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Abstract

Computing a matrix polynomial is the basic process in the calculation

of functions of matrices by the Taylor method. One of the most efficient

techniques for computing matrix polynomials is based on the Paterson–

Stockmeyer method. Inspired by this method, we propose in this work

a recursive algorithm and an efficient implementation that exploit the

heterogeneous nature of current computers to evaluate large scale matrix

polynomials is the shortest possible time. Heterogeneous computers are

those which have any type of hardware accelerator(s). For these type of

computers, we propose a method to easily implement efficient algorithms

that use several hardware accelerators in parallel. This methodology is

built on the last versions of the OpenMP standard for implementing paral-

lel algorithms on shared memory multiprocessors. In particular, we have

used NVIDIA© cards, but the proposal can be readily generalized to

other type of devices acting as coprocessors. In addition, we provide a

high-level interface in Matlab© to be used by any researcher who is not

aware of parallelism nor of other programming issues.

Keywords. matrix polynomial, function of matrices, GPGPU, CUDA, CUBLAS,
Matlab.
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1 Introduction

The calculus of matrix polynomials has received a large boost in the past since
this is a core operation to compute matrix functions [1]. Many engineering
and physics phenomena are governed by systems of linear first-order ordinary
differential equations with constant coefficients, whose solution is given in terms
of the matrix exponential. The matrix exponential plays an important role
in many areas of science and technology, i.e. control theory, electrodynamic
theory of stratified media, the theory of multimode electric power lines, etc. [2,
3, 4]. Other matrix functions like the matrix sign function and the matrix
logarithm function appear, e.g., in control theory [1, pp 39]. Also, some other
engineering processes are described by second order differential equations, whose
exact solution is given in terms of the trigonometric matrix function sine and
cosine.

There are different techniques for computing or approximating matrix func-
tions. Some of them are very general but others are specialized to particular
functions. Two techniques are widely used to approximate a matrix function,
one is based on polynomial approximations and the other is based on rational
approximations. Contrary to what was thought in the past, it is possible to
obtain more accuracy with polynomial approximations than with rational ap-
proximations, even with similar or lower computational cost [5, 6, 7, 8]. This fact
mainly motivates our study on how to efficiently compute matrix polynomials
in this paper.

We define a matrix polynomial P of degree d as

P =

d
∑

i=0

αd−iX
d−i = αdX

d + αd−1X
d−1 + · · ·+ α1X + α0I , (1)

where X, I ∈ Rn×n, being I the identity matrix. We also define array ᾱ as
ᾱ = [αi]i=0,...,d for convenience in further descriptions. The main idea in this
paper is to show how to compute matrix polynomials for large scale problems.
We consider as large scale problems those in which the matrix size, the degree
of the polynomial or both in turn are large.

We have designed and evaluated a set of algorithms to evaluate matrix poly-
nomials concurrently using two GPUs. We propose a method to implement
these algorithms based on Posix threads, one thread bound to a different GPU.
The threads are spawned through easy of use OpenMP directives.

First, we have proposed and experimentally evaluated a fairly simple paral-
lelization option with the aim at compare other more sophisticated options. Sec-
tion 3 describes the evaluation of matrix polynomials in one and two GPUs using
this simple parallelization, and Section 4 shows the experimental results. Then,
we have studied and incorporated a method to reduce the number of needed op-
erations for evaluating polynomials: the Paterson–Stockmeyer method [9]. We
have tailored this method to the case of matrix polynomials giving as a result
some simple algorithms that are shown in Section 5. The simplicity of these al-
gorithms is due to their recursive nature, derived in turn from the Horner’s rule,
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a method to reduce the number of matrix multiplications in the evaluation of
a polynomial [10]. In the same section we explain how to apply this method to
the design of a parallel algorithm that uses two GPUs. The experimental results
using this approach are explained in the following section. One of the highlights
of our contribution is explained in Section 7, where we present and show some
experimental results obtained using a Matlab interface designed by us to easily
use the software developed in this work. Section 2 shows the environment (hard-
ware and software) used for the experimental evaluation of the algorithms. This
information is presented here since algorithms and experimental evaluation are
interleaved along the rest of the paper. Finally, some conclusions are outlined
in Section 8.

2 Environment: hardware and software used

In this section we describe the hardware and software used to develop all the
serial and parallel programs and to obtain the experimental results. We used
two NVIDIA devices model K20 (“Kepler” architecture) [11]. Both cards are
connected to the PCI bus of a personal computer provided with an Intel pro-
cessor Quadcore i7-3820 at 3.6 GHz and 16 GB of RAM. All the computations
have been executed using double precision arithmetic. The CPU code has been
compiled with the GNU’s gcc compiler. We have used the Intel Math Kernel
Library (MKL 11.0) implementation of BLAS and LAPACK [12] libraries for
matrix computations. The most used routine in our case, i.e. routine DGEMM for
matrix multiplication, is multithreaded in the MKL implementation to exploit
as far as possible the use of a multicore CPU. CUDA language [13] was used to
write the GPU code. These source files were compiled using the NVIDIA nvcc

compiler. The library used for matrix computations in GPU was CUBLAS, a li-
brary that contains implementations for GPUs of many BLAS routines [14]. The
compiler used to build the host part of the program implements the OpenMP
API [15] (version 3.0).

Finally, we have developed a high level interface to use all the programs
developed for both CPU and GPUs. Since the most likely users are mathe-
maticians and engineers not specialized on computer systems, we provide the
necessary tools to access our software in the friendliest way possible. That is
why in this work we have developed commands that run in the execution envi-
ronment of the Linux operating system, but we have also developed functions
that allow to execute our routines from a Matlab interface. For instance, all
the results shown in Section 7 have been taken using a Matlab interface [16].
The version of Matlab is modern (R2013b), but we checked that our codes work
properly on earlier versions (from R2009 on).
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Algorithm 1 Algorithm for the evaluation of a matrix polynomial.

1: function evaluate( n, X , d, ᾱ ) return P
2: P ← α0I
3: P ← P + α1X
4: B ← X
5: for i← 2, d do

6: A← B
7: B ← A ·X
8: P ← P + αiB
9: end for

10: end function

3 Simple algorithms to evaluate matrix polyno-

mials in one or two GPUs

In this section we show a simple algorithm to evaluate a polynomial using only
one GPU. We also study here a parallel algorithm that makes use of two GPUs to
solve the same problem. This algorithm basically divides the work of powering
matrices between two GPUs. Neither version make use of any existing technique
for reducing the number of computations needed to evaluate polynomials.

The evaluation of the matrix polynomial (1) can be quite straightforward by
using an algorithm like the one shown in Alg. 1.

An algorithm to evaluate (1) can be expressed in many ways. The chosen
procedure EVALUATE (Alg. 1) helps the user to easily implement it on CPU
using BLAS routines since workspaces A, B and P have been expressly intro-
duced to this end. An implementation for one GPU of Alg. 1 is also very easy
using CUBLAS routines and provided matrix X has been uploaded to the GPU.

The evaluation of matrix polynomial (1) in two GPUs is more complicated.
Both GPU can work independently of each other so we need to reflect somehow
this fact on our code to exploit this concurrency. The asynchronous nature of
kernel execution with respect to the host allows implementing a solution based
on, e.g. replicated calls, i.e. one call of each kernel/routine for each GPU.
However, in this contribution we propose to use a different but easy model to
program and manage this concurrency. We have chosen to use a SPMD (Sin-
gle Program, Multiple Data) programming model to develop the GPU program.
This model is easy to understand and very used in distributed memory paral-
lel contexts where programmers use the Message Passing Programming model.
Under this paradigm, both GPUs share the same code (only small parts of code
are specific for each one of the devices). The strategy consists of spawning two
Posix threads using OpenMP, in particular, by using an OpenMP parallel for

loop. This way, each GPU executes one iteration of the loop over its own data.
Since all the code might be very large, it is useful to use several parallel loops all
along the source file. Yet creation and destruction of threads, also involves the
creation and destruction of local variables to these threads, making it impossible
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Algorithm 2 Algorithm for computing the matrix powers of X in two GPUs.

1: function compute powers( d, X ) return (A, m)
2: #pragma omp parallel for

3: for g ← 0, 1 do

4: m = d/2 + g ·mod(d, 2)
5: A(0)← X
6: A(1)← X · A(0) ⊲ A(1) = X2

7: if g = 0 then

8: A(0)← A(1) ⊲ A(0) = X2 if g = 0
9: end if

10: A(2)← A(0) · A(1) ⊲ A(2) =

{

X4 if g = 0
X3 if g = 1

11: for i← 3,m do

12: A(i)← A(1) ·A(i − 1) ⊲ A(i) = X2 · A(i− 1)
13: end for

14: end for

15: end function

to use this idea. For the solution of this problem, we used the threadprivate

OpenMP feature (incorporated in the V3.0 specification) to qualify those vari-
ables that should be persistent throughout the entire process. Once created,
these variables belong to a given thread and keep the value stored in it between
the destruction and the creation of the thread, i.e., between consecutive parallel
loops. This programming model is readily applicable to more than two GPUs,
even to other different devices existing in a heterogeneous context.

In the case of two GPUs, we have divided the process into two stages: a) the
computation of the powers of matrixX , and b) the evaluation of the polynomial.
This method is more difficult to be programmed than the method described
in Alg. 1 where computing the matrix powers and evaluating the polynomial
all at the same time. Yet, separating the process in this way has the benefit
of being able to evaluate more than one polynomial of the same order once the
first stage has been carried out. On the contrary, the need of explicitly store all
of the matrix powers poses a limitation to this method.

As described early, we manage both GPUs currently by spawning two CPU
threads through an OpenMP parallel for, so each thread is bound to a GPU.
Alg. 2 describes the first stage, i.e., the computation of the matrix powers, and
uses the mentioned directive for the parallel loop. Both GPUs share the same
code. This code is written inside a parallel OpenMP loop of two iterations, each
GPU executes just one of these iterations according to its device number. Each
GPU is in charge of computing a different set of matrix powers. We denote
GPU0 the first GPU and by GPU1 the second one, so that GPU0 (with loop
index g = 0) computes the even powers of X , and GPU1 (with loop index g = 1)
computes the odd ones.
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The powers of matrix X are stored in an array of matrices called A, so

A = [A(i)]i=0,...,m, A(i) ∈ Rn×n ,

begin m = d
2 + g ·mod(d, 2), where g ∈ {0, 1} is the device number. The value

of this array for each GPU after execution of Alg. 2 is

A =

{ (

X2 X2 X4 X6 X8 . . .
)

if GPU0
(

X X2 X3 X5 X7 . . .
)

if GPU1
. (2)

Matrices A(0) and A(1) have been used in a special way in both devices so that
matrix products can be carried out through the suitable routine of CUBLAS
allowing to directly translate Alg. 2 into a CUDA implementation. This implies
that GPU1 has to compute X2 (line 5) although this is not an odd power,
because this term is needed to compute the remaining powers. Also, GPU0 has
to storeX2 in A(0) (line 8) although this term is already in A(1), because matrix
arguments in the CUBLAS matrix multiplication routine can not reference the
same memory space.

The second stage is the evaluation of the polynomial. This stage is described
in Alg. 3. The implementation is based on the same idea used in Alg. 2 con-
sisting of a parallel loop where each GPU executes one iteration. The GPUs
use the array A computed in the first stage (Alg. 2). The algorithm receives
a polynomial degree q as parameter that will be d as actual argument for the
solution of (1). GPU0 computes the even terms of (1) in matrix B, whereas
GPU1 computes the odd ones in its own matrix B. Matrix hB is an array of
two matrices allocated in the host. Matrix hB(0) is for GPU0 and hB(1) is for
GPU1. Each GPU uploads its own matrix B onto the corresponding component
of matrix hB (line 13). The last step (line 14) is carried out by the Host to
form the final result, i.e. the evaluation of the matrix polynomial P (1).

For simplicity in the description of the above algorithms we omitted refer-
ences to transferences Host-GPU that are needed previously to the computation.

4 Results of the evaluation of the matrix poly-

nomial

We firstly show in Fig. 1 time (left) and speedup (right) for the evaluation of
a matrix polynomial like (1) with different degrees ranging from 4 to 20, where
matrix X is of order n = 4000. Both plots show how the use of GPUs in our
system clearly outperforms the computation on the CPU so we will omit the
results on CPU in the rest of the analysis.

Fig. 2 shows the speedup achieved using 2 GPUs with regard to only one.
The speedup grows with the degree of the polynomial and also with regard
to the matrix size. Yet, in this last case, the increment in speedup is smaller
(sometimes null) than the one obtained along the rising in the polynomial degree
for this range of matrix sizes.
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Algorithm 3 Algorithm for the evaluation of a matrix polynomial in two
GPUs.

1: function evaluate2( n, q, ᾱ, A ) return P
2: #pragma omp parallel for

3: for g ← 0, 1 do

4: m = q/2 + g ·mod(q, 2)
5: if g = 0 then

6: B ← α0I
7: else

8: B ← α1A(0)
9: end if

10: for i← 1 + g,m do

11: B ← B + α2i−gA(i)
12: end for

13: hB(g)← B
14: end for

15: (Host) P ← hB(0) + hB(1)
16: end function

The sawtooth shape of the graph is due to the unbalanced workload for
degrees of the polynomial which are odd, since in these cases one of the two
GPUs performs one more matrix multiplication.

We also present the ratio between the time to compute the powers of matrices
in the polynomial and the evaluation time (Fig. 3). The former is a cubical cost
step while the last one is quadratic, it involves scalar-matrix products and matrix
sums. The figure clearly shows how large the computation of matrix powers is
regarding the evaluation of the polynomial, and how this ratio rises with the
matrix size and the polynomial degree.

To finish the exposition of this solution, we stressed the system with the
largest possible matrix size, which is n = 11000, and a polynomial degree of 6,
obtaining the solution in 13.50 sec. with one GPU and in 8.43 sec. with the
two GPUs.

5 An efficient parallel algorithm

There exists a sequential technique that allows to reduce the number of com-
putations needed to evaluate a polynomial like (1). This technique is based on
the Paterson–Stockmeyer method [9]. From now on, and for the sake of clarity
and briefness, we will denote this method as boxing.

We show this technique through an example. Suppose the degree of the
polynomial to evaluate is d = 14. Polynomial (1) can be expressed in the
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Figure 1: Time and speedup for the evaluation of a polynomial on matrices of
size n = 4000 with regard to the polynomial degree.
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Figure 2: Speed up for the evaluation of a polynomial on 2 GPUs with respect
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Figure 3: Ratio between computation of the matrix powers and evaluation of
the polynomial (in percentage) in the two GPUs.

following way using the associative propriety:

P =

14
∑

i=0

α14−iX
14−i (3)

= α14X
14 + α13X

13 + α12X
12 + α11X

11 + α10X
10 + α9X

9 + α8X
8

+ α7X
7 + α6X

6 + α5X
5 + α4X

4 + α3X
3 + α2X

2 + α1X + α0I

= X12
(

α14X
2 + α13X + α12I

)

+X8
(

α11X
3 + α10X

2 + α9X + α8I
)

+ X4
(

α7X
3 + α6X

2 + α5X
1 + α4I

)

+
(

α3X
3 + α2X

2 + α1X + α0I
)

.

Let Qq(ᾱ,X) be the polynomial of degree q in X with coefficients given by
vector ᾱ = {αq, αq−1, . . . , α1, α0},

Qq(ᾱ) = Qq(ᾱ,X) = αqX
q + αq−1X

q−1 + . . .+ α1X + α0I , (4)

then polynomial (3) can be written as

P = X12Q2(ᾱ14:12) +X8Q3(ᾱ11:8) +X4Q3(ᾱ7:4) +Q3(ᾱ3:0) (5)

= X4(X4(X4(Q2(ᾱ14:12)) +Q3(ᾱ11:8)) +Q3(ᾱ7:4)) +Q3(ᾱ3:0) .

The example uses a “boxing” size of b = 3, which means that the largest poly-
nomial in expression (5) is 3. The boxing size b also means that power b+ 1 of
matrixX (X4 in the example) is used as common factor to derive expression (5).
It is easy to see that the number of operations in (5) is less than in (1).
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Algorithm 4 Algorithm for the evaluation of a matrix polynomial using boxing.

1: function box eval( n, X , d, ᾱ, b ) return P
2: A(0) = X
3: for i← 1, b do

4: A(i)← A(i− 1) ·X
5: end for

6: P ← boxing( n, d, b, 0, ᾱ, A )
7: end function

Algorithm 5 Recursive algorithm to evaluate a matrix polynomial using box-
ing.

1: function boxing( n, d, b, i, ᾱ, A ) return P
2: q ← d− i
3: if q ≤ b then

4: P ← eval( n, q, ᾱq+i:i, A )
5: else

6: Q1 ← boxing( n, d, b, b+ i, ᾱ, A )
7: q ← b− 1
8: Q2 ← eval( n, q, ᾱq+i:i, A )
9: P ← A(q) ·Q1 +Q2

10: end if

11: end function

Alg. 4 shows the process of evaluating a polynomial using boxing. Lines 2-5
fill array A of size b+ 1 with powers of X so that

A = [X i+1]i=0,...,b =
(

X X2 X3 . . . Xb−1 Xb Xb+1
)

. (6)

Array A will be used to evaluate polynomials of type Qq(ᾱ,X) in expression (4).
This algorithm is equivalent to Alg. 1 since both solve the same problem. Once
array A has been computed in Alg. 4, the algorithm calls routine boxing, a
name we have chosen to denote the evaluation of the matrix polynomial.

The boxing routine is depicted in Alg. 5. Alg. 5 is a recursive algorithm
that evaluates polynomials using the derivation shown in (5). Assuming a boxing
factor of b, in the general case the algorithm computes a matrix Pi,

Pi ← Xb+1Pb+i+1 +Qb(ᾱb+i:i) = Xb+1Q1 +Q2 , (7)

for i = 0, b+1, 2(b+1), 3(b+1), . . . The base case of this recursion is met when
d − i ≤ b, which means that there is no longer possibility of doing boxing. In
this case, the algorithm evaluates the polynomial Qq(ᾱq+i:i), being q = d − i.
It can be easily shown that recursion (7) applied to example (5) gives

P = P0 = X4P4 +Q3(ᾱ3:0)

P4 = X4P8 +Q3(ᾱ7:4)
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Algorithm 6 Given the b + 1 powers of a matrix X stored into array A as
shown in (6), this algorithm evaluates a matrix polynomial.

1: function eval( q, ᾱ, A ) return R
2: R← α0I
3: for i← 0, q − 1 do

4: R← R+ αi+1A(i)
5: end for

6: end function

P8 = X4P12 +Q3(ᾱ11:8)

P12 = Q2(ᾱ14:12) .

The recursive function boxing makes use of another function called eval.
Function eval( q, ᾱ, A ), shown in Alg. 6, computes Qq(ᾱq+i:i) provided q ≤ b.

Now we elaborate on the theoretical cost of the algorithms in terms of ma-
trix products since this is by far the most expensive operation to evaluate a
polynomial. Let d be the degree of the polynomial to compute, then Alg. 1
performs d − 1 matrix products to evaluate the polynomial. Suppose b is the
boxing factor, i.e. the degree of the boxing polynomial, then the number of
products to obtain the powers of X (6) is b − 1, to which we add one more
product to obtain Xb+1, giving a total of b matrix products (Alg. 4). For the
sake of simplicity assume now that d+1 = k · (b+1), being k a positive integer,
thus Alg. 5 performs k − 1 matrix products in recursion (7). The total number
of matrix products for Alg. 4 then is

b+ k − 1 = b+
d+ 1

b+ 1
− 1 . (8)

A minimum number of matrix products for the boxing method comes out from
derivation of expresion (8) resulting in a value for b as the closest integer to√
d+ 1− 1. Using this value, the speedup attainable can be calculated as

speedup =
d− 1

2
(√

d+ 1− 1
) ,

and it is not difficult to show that
√
d+1
2 is a lower bound of the theoretical

speedup, for d ≥ 3.
The speedup of Alg. 2 when using 2 GPUs grows with the degree of the poly-

nomial (Fig. 2). When boxing is used, the degree b of the boxing polynomial is
likely to be small, thus limiting room for speeding up the application. There-
fore, we propose a different approach to address the problem of improving the
performance of polynomial evaluation on 2 GPUs. Our solution is based on ma-
trix partitioning to allow both the 2 GPUs to participate in the multiplication
of two matrices.

Consider the following partitionsXp−1 =
[

X1 X2

]

andXp =
[

Y1 Y2

]

,
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Algorithm 7 Algorithm for computing the b+1 matrix powers of X into two
GPUs.

1: function compute powers2( n, b, hX ) return (A, X , B)
2: i0 = 0, j0 = n/2− 1, i1 = n/2, j1 = n− 1
3: #pragma omp parallel for

4: for g ← 0, 1 do

5: X ⇐ hX
6: A(0)← X(:, ig : jg)
7: for k ← 1, b− 1 do

8: A(k)← X · A(k − 1)
9: end for

10: B(:, ig : jg)← X ·A(b − 1)
11: B(:, iḡ : jḡ)⇐ B̄(:, iḡ : jḡ)
12: end for

13: end function

where X1, Y1, X2, Y2 ∈ Rn×(n/2) (assume for simplicity that n is even), then

Xp = X ·Xp−1 = X ·
[

X1 X2

]

=
[

X ·X1 X ·X2

]

=
[

Y1 Y2

]

,

proving that the computation of any power p of X can be carried out by per-
forming two independent matrix products, provided we have the whole matrix
X and the two halves of the partition of the power p− 1 of X . Alg. 7 performs
the computation of the powers of X using this partition of the matrices. At the
first (line 5), both GPUs receive the whole matrix X from the host (denoted as
hX). Symbol ⇐ represents transferences Host-GPU or GPU-GPU. A half of X
factor is copied onto the first matrix of the array, i.e. A(0) (line 6). Next, by the
loop at lines 7 to 9 the algorithm computes one half of each power of X . GPU0
computes the first n/2 columns of these factors and stores them in matrices
A(i) ∈ Rn×n/2, i = 0, . . . , b − 1. Similarly, GPU1 stores the n/2 + mod(n, 2)
columns from n/2 to n− 1 of the matrix powers in its corresponding matrices
A(i) ∈ Rn×n/2+mod(n,2). To evaluate boxing polynomials later of degree b, it
is also needed that both GPUs have the whole factor Xb+1. Each GPU has
computed only one half of this factor, that it has been stored in the correspond-
ing half of B (line 10). We need now to interchange these parts of factor B so
that finally the two GPUs have Xb+1 stored into B. Int line 11, GPU g sends
columns ig : jg to the other GPU. The index of the other GPU is denoted by ḡ,
where ḡ = 1− g. Matrix B̄ refers to matrix B on the other GPU. We used the
CUDA routine cudaMemcpyPeerAsync to perform this peer-to-peer communica-
tion between the two GPUs. This function allows memory copies between the
memories of two different devices bypassing the memory host. The routine does
not start until all commands previously issued to either device have completed
and is asynchronous with respect to the host.

The algorithm to evaluate polynomial (1) using bonxing in two GPUs is writ-
ten in Alg. 8, provided Alg. 7 (compute powers2) has already been computed

12



Algorithm 8 Recursive algorithm to evaluate a matrix polynomial using boxing
in two GPUs.

1: function boxing2( d, b, i, ᾱ, A, B ) return P
2: #pragma omp parallel for

3: for g ← 0, 1 do

4: q ← d− i
5: if q < b then

6: P ← eval( q, ᾱq+i:i, A ) ⊲ Alg. 6
7: else

8: Q1 ← boxing2( d, b, b+ i, ᾱ, A, B )
9: q ← b− 1

10: Q2 ← eval( q, ᾱq+i:i, A ) ⊲ Alg. 6
11: P ← B ·Q1 +Q2

12: end if

13: end for

14: end function

Alg. 8
←

B Q1 Q2

g = 0 g = 1

P

g = 0 g = 1

· +

g = 1g = 0g = {0, 1}

Line 11

Figure 4: Matrix multiplication by 2 GPUs.

and the GPUs both have the powers 1 to b+ 1 of X computed and stored. Ar-
guments A and B are actually factors previously stored into the device memory.
Argument i of Alg. 8 is used for indexing array ᾱ and also for controlling the
recursion. The returning matrix P , which contains the polynomial solution, is a
local matrix to each GPU of n/2 columns (or n/2+1 in the case of GPU1 if n is
odd). Also, auxiliary matrices Q1 and Q2 share the size with P . They are used
to perform the product in line 11 which corresponds to the operation shown in
the recursion (7). Figure 4 graphically depicts the setup of this product between
both GPUs. All the evaluation process is carried out in parallel between the
two GPUs without communication. Only upon termination the CPU system
receives factors P from both GPUs to build the final square matrix that is the
solution to (1). This is carried out after the execution of Alg. 8.
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6 Results of the evaluation of matrix polynomi-

als using boxing

Next in this section we show different aspects of the behavior of the algorithm
with boxing. Firstly, Fig. 5 plots the evolution of time regarding the boxing fac-
tor b. Based on the experiments our algorithm checks that value b = ⌊

√
d+ 1⌋−1

obtained through the theoretical derivation is the best to be chosen if we use
one GPU. We get into the inside of the behaviour of the two GPUs to see if the
computation of matrix products could yield a slightly different result. The time
to obtain the resulting matrix P is split into two steps: the computation of the
powers of matrix X (terms of polynomial Qb(ᾱ) (4)) and the evaluation of the
polynomial using the recursive algorithm boxing2 Alg. 8. The computation
of the powers of X increases linearly with the boxing factor b and is exactly
the same for any polynomial degree since it only depends on b. The amount of
work to be done to evaluate the polynomial through Alg. 8 decreases as long
b increases since the number of terms Pi in recursion (7) decreases. The best
boxing factor is around the crossing of these lines as Fig. 6 shows. Figure 7,
which shows the total time for evaluating the polynomial on two GPUs, has the
same shape as its counterpart Fig. 5 on one GPU.

The next experiment shows the speed up of the algorithm using boxing.
Fig. 8 shows the increment in speed achieved by the use of two GPUs and how
this improvement grows with the problem size thanks to the parallelization of
the matrix multiplication depicted in Fig. 4. The degree of the polynomial
does not involve big a difference in the speed up due to the small weight of
communications (CPU-GPU) with regard to the weight of computations.

7 The Matlab environment

We have developed a Matlab interface to make easy access our routines written
in CUDA. The algorithms implemented are only those using boxing. We provide
a version written directly as a Matlab function (polmat ps) that solves (1)
using Alg. 8 and returns the solution matrix P . Sometimes, it is more efficient
to use a program written in C that is called from the Matlab interface. This
is because Matlab executes instructions provided by the user in the Matlab
function as they are read runtime. In the case of many fast instructions, there
exits an overhead associated to this interpretation. However, this is not the
case due to our algorithm is rich high CPU demanding instructions like matrix
multiplications. Matlab uses the Intel MKL library to compute the matrix
multiplications associated to the evaluation of the polynomials.

The versions provided that use the GPUs have been implemented using MEX
files [17], with C, OpenMP and CUDA for NVIDIA cards [18, 19]. MEX files are
external interface functions that allow to use calls to custom C, C++ or Fortran
routines directly from Matlab as if they were Matlab bulit-in functions. The
complexity of the process lies on the programmer’s side and the benefit is for the
user of the Matlab routines. MathWorks provides other ways of programming
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Figure 5: Time for computation the evaluation of a polynomial with matrix
size n = 6000 varying the polynomial degree in function of the boxing factor on
one GPU.
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Figure 6: Time for computation of powers of X and evaluation of a polynomial
with matrix size n = 6000 varying the polynomial degree in function of the
boxing factor on two GPUs.
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Figure 7: Total time for the evaluation of a polynomial with matrix size n =
6000 varying the polynomial degree in function of the boxing factor on two
GPUs.

d = 50

d = 40

d = 30

d = 20

Speed up of the 2-GPU version

n

700060005000400030002000

2

1.5

1

0.5

0

Figure 8: Speed up of the evaluation of polynomial (1) on two GPUs with
regard to one GPU for different degrees and matrix sizes.
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Matrix size 2048 4096 6144

Ts Gflops Ts Gflops Ts Gflops

d = 12
b = 3

CPU Quad i7 0.99 87 6.83 101 25.1 92
1 GPU K 20 0.12 716 0.78 881 2.49 931
2 GPU K 20 0.08 1074 0.46 1494 1.37 1693

d = 20
b = 4

CPU Quad i7 1.55 78 10.4 101 35.4 92
1 GPU K 20 0.16 752 1.06 881 3.42 949
2 GPU K 20 0.10 1203 0.60 1604 1.83 1774

d = 30
b = 5

CPU Quad i7 2.59 57 12.5 99 45.8 91
1 GPU K 20 0.20 773 1.35 916 4.37 935
2 GPU K 20 0.12 1289 0.75 1649 2.31 1807

Table 1: Performance in seconds (Ts) and Gigaflops (Gflops) for the evaluation
of polynomials with different degrees (d), boxing factors (b), and matrix sizes.

from Matlab for GPUs [20], but programming in C lets also to have codes for
linux commands. Implementing these codes is not trivial so we got some help
from [21, 16] to build routine cum polmat ps that uses the GPUs. Prefix cum

stands for CUDA multicard. The routine has an argument to specify the number
of GPUs to use (although not yet implemented, the interface is ready for more
than two devices).

As an example of the high computational capacity of the programs developed
in this paper, we show some results in Table 1. One of the most significant
aspects is that these results were obtained using the friendly interface Matlab.
The speed up achieved for a polynomial degree d = 12 with two devices regarding
only one is of 1.5, 1.7, and 1.82 for each one of the three matrix sizes, respectively.
This speed up slightly increases with both the matrix size and the polynomial
degree. The maximum speed up reached is of 1.89 for a polynomial degree of
d = 30 and a matrix size n = 6144. Communications through the PCI bus are
more and more hidden under the increasing computation demand when scaling
the problem size. These figures rely on two important facts. The speed up
increases more slightly with the matrix size than with the polynomial degree.
Really, it is boxing factor b what affects this magnitude more than d. The other
fact is that the matrix size influences more in the speed up, but also increases
the communication time.

8 Conclusions

We have studied the problem of evaluating matrix polynomials in modern com-
pute-intensive computers. More and more frequently, these computers count on
some kind of accelerator device attached to them. Very commonly used acceler-
ators are the NVIDIA cards which, although designed for graphics processing,
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allow to increase the performance of many general purpose applications. Ex-
perimental results in this work have been achieved on this type of device, but
the developed algorithms here can be easily migrated to other types of acceler-
ators, like AMD GPUs, but also to the new Intel hardware proposals based on
“knights” and “landing” corner architectures. The basic requirement is the ex-
istence of an efficient routine for matrix multiplication on these environments.
The rest of the development, i.e., algorithms, Matlab MEX files, etc. would
remain unchanged.

Our proposal consists of algorithms but also of a method to implement these
algorithms that is quite effective. This method is based on writing the code for
one GPU. This code will be executed by multiple GPUs. Two threads will be
spawned through an OpenMP parallel for, each one bound to a different
GPU. The compiler used must provide an implementation of OpenMP with a
V3.0 specification at least to work properly.

We have used different software resources to implement our application:
MKL and CUBLAS libraries, OpenMP, Matlab MEX files, CUDA language,
so that all together provide the future user with an easy to use tool to solve
more sophisticated problems. Furthermore, as shown by the results of the last
section, it can be said that this tool uses the multiGPU environment efficiently.
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