) +mp1(z1)]] sign(z1)

Notice that for Q in equation (6.14) to be positive definite, the poly-
nomial k;(z1,7) will have to dominate the square of the terms in the
secondary diagonal. Therefore, for k;(z1,7) to be bounded —recall this
polynomial will form part of the injected correction terms w3, and us— we
asked p;(z1),j = 1,2 to be bounded for bounded z;. Recalling ¢; < 7,
and condition (6.8), a sufficient condition for positive definiteness of Q
in equation (6.14) is ki(z1,7) = k*(21)/p(7) > 0, and:

k(z1) > \57272172(21) + \/?mﬁl(h) (6.16)

Notice that continuity of u;(z1,7) w.r.t. z at z; = 0, requires that of
k1 (21, 7')21 and pq (21)21 at that point.

In the simplest case where p;(z1) = 0, p2(21) = 1, and ¢(t) = 1,
choosing 1 = 0 and ki(z1(z1)) = ki, retrieves the original super-
twisting algorithm. The stability region is defined by the bounds 7y +
k1 > 209, and ek > @%

As a more complex example, to be used in section 6.5, assume p(t) =
1, p2(z1,22) = 1, and p;(z1) polynomial so that

pr(am) =00 [potpa oo (617)



6.3. Stability analysis 119

with § > 0. A bounding function p;(z;) is needed to fulfill condition
(6.8). Assume p;(z1) is unknown, but for its order and bounds on the
coefficients. Define p = max (po, ...,pg), ng =+ 1, and:

_ A B, |z >1
_ Yy _ 9
p1(z1) = ngplz1|” , v = { 0, |z <1 (6.18)

Condition (6.8) is satisfied, and a sufficient condition for positive defi-
niteness of Q is:

02 virem oo
k(z1) > —=— + X—"ngp|lz|” 6.19
(21) N > sD|z1] (6.19)
which can be fulfilled choosing k(z1) = kg + ky|21|", with k, > %, and

ky > @nﬂﬁ. Figure 6.1 shows the stability region for the particular
case p1(z1) = 1.

6.3 Stability analysis

The proof will be split into three parts. First we analyze the homo-
morphism transforming system (6.1) in the (x, t)-coordinates into (6.4)
in the (z,t)-coordinates, given by the change of coordinates (6.3) and
the identity transformation for the time parameter. Its is proved this
homomorphism is a time-invariant homeomorphism, and consequently
preserves asymptotic stability.

Let X; be the set of current states of system s;. Any set with subscript
i refers to a subset of X;. The following elementary fact will be used in
the proof:

Lemma 6.1. Given any one-to-one function f : X; — X;, if A; C B; C
X, then f(A;) C f(B;).

Theorem 6.1. Any homomorphism given by a time-invariant homeomor-
phic coordinate change and the identity transformation for the time pa-
rameter, i.e. with no time-scaling, preserves asymptotic stability.

Proof Consider a homeomorphism f : X; — X,. By continuity,
around any point x1. € X;j, Ve > 0 there exists a § > 0 such that
whenever ’ T2 — T2e ’< 0, ’ r1 — Tie ’< €, with zo, = f<$18> € Xy.

Now take e€; = ¢, and €5 = §. If the goal system ss is stable, and assuming
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Figure 6.1: Stability region in the 7, k; parameters space for the case

. 1
pi(z1) =1 (i.e. pi(x,t) = 201(t)|z1]2), p2(z1,22) = 1, and p(t) = 1. Two
different values of the perturbation bounds g, and g, are shown.



6.3. Stability analysis 121

9. = 0 without loss of generality, then, Ves > 0, 39 > 0 such that if
| 290 |< 0o then Vt > tg, | 22 |< €2. Using lemma 6.1, f~!(52) C €1, and
| 71 |< €1 whenever | x19 |< f71(d2). So the first system s;(X7) is also
stable.

The same reasoning is valid for attractivity, but now orbits are inside an
e-ball from a given ¢ = t.. Notice ¢, is the same for both systems since
there is no time-scaling. O

Lemma 6.2. The change of coordinates given by (z1,z) — (| z1 |'/?

sign(x1),x2) is a homeomorphism.

Corollary 6.1. The homomorphism transforming system (6.1) in the (x,t)-
coordinates into (6.4) in the (z,t)-coordinates, given by the change of co-
ordinates (6.3) and the identity transformation for the time parameter
—i.e. with no time-scaling- is a time-invariant homeomorphism, and con-
sequently a stability preserving map.

Secondly, we analyze the homomorphism transforming system (6.4)
in the (z, t)-coordinates into system (6.6) in the (z, 7)-coordinates, given
by the identity coordinate transformation and the time-scaling (6.5). For
time invariant systems, stability of equilibrium points in the sense of Lya-
punov is a property of the orbits independent of their parametrization.
Consequently, under the conditions for equivalence of regular curves ex-
plained below (Kiihnel, 2005), any reparametrization (i.e. time-scaling)
will preserve stability.

Definition 6.1. A regular curve is an equivalence class of regular parame-
trized curves, where the equivalence relationship is given by regular (ori-
entation preserving) parameter transformations £ : [«, 5] — [a, b], with
€ > 0, and € bijective and continuously differentiable.

In our context, we will define the required time scaling to be a regu-
lar parameter transformation &, i.e. £ # 0 must hold everywhere. Since
equilibrium points are singularities, we will consider the system orbits to
be represented by the curves with time interval I spanning from initial
conditions to the equilibrium. To fulfill the definition above, the time
scaling £ must be one-to-one, and onto. The fact that £ must be onto en-
sures the whole orbit (a regular curve) is covered by both parametriza-
tions. The condition £ > 0, except perhaps in a set of measure zero,
ensures both “times” go forward since it makes ¢ strictly increasing. Fi-
nally, for a function ¢ to be one-to-one with positive derivative every-
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where, it is sufficient to prove it is strictly increasing. Then we must
prove it is also onto and hence a bijection.

Proposition 6.1. Under the conditions for equivalence of regular curves
given in definition 6.1, any reparametrization (i.e. time-scaling) will pre-
serve stability.

Proof The proof is straightforward from the standard definition of
stability in the sense of Lyapunov, and the facts that re-parameterizing
the orbit will not change it and time in both parameterizations moves in
the same direction. O

Now it is proved the above conditions are also sufficient for at-
tractivity and, consequently asymptotic stability. Denote by 7}, the set
{t € T :t > to} for some initial time instant ¢y.

Theorem 6.2. Any homomorphism given by the identity transformation
for the coordinates and a time-scaling defined by a strictly increasing and
onto function & : t — T preserves attractivity.

Proof Since the coordinates transform to themselves, the homomor-
phism only introduces a reparametrization of the orbits (which are reg-
ular curves) by means of the time-scaling £. Since ¢ is strictly increasing,
there is ¢! with positive derivative everywhere. There are two possible
cases:

1. ¢! is unbounded, mapping T+, to Ty,. Then VT, 37 : V7 > 77,
t =& Y(7) > T. Taking T = £71(7.), and given that ¢~ is strictly
increasing, eventually ¢ > T and, if | 2(7) |< ¢, then | z(¢) |< €
too.

2. ¢! is bounded. The previous reasoning can be reproduced willy-
nilly, but now we must additionally prove that £~! is onto. Since
¢! is strictly increasing and bounded there is ¢; such that ¢ €
[to,tf] and t — t; when 7 — oo. Therefore, if 2(7) — 2, then
x(ty) = zeq = Teq Dy the identity of coordinates, proving finite time
convergence to the equilibrium point of the original system. O

Corollary 6.2. Any re-parameterization as defined in 6.1 preserves asymp-
totic stability.

Proof From Proposition 6.1, and Theorem 6.2 any re-parameteriza-
tion as defined in 6.1 preserves both stability and attractivity. Therefore,
it preserves asymptotic stability. O
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Proposition 6.2. Choosing the time-scaling & implicitly, by giving its in-
verse €1 as defined in equation (6.5) the corresponding homomorphism
fulfills Corollary 6.2.

Proof Due to the modulus function, no matter what | z;(7) | does,
except being identically zero, the integral defines a strictly increasing
function. So it is an injection and has an inverse, defining the regular
parameter transformation £ we need. O

Finally, because of transitivity, the composition of stability preserving
maps is also a stability preserving map. The combination of the nonlin-
ear change of coordinates (6.3) and the time-scale transformation (6.5)
is equivalent to the composition of the homomorphisms defined above.
Therefore, this combination is a stability preserving map. Consequently;,
the system (6.1) in the (z,¢)-coordinates is asymptotically stable if and
only if the system (6.6) in the (z, 7)-coordinates is.

In particular, the convergence rate can be obtained from:

tf = lim ¢(7) = lim / |21(&)|d€ (6.20)
T—00 T—r00
If the integral is divergent as 7 — oo (e.g z; = O(1/7)) we are in the first

case in Theorem (6.2). Otherwise, if it is convergent (e.g z; = O(1/72)),
we are in the second case, and finite-time convergence is achieved in the
original (z, t)-coordinates.

6.4 Bound on finite-time convergence

Let us consider again equation (6.14) rewritten as:
1 - 1 _+_
Vv — -5 TQz < _§ZT'ZAQ(T) = —Aq(T)V(7) (6.21)

where \q(7) is the minimum eigenvalue of Q(7). Notice, for every
initial condition and every 7 there is either a minimum eigenvalue of
@ or a lower bound since by positive definiteness the eigenvalues are
always positive. Application of the comparison lemma leads to

1] < |12 < [|2(r0)[le™2 S 2a(ndr (6.22)
It then follows, using (6.20) and (6.22), that

t < l12(m)] /0 e h 2 ge < Iz(m0)| (6.23)

2Q,min
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A .
where Aq iy = min Aq(7). Since = = Aq

_ Xa_ . ]
Aq T 2grq  detQ’ then ¢, in equa
tion (6.23) can be bounded by

max trQ
7,21

min det Q

7,21

ty < 2||z2(m0)|| (6.24)

For instance, if p;(z,7) = 0, and kins > 03 one easily gets

k1 +n2

—_— (6.25)
kine — 03

ty <2|z(ro)l

6.5 Example

A super-twisting observer has been tuned using the proposed approach.
The perturbation term p;(x,t) takes the form of (6.17), with p;(z;) =
1+ 1.5|z1|'/2, and g, () being a bounded noise. The order of p;(z;) and
an upper bound on its coefficients are assumed to be known so as to
build the bounding function p(z1) according to (6.18). The perturba-
tion term py(z, t) has been obtained as the derivative of an unknown sig-
nal u(t) with bounded time derivative ||p2(z, )| < 2, but at ¢t = 1sec,
and t = 2sec when a step and impulse respectively were injected as
disturbances in u(t¢). The bounds of the unknown signal derivative and
the integrator input noise have been set to g2(z,t) = 2 and g;(x,t) = 2
respectively. Chosing 1, = 2.5, 7, = 5, and p = 1.5 the observer param-
eters where obtained using (6.19).

The simulation results are shown in Fig. C.2. Three zooms around
the time instants ¢t = Osec, t = 1sec, and t = 2sec are shown. At other
time instants in between, the real and estimated signals are indistin-
guishable. The top plot depicts the input signal to the observer y(t)
(in blue dashed line), and the estimated signal ¢(¢) (in red solid line).
The real integrator input u(t) —with noise, in cyan, and without noise
in dashed blue- and its estimated value 4(t) (in red solid line) are dis-
played in the bottom plot. It is seen that the observer output converges
in less than 0.02sec and perfectly tracks the evolution of «(¢) when the
appropriate conditions hold. At ¢ = 1sec and ¢ = 2sec the derivative of
u(t) is larger than the assumed bound g2(z,t), and the observer output
diverges and then converges rapidly, putting in evidence the occurrence
of an abrupt fault, as the derivative of u(t) overly differed from the ex-
pected one.
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Figure 6.2: Super-twisting observer response. Zooms around the time
instants ¢ = Osec, t = 1sec, and t = 2sec.

6.6 Conclusions

In this contribution the problem of designing algorithms with finite-time
convergence has been adressed by decoupling the stability analysis prob-
lem from that of finite-time convergence. This allows simple design
methods and stability proofs to be derived in a wide set of cases. In
order to show the proposed approach, it has been applied to give an
alternative proof of the super-twisting second-order sliding mode algo-
rithm. This alternative approach allowed a simple design of a gener-
alised SOSM coping with a broad class of perturbations. An estimate of
the convergence time can be easily obtained in the transformed time-
space. The approach can be extended to systems that can be robustly



126 CHAPTER 6. Stability preserving maps for finite-time convergence

controlled in the coordinates-time transformed space for any coordi-
nates dependent time-scaling fulfilling Corollary 6.2. Finite-time con-
vergence will be achieved under the conditions of case 2 in Theorem
6.2.



Chapter 7

Second-Order Sliding Mode
Observer for Multiple Kinetic
Rates Estimation in
Bioprocesses

If you make listening and observation
your occupation

you will gain much more than you can
by talk.

Robert Baden-Powell

ABSTRACT: Specific kinetic rates are key variables regarding me-
tabolic activity in bioprocesses. They are non-linear functions of
concentrations and operating conditions and therefore of difficult
access for process control. In this paper, a multiple kinetic rates
observer based on second-order sliding mode ideas is proposed.
The main difference with other proposals is that smooth estimates
are achieved in finite-time without adding additional dynamics.
The resulting estimator is robust against uncertainty in the model
of the estimated variables. Experimental results from continuous
fermentation of S. cerevisiae are presented, where microbial spe-
cific growth rate and net ethanol production rate are estimated.
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7.1 Introduction

Nowadays, biotechnological processes are applied in a wide range of
industries for the production of enzymes, recombinant proteins, and
high-value metabolic products. An important control problem of these
processes is to achieve a desired metabolic condition (Jobé et al., 2003).
The specific reaction rates contain information that is closely related to
microbial activity. The knowledge of these signals have at least two rele-
vant applications. First, reaction rates can be used in closed-loop control
for improving process productivity. For instance, certain industrial prob-
lems have been related to the problem of regulating the specific growth
rate (u) of microorganism (Ren and Yuan, 2005; Soons et al., 2006).
Second, the on-line availability of such information during the cultiva-
tion stage enhances bioprocess monitoring, which is essential for quality
control, process reproducibility and early problem detection (Vojinovic
et al., 2006).

Regretfully, specific reaction rates are in general not accessible since
they are unmeasurable and uncertain non-linear functions of states (con-
centrations) and operating conditions (temperature, pH, pressure, etc).
In this context, the use of observers (software sensors) to obtain an on-
line estimation of specific rates avoids the problem of model identifica-
tion while adds information for closed-loop control schemes and culture
studies (Farza et al., 1998).

A survey of relevant methods applied to state estimation in bio-
processes can be found in Venkateswarlu (2004). Particularly, several
model-based observers have been proposed for the reaction rate esti-
mation problem. They include adaptive estimator for microbial growth
rate in Bastin and Dochain (1986), extended Kalman filter in Shimizu
et al. (1989), asymptotic observers for parameter estimation in Bastin
and Dochain (1990), high gain observers of specific rates in (Farza et
al., 1998; Gauthier et al., 1992; Martinez-Guerra et al., 2001), and slid-
ing mode based observers in (Pico et al., 2009a; Rahman et al., 2010;
De Battista et al., 2011). Other approach, which does not rely on pro-
cess model but requires training data sets, is based on artificial neural
networks (Karakuzu et al., 2006).

In the sliding mode observers (SMO), the idea is to enforce a sliding
regime on the subspace for which the state estimation error is zero by
means of a discontinuous action. Then, the observer output copies the
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measured state despite disturbances and allows the reconstruction of
the signal of interest (Edwards and Spurgeon, 1998; De Battista et al.,
2012a). In the problem of kinetic rates estimation, the unknown sig-
nals appear in the time-derivative of the states. First-order sliding mode
observers were developed in Pico et al. (2009a) to deal with specific
growth rate and substrate estimation from on-line biomass measure-
ment. Although the exact estimation of ;1 was a high-frequency discon-
tinuous signal, it was useful for constructing the substrate observer. The
resulting estimates were robust under typical model uncertainties while
exhibiting first order dynamics. In Rahman et al. (2010), substrate mea-
surements were used to estimate the substrate consumption rate. The
observer error dynamics is exponentially stable whereas model uncer-
tainties and disturbances are rejected. Thereafter, in De Battista et al.
(2011) a second-order sliding mode observer of i, was presented. More
precisely, the proposal is a modified version of the “super twisting” algo-
rithm, a high-order sliding mode algorithm presented in Levant (1998).
In this case, the observer provides of smooth estimation that exhibits
finite-time convergence and is robust to typical process model uncer-
tainties.

This work is intended to generalise preliminary results in De Battista
et al. (2011). The multiple rates estimation problem requires to deal
with an additional time-varying function. Therefore, further modifica-
tions are required in both the observer’s structure as in the proposition
of stability conditions. From bioprocess control viewpoint, the goal is to
add information about the microorganism activity so as to increase on-
line signals for closed-loop control and bioprocess monitoring. There-
fore, the observer proposed here is applied to estimate p specific kinetic
rates of production or consumption based on p related on-line measure-
ments of process variables. The main difference with other continuous
time proposals is that the estimates are achieved in finite-time and from
then on, no additional dynamics is added. Besides, differing from first-
order SM proposals the resulting estimations are smooth. Consequently;,
no additional smoothing elements would be required in closed-loop con-
figurations. Further, robustness is expected since no model of each ki-
netic rate is assumed.

The rest of the chapter is organised as follows. In Section 7.2 the
problem to be solved and a typical state-space model for a bioprocess
in a stirred-tank are presented. Then, in Section 7.3, the proposed ob-
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server is formulated. Section 7.4 presents results in which microbial
specific growth rate and net ethanol production rate in continuous fer-
mentation of Saccharomyces cerevisiae are estimated from experimental
data. Finally, in Section 7.5, concluding remarks are given.

7.2 Bioprocess model and problem statement

A biotechnological process taking place in a stirred tank can be de-
scribed by the following state-space model (Bastin and Dochain, 1990) A
biotechnological process taking place in a stirred tank can be described
by the following state-space model (Bastin and Dochain, 1990)

dg

= = Kr(&t) = DOE) + F(t) - Q(8), (7.1)

where £(t) € R} is the state vector, K is an (nxm) pseudo-stoichiometric
coefficients matrix, r(-) € R™ the reaction rates vector, D(¢) € R, the
dilution rate, F'(t) € R’ the input flow rate vector and Q(£) € R} the
gaseous outflow rate vector.

Equation (7.1) describes the dynamics of the (bio)chemical species
in the culture, which evolve according to m reaction rates (&, t). Since
the reactions can take place only in presence of certain necessary reac-
tants, r;(-) is zero whenever the concentration of one of the required
reactants is zero. Then, the reactions can be factorised as r;(&,t) =
@;(&,t) [[;c7 & where a;(-) is generally a nonlinear function and J;
denotes the set of required reactants (Bastin and Dochain, 1990). In
matrix form, this results in

r(€1) = G(& t)a(§, ), (7.2)

where G(&,t) is an (m x m) state-dependent diagonal matrix.

The «;(-) defined in (7.2) are called the specific reaction rates per
unit of each reactant (other definitions such as per unit of biomass are
usually used, see Perrier et al. (2000)). These nonlinear time-varying
functions provide important knowledge about the bioprocess (e.g. mi-
crobial specific growth rate, oxygen specific uptake rate, specific produc-
tion rate of metabolites) but its modelling and parameter identification
can be extremely difficult. In order to add information about the pro-
cess (possibly for on-line process control), a software sensor of specific
reaction rates will be developed.
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Particularly, the goal is to derive a robust observer of a subset of p
specific reaction rates, namely oy,(t) = [o1(t), ..., ap(t)]T. To this
end, let consider that p available measurements of £(¢) are rearranged
in a vector z, i.e. z(t) = [&i(t), ..., §p(t)]T. Let K, and G,(-) be the
corresponding (p x p) submatrices of K and G(-), respectively whereas
F), and @Q,, are the corresponding (p x 1) vectors arranged from F' and
Q. Assume the following:

Assumption 7.1. The state variables are positive and bounded.
Assumption 7.2. G, F', and Q, are available.

Assumption 7.3. A bound for each «; time derivative p; > 0 is known.
Assumption 7.4. The matrix K, is invertible.

Assumption 7.5. Diagonal matrices G, Gz suchthat0 < G; < Gj(-) <
G5 holds are known.

Note that A.7.1 holds for the bioprocess variables (e.g. components
concentrations and volume). A.7.2 is a common assumption in the lit-
erature regarding the availability of certain on-line measurements (e.g
Perrier et al. (2000)). A.7.3 states that a bound of each kinetic dynamics
is available, which can be determined from practice knowledge of the
bioprocess. A.7.4 ensures that p reaction rates can be estimated from
the p measured variables. Otherwise, the measured vector would not
provide enough information about the reactions. From the discussion of
eq. (7.2), the elements of G, are products of state variables which all
remain positive and bounded. In the event that one required reactant
vanishes, then at least one reaction no longer takes place. In that case,
the estimation of the reaction rate has no sense and consequently the
estimation problem should be reconsidered. The diagonal elements of
G and G4 in A.7.5 should be selected by the user based on his own
knowledge about the particular process being monitored.

Now, from the model (7.1) and the previous discussion, the follow-
ing system is considered

d
LT? = K,Gp(")ay(§,1) _DZ+FP_QP7 (7.3)
9% _ Rpt), (7.4)

dt
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in which ay,(t) is the vector of specific kinetic rates to be estimated and
R = diag{p;} arranges the bounds of the time derivatives. Note that
p(t) is a vector of p unknown continuous functions where ||p(t), <1
holds.

7.3 A Second-order Observer of Specific Kinetic
Rates

7.3.1 Definitions

In this section the following notation is used

G, = (G1 + Gv)/2, (7.5a)
AG = (G — G1)/2, (7.5b)
s =G, 1AG (7.5¢)
Gyp(-) = G, Gy (), (7.5d)

where ||-|| , stands here for the induced co-norm of the matrix.

Remark 7.1. Recalling definition and assumptions for K, G, and R, it
is straightforward to see that K,G,R is nonsingular.

Let define an auxiliary vector o as
o= (K,G,R) (z - 2), (7.6)

where % is an estimation of z.
Finally, let SIGN(-): R? — RP, ABS(-): RP — RP*P, defined as:

SIGN (o) = col(sign(o;)), 7.7)
ABS (o) = diag{|o:|}. (7.8)

From eq. (7.6), it follows that if there exists 7* > 0 such that ¢ = 0
holds for all t > T*, i.e. if the system can be steered to evolve over
the sliding surface defined by o(z) = O in finite-time, then 2 = z is
achieved.

Since the previous comment is the core idea to estimate the reac-
tion rates, the objective now is the design of a dynamic system which
enforces eq. (7.6) to vanish in finite-time.
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7.3.2 Main result

Proposition 7.1. The system defined by:

s
d—’: — K, (Gy(-)Ruy + 2ksG,Ruy) — Dz + F,— Q,,  (7.92)
% = k1 SIGN (o), (7.9b)
uy = (ABS(0))'/? SIGN (o), (7.9¢)
& = Ruy, (7.9d)

is a second-order sliding mode observer for (7.3)-(7.4). There exists suit-
able design constants k1 > 1 and ko > 0 for which finite-time convergence
of specific reaction rates, i.e. &(t) = a,(t) Vt > T for some finite T* > 0,
is achieved.

In order to prove Prop. 7.1, given a = «;, — &, the error coordinates
dynamics (o, &) is:

Cfi—ot- =R (Gp()a - 2]4:2Ru2) R (7.10)
0~ R(p(t) - hSIGN (0)). (7.11)

Applying the change of coordinates (x;,x2) = (Rus, &) to system
(7.9), yields

% = R(ABS(fcl))_l (—k‘g:m + Gg('>m2> , (7.12)

where the identities
SIGN (1) = SIGN (o),
ABS(x) = R(ABS(o))Y/?,

were used (see eq. (7.9¢)).
Recalling definitions (7.5a)-(7.5d) it is seen that

G,(") € {G, + AGU,}, (7.14a)
G,() € {I,+ G,'AGU,}, (7.14b)
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where I, denotes the (p x p) identity matrix and U, is a (p x p) diagonal
matrix such that |U,[| <1
Therefore, using (7.14) the following differential inclusion holds

dz _ (R[ABS(z)]"! 0 :
€ < o R[ABS(iBl)]_1> (7.15)
(i, sy
— (kle - Up) 0

Now, given the iy, kinetic rate arrange a vector ¢; with the i, com-

ponents of z; and x; (i.e. ¢; = [y xgl-]T). The corresponding differ-
ential inclusion is

dCz — pz
dt ’CL‘lZ|

A(t)¢; €

—k2 (14 6U;)
<— (k1 —Us) ? 0 ) Cir (7.16)

where Uj is the (i, 7) entry of U,,.

It will be shown that each of these coordinates converges in finite
time to the origin independently of the others. For this purpose, the
candidate Lyapunov function V(¢;) = 3, ¢! P¢; (Moreno and Osorio,
2008) is considered. The time derivative of V' (¢) results

|$11|

Z \a:l y T(t)P + PA(t)) ¢, (7.17)

vyith A(t) given in (7.16). The goal is to determine P > 0 such that
V(t) < 0 along any nonzero solution of eq. (7.16). To this end, consider
the following proposition.

Proposition 7.2. Consider the polytopic linear differential inclusion
C=A()¢, Al eA (7.18)

with
AzcoUAi, i=1,...,4

—(ky — ) 0 ’
w={-1,-1,1,1}, v={-1,1,-1,1}.

Then, for every k1 > 1 and 0 < § < 1 there exists suitable values of ko such
that (7.18) is quadratically stable for all A(t) € A.

A — [ —ky (14 0w) (7.19)
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Stability of system (7.18) was proved in De Battista et al. (2011)
for the case § = 0 with the Lyapunov function V(¢) = ¢TP¢. This
proposition is an extension of the proposed in De Battista et al. (2011)
to deal with 6 > 0. The main difference consists in the requirement of
a grid covering the space (k1, d) instead of k; in order to include all the
possible systems described by eq. (7.18).

A polytopic linear differential inclusion is said quadratically stable if
there exists V(¢) = ¢T P¢, P = 0 that decreases along every non-zero
trajectory of system (7.18).

Since V(¢) = ¢T(AT(t)P+ P A(t))¢, a necessary and sufficient con-
dition for quadratic stability is

P >0,

ATHP+PA(t) <0 VA(t) € A (7.20)

This is equivalent to determine the existence of a common Lyapunov
matrix P for all the vertices of the polytope A, i.e. that verifies the
following constraints

P~0
Fe { i } 7.21)
Q, = —-(ATP+PA) -0

fori=1...4.
Now rewriting A; in a convenient way,

A, = ko Ay + Af, (7.22)
where i

-1 0
AO_ 0 07
. 0 3(1+6) ]
Al__—(kl—l) (N
. [ 0 1(1+0) ]
AQ___(kIH) 0o | (7.23)
._[ o0 1(1-6)]
A3__—(k1—1) (N
[0 5(1-0)]
A4__—(k1+1) 0 |
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Figure 7.1: Values of k; and k, for which system (7.18) is quadratically
stable

The existence of a common Lyapunov P for any k&; > 1 and 0 <
0 < 1 can be determined by checking the feasibility of the following
generalised eigenvalue problem (GEVP) in P and k> for both fixed k; >
land 0 < 0 < 1 (Boyd et al., 1994):

ok, /<:2k>2 0, P~0, F (7.24)
with
F Z{(A?TP+PA;*) + k(AT P + PAg) < o;}, (7.25)
fori=1...4.
A GEVP is a quasi-convex optimisation problem. In this case, it can

be solved using a bisection algorithm on ks and determining the feasi-
bility of the remaining linear matrix inequality (LMI). A grid covering
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the desired values of k; for some desired value § was made, and the
corresponding LMIs were solved with YALMIP (Lofberg, 2012). Figure
7.1 shows the set of values of k; and k;y for which the LMI problem is
feasible, for different values of the parameter ¢§. For all points within the
resulting sets of parameters, Proposition 7.2 holds.

Now, values of k; and k, for Proposition 7.1 follows from the ap-
plication of Proposition 7.2. That is, given k; > 1 and certain J, the
value of k; is selected such that eq. (7.18) is quadratically stable. Recall
that ¢ stands for the maximum element of HG;lAGH thus this value is
suitable to get V(t) < 0 for all the reaction rates.

Finally, for suitable k; and ko the system reaches a neighbourhood
of the sliding surface and thus the sliding-mode regime is established.
From then on, the so-called invariance condition (o = 0) holds Utkin
et al. (1999). Consequently, for certain 7%, 2(t) = z(t) V¢t > T*. By
equating expressions (7.3) and (7.9a), &(t) = (€, t) is obtained. Note
in eq. (7.9¢) that when the system is restricted to the sliding surface
o = 0 the matrix ABS (o) is the zero matrix, and thus us = 0.

7.4 Experimental results

In this section, the sliding mode observer developed in Section 7.3 is
evaluated experimentally. The application consists in estimating the spe-
cific production rate of ethanol (¢.) and the specific growth rate (u) of
the strain S. cerevisiae (T73) in a continuous-mode fermentation. To this
end, on-line measurements of biomass (z) and ethanol (e) concentra-
tions were collected. Biomass measurements were taken with a sensor
based on measurement of the optical density (Navarro et al., 2001b).
Samples taken every 12 sec are filtered over a time-window of 120 sec.
Ethanol concentration was monitored using a Raven Biotech’s stand-
alone methanol sensor with sample time of 120 sec. The volume was 3
L and the total fermentation time was 93 h. During the first 23 hours
batch cultivation was carried out. After that, the dilution rate profile
shown with dash-dotted line in Fig. 7.3 was applied. A set-point step in
D from 0.18 to 0.22 h~! is produced at ¢ ~ 50 h.

The proposal is assessed for two possible scenarios. First, the SMO
is tested in the conditions described above and second, the observer is
evaluated for two typical sensor failures which were digitally generated.
In the latter case, the results are compared with a high gain observer.
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Particularly, the continuous time estimator described by
A N . /s .
a <$> = (x 9) (“) - = (x> — 26, <:’3 x) (7.26a)
dt \ e 0 2/ \qe v o\€é e—e
~ o 2 s
d <’:‘ ) S <:” ”) : (7.26b)
dt Qe X e —e

which is presented in Farza et al. (1998) was implemented.

The main difference of this class of observers with the SMO is that
in the former there is an addition of dynamics. This fact is important
regarding closed loop applications. For instance, if eq. (7.26) is ap-
plied for feedback, 2p integrators are added to closed loop dynamics.
Consequently, closed loop stability must be analysed when the feedback
signals are taken from the high gain observer. The same comment holds
for other algorithms such as asymptotic observers. On the other hand,
the SM approach provides convergence in finite-time to the target va-
riables and from then on no additional dynamics is added. This fact
simplifies the control system design.

The mass-balance egs. for the process are:

dx
i ur — Dz, (7.27a)
d
d—i = qsx + D(s, — 3), (7.27b)
% = g.x — De, (7.27¢)

where D = F;,,/v is the dilution rate, s the substrate concentration, s,
the input substrate concentration and v the (constant) working volume.

Since z and e are the measured state variables, the corresponding
subsystem is of dimension p = 2. Note in (7.27) that x and ¢. are the
specific kinetic rates per unit of biomass. The corresponding subsystem
in the form of eq. (7.3) is

dz (1 0\ [z O 7
(OGN o
where z = [x e]T, ap = [u qe]T
tion K, = Iy and G, = z1>.

Therefore, matrices G; and G2 (see egs. (7.5)) are determined
bounding for above (Z) and below (x) the expected biomass excursion.

and F, = Q, = 0. In this factoriza-
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The values x = 2 g L~ ! and 7 = 18 g L~! were selected, which resulted
conservative enough bounds. Accordingly, the matrices G; and G+ are

Gl = 2I2a
Gy = 1815,

and therefore G, = 1015, AG = 815 and 6 = 0.80.

The bounds p; were selected as 0.1 and 0.25, respectively and there-
fore R = diag {0.1 0.25}. These bounds can in practice be adjusted
according to previous experience about the bioprocess and from model
simulations (Perrier et al., 2000; De Battista et al., 2012a).

The resulting values of ks for several values of k; were obtained by
solving the problem (7.24)-(7.25). These results are depicted in Fig.
7.1. It is seen for any § that the lower is k1, the greater is the minimum
ky. In order to get a feasible minimisation problem for § = 0.8 with
a small k5, k1 = 1.35 was selected. From problem (7.24)-(7.25), the
minimum k, is 1.5715 and then ky = 1.75 was selected. Other possibility
for the designing of the gains includes the adaptive-gain approach, see
for instance (Shtessel et al., 2010; Evangelista et al., 2013).

7.4.1 Results

The SMO was initialised with the first samples, i.e. 2(¢o) = (z(t0), e(to))
and (fi(to), ge(to)) = (0,0). Figure 7.2 shows biomass and ethanol time
profiles and their corresponding variables Zz; and 2, almost overlapped,
respectively.

Figure 7.3 shows /i(¢) and the switching coordinate o;. In this fer-
mentation the feeding profile was applied in open-loop operation, i.e. u
was not regulated by feedback. Recall that if steady-state operation of
continuous fermentation is reached then . = D (see eq. (7.27a)). How-
ever, it can be seen between hours 67 and 79 that ;1 was greater than D
due to depletion of ethanol. This illustrates monitoring capabilities of
the proposal.

The on-line estimation of ¢.(¢) gives the net production of ethanol,
i.e. the balance between excreted ethanol due to fermentative growth
on s and consumed ethanol due to oxidative growth on e. Figure 7.4
shows ¢.(t) and the switching coordinate o3. The decrease observed in
ge from t =~ 67 h is in accordance with the growth observed in Fig. 7.3.
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Figure 7.2: Time profile of z(¢) (blue-solid), z(¢) (red-dash) and e(t)
(blue-solid), é(t) (red-dash) in the continuous fermentation (7.27)
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Figure 7.3: Estimated specific growth rate /i(¢) with SMO (black) and eq.
(7.29) (grey), dilution rate (dash-dotted) (above); switching coordinate
o1 (below)
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Figure 7.4: Estimated specific ethanol production rate ¢.(¢) with SMO
(black) and eq. (7.29) (grey) (above); switching coordinate o5 (below)
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Figure 7.5: Time profile of z(¢) with faults in measurement

Equation (7.29) presents the crude estimation of a(t) obtained by
model inversion from (7.3)

dz

a(t) =G, K,! <dt

+Dz—F),+ Qp> . (7.29)
Although this solution is simpler than most of the proposed algorithms,
the result is strongly affected by measurement noise as shown in Fig.
7.3 and 7.4 in grey lines. A possible solution would be to add a lowpass
filter, but the delay and filter dynamics could be detrimental in closed-
loop configuration.

7.4.2 Comparison with high gain observers under sensor fail-
ure

Figure 7.5 shows two typical sensor failures in biomass concentration
measurement: a drift in the time interval [57, 63] and some spikes at ¢t =
81 h. This type of problem should be early detected to take corrective
actions. Note in eqs. (7.27) that a problem in x affects estimation of
both y and ¢e.

Algorithm (7.26) was initialised with the same conditions as the
SMO. It was tuned with parameter §; = 4.0 looking for a comparable
response with the SMO. Although 6, can be chosen high enough to en-
sure fast speed of convergence, this parameter tuning involves a trade-
off between convergence speed and noise sensitivity. Besides, given its
simplicity there is only one parameter to tune which in turn may be
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Figure 7.6: Response under sensor failure with high gain observer: eq.
(7.26) vs eq. (7.29)

problematic when the measurements have different level of noise (as in
the case of biomass and ethanol measurements presented in Fig. 7.2).

The result for the high gain algorithm under sensor failure is pre-
sented in Fig. 7.6. Given the drift in x, a response with large overshoot
in /i appears. Besides, the spikes in = generates additional fast changes
in 1. Although this output behaviour shows a failure, it would not be
acceptable in closed-loop control. On the other hand, the result of ;. es-
timation with the SMO under the same scenario is presented in Fig. 7.7.
As can be observed, the coordinate o, early detects the fault exhibiting
a problem detection feature of the proposal. Even more important, the
effect of the drift on /i is strongly reduced because the time derivative of
each &; is bounded by the observer. In fact, the corresponding p,; allows
to adjust that bound. Note that the spikes at t = 81 h are completely
rejected in the estimator and detected by the residual 0.

Finally, the result for ¢. estimation is presented in Fig. 7.8. For the
selected gain, the high gain approach exhibits worse response than the
SMO until t = 70 h.

7.5 Conclusions

The on-line kinetic rates estimation problem in bioprocesses was ad-
dressed. The proposed second-order SM observer is able to estimate
multiple specific kinetic rates from related measurements of process va-
riables even though no particular model of each kinetic rate was as-
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Figure 7.7: Response under sensor failure for u(t): SMO vs eq. (7.29)
(above) and switching coordinate (below)
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Figure 7.8: Estimated specific ethanol production rate §.(¢) with high
gain observer
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sumed.

Certainly, only upper bounds of the time derivatives are required.
Global finite-time convergence is achieved by choosing a suitable ob-
server structure. This property is particularly important in control appli-
cations because the observer does not add dynamics that might desta-
bilise the closed loop.

The observer performance was assessed using experimental data from
con-tinuous-mode fermentation of S. cerevisiae. Microbial specific growth
rate and net ethanol production rate were estimated. The proposed al-
gorithm was compared with a high gain observer under normal oper-
ation and for two typical sensor faults. Particularly, the SMO showed
better noise rejection in the noisiest signal and better transient response
under sensor drifts and spikes.



Chapter 8

Specific Kinetic Rates
Regulation in Multi-Substrate
Fermentation Processes

A person who never made a mistake
never tried anything new.

Albert Einstein

ABSTRACT: The regulation of the biomass specific growth rate
is an important goal in many biotechnological applications. To
achieve this goal in fed-batch processes, several control strategies
have been developed employing a closed loop version of the ex-
ponential feeding law, an estimation of the controlled variable
and some error feedback term. Moreover, in some bioprocesses
there is more than one feeding flow entering the bioreactor and
supplying different nutrients or substrates. Hence, the problem
of estimating multiple substrate consumption rates together with
the specific growth rate of the microorganism becomes relevant.
In this context, the dynamic behavior of fed-batch processes with
multiple substrates and Haldane kinetics is further investigated.
In particular, a nonlinear PI control law based on a partial state
feedback with gain dependent on the output error is used. Then,
with a recent developed algorithm for several kinetic rates estima-
tion based on second-order sliding mode (SM) ideas, we extend

147
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the mentioned control strategy to a multi-substrate fed-batch bio-
process. The observer provides smooth estimates that converge
in finite time to the time-varying parameters and allows indepen-
dent design of the observer and controller dynamics. The features
of the proposed estimation and control strategies are assessed by
simulation in different scenarios.

8.1 Introduction

The expanding biotechnological industry is demanding more efficient,
reliable and safe processes to optimize production and improve qual-
ity. Control engineers have to overcome a large number of obstacles to
control fed-batch fermentations. They must deal with complex dynamic
behavior of microorganisms, strong modeling approximations, external
disturbances, nonlinear and even inherently unstable dynamics, scarce
on-line measurements of most representative variables, etc. In Smets et
al. (2004) a description of the history and state of the art in the field of
fermentation fed-batch process control is presented.

From a biological standpoint, the control of a biotechnological pro-
cess would be to make microorganisms reach a (possibly time-varying)
metabolic state at which their physiological behavior is appropriate for
the desired goals: e.g. production of a given metabolite or protein.
These metabolic states are usually related to growth rate (Ihssen and
Egli, 2004; Gnoth et al., 2008). Also growth rate is related to substrate
consumption rate. Thus, tuning the feed rate to achieve either constant
substrate concentration in the broth or constant metabolite production
rate are common strategies in the area (Valentinotti et al., 2003; Oliviera
et al., 2004; Jenzsch et al., 2006).

Current availability of more on-line reliable biomass and volume
measurement devices allow direct control of specific growth rate. This
is especially true for small and medium scale bioreactors used to pro-
duce enzymes and/or high-added values specialty metabolites. This has
enabled a research line dedicated to develop generic and robust con-
trollers based on the minimal modeling concept. In Pic6-Marco et al.
(2005), a sliding mode controller applicable to the regulation of growth-
linked fed-batch processes is presented. Just on-line measurement of
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biomass concentration and volume, as well as an upper-bound on the
growth rate are needed. Other authors have incorporated an estimation
of the controlled variable to the control algorithms, obtained from on-
line measurement of biomass concentration (Smets et al., 2004; Gnoth
et al., 2008; Smets et al., 2002; Dabros et al., 2010). Pioneering work in
the field of growth rate observers was performed in Bastin and Dochain
(1986).

In De Battista et al. (2012b), a different approach is proposed to
design non-linear PI controllers which relies on geometric properties of
the process and specification structures. Ideas and concepts of invari-
ant control and passivity are combined to achieve PI controllers that
outperform previous developments where some of these ideas were ex-
ploited separately (Pic6-Marco et al., 2005; De Battista et al., 2006).
In Pico-Marco and Navarro (2008), an invariant and stabilizing con-
troller is used to control dual-substrate fed-batch fermenters using only
biomass measurement and growth rate estimation. Thereafter in Nufiez
et al. (2013), an algorithm for several kinetic rates estimation based on
second-order sliding mode ideas was presented, providing smooth esti-
mates, which are achieved in finite-time and without adding dynamics.
In this paper, we use the mentioned previous work to estimate several
substrate consumption rates and extend the nonlinear PI control (De
Battista et al., 2012b) for multi-substrate fed-batch fermentation in or-
der to track desired consumption rates for each substrate.

The work is organized as follows. The next section presents the con-
trol problem. In Section 8.3 the second-order sliding mode observer
together with the invariant control and the PI correction terms are pre-
sented for the case of multi-substrate fermentation with non-monotonic
kinetics. Section 8.4 shows the observer and controller performance us-
ing simulation data with realistic noise and perturbations. Finally, in
Section 8.5 the main conclusions of the work are given.

8.2 Problem formulation

Consider biphasic biomass growth. The commonly used model to de-
scribe dual-substrate fed-batch fermentations accepts the following de-
scription in state-space (Bastin and Dochain, 1990; Dunn et al., 2003;
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Chang, 2003):

& = f(p, p2)r — (D1 + Do)z

51 = —y1p1(51)x + D181in — (D1 + D2)s1
59 = —yap2(s2)® + Daszin — (D1 + D2)s2
0= (D14 Dy)v=F, + F»

S (8.1)

where f(-) is the specific growth rate, usually the sum or the product of
its arguments. Additionally, the state variables are 2 biomass concentra-
tion, s; concentration of substrate in the tank, and v volume. The spe-
cific consumption rates y; are unknown nonlinear function of substrates.
In the following we will center the analysis in the case of non-monotonic
Haldane kinetics, where the consumption rates have the following form:

L+ 2v/ksi/kii

: (8.2)
ksi/si) + 1+ (si/kii)
The parameters y; are yield coefficients. The other two parameters s;;,
are the substrate concentrations in the corresponding feeding flow. Fi-
nally, the D; dilution rates are equal to the ratios F;/v. The substrates
may play different roles (see Zinn et al. (2004)). For example in two
common cases:

pi(s;) = Nmi(

1. Both substrates are carbon sources and contribute both to growth
and production.

2. One substrate is a carbon source mainly affecting growth and the
other one a nitrogen source affecting production and product char-
acteristics.

In either case there are mainly two goals from the process point of
view:

1. It is desirable to keep a given specific growth rate f = p,.¢, and
hence consumption rates p; and uo corresponding to a desired
physiological state at which the microorganism behaves optimally
with respect to production, does not produce inhibiting products,
etc.

2. It has been reported in Kellerhals et al. (1999) and Xu et al. (2005)
that in many instances the ratio s; /s affects the product charac-
teristics, e.g. in PHB production the bioplastic physical properties.
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Both goals could be achieved by regulating the consumption rates for
each substrate using F ». This constitutes the main problem addressed
in this work.

Note that controller and observer design is subject to the following
constraints:

e The only on-line measurable variables are volume and biomass
and one of the substrates concentration.

e The control signals are nonnegative.

e The yield coefficients y; » and the influent substrate concentration
s; are uncertain parameters that, moreover, may vary during the
process.

e The specific consumption rates p; are not precisely known. We
only assume they are Haldane-like non-monotonous functions, some
initial estimation of the maximum consumption rates (an informed
guess is enough), estimated upper bounds on their time deriva-
tive, and a rough idea of the region (u;(s;), s;) where the functions
,uz(sz) live.

Thus, in the next section we extend a non linear PI controller for
growth regulation (De Battista et al., 2012b) to a multi-substrate fer-
mentation and we combine it with the multiple rate high-order sliding
mode observer developed in Nufiez et al. (2013) in order to estimate
the consumption rates of each substrate. Then we introduce the esti-
mates into the controller to adapt the invariant gains, improving the
robustness with respect to model uncertainties and perturbations.

8.3 Nonlinear PI controller and second order slid-
ing mode observer

In this section, we present the nonlinear PI controller for growth regula-
tion developed in De Battista et al. (2012b). Then we show how to tune
the multi-rate observer developed in Nuiiez et al. (2013) for this parti-
cular case. Having estimates of the multiple consumption rates, allows
us to extend the control to the multi-substrate case.
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8.3.1 Nonlinear PI control

Consider the system (8.1). We start by applying an invariant control
(Pico-Marco and Navarro, 2008), from where we obtain the invariant
gains A1 2. The basic idea is to take a reference model of exponential
growth (compatible with the control objectives) and make the generated
goal manifold for our system (8.1) to be invariant. That is, if the system
is driven to the manifold, it will stay on it. This is achieved with the
invariant gains, which can be calculated from the reference substrates
from (8.1),

Sr1 = kle (8.3)

Hml — Hrl
Sr2 = ksZL (8.4)

Hm2 — Hr2

as follows
A = Sr1Yefr2 — Sr2Y1frl + S2inY1fr1 (8.5)
52inS1lin — S2inSrl — S1inSr2

Ay = —Sr1Y2pr2 + SraY1fel + S2inlY2/r2 (8.6)

S2inS1lin — S2inSr1 — S1inSr2

Then we can use these gains as initial conditions for the adaptation
algorithm (nonlinear PI) from (De Battista et al., 2012b), but extended
to a multi-substrate fermentation in the following way (for i = 1, 2):

F; = \jxv

k
el A=A <1 — tanh <w(ﬂi - um))) (8.7

T

}\ai = *qb)\zzl‘u 5 )\ai(tO) = )\M,’i = 1, 2.
T

Where £ is the proportional gain of the controller and ¢ is the integral
gain which determines the speed of adaptation of \;. Notice we need
an estimation /i; of the consumption rates, in order achieve output error
injection into the algorithm. Thus, we will use the previously mentioned
observer for the substrates consumption rates estimation.

Assuming the growth rate of the microorganisms is related directly
with the consumption rates of the substrates in an additive way

p= 1+ p, (8.8)
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we will in fact estimate the specific growth rate and the consumption
rate of the measured substrate. Then, we can simply subtract the es-
timated consumption rate from the growth rate in order to obtain the
other consumption rate. Other relationships can be handled easily (e.g.
multiplicative consumption rates).

8.3.2 Multiple rates observer

In order to estimate the specific growth rate and the consumption rate

of the measured substrate we will use the observer developed in (Nufiez

et al., 2013). First consider the following system which describes the

measured variables z in a state-space model of a bioprocess stirred tank

(Bastin and Dochain, 1990):

‘z" =K,G,(-)ap — Dz+ F 8.9)
&, =Rp(t),

where K, is a pseudo-stoichiometric matrix, D is the dilution rate, and
F is the input flow rate. G, (-)«,, represents the reaction rates which are
linearly combined by the rows of K. The specific reaction rates for each
reactant are oy, and G,(-) is a diagonal matrix. Finally R = diag{p;}
arranges the bounds of the time derivatives of the rates «,. Note, that
p(t) is an unknown vector of continuous functions where ||p(t)|/c < 1.
Then the second order sliding mode observer O converges to the
specific reaction rates & = o, in finite-time (Nufiez et al., 2013).

i=K, (lep(-)Ru + 2k:gGORABS(o—)1/2SIGN(a))

O —Dz+F (8.10)
i =k1SIGN(o)
& =Ru
with
0= (K,GoR) ™" (z—2) (8.11)

where G, is a matrix related to the bounds on G,(-). The functions
ABS(0) = diag{|oi|} and SIGN(o) = col(sign(c;)) are matrix exten-
sions of the respective scalar functions.
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Comment on stability and convergence. For details on the stability
analysis of the controller and convergence of the observer see respec-
tively (De Battista et al., 2012b; Nuflez et al., 2013). In combining the
two strategies, the only precaution to take is that the observer should
converge before the process state leaves the domain of attraction (if it
is not global). Anyway, in the practical industrial operation, there is al-
ways a batch open-loop phase previous to switching the fed-batch phase
on. The observer will converge during this phase.

8.3.2.1 Observer Implementation

In order to use this observer in our particular case, we take the first and
second equations from (8.1), which are the dynamics of the measured
variables, hereafter z = [z, s1]",and we rearrange them, obtaining:

. (1 0 z 0 I B 0
z_<0 —yl><0 x)(/ﬂ) <D1+D2)Z+<D181m>
(8.12

where o), = (1, p1]". Note that in this factorization G, = =I5 and

10
K,= < 0 —u > (8.13)

In order to tune the observer, upper (G1) and lower (G3) bounds for
G need to be obtained to calculate G, = %, AG = % and
§ = ||G,'AG||». The presupposed excursion of the biomass z gives
us conservative bounds G| = 0.2I5 and Gy = 15I5. From where we
get G, = 7.6I, and § = 0.9737. With this we can calculate the suitable
gains k; and k, (Table 8.1) to ensure finite-time convergence, by solving
the associated GEVP problem (details omitted for brevity, see Nufiez et
al. (2013)).

8.4 Simulations

In order to test the behaviour of the controller and observer described in
this paper, simulations in three realistic scenarios have been performed.
The model from (Chang, 2003) has been used with the following pa-
rameters and test conditions.

The controller and observer parameters used in the simulations are
also listed in Table 1.
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Table 8.1: Parameters and test scenarios

Process parameters and test scenarios

o l7A] 007 pna[ L] 05

kilg/ L] 2 kilg/L] 2.1

Yy 2.1 Y2 2
sunlg/L] 15 s2inlg/L] 15
V(to)[L] 0.2 V(L] 15
s1(to)lg/L] [1,5,1] s2(to)lg/L] [0.5,4,0.5]

z(to)[g/L] 0.5
Controller and observer parameters

Ari [1,1,0.71N  pr[1/R] 0.33
Mrl[l/h] 0.18 Hrl[l/h] 0.15

k 3 ¢ 30

k1 2.9592 ko 2.3038
P1 0.25 P2 0.2

@ Parameter 3, in Scenario 3 grows at 3% per hour since ¢ = 10h.

Note that by the assumption (8.8), the reference value for the spe-
cific growth rate is p, = 0.33.

Scenario 1. Low initial substrate concentration. In this first sce-
nario, the aim is to show the performance of the controller and observer
from low initial concentration of substrates and under nominal condi-
tions. The proper invariant gains \,; are known (or calculated from the
model parameters). The results are presented in Figure 8.1.

Scenario 2. High initial substrate concentration. The second sce-
nario shows the convergence property of the proposed controller from
a high initial substrate concentration. The initial condition is selected
beyond the maxima of the Haldane functions of both substrates. This is
an inherently unstable region.

In fact, the control has the opposite effect to what is expected, thus
producing a positive feed-back. To avoid wash-out, A\; and )\, are boun-
ded, so that the substrate concentration inevitably falls below the max-
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Figure 8.1: (Scenario 1) Responses from low initial substrates concen-
tration under nominal conditions, i.e. invariant gains )\,;, are known.

The two plots at the bottom left show )\ and substrate: blue-solid is
1,51 and red-dashed is )\, 59
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Figure 8.2: (Scenario 2) Responses from very high initial substrates con-
centration under nominal conditions, i.e. invariant gains \;, are known.

In the bottom left plots, of A and substrate, blue-solid is A1,s; and red-
dashed is As,s9
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Figure 8.3: (Scenario 3) Responses from low initial substrates concen-
tration under uncertain conditions. In the bottom left plots, of A and
substrate, blue-solid is \1,s1 and red-dashed is \s,s9

ima of the kinetic rate functions. Once in this region, the controller
stabilizes the process around the goal trajectory. Notice that setting the
bounds on \; and A, requires having a rough idea of the region y;(s;), s;
where the functions y;(s;) live, and a lower bound in the yield coeffi-
cients. But it does not require a precise model of the reaction kinetics.

Scenario 3. Robustness against parameter uncertainty. In this third
scenario we evaluate the robustness of the proposed control and ob-
server with respect to parameter uncertainty. One of the invariant gains,
Ar1 is underestimated by a 30%. Further, after ¢ = 10h, the yield coef-
ficient ys; is increased at the rate of 2% per hour. The evolution of the
process variables is shown in Figure 8.3. See that, in the presence of the
uncertain and time varying parameter, the control law is still tracking
the desired 1,1 » by adapting the parameter ;.

8.5 Conclusions

In this work we extended the previous proposed nonlinear proportional-
integral control to multi-substrate fed-batch processes for multiple ki-
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netic rates regulation. This was possible due to recent development of
an algorithm for several kinetic rates estimation based on second-order
sliding mode ideas, which allows us to obtain the consumption rates for
each substrate together with the specific growth rate of the microorgan-
ism measuring only biomass and one of the substrates.

Robustness properties of both strategies are inherited. The controller
provides robustness to model uncertainties and disturbances, which is
one of its main attractive features. The observer provides noise rejec-
tion, and finite-time convergence of the consumption rates estimates.
The latter allows to independently design the observer and the con-
troller.

Performance of the system was shown by simulation of realistic sce-
narios, with noise, parameters uncertainty, and high initial substrate
concentration, where an increase in concentration of substrates pro-
duces a decrease in growth rate, and therefore the fermentation is in
an intrinsically unstable region.
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Chapter 9

Control of protein
concentrations in
heterogeneous cell
populations

Mathematics is Biology’s next
microscope,
only better;

Biology is Mathematics’ next physics,
only better.

Joel E. Cohen

ABSTRACT: In this work we propose a synthetic gene circuit for
controlling the variability in protein concentration at a population
level. The circuit, based on the use of an intracellular nonlinear
controller coupled to a cell-to-cell communication mechanism, al-
lows for independent control of the mean and variance of a sig-
nalling molecule across cell population. Via a piecewise affine ap-
proximation of the nonlinearity, we provide set invariance results
that imply the stability of the closed loop system. We also obtain
closed-form expressions for the mean and variance as a function
of the tuneable parameters of the controller. The predictions of-
fered by the theoretical analysis are in agreement with numerical

161
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simulations performed with physiologically realistic parameters in
Escherichia coli.

9.1 Introduction

Since the seminal works of Elowitz and Leibler (2000) and Gardner et
al. (2000), a number of biomolecular devices have been developed to
perform circuit-like functions in living cells, including switches, pulse
generators and logic gates (Purnick and Weiss, 2009). Substantial ef-
forts are being undertaken to scale up synthetic biology from indivi-
dual modules to whole systems capable of executing complex functions
(Khalil and Collins, 2010).

An area of particular relevance is the design of collective cell be-
havior, whereby a prescribed population response results from the inter-
action between individual cells. A common approach to induce collec-
tive behaviors is to use cell-to-cell communication mechanisms. These
typically rely on the quorum sensing machinery from V. fischeri and
have been used for diverse purposes such as population synchronization
(McMillen et al., 2002), cell density control (Kobayashi et al., 2004),
engineered pattern formation (Basu et al., 2005) and the design of syn-
thetic ecosystems (Balagaddé et al., 2008).

Gene expression is an inherently stochastic process, and it is widely
acknowledged that genetic noise plays a key role in cellular dynamics
(Elowitz et al., 2002). At a population level, the effect of noise becomes
apparent by the fact that genetically identical cells produce the same
protein at different concentrations. The variability in protein concen-
trations can be quantified with high-throughput technologies such as
flow cytometry, which allow to characterize the variability in terms of
the population histograms for the protein abundance (Zechner et al.,
2012).

In this work we combine an intracellular feedback controller with
a cell-to-cell communication mechanism designed to control the mean
and variance of the signalling molecule Acyl-Homoserine Lactone (AHL)
across a population of cells. AHL is an autoinducer molecule that dif-
fuses in the extracellular medium and acts as a communication signal
between cells. The feedback controller regulates the production of the
protein LuxI, which in turn controls the synthesis of AHL (Fig. 9.1).
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Figure 9.1: Different architectures for controlling the AHL distribution
across a population. The core principle is to use the PluxR promoter as
an interface to control the production of LuxI (thus modulating AHL and
the cell-to-cell communication). (A) Open loop production of LuxI with-
out communication. (B) Open loop production of LuxI with communi-
cation. (C) Feedback-regulated production of LuxI without communica-
tion. (D) Feedback-regulated production of LuxI with communication.

External AHL

This mentioned heterogeneity in a population of cells is usually mod-
elled via deterministic ODEs with parameters sampled from a given
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probability distribution, which is sometimes termed as extrinsic noise
(Swain et al., 2002). The same approach was used in this work to ac-
count for variability across the population.

We first consider an ODE model for the intracellular genetic circuit
coupled with the dynamics of AHL export and uptake (Section 9.2). The
saturable behavior of promoter activity translates into a sigmoidal non-
linearity in the feedback controller. By approximating the nonlinearity
with a piecewise affine function (Section 9.3), we find conditions un-
der which the system operates in a linear regime (Section 9.4). We rely
on set-invariance results similar to those developed in Esfandiari and
Khalil (1991) for continuous implementations of sliding mode control,
and in (Vignoni et al., 2013a) for a sliding mode reference conditioning
scheme for coordination of multi-agents. Our main results are closed-
form expressions for the mean and variance of AHL across the popu-
lation (Section 9.5). These indicate how a target mean and variance
can be achieved independently by fine-tuning the controller parameters.
The predictions offered by our theoretical analysis are in agreement with
numerical simulations (Section 9.6) performed with physiologically re-
alistic parameters of Escherichia coli.

9.2 System description

9.2.1 Cell-to-cell communication and feedback controller

The proposed circuit combines two engineered gene networks previ-
ously implemented in E. coli: a cell-to-cell communication system (Fuqua
et al., 2001), and a synthetic repressible promoter (Egland and Green-
berg, 2000), see Fig. 9.2. The cell-to-cell communication circuit uses
components taken from the quorum sensing system of V. fischeri (Ka-
plan and Greenberg, 1985; Schaefer et al., 1996). The feedback circuit
comprises a luxI gene under the control of the PluxR promoter. The pro-
tein LuxI is the AHL synthase. AHL in turn can bind the protein LuxR
and form a complex that binds to the PluxR promoter and represses the
expression of the luxI gene. The circuit therefore a negative feedback
loop between the concentration of intracellular AHL and the expression
of luxI gene.
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Figure 9.2: Schematic of the intracellular feedback control circuit in one
cell and the cell-to-cell communication mechanism.

9.2.2 Mathematical model

In a population of N cells, the concentrations of LuxI, internal AHL and
external AHL can be modelled by the following set of ODEs

o

Ty = Kotk 9”71 1Ty, ©.1)
337’2 = f{‘,2ﬂj7:1 —d ($2 — Ie) — ’YQI%, (9'2)
Toe = i - xe — Yele, (9.3)

N
= 1
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where 2 is the concentrations of LuxI protein in the it} cell, 2} is the
concentration of internal AHL in the i*" cell, and z. is the concentration
of external AHL.

In equation (9.1) modelling the LuxI concentration, kg is the tight-
ness or basal expression of the promoter, and «; is the dynamic range
of the promoter. The regulatory effect of the promoter is modelled as
a Hill-like function, whereby n is the Hill coefficient and 6 is the half
concentration constant or repression threshold.

In equation (9.2) modelling the internal AHL concentration, the ki-
netic constant xo models first order AHL synthesis, whereas d is the
internal transport constant. Both molecules, LuxI and internal AHL, are
subject to first order degradation processes with kinetic constants ~; and
~9, respectively. The kinetic constant d, is the external transport con-
stant and . is the degradation rate of external AHL. Note that in (9.3)
we take into account the difference between the external and internal
volumes with the factor %, as in Mina et al. (2013).

In the model (9.1-9.3) we have made the following approximations:
a) we assume the expression of mRNA is in a quasi-stationary state, ne-
glecting the fast transient required by the mRNA concentration to reach
its steady-state value, b) we consider the DNA/repressors complex also
reaches very quickly its steady state value, allowing us to model the
repression with a Hill function, ¢) we do not explicitly model the dimer-
ization of the LuxR protein and its binding to AHL, and d) we assume
that the LuxR gene is constitutively expressed and is not a limiting factor
in the process.

For the purpose of obtaining analytic results, we model the variabil-
ity between cells by taking the tightness of the PluxR promoter, «°, as
a random variable with a normal distribution (x° ~ N (p,0?)). Here
p and o2 are the mean and variance across the population. However,
to obtain more biologically-realistic results, more sources of variabil-
ity should be included in the analysis. In the simulations we validated
our analytical results by adding variability in all remaining parameters
(we draw the parameters for each cell from a random distribution, see
Fig. 9.4 and Section 9.6).

The following notation will be used hereafter: the partial states x;
and z; are defined as z; = [2},...,2Y]" € RN, 2y = [2},...,2)]" € RN
and the full state z = [z1, 29, ]’ € R2N*t1, The vector of equilibrium
points of the partial states x; and - for the whole ensemble will be de-
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noted Z; and Z». The equilibrium of z. can be expressed as a function
of the equilibrium points of x4:

1 d N € N €
o = — e =i €& - £qT= .
; N(deﬂe)zij@ RO LRI 2

_ _de
where € = T

vector 1y € RN denotes the vector with all its elements equal to 1.

The variability of the promoter tightness x" translates into a proba-
bility distribution for the steady state concentrations of LuxI and inter-
nal AHL across the population. In the remaining of the paper we will
focus on quantifying this distribution, exploring how the intracellular
feedback controller together with the cell-to-cell communication can be
used to reduce variability of gene expression in the population.

, and 7., 7} are the equilibrium values of z. and x%. The

9.3 Approximation of the intracellular controller

To simplify the analysis, we approximate the Hill function in (9.1) by
the piecewise affine saturation function shown in Fig. 9.3. Its slope is
taken to be the same as that of the Hill function at the half concentration
constant ¢, which is a sensible approximation for the typical values of
the Hill coefficient n. Under this approximation, equation (9.1) can be
rewritten as:

1 = Usar(€3) — mat, 9.5
with
' kY + K1 if 24<60-9
Usat (T9) = Kb — St + 50 + 5L if |2h—0] <0 (9.6)
K if b > 6040,

and ¢ being the midpoint of the linear section:

_
0

5 9.7

As mentioned before, the Hill function, together with its approxi-
mation ug,¢, can be understood as a controller with fixed structure and
tunable parameters. Our goal is to tune the controller parameters so as
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to shape the statistical distribution of the steady state concentration of
AHL. We can conveniently reparameterize the saturation function wuga¢
using only three parameters. Rewriting (9.6) using S = “j7, T' = 0,
R =" and ¢ = £ we obtain

' ko + 2R if 2<T-6
Usat(5) = Ko — S (x’z — T) + R if ‘wé — T{ <6 (9.8)
K0 if IEZQ > T 4+ 0.
20
p——
u(x
K1

Hill function

/

Tightness
A 4
4%) -
| \ \
9 7
. Saturation %
Half concentration . .
aproximation
constant

Figure 9.3: Characteristic of the promoter. Hill function and its piece-
wise affine approximation for n = 5, § = 5 resulting in § = 2.

9.4 Operation in the linear regime
In this section we obtain sufficient conditions under which the set

o, ={x e RN |7 —T|<6,Vi=1,...,N}, (9.9)
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is an attractive invariant set for all the cells in the interconnected pop-
ulation (see Fig. 9.3). Later in Section 9.5 we will use this result to
obtain closed-form expressions for the mean and variance of the protein
concentration.

We first define the mean system states as [z, Z2, :Ue]T, with
1o
@:NZ@, j=1,2. (9.10)
i=1

The dynamics of the mean system can be expressed by

i1 o= p—mi, (9.11)
Ty = rody — (d+y2) &g + da, (9.12)
Toe = doZo — (de + 7Ye) Te. (9.13)

Where p = & S°N | ugq(23). Notice that L SN wi = &o is the sample
estimator of the mean , and that using (9.8) we get & Z?ﬂ Usar(Th) €
[k, 2R + pu].

Equation (9.11) corresponds to an exponentially stable linear system
with bounded input p and time constant 1/+;. Therefore, #; there will

get arbitrarily close to its steady state 77 € [ﬂ uiak

M’ m
t*. The same argument holds for the subsystem formed by (9.12)-(9.13)

with bounded input %, and thus x, will get arbitrarily close to its steady

state
€ERQ l:u o+ 2R:|
dl—€e)+v | m ’
after a finite time t** > t*.

Since x, is a bounded signal, equations (9.2), (9.5) and (9.8) for the
ith cell can be rewritten using the variable change z = x*:

} after a finite time

Te €

(9.14)

{ 2 = —v21 + u(z2) (9.15)

22 = K9Z%1 — (d + ’)/2)2’2 + Ze,

where z = [21, 23]7 € R? and 2, = 2. is a bounded external perturbation
with bounds z, < z. < Z. from (9.14). Note that the index i was
dropped for simplicity of notation.

The idea is to obtain a bound on the control signal u(z2) that ensures
convergence of the trajectories of (9.15) to the set ®, and that makes it
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invariant, with ® defined as:
d={z€R*: 2y <2z <Z}. (9.16)

To this end, it is convenient to use a structure for u(z3) which is more
general than equations (9.6) and (9.8):

K1+ Ko 22 < Zg,
u(ze) = ¢ win(22) 29, < 22 < Zoy 9.17)
Ko 22 > Zoy-

with kg < win(22) < K1 + Ko @ bounded but not necessary continuous
function of 29 and z, < z,,, and zZa, < Za.

Note that making 7' — § = z, and T + 6 = Zy, equations (9.6) and
(9.8) plus kg represent (9.17), and when the set ® is invariant, then
the set ®, (9.9) is also invariant. Also, the set ® can be rewritten as
® = ¢ N P, the intersection of two sets & and ¢ where

¢ = {z ER:¢(z2) = —22+2, < O} (9.18)

and
5z{2€R:$(Z2)zZ2—Eg<O}. (9.19)

In Esfandiari and Khalil (1991) a boundary layer set is proven to be
uniformly ultimately bounded, for systems with unitary relative degree
(where the control action u appears explicitly in the first derivative of
the output ¢). The system in (9.15), however, has relative degree two
when we take the control to be u(z2) and the outputs to be ¢(z2) and
¢(22). To overcome this problem, we exploit the triangular structure of
the system and design u(z2) using a backstepping-like approach. We can
then use geometric invariance ideas to make the desired set ® invariant.
With this technique we get the following result.

Theorem 9.1. The set ® is an invariant and attractive set for z, if the
following inequalities hold
(d+72) 29 — 2e

Ko+ KL >M o (9.20)

and p L
Ko < ’Yl( +72K)122 — Ze (921)
2
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9.5 Control of protein mean and variance

In this section we show that the mean and variance of the AHL con-
centration across the cell population can be controlled independently
with different parameters of the controller. This constitutes the main
contribution of this paper.

Under the conditions of Theorem 9.1 we know that every individual
system will eventually operate in the linear regime:

it =k — S (zh—T) +R—mal, (9.22)

The dynamics of the whole ensemble can then be written as a (2N +
1)—dimensional linear system:

—71 1IN Sy On Ko + (ST + R) 1N
T = kolny — (d + ’72) In dln x+ On ,
O§ %1£ ‘ - (de + 'Ye) 0
(9.23)
We define the matrix Iy as
1
Iy =1In — NleN, (9.24)

where Iy € RN*N js the identity matrix and 1xyxx € RN*N has all its
entries equal to 1.

Note that ITy is idempotent (i.e. IINIIx = Ily) and satisfies IIx1y =
On.

Setting # = 0 in (9.23) and using (9.4) we get a system of 2N linear
equations for the steady states z; and zs:

’YlIN STy x1 | Ko+ (ST + R) In
koln  —[d(1 —€) + 2] In — delln - On
(9.25)

Theorem 9.2. Under the conditions for Theorem 1, the mean and vari-
ance of the distribution of xs for a population of N cells can be controlled
independently by tuning the parameters of each cell intracellular controller

as follows:
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Var{z}} =

; i 1 B 1 2
(S+ﬂed)2+N<(S+ﬁ)2 (SJrBEd)Q)] (9.27)

The expression in (9.27) indicates that the variance can be con-
trolled independently from the mean with the parameter S, and its sen-
sitivity is

OVar{zh} 2 1 N-1
o N [(

—= - 2, (9.28)
S+ 8y N(S+ﬁ—ed)3] 7

which indicates that a steep feedback (i.e. with a high value of S) tends

to reduce the population level variability.

9.6 Simulations

To demonstrate the potential of the proposed control strategy, we ran
numerical simulations of the different control architectures shown in
Fig. 9.1. The parameters values used are shown in Table 9.1. These
are physiologically realistic values for E. coli, and similar to those typi-
cally found in the literature (Kaplan and Greenberg, 1985; Egland and
Greenberg, 2000; Ke rn et al., 2005; Smith et al., 2008; Weber et al.,
2013; Mina et al., 2013).

In order to compare the different architectures, we observe the vari-
ances and adjust the means to be similar in all cases.

Note that nowadays, the Ribosome Binding Site (RBS) strength is
one of the more suitable biological tuning knobs, which can be selected
with high predictability (Egbert and Klavins, 2012). Thus, consider
rewriting (9.1) taking into account the RBS strength in the following
way:

i = RBS, (#+ Al i 2

] = s </@0 + R1M> — . (9.29)
The new parameters sy and #; are fixed among all the examples to a
10% of leakiness and 10-fold dynamic range (Ka rn et al., 2005; Mina
et al., 2013; Weber et al., 2013). Hence, the RBS strength RBS; will be
used as the only tuning knob in order to have the same mean of AHL in
architectures B, C and D than in architecture A.



9.6. Simulations 173

Pl

180 — 1 LuxI
— 140}
]
2
£100
=}
5}
8 [ —
g 60
S | = AHL

20

0 200 400 600 _ 800 1000 1200 0 01 02
Time (min) Occurrence

Figure 9.4: Time course and steady state histogram of 10.000 cells for
architecture D with closed loop with cell to cell communication (with
n =1.5)

Fig. 9.4 shows the simulation of 10000 ODEs (equations 9.1-9.2) one
for each cell i. The values for the parameters were drawn from a normal
distribution with mean equal to the nominal value of the parameter in
Table 9.1 and a variance of 5% of that value. The steady state distribu-
tions for all the architectures (see Fig. 9.5) were obtained from the same
kind of simulations with corresponding parameters (Table 9.1).

In Fig. 9.5 we can see how the different architectures impact on
the steady state distribution of AHL. The mean, the variance, and the
coefficient of variation (CV) of AHL resulting from the simulations are
shown also in Table 9.1.

From the results in Table 9.1 and from the distributions of AHL in
Fig. 9.5, it appears that both the feedback-regulated production of LuxI,
and the cell-to-cell communication through AHL are required for best
performance. Case D (bottom plot from Fig. 9.5) have smaller variances
than cases A, B and C (top plot from Fig. 9.5).

Also comparing the two distributions in the bottom plot from Fig. 9.5
it appears that a steep feedback n = 3 tends to reduce the population
level variability as predicted by (9.28) with respect to a less steeper one
n = 1.5.
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Figure 9.5: Steady state distributions for 10.000 cells of AHL concentra-
tion in the different architectures of Fig. 9.1. In the top figure architec-
tures A, B and C are shown. The bottom figure shows, architecture D
with n = 1.5 and also with a steeper controller n = 3.
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Table 9.1: Nominal values for the parameters used in the simulations.
Mean, variance and CV for each architecture.

Architecture

Parameter| A B C D Units  |Reference
71 0.0173 min! | [20,21]
RBS; | 076 15 0125 | 4.6 4.6 |nMmin| [19,21]
6 - - 63.24 nM | [15,21]
n - - 1.5 15 3 - [15]
Ky 0.04 min-! [21]
d - 0.3 - 0.3 min-t [16]
de - 0.006 - 0.006 min! [16]
Y2 2.82e-3 minl | [18,20]
E{xi} | 63.55| 64.36 | 62.65 | 6325 | 6325 | nM

Var{x}} | 89.43 | 10.10 | 3213 | 623 | 4.12 nM

cv{xi} |0.1488| 0.0494 | 0.0905 | 0.0395 | 0.0321
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9.7 Conclusions

In this paper, we investigated the design of a synthetic gene controller
aimed at reducing gene expression variability at the population level.
As a proposed synthetic biology implementation, we considered a cell-
to-cell communication system coupled with an intracellular genetic con-
troller characterized by a sigmoidal nonlinearity. To simplify the mathe-
matical analysis, the nonlinearity was approximated by a piecewise lin-
ear function. Based on this approximation, we established: (i) condi-
tions under which the non saturated region of the controller is an at-
tractive invariant set, and (ii) closed-form expressions for the first two
moments of the distribution of AHL across a population. We also demon-
strated how the parameters of the controller can be fine-tuned to inde-
pendently control the mean and the variance of the distribution.

With the progress of current experimental techniques, adjusting ge-
netic parameters has become feasible and has paved the way for the
use of rigorous control-theoretic approaches for the design of genetic
circuits. In this line we think that having a model-based guideline to
design genetic networks has tremendous potential in Synthetic Biology.

For example, changing cooperativity with protein sequestration tech-
niques (Buchler and Cross, 2009) can allow us to tune S (the slope of
the nonlinearity), whereas sequence repeats in the spacer region of the
RBS (Egbert and Klavins, 2012) can be used to adjust R by changing the
RBS strength. The threshold 7" can also be tuned with similar techniques
(Buchler and Cross, 2009), for example by shifting the position where
the complex LuxR-AHL binds (called Lux-box) (Egland and Greenberg,
2000) or by making single point mutations in the Lux-box.

As a proof of concept, in this work we proposed the basis for protein
distribution control along a population by controlling the distribution of
the signalling molecules AHL. Using this signal to drive the production
of a protein of interest could be used to control its distribution. We are
working in that direction and investigating different ways in which this
could be done. We are also considering the implementation of the pro-
posed genetic circuit in vivo using synthetic biological parts (for exam-
ple Biobricks), and the analysis of mixed population scenarios in which
feedback-regulated cells coexist with unregulated ones, so as to design
distributed approaches to biocomputing.



General discussion

The work behind this Thesis employed ideas of set invariance and sliding
modes to successfully deal with different relevant control problems in
nonlinear systems.

Motivated by the appearance of sigmoidal functions when modeling
biological systems, a continuous approximation of sliding mode control
was explored as an analytical framework for new understanding of bi-
ological systems. Using also invariance techniques, the invariance of a
set (the boundary layer set) was proven for a system with a sigmoidal
nonlinearity and a relative degree of two between the controlled output
and the sigmoidal function. This framework was applied to the design
and control of genetic circuits in synthetic biology approaches and as a
result the reduction of the variance of a molecule in the genetic circuit
was achieved, this is an important result setting the bases for new re-
search and for possible new implementations in synthetic biology using
a model based approach. The Control of complex systems group where
this Thesis was developed is planning to build a living lab in order to test
the validity of all this ideas performing synthetic biology experiment.

In order to better control bioproduction processes is necessary to
access to different kinetic rates of the microorganisms from noisy mea-
surements of other variables, with this motivation second order sliding
modes were used in order to design robust estimators for those varia-
bles. First using a change of coordinates and linear matrix inequalities
(LMIs) the stability and design criteria for specific growth rate estima-
tors was performed, and then the same was done for multiple kinetic
rates estimators. Additionally, with a change of time coordinates a more
constructive approach was investigated to design the same second order
sliding mode algorithm with more analytical results. The appropriate-
ness of this estimators was successfully studied in a simulation proof of
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concept incorporating them into growth rate controllers. The estimators
designed here are in the process to be implemented in laboratory scale
bioreactors in the biotechnology company Biopolis SL, which collabo-
rates the the Control of Complex Systems group where this Thesis was
developed.

Inspired in biological aspect of animal societies, like flocking, school-
ing or consensus, sliding modes reference conditioning was used to
design coordination control of interconnected systems. Sliding modes
reference conditioning methodology allowed to incorporate constraints
into the design, such as physical constraints of the systems together with
virtual constraints taking into account the coordination desires. The
method has two possible architectures, a local and a global one. Both
preserve the robustness properties of the sliding modes, so as the coor-
dination can be configured independently of the individual systems reg-
ulation. This method is leading now to the development of a research
topic devoted to flight formation control and is being implemented using
UAVs at the Universitat Politécnica de Valéncia.



Conclusions of the Thesis

This Thesis presented ideas and methodologies based on invariance prin-
ciples and sliding mode control used to deal with different problems.
Coordination of interconnected constrained systems, estimation of un-
known input signals and design and control of synthetic biology systems.
What is very interesting is that the nature of the systems is of very small
relevance and the methodologies proposed can be applied to either a
collection of flying robots or to the estimation of complex bioprocesses
or to the genetic circuit of living cells.

The main contributions of this work where summarized on the intro-
duction, and a particular conclusion section closes each chapter. Those
are both repeated here for convenience. A general discussion of the re-
sults was done above. Here, general conclusions and future-work lines
are discussed.

The main contributions of the Thesis are:

e The development of a method to coordinate dynamical systems
with different dynamic properties by means of a sliding mode aux-
iliary loop shaping the references given to the systems as function
of the local and global goals, the achievable performance of each
system and the available information of each system.

e Design methods for second order sliding mode algorithms. The
methods decouple the problem of stability analysis from that of
finite-time convergence of the super-twisting sliding mode algo-
rithm. A nonlinear change of coordinates and a time-scaling are
used to provide simple, yet flexible design methods and stability
proofs. Application of the method to the design of finite-time con-
vergence estimators of bioprocess kinetic rates and specific biomass
growth rate, from biomass measurements. Also the estimators are
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validated with experimental data.

The proposal of a strategy to reduce the variability of a cell-to-cell
communication signal in synthetic genetic circuits. The method
uses set invariance and sliding mode ideas applied to gene expres-
sion networks to obtain a reduction in the variance of the commu-
nication signal. Experimental approaches available to modify the
characteristics of the gene regulation function are described.

The particular conclusions of each article included in this Thesis are:

e SMRCoord: Systems coordination, presented on Part I, is a novel

strategy using ideas of set invariance and sliding mode reference
conditioning is developed to deal with the coordination of multi-
agents and formation control problem. The proposed methodol-
ogy has an interesting potential to be expanded in order to over-
come more general coordination problems. This is inherent to its
definition, i.e. the coordination goals are reflected in the design of
the sliding manifolds.

The fact that the individual systems dynamics are hidden to the co-
ordination system, and only the necessary information about the
subsystems constraints is communicated to it, makes the proposed
methodology transparent and allows dealing with a broad kind of
systems to be coordinated, as soon as they can be reference condi-
tioned.

Additionally, the features of the SMRC and the SM itself are inher-
ited by the proposal, such as robustness properties of SM control,
but not the usual problems of SM like chattering, because the tech-
nique is implemented as a part of a numeric algorithm in a digital
environment.

Practical applications of the proposed algorithm, for example in
AR-Drone® Quadrotors flying in a controlled formation, can be
implemented as auxiliary supervisory loops to the trajectory plan-
ing algorithm for the virtual leader and stabilizing controllers of
the individual agents. The research group is working towards this
implementation.

In the theoretical side, an interesting future research line we are
working is on the extensions of the proposed methodology to deal
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with multiple constraint per system, in which case the problem is
how to decide the direction of the control action. Also we are
working in the case of constrained systems, and how to incor-
porate these constraint into the coordination, in order to have a
formation control which also takes care of the individual systems
constraint, resulting in a robust formation control against distur-
bances coming from individual limitations in the multi-agent sys-
tems.

e Stability preserving maps for finite-time convergence In this
contribution we have addressed the problem of designing algo-
rithms with finite-time convergence. Departing from previous ap-
proaches, the problem of stability analysis and that of finite-time
convergence have been decoupled. This allows simple, yet flexi-
ble, design methods and stability proofs. The problem of design-
ing a super-twisting second-order sliding mode algorithm, coping
with a broad class of perturbations, has been used to show the
proposed approach. A nonlinear change of coordinates and a time-
scaling are used. In the new coordinates and time space, the trans-
formed system is stabilized using any appropriate standard design
method. Conditions under which the combination of the nonlin-
ear coordinates transformation and the time-scaling is a stability
preserving map have been provided. Under these conditions, sta-
bility of the system in the transformed space implies stability of
the original system. Moreover, if convergence in the transformed
space is faster than O(1/7) —where 7 is the transformed time- then
convergence in the original coordinates and time-scale takes place
in finite-time.

Decoupling the problem of stability analysis from that of finite-
time convergence allows the approach to be readily extended to
other cases. Possibilities are diverse. For instance, extension to
higher-order sliding modes with order higher than two. Tackling
with additional constraints —e.g. constraints on the injected error
terms that may appear in controllers design— can be done at the
transformed time-coordinates space, where standard approaches
—e.g. a nested saturations-based design— can be used, the finite-
time convergence in the original dynamics achieved provided the
coordinates and time-scale transformations fulfill the conditions
stated in Section 6.3. Nested finite-time designs may also be a



182

CONCLUSIONS OF THE THESIS

possibility, allowing for super-fast convergence rates.

Second-Order Sliding Mode Observer for Multiple Kinetic Rates
Estimation in Bioprocesses The on-line kinetic rates estimation
problem in bioprocesses was addressed. The proposed second-
order SM observer is able to estimate multiple specific kinetic rates
from related measurements of process variables even though no
particular model of each kinetic rate was assumed.

Certainly, only upper bounds of the time derivatives are required.
Global finite-time convergence is achieved by choosing a suitable
observer structure. This property is particularly important in con-
trol applications because the observer does not add dynamics that
might destabilise the closed loop.

The observer performance was assessed using experimental data
from continuous-mode fermentation of S. cerevisiae. Microbial
specific growth rate and net ethanol production rate were esti-
mated. The proposed algorithm was compared with a high gain
observer under normal operation and for two typical sensor faults.
Particularly, the SMO showed better noise rejection in the noisiest
signal and better transient response under sensor drifts and spikes.

Specific Kinetic Rates Regulation in Multi-Substrate Fermen-

tation Processes In this work we extended the previous proposed

nonlinear proportional-integral control to multi-substrate fed-batch
processes for multiple kinetic rates regulation. This was possi-

ble due to recent development of an algorithm for several kinetic

rates estimation based on second-order sliding mode ideas, which

allows us to obtain the consumption rates for each substrate to-

gether with the specific growth rate of the microorganism measur-

ing only biomass and one of the substrates.

Robustness properties of both strategies are inherited. The con-
troller provides robustness to model uncertainties and disturbances,
which is one of its main attractive features. The observer provides
noise rejection, and finite-time convergence of the consumption
rates estimates. The latter allows to independently design the ob-
server and the controller.

Performance of the system was shown by simulation of realistic
scenarios, with noise, parameters uncertainty, and high initial sub-
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strate concentration, where an increase in concentration of sub-
strates produces a decrease in growth rate, and therefore the fer-
mentation is in an intrinsically unstable region.

e Control of protein concentrations in heterogeneous cell popu-
lations In this contribution, we investigated the design of a syn-
thetic gene controller aimed at reducing gene expression variabil-
ity at the population level. As a proposed synthetic biology im-
plementation, we considered a cell-to-cell communication system
coupled with an intracellular genetic controller characterized by
a sigmoidal nonlinearity. To simplify the mathematical analysis,
the nonlinearity was approximated by a piecewise linear function.
Based on this approximation, we established: (i) conditions un-
der which the non saturated region of the controller is an attrac-
tive invariant set, and (ii) closed-form expressions for the first two
moments of the distribution of AHL across a population. We also
demonstrated how the parameters of the controller can be fine-
tuned to independently control the mean and the variance of the
distribution.

With the progress of current experimental techniques, adjusting
genetic parameters has become feasible and has paved the way
for the use of rigorous control-theoretic approaches for the design
of genetic circuits. In this line we think that having a model-based
guideline to design genetic networks has tremendous potential in
Synthetic Biology.

As a proof of concept, in this work we proposed the basis for
protein distribution control along a population by controlling the
distribution of the signalling molecules AHL. Using this signal to
drive the production of a protein of interest could be used to con-
trol its distribution. We are working in that direction and investi-
gating different ways in which this could be done. We are also
considering the implementation of the proposed genetic circuit
in vivo using synthetic biological parts (for example Biobricks),
and the analysis of mixed population scenarios in which feedback-
regulated cells coexist with unregulated ones, so as to design dis-
tributed approaches to biocomputing.
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Future work The above review of the obtained results presents some
open issues which need a further study and can lead to new research
lines.

e Coordination of dynamical systems: In this topic, the GCSC re-
search group is already working in the practical implementation
of the proposed methodology in unmanned aerial vehicles (UAVs),
namely Parrot® ARDrone Quadrotors. Three Career Final Projects
(PFC) supervised by this Thesis’ author and works in collaboration
with the CPOH group at UPV, are leading to new publications in
the area of practical implementation of flight formation control
algorithms. Several issues arises when going from theory and sim-
ulation to a practical and real life implementation, for instance
sampling time, discretization, geo-localization, absolute and rel-
ative reference frameworks, sensor fusion and state estimation,
battery-life optimization are some of the open problems in this
line of research.

e Second order sliding modes algorithms: The author is actu-
ally supervising a Master Thesis in the line of using the results
obtained in this Thesis to fine-tune practical implementations of
the kinetic rate estimators in Lactic fermentation processes in the
biotech company Biopolis S.L. in a collaboration project between
the company and the authors research group. The main problem
to be addressed is to incorporate performance measures of the es-
timators in the design process. The results given in this Thesis are
a parameter region guaranteeing stability and finite time conver-
gence of the error dynamic. The issue is to find now the best set of
parameters inside this region taking into account the performance
of the observer. One of the approaches that are taking place is to
find a relationship between the dynamical properties of the trans-
formed LPDI to the nonlinear observer, in order to tune the last
one with information of classical performance conditions in the
former one.

e Synthetic genetic circuits design: This research line is the more
active one. Several sub-lines are being explored. The research
group, and lead by the author of this Thesis, is working in model
reduction from complete reaction models to small and manageable
models. The reduced models are being used to make stochastic
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models in order to consider the intrinsic variability of the genetic
circuits. Additionally, the linear noise approximation (LNA) is be-
ing used in the same model used in the las part of this Thesis to
complete that work and unify the extrinsic noise contribution with
the intrinsic one. LNA in a population level will help to understand
how the cell-to-cell communication comes to the rescue in order
to decrease the variability across the population.
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Appendix A

Proofs

A.1 Global topology analysis

Consider the case of having N = 2, two individual systems, for the
sake of clarity. The state space representation of the closed loop system
(when the reference conditioning loop is active) is:

x = f(z) + g(zx)wy + h(z) + p (A1)
with o
Tf1 —an(rp =)
r=|rf2|, f(x) = |—aa(rya—1) (A.2)
|7 —Ar
and -
0 — Q1w 0
gz)=10 |, h(z)=|—awz2|, p=| 0 (A.3)
= 0 Acg

where f is the drift vector field, g is the control vector field, p acts as a
perturbation and h comprises the discontinuous actions of the internal
conditioning loops, which are not considered as perturbations because
these two signals are responsible for the difference between r and ry;.
Calculating the gradient of the constraint ¢, we get:

9oy —_|_ Ix _ Ix 1
Oz or Or g2 .

(A.4)

Note the difference between ¢;§ and ¢, in not reflected in their gradi-
ents, thus 88%" will be used to refer either ¢’s gradient or ¢} ’s gradient.
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The Lie derivatine of ¢, in the direction of f is

0 0
Loy = ar);lal (rpp—m)+ 6?7”);20[2 (rpg—m)—Ar (A.5)

and in the direction of ¢ is

Lypy = —A (A.6)

Then to ensure the invariance of the set ®,, the explicit invariance con-
dition (A.28) must hold. Being the filter F}, stable, then A > 0 and

Lyhy = =X < 0. (A7)
Which to ensure (A.28),
o — 01 OX o2 Ox (o1 Ox | a2 Ox
wg A 87’f1 rfl + A 8T‘f2rf ( A 8rf1 A 3rf2 + L)r (A8)

Consider a ﬁxed constant ‘w*}

g

‘} = wg and ¢,
(assuming a bounded global target), note that \r! < K Slnce the filters
F; also have bounded inputs (r and w;), then |ry;| < Ky,

Also the bound on H H < K,, is necessary, but only depends in

the selection of function y.
Then, 3 wy* such as

1 N
<5 [Z K. K,)+K,

=1

<K<w (A.9)

i <

and is possible to choose wy < —w; and w;r > w; from the previous

inequality to ensure the invariance of the set ®,.

A.2 Local topology analysis

The extended dynamics of the system will be analyzed in order to de-
sign the SMRC parameters of the local topology. Assuming the systems
start from inside the invariant set, i.e. all constraints are met, their tra-
jectories evolve up so they reach the boundary, then the corresponding
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constraint activates forcing the system to slide on the boundary surface
until the system by itself comes back inside the invariant set. This anal-
ysis is done with the i-th systems, considering information coming from
the j-th one.

For the analysis, let us first rewrite the i-th system controller and
filter dynamics as follows. From equations (3.13) and (3.14), and using
e; = dc_il (Ui — cciwci), it follows:

jjci = (Aci - bcidc_ilcci) Tei + bcidc_ilvi (A]-O)
by = Cei (Aei — beidy; Coi — ) Tei + (Ceibesdy;' — o) v
— deii; + deii (1 + Yi) — dei¥i (A.11)

Therefore, consider the extended state

A

o T n+ne+1
Tie = [Ti, Tei, v;) € RV

The joint dynamics are given in equation (A.12).

o fil®m) 4 gi(z)vi 0
Bie = | (ceibei + i) vi + cei (Aei — i) e | + | 0 | Wy (A.12)
beivi + Aciei + bip; b;
with
Aci = (Aci - bcid;ilcci)
Bci = bcid;‘l
bi = —dcia
pi = by [deiai(r — yi) — deiti] (A.13)

To make the invariance condition (A.28) hold for constraint ¢j we
have from (3.18)

o lora
% =0 0 1] (A.14)
and _ _
Y bcivi + AciTei
e N (A.15)

Now for the virtual constraints, let us first incorporate the j-th sys-
tems and rewrite in a more convenient way the previous joint dynamics,
using

Vi = CeiTei + dei€i = Ceiei + dei7 i — deiy,
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and considering the extended state

A T ni+nei+1+n;+ne+1
Tije = @i, Tei, T fi, Tjy Tej, Tpy) € RITHATITIITRG T,

fi(zs) + gi(xi) (cei®ei + deirgi) — gi(zi)deiys 0
Acixci + bcirfi - bciyi 0
F— —QuT i+ ouT 4 Qi
Y fi@g) + g5 (x5) (cejej + dejrys) — g5(x5)dejy; U
chl’cj + bcj’l’fj - bcjyj 0
—oyTe oy @
(A.16)

Remark A.1. In this case, in order to express the extended joint dynamics
with respect to only one discontinuous action, the fact that w;; = —wy;
has been used.

And to make the invariance condition (A.28) hold for constraint ¢;;
we have from (3.19)

b+
Pij =[0 0 sign(ry—rf) 0 0 — sign(ry —ryy)], (A7)
and
S e L R ek (A.18)
o + o a; + o

Then the discontinuous signals amplitudes A/; and M/;; are designed
using the previous analysis.

In first place, the reason why w;; is selected as in (3.17) is because
Ly¢i; = sign(rg —ryg;)(o; + a;) changes its sign depending on rg; — ;.
Then to meet (A.28), w;; has also to change its sign in the same way.
Then, M;; can be selected to make (A.28) hold

Mij > wfij (A.19)
In second place, M; has to be selected according with the usual proce-
dure Garelli et al. (2011) according with (A.28), but large enough to
dominate the rest of the discontinuous terms M/;;, as the systems con-
straints are required to hold everywhere, because they are more impor-
tant than the virtual coordination ones. The previous statement allows
us to give the systems a feasible reference that can be followed without
violating their constraints.
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In the worst case, (ry; — 7y;) has the same sign V ¢ # j, and at the
same time opposite sign than w;, then

M; > Z Mij + wf (A.20)
i#]

with wf from (A.15).

A.3 Minimum y function generalized gradient

Now lets consider the minimum of the conditioned references as y func-
tion,
X(7¢i) = Tfmin = min{rg i€ {1,...,N}}. (A.21)

Remember the r¢; is the solution of equation (3.8). This equation is a
linear differential equation with discontinuous right hand side (w;) and
cannot be analyzed in terms of continuity and differentiability using the
traditional tools. Instead, equation (3.8) can be reformulated in terms
of a differential inclusion in the form

i = f(z,w) (A.22)
iri € G[f)(x)
using the state vector
T = [’“fi] (A.23)
T

where f : R? x W — R, W = {w; ,w;" } C Ris the set of allowable
control values and with G[f](z) being the following set-valued map

Glf(@) 2 {f(z,ws) = w; € W} (A.24)

which captures all directions in R that can be generated at x with control
belonging to W.

We know that a set-valued map G|f](z) is locally Lipschitz if f(x,w;)
is locally Lipschitz (Filippov and Arscott, 1988, see), and the differen-
tial inclusion (A.22) will have solution in the sense of Filippov and its
solution will be also locally Lipschitz (Bacciotti and Rosier, 2005, see
Theorem 1.5).

Then from Rademacher’s theorem (Clarke, 1990) every locally Lip-
schitz function f is differentiable almost everywhere in the sense of
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Lebesge measure. Moreover, the function will have a generalized gra-
dient 0f in the set of points where f is not differentiable, with similar
properties of critical points and descent direction than the normal gra-
dient.

Then from Cortes (2008, Proposition 7.), being the 7; functions lo-
cally Lipschitz, the following statements hold for 7 f yin.

® i) 7/ min is locally Lipschitz,

e ii) Let /,,;, denote the set of indices i for which rf; = 7 ¢ in. Then

Orpmin € co| J{Orpi 11 € Inin} - (A.25)

And as the convex hull of bounded functions is bounded, the gradient of
x is bounded, which ensures the invariant set S;,, existence, according
to (A.9). As far as the necessary bounds on any selected y function
holds, is possible to generate coordination with that policy.

A.4 Proof of Theorem 9.1

Proof. The proof will be sketched in four steps, two for the set ¢ (9.18)
and another two for the set ® (9.19). First we will use z; = u* as a
virtual control action in the second equation of system (9.15). This will
allow us to find the set S of all z; that make ® an invariant set for z».
In the second design step, we will find the set of all u(z3) that make S
invariant for z;.For the remaining two steps we proceed in a similar way
to make S and @ invariant sets for z; and z, respectively.
First consider

{ y Zo = kou* — (d+ ¥2)22 + Ze (A.26)

22) = —22 + 29

And now the goal is to find «* in order to make set ® invariant.

@ = {2 eR": ¢(x) <0} (A.27)

This is equivalent to find bounds on u* to make the vector field point
inside ®, when 2z, reaches the boundary of the set ®.

Consider the zy-system (A.26). Using f(z2,2¢) = —(d + V2)22 + ze
and g(z2) = kg it is possible to rewrite Zo = f(22, z¢) + g(22)u*. In order
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to find the lower bound «*, we need to find the direction of the vector
field with respect to the boundary of the set ®. To obtain the control

signal that makes ® invariant, we apply the explicit invariance condition
2.

<u? 12 €0PALyp>0
>u® 1 2€0PALyp<0

not defined :z€ 0P A Lyp=0
free : z € &\ 0P

(A.28)

Here L ¢ accounts for the Lie derivative of ¢ along the direction of the
vector field f, and u?® = —%.
In our case, we get

U*? _ 7(d+'72)22 — Ze

(A.29)

and hence z, is an upper bound of z,. For the perturbation term z., we
will use its lower bound z,, as it is an anti-cooperative term with respect
to zo. We obtain the following lower bound for v*, that we will call
*
Umnin-
* _ d+ V229 — Ze

min

(A.30)
K2

Then, if the following holds

*

*
u > Unins

Vzy ¢ O. (A.31)

the trajectory of 29 is forced to remain inside ®.
Secondly, we proceed with the first equation of system (9.15). Re-
membering that u* = z;, we have

21 = =121 + u(22) (A.32)
o(z1) = =21 + Upyip, .
Define the set S as:
§ = {Zl S R+ :Q(Zl) < 0} (A33)

when z, ¢ ®. The goal now is to find a bound on u(z2) so as to make
the set S invariant.
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Using the same methodology and the explicit invariant condition, we
get
uZ = y121. (A.34)

To bound z; we use the fact that the application of the control signal
(A.34) is only required when ¢ > 0. Hence v . is an upper bound of

z1. This allows us to obtain the bound w,,;, for u:

(d472) 29 — 2o

Umin = VUi = N1 (A.35)
K2
Then the set ® is an invariant and attractive set for zo if
d _
u(ze) > 'yl( +12) 25~ Ze Vzo & © (A.36)
K
Equivalent steps can be applied with the set ® to obtain:
d Ty —Z _
u(z) < Atz —ze ¢ T (A.37)
K

Now, using u(z2) = ko when 2z, ¢ ®, and u(z2) = ko + k1 when 2z, ¢ ®,
we get that the following inequalities

(d4+72) 29 — 2o

Ko + K1 > M (A.38)
K2
and p L
RO < ’)/1( * 72) F2 7 Ze (A39)
K2
must hold to make ® an invariant set. O

A.5 Proof of Theorem 9.2

Proof. Consider the system in (9.2), (9.3) and (9.5) with the approxi-
mation in (9.8) under the conditions of Theorem 9.1, then all cells in
the population operate in the linear region ®. From (9.25) we have

v1Z1 + STo = ko + (ST + R) 1y (A.40)

and _
71 = [(d(1 - €) — 2) In + delly] ~2. (A.41)

K2
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Replacing (A.41) in (A.40), we obtain

[(S Llaa—9 -+l 'n> In 4 deHN} Ty = ko+(ST + R) 1y. (A.42)

K2

Exploiting the structure of the matrix in (A.42) we obtain a closed-
form expression for Z, (details omitted for brevity):

i3 = [;IN + ( ! 1) HN] (ko+ (ST+R)1x),  (A43)

a—ed «

where 3 = [0=9T12M 4p4 o = § + 8.

K2
If K% ~ N (p,0?), the expected value of Z, along the population can
be computed using properties of the ITy matrix:

A closed-form expression for the variance of x5 can be obtained similarly
Var{Zs} = A (—— L)y o (A.45)
I1To2y = o2 N (a — ed)2 o2 N| o7 1yN. .

The expressions in (9.26)-(9.27) can be finally obtained directly
from (A.44)—-(A.45). O






Appendix B

Generalized Super-Twisting
Algorithm background and
motivation

B.1 Motivation for alternative stability proof for
GSTA

B.1.1 Super-twisting algorithm

Consider the first order system (B.1):

v = u(t) + p1(y,t) (B.1)

where u(t) is the unknown input signal, and p; (v, t) is an input perturba-
tion term —e.g. representing some unmodelled dynamics. In particular,
if p1(y,t) = 0 we have a pure integrator. The super-twisting exact differ-
entiation algorithm proposed in Levant (1998) allows to build a second
order sliding mode observer for the unknown input signal «(¢) using
measurements of the system output y;.

Redefine 3 = u, and define the error signals z; = y; — 9;, i = 1,2,
where g; is the estimation of y;. The super-twisting-based observer is
given by (B.2).

. 1,
U1 = U2 + ki |z1|2 sign(z)

. (B.2)
U2 = kg sign(z)
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Notice that two high gain terms are injected. The one acting on the
second state is discontinuous, while the one acting on the first state is
continuous. This term can be interpreted as a continuous approximation
of the discontinuous sign function in a neighborhood of the origin.

From equations (B.1) and (B.2) the following error dynamics are
obtained:

1
1 = xo — ky |21]2 sign(xy) + p1(x,t) B.3)

&9 = —ks sign(x1) + pa(x, t)
where po(z,1t) 2 u(t). Equation (B.3) actually defines the super-twisting
algorithm. Notice that, being z; the output, the discontinuity appears in
its second derivative.

B.1.2 Preliminary analysis of the super-twisting algorithm.

Consider the change of coordinates:
1.
(21,22) — <|x1\2 s&gn(xl),xg) (B.4)

. 1., . ..
Notice that 272 = 1|21| "2 is discontinuous at the origin. Therefore, the
transformation (B.4) is a homeomorphism buy not a diffeomorphism.

In the new coordinates, equation (B.3) becomes:
1 [ -8 1 ] { =r501(2,1)
PR 2 2 |4 | lal2 ’ ] (B.5)
|21 { —ks 0 p2(z,t)

Now, define the time-scale transformation:
- / 21 |dr (B.6)

A . . .
and 2/ = % = |z1]|2. Then equation (B.5) can be expressed in the new
time-scale as:

k 1 1
| ~7% 2 201(2,7) }
z [ ks 0 ]z+ { pa(z, 7)1 (B.7)

If the perturbation signals have structure p;(z,7) = p1(7)|21|, and
p2(z,7) = p2(7), equation (B.7) can be expressed as the linear time-
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varying system:

o [ -8 1 }ZJF [ $p1(7)|21] }
—ks 0 pa(T)|21]

_ki=pi(7) 1
= 2 2 | 5
[ — (k3 — pa(7)) 0 }
with p; = p; sign(z1).

It is interesting to notice that in order to compensate for a perturba-
tion p; on the z; dynamics, one will require the algorithm to have some
term to dominate the unknown perturbation. This term can be under-
stood as an upper bounding function for the perturbation. Therefore,
the structure of the least upper bound function on the perturbation will
define the order of the sliding mode. For instance, if p;(z,t) = pi(t)
with ||p1(t)]|cc = p1, then it is clear that a discontinuous term showing
up in the first derivative will be needed. If we require for second order
sliding behaviour, the perturbation p; must be smooth with respect to
x1. In particular, as seen before, the super-twisting algorithm can cope
with perturbations p;(z,7) = |zl\¥, that is, pi(z,t) = p1 (t)]x1|% in
the original coordinates.

(B.8)

A Linear Matrix Inequality based Lyapunov stability analysis of the
linear time-varying system (B.8) has been used previously in De Battista
et al. (2011) to derive a robust observer providing a finite-time smooth
estimate of the time-varying specific growth rate in a class of bioreac-
tions.

In the next sections we refine this methodology. To this end, we will
first use a nonlinear coordinates transformation, and a time-scale one,
so as to transform the original system into a new one amenable for con-
structively finding a smooth control Lyapunov function. Stability is de-
termined for the system in the transformed coordinates and time-scaled
space. The time-scale is chosen so that convergence faster than asymp-
totic in the transformed space corresponds to finite-time converge in the
original one. To prove the original system is also stable, the technique
of stability preserving maps will be used (Michel and Wang, 1995). This
will allow us, for instance, to modify the super-twisting error injection
terms so as to cope with a broader class of perturbations p;(x,t) and

pg(x,t).
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B.2 Constructive design of the super-twisting al-
gorithm.

Consider again, as starting point, the problem of estimating the input

signal to an integrator from measurements of its output (i.e. the prob-

lem of taking derivative of the output signal). Now —see equation (B.9)—
the correction terms u;(x;) and ug(x;) are to be designed.

&1 = xo +u1(w1) + p1(x,t)

. (B.9)
&g = ug(x1) + p2(z,t)
Consider, on the other hand, the coordinates transformation:
(21,22) — (Jz1]* sign(z1), z2) (B.10)
being its inverse:
1—a
(w1, 22) — (Zl |21| @ 722> (B.11)

with 0 < a < 1 for the transformation to be a homeomorphism as seen
a—1
in Section ??. Using (B.11) and 2; = a|z1| = 1, we get:

Z1=alz] o zotalz| @ w(z) +alz| @ pi(zt)

(B.12)
Zo = ug(z1) + p2(z, 1)

Now apply the time-scaling
t —/\zﬂl;a dr (B.13)

and assume the perturbation term p; (z, 7) has structure given by:
p1(z,7) = p1(7)|z1]r(21) (B.14)
with 7(z1) = O(1) as z; — 0, i.e. a bounded function at z; = 0. Then:

Zi = az9 + auy (2’1) + aP1(7)|Zl|T(zl)
/ e o (B.15)
25 = |Zl‘ a UQ(Zl) + ‘21| & pQ(Z,T)

Remark: Notice that if « = 1/2, ui(z1(7)) = —akiz1, and ua(21(7))) =

—%zl, one retrieves the original super-twisting algorithm.
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Let us now apply, for instance, the Lyapunov redesign methodology
to stabilize system (B.15). To this end, consider the control signal u; (7)
is decomposed as:

u1(21) = uip(21) — mo(|z1])z1 (B.16)

with 1, > p1 = o1 (7) e and [r(21)] < g(|21]) < o0 s0 that
my(|z1|) > pi(r)r(z1) Va (B.17)

Now, let us consider the Lyapunov function V' = %zf Taking 7-time
derivative, and assuming the control signals u; and us will be designed
later so that zo = £(z1) achieves V{ < 0:

Vll = 045(21)21 + aulb(zl)zl—
— a2 () - pr()r(e1) ) (8.18)

< aé(z1)21 + aup(z1)z1 <0
Now, let us define the error signal:

29 = 29 — f(zl) (B.19)

Its dynamics being:

l—a l—a
2= |z1| e ua(21) + o] & pa(z,m)—

_ 0¢(z)
82’1

—az1(mg(|z1]) — apr(m)r(z1))]

[Zs 4 a(21) + aupy(21)— (B.20)

Consider now the re-designed Lyapunov function:

1 1
%:§ﬁ+§£ (B.21)
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Taking 7-time derivative:

Vi = azazy + af(z1)z1 + aup(z1)21 + 22]21\177&112(21)4-
— azi Img(|z1]) — pu(7)r(z0)] +
9¢(21)
021
+ aup(z1) — az1 [mg(|z1]) — pr(7)r(21)]]

< a€(z1)z1 + auip(z1)z1 — aM_%—l— (B.22)

821
+ 22052 gz - 1 (e +

l—a
+ Zo|z1| e pao(z,T) — 22 [a22+a§(z1)+

11—« 11—«
+ Zo |az1 + |z1| e wa(z1) + |z1| e pa(z,7)—

—Q

Now, choose £(z1) = 7221, so that %;ll) =159, and

up(z1) = —(n2 + k1(21)) 21
uz(z1) = —a(ns + n2k1(21)) 21|21
with k1(z1) > 0. Then

a-1 (B.23)

Vy < —ki(z1)az? — mppazs+

+ Zoz10m)9 [nﬂfkﬂ) = p(m)r(z)] + (B.24)

(2, 7) + a1 — 173)

|z1] e

+ 2221

Define: .
W1(21,7) = mg(lz1]) — pr(7)r(z1) = 0

1—2a

W (2,7) = 21| a2, 7) + (1 = )
Notice ¥y(z1,7) is non negative. Also notice Wo(z;,7) will be bounded
as z; — 0 provided o < 1/2.
Using the previous definitions, equation (B.24) can be expressed as:

(B.25)

Vy < —ki(z21)az — naaZs + Zaz1 [amp ¥y (21, 7) + Ua(z, 7))

- . bie)  —ombabvs 7o (B.26)
= — [ 21 22 ] _omg\g(l;r‘l’g o 22
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At this point, it is interesting to summarize and observe the structure
of the injected correction terms:

ui(z1,7) = —[n2 + k1(z1)] 21 — mg(|z1])z1
(21,7) [ )l (g ©.27)
ug(21,7) = —a [n3 + k1 (21)] 21]21]| @
In the original xz-dynamics:
ui(z1,t) = — [n2 + k(1) + mg([21]")] 1| sign(z1) (B.28)

’(20471)

ug(x1,t) = —a[n3 + ki (z1)] |21 sign(z1)

Notice for ug(x1,t) to be bounded as z; — 0 the condition o > 1/2 must
be imposed. This, along with the requirement o < 1/2 for Wy(21,7) =
O(1) as 21 — 0 imposes the restriction o = £ that will be used hereafter.

On the other hand, for u;(z1,7) to be continuous the terms k;(z1),
and ¢(]z1|) will be required to be continuous. Since the coordinates
transformation is homeomorphic, u;(z1,t) will be continuous.

Let us now consider different scenarios regarding the perturbation
term pi(z, 7).

B.2.1 Caser(z;)=0

In this case, pi(z,7) = 0 and, from equation (B.25) it is clear that
Ui(z1,7) = mg(]z1]). Therefore, in this case n; = 0 can be chosen.
By also choosing k1 (z1(z1)) = k1, and 13 = 1 we have:

Vy < —kl(zl)az% — 7720é5§ + 2221 ¥a(2,7)

=—3la 2] [ —ﬁzk(lz,f) _ﬁi;j 7 } [2 } (B.29)
é—%[zl ZQ]Q[;;]

This can be easily solved provided pa = ||p2(z, 7)||cc < 00, as kina > p3
must be satisfied for Q to be positive definite.
In the original x-dynamics:

1 .
ui(z1,t) = —vi|x1]2 sign(xy)

(B.30)
ug(z1,t) = —v9 sign(zy)
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Figure B.1: Stability region for the gains v, 5 in the case p;(z,7) = 0,
for different values of the perturbation bound ps.

with
vi=mn2+ ki

(B.31)
vo =14 9k

that clearly takes the form of the super-twisting algorithm, but with a
special relationship between the gains of the injected terms wu; and wus.
The stability region for the gains v, v, can be easily plotted (see figure
B.1).

The stability region in the space (v, 12) can be expressed in terms of
the perturbation bound ps. Thus, for v», taking into account equation
(B.31) and the condition kins > p3 for positive definiteness of Q, one
simply has vo > 1 + p3. For vy the limit of the stability region can be
obtained by minimizing 14 = k1 + 12 subject to k172 = vo — 1. This gives
v1 > 2py. These limits correspond to the frontier of the region in figure
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B.1.

B.2.2 Caser(z) #Z0

Now, the class of perturbations we are considering is:
pr(z7) = pi(7) 2l (z1) (B.32)

Two interesting subcases arise now.

Function r(z;) is constant. In this case —without losing generality
r(z1) = 1 can be assumed- the perturbation term p; (z,¢) in the original
dynamics is:

p1(z,t) = 2p1 (1) |21 ]2 (B.33)

Indeed, in this case, by choosing ¢(|z1]) = 1, and 13 = 1 4 7172 equation
(B.26) gives:

o kl —Q12(2'77')
Q= [ —q12(2,7) 72 ] (B-34)

with qi2(2,7) 2 p2(z, 1) — %2&1(7). Recall ||p1(z,7)|lcc < m1. The per-

turbed term ¢12(z, 7) takes values in the interval:

qi2(2,7) € [—,52 — %,51, p2 + %51] . (B.35)

Therefore, the condition for positive definiteness of Q in equation (B.34)
becomes k; > 0 and:

2
ks > 2+ 1| (B.36)

The injected correction terms in the original z-dynamics are:

1
ur(z1,t) = —[n2 +m + k1] |21]2 sign(z1)

' (B.37)
uz(z1,t) = — [1+n2(m + k1)] sign(z)

Figure B.2 shows the stability region in the 7, k1 parameters space
for several values of p;, and p,. Notice how the gains in equation (B.37)
must be increased as the values of p1, and po do.
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\
;
\\

Figure B.2: Stability region in the 79, k1-parameters space for the case
p1(z,7) = p1(7)|z1|. Two different values of the perturbation bounds p;
and po are shown.
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Function r(z;) is not constant. In this case:

_ ki(z1) —q2(z,7)
Q= —q12(2,7) 72 (B.38)

where if n3 = 14+m17m29(|21]) is chosen the off the diagonal term becomes

ai2(2,7) 2 fa(2,7) = Bin (FIr(21) -

Notice that for Q to be positive definite, the polynomial k;(z;) will
have to dominate the square of the terms in the secondary diagonal.
Therefore, for ki(z1) to be bounded -recall this polynomial will form
part of the injected correction terms u;, and us— we must have r(z;)
bounded for bounded z;.

Thus, for instance, assume r(z1) = ro+7121+ . . .—I—rng, with 8 > 0,
so that

p1(z,7) = p1(7)]21] [ro +riz1+...+ rgzlﬁ (B.39)

Define 7 = max (ro,...,75), B the number of coefficients of the polyno-
mial (B.39), and:

VAN
9(|21]) = Brlz|”
_ [ B, lal>1 (B.40)
TTV o0, |a <1

Condition (B.17) is satisfied and, using an argument analogous to that
of the previous subsection, a suficient condition for positive definiteness
of Q in equation (B.38) is:

_ 2
noky(z1) > [/32 + %Bﬂzﬂ” (B.41)
where po = ||p2(2,7)||o- If k1(21) is chosen as a polynomial in |z]:

ki(z1) = [kia + k1p|21|"]? (B.42)

then, a positive definiteness sufficient condition for Q in equation (B.38)
is:

ViR (B.43)
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In the original xz-dynamics:

wr(@1,t) = = [m + ka(w1) + o |3 | [21]% sign(an)
. (B.44)
u(a,t) = = [L+mo (ka(an) + 7o) ] sign(en)

. 772 _ A S_
with k1 (z1) = [/ﬁa + kipl | 2} ,and 7 = 17T



Appendix C

Algorithms and examples.

C.1 Individual systems dynamics

The individual systems dynamics used are different, and with different
controllers and constraints. The controllers are proportional-integral
with the following expression:

1
PI:Kp (1 + ) (C.1)
sT;

The values for the parameters used in all the simulations are shown in
the table C.1.

Table C.1: Systems dynamics.

System States Outputs ur K, T;
1 &= —102 + 4u y(x) =5z +10 18 0.33
. [-22 0 4

2 = ol ztlple  w@=[0 625]z *12 20 025

. [-18  —4.25 2 ‘
=, o |zt |glw v@=[0 325z *10 10 016
4 & = —1bx + 4u y(x) = bz +8 22 0.16
i= |20 O 14 (z)=[0 5]z £12 25 025

"1 o 0 Y '

229
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C.2 Extended example Chapter 6

This section presents a numerical example that illustrates the previous
analysis and theoretical results from Chapter 6. Let consider a first order
integrator with unknown input signal «(¢) and noise p; (z,t) as in (??).

A super-twisting observer will be tuned using the proposed approach.
The structure of the perturbation term p; (z,¢) in this example will take
the form of (??), with p;(¢) being gaussian noise N(0,1). The values
of the parameters k1, 71, and 7, have been selected taking a point in
the stable region according with the supposed bounds of the unknown
signal derivative ps(z,t) and the integrator input noise p;(x,t). In this
particular case, the values have been chosen so that:

)
)

The resulting selected values for the observer gains are (see red dot in
Fig. ??):

P (

=2
pa( =2 (€2

z,t
z,t

m = 2.5
N2 =95 (C.3)
ki1 =10

The unknown input signal has been chosen as:

sin(t) 0<t<0.5
u(t) = sin(t) + (t—0.5) 05<t<1 (C4
sin(t) + (t — 0.5) —4(t —1) t>1

A step at ¢ = 1sec, and an impulse at t = 2sec were injected as distur-
bances in u(t).

The simulation results are shown in Fig. C.1. The top plot depicts the
input signal to the observer y(¢) (in blue dashed line), and the estimated
signal §(t) (in red solid line). The real integrator input u(t) —with noise,
in cyan, and without noise in dashed blue- and its estimated value ()
(in red solid line) are displayed in the bottom plot. A more detailed plot
is shown in Fig. C.2.

It is seen that the observer output converges in less than 0.25sec and
perfectly tracks the evolution of u(t) when the appropriate conditions
hold. At ¢ = lsec and t = 2sec the derivative of wu(¢) is larger than
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the assumed bound ps(z,t), and the observer output diverges and then
converges rapidly, putting in evidence the occurrence of an abrupt fault,
as the derivative of u(t) overly differed from the expected one. This fact
can be seen also in Fig. C.3, where the evolution of the system around
the second order sliding surface (x1,#1) is displayed.

Remark C.1. In a real case the signal u(¢) is unknown. Therefore, it
is not possible to calculate #;. In this simulated example it has been
obtained for the sake of showing the convergence of the algorithm.

(b) u, &

Figure C.1: Examples response.
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Figure C.2: Examples response zoom.
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Figure C.3: Sliding surface coordinates.
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