Índice

1.	Introducción			1
	1.1	La	necesidad del mantenimiento de la vía	1
	1.2	Est	ado actual del conocimiento	2
	1.2	2.1	Sistemas de auscultación de vía. Ventajas e inconvenientes	2
	1.2 dir		La interacción vehículo-vía. La importancia de la auscultaca	
	1.2	2.3	La auscultación dinámica aplicada a puntos concretos de la vía	6
	1.2	2.4	La auscultación dinámica aplicada a grandes tramos de vía	8
	1.2	2.5	Reflexiones sobre el estado actual del conocimiento	10
	1.3	Obj	jetivos y contribuciones originales de esta tesis	11
	1.4	Org	ganización del texto	12
2.	$\mathbf{E}\mathbf{l}$	trata	amiento digital de las señales	. 15
	2.1	Int	roducción	15
	2.2	La	digitalización de las señales	16
	2.3	El 1	muestreo de las señales	18
	2.3.1 criterio		Selección de la frecuencia de muestreo: el teorema del muestre de Nyquist	
	2.3	3.2	El solapamiento de frecuencias o <i>aliasing</i> . Filtros antisolapamiento	
	2.3.3		La aparición de frecuencias espúreas o leakage. Ventanas temporal	es.
	2.4	•	emplos	
	2.4	ł.1	Aparición de frecuencias solapadas	
	2.4		Aparición de frecuencias espúreas	
	2.4	-	Selección del tipo de ventana	
3.	Co	nsid	eraciones prácticas sobre el muestreo de señales	. 29
	3.1		tivación y planteamiento del experimento	
	3.2	Res	sultados	31
	3.3	Cor	mentarios críticos	38
4.	La	repi	resentación tiempo-frecuencia: los espec-trogramas	. 40
	4.1	Obt	tención de los espectrogramas a partir de las señales muestreadas	40
	4.2	Eje	mplos de representación tiempo-frecuencia	43
	4.2	2.1	Representación tiempo-frecuencia de una función senoidal	43
	4.2	2.2	Representación tiempo-frecuencia de una delta de Dirac	44
	4.2	2.3	Representación tiempo-frecuencia de un coseno de frecuencia varia	
				45

	4.2. frec		Efecto del solapamiento de frecuencias en la representación tien cia	_
	4.3		Ejemplos de variación de los parámetros del espectrograma	
	4.3.	1	Variación de la anchura de la ventana	
	4.3.2		Selección del tipo de ventana	
	4.3.3		Variación del solape entre ventanas sucesivas	
	4.3.	4	Variación del número de puntos de las TDF	53
5.	Est	able	ecimiento del método de auscultación dinámica	56
5	5.1	Des	cripción de las pruebas	56
	5.1.	1	Descripción de los tramos de pruebas	57
	5.1.2		Descripción de la unidad de tren instrumentada	59
	5.1.3		Descripción del equipo de medición empleado	60
5	5.2	Con	nparación con otras medidas	62
5	5.3	Sele	ección de la frecuencia de filtrado y la frecuencia de muestreo	65
5	5.4	Aná	ilisis de repetibilidad	67
5	5.5	Ubi	cación de los acelerómetros	69
6.	Ide	ntifi	cación de patrones en los espectrogramas	74
6	3.1	Clas	sificación de los patrones	74
6	3.2	Ider	ntificación de los puntos singulares y defectos de corta duración	75
	6.2.	1	Soldaduras de carriles	76
	6.2.	2	Juntas encoladas	78
	6.2.	3	Plastificaciones en la cabeza del carril o squats	78
	6.2.	4	Paso por los cruzamientos	79
6	3.3	Ider	ntificación de los modos de vibración y tipologías de vía	81
	6.3.	1	Separación entre traviesas o excitación paramétrica	81
	6.3.2		Vibración de las traviesas sobre el balasto	82
	6.3.3		Resonancia P2	82
	6.3.	4	Vibración de los carriles sobre las placas de asiento	83
	6.3.	5	Vibración nodo-nodo del carril sobre las traviesas	83
	6.3. vari		Identificación de los cambios de tipología de vía a través d n de las frecuencias propias de vibración	
6	3.4	Ider	ntificación de las frecuencias propias de la vía	86
	6.4.	1	Vibración nodo-nodo del carril sobre las traviesas	86
	6.4.	2	Vibración de los carriles sobre las placas de asiento	87
	6.4.	3	Vibración de las traviesas sobre el balasto	88
6	6.5	Ider	ntificación de datos anómalos y otras vibraciones	88
	6.5.	1	Identificación de datos anómalos	88
	6.5.	2	Amplificación de vibraciones en las curvas	89

_	otimización de los parámetros para la repr			
_	rogramas			
	Variación de la longitud de la ventana			
	Selección del tipo de ventana			
7.3	Variación del solape entre ventanas		•••••	98
7.4	Determinación del número de puntos de la TDF		•••••	99
7.5	Consideraciones finales sobre la determinación de los	-	_	
8. Con	mparación con otros métodos de auscultación diná	mica		102
8.1	Método Adif-Ineco			102
8.1.1	1 Descripción			102
8.1.2	2 Comparación y crítica			103
9. Con	nclusiones y futuras líneas de investigación			106
9.1	Conclusiones			106
9.2	Futuras líneas de investigación			107
Bibliogr	grafía			110
Anexo 1	1. Listado de artículos publicados con relación a la	tesis		114
	2. Desarrollo de la Transformada de Fourier de			
Anexo 3	3. Características de los equipos de medición			118
	Acondicionadores de señal M32			
	Acelerómetros KS76C100			
Anexo 4	4. Estimación del impacto en una rueda al paso po	r una junta		124
	5. Programas de Matlab empleados en esta tesis	_		
	Submuestreo de datos de 15 kHz a 2,5 kHz			
	Submuestreo de datos de 2500 Hz a 200 Hz			
	Troceado del vector de datos inicial			
	. Obtención de los espectrogramas y acelerogramas			
	6. Gráficos de aceleraciones y espectrogramas			
111040 0	o. Graneos de deciciaciónes y espectrogramas	,		104