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Abstract: In decision-making processes, reliability and risk-aversion play a decisive role. This 9 

paper presents a framework for stochastic optimization of control strategies for groundwater 10 

nitrate pollution from agriculture under hydraulic conductivity uncertainty. The main goal is to 11 

analyze the influence of uncertainty in the physical parameters of a heterogeneous groundwater 12 

diffuse pollution problem on the results of management strategies, and to introduce methods 13 

that integrate uncertainty and reliability in order to obtain strategies of spatial allocation of 14 

fertilizer use in agriculture. A hydro-economic modeling approach is used for obtaining the 15 

allocation of fertilizer reduction that complies with the maximum permissible concentration in 16 

groundwater while minimizes agricultural income losses. The model is based upon nonlinear 17 

programming and groundwater flow and mass transport numerical simulation, condensed on a 18 

pollutant concentration response matrix. The effects of the hydraulic conductivity uncertainty 19 

on the allocation of nitrogen reduction among agriculture pollution sources is analyzed using 20 

four formulations: Monte Carlo simulation with pre-assumed parameter field, Monte Carlo 21 

optimization, stacking management, and mixed-integer stochastic model with predefined 22 

reliability. The formulations were tested in an illustrative example for 100 hydraulic 23 

conductivity realizations with different variance.  24 



The results show a high probability of not meeting the groundwater quality standards when 25 

deriving a policy from just a deterministic analysis. To increase the reliability several 26 

realizations can be optimized at the same time. By using a mixed-integer stochastic 27 

formulation, the desired reliability level of the strategy can be fixed in advance. The approach 28 

allows deriving the trade-offs between the reliability of meeting the standard and the net 29 

benefits from agricultural production. In a risk-averse decision-making, not only the reliability 30 

of meeting the standards counts, but also the probability distribution of the maximum pollutant 31 

concentrations.A sensitivity analysis was carried out to assess the influence of the variance of 32 

the hydraulic conductivity fields on the strategies.The results have shown that larger the 33 

variance, greater the range of maximum nitrate concentrations and the worst-case (or maximum 34 

value) that could be reached for the same level of reliability.  35 

Key words groundwater; fertilizer allocation; nitrates; uncertainty; optimization; stochastic management model 36 

 37 

1. Introduction  38 

Agricultural activities are often the main source of elevated nitrate concentrations in 39 

groundwater (e.g., Oyarzun et al., 2007). Moreover, in the last decades the nitrate 40 

concentrations in groundwater increased due to the intensive use of fertilizers in agriculture 41 

(e.g., Candela et al., 2008). The need of controlling of groundwater diffuse pollution has given 42 

rise to the development of an extensive legal framework in several countries. In Europe, the 43 

requirements for agricultural nonpoint pollution in Europe are being ruled by a series of 44 

European Directives. The Nitrates Directive (Directive 91/676/EEC), which was established in 45 

1991 to reduce nitrate water pollution from agricultural sources, involves the declaration of 46 

Nitrate Vulnerable Zones in which constraints are placed on inorganic fertilizer and organic 47 

slurry application rates. The Drinking Water Directive (80/778/EEC and its 98/83/EC revision) 48 

sets a maximum allowable concentration for nitrate of 50 mg/l, while the EU Water Framework 49 



Directive (Directive 2000/60/EC; WFD), enacted in 2000, establishes a legal framework to 50 

protect and restore clean water across Europe and ensure its long-term sustainable use. The 51 

WFD includes groundwater in its river basin management planning, and sets clear milestones 52 

for groundwater bodies in terms of delineation, economic analysis, characterization (analysis of 53 

pressures and impacts), monitoring, and the design of programs of measures to ensure a good 54 

status of quantity and chemical groundwater status by 2015. In addition, significant upward 55 

trends in the concentration of pollutants should be identified and reversed (Directive 2006/ 56 

118/EC, Groundwater Directive).  57 

 58 

In order to control and improve groundwater quality, it is necessary to implement often costly 59 

management decisions, and here computer models has a basic role for simulating the impact of 60 

different policies and get insight into the best options according to the objectives and 61 

constraints of our problem. Modeling of nitrate contamination of groundwater in agricultural 62 

watersheds has mostly been addressed in a deterministic way (e.g., Martínez and Albiac, 2004; 63 

Almasri and Kaluarachchi, 2005; Candela et al., 2008; Peña-Haro et al., 2009). However, 64 

because of the heterogeneous nature of most groundwater bodies and the inherent uncertain, the 65 

errors involved in the predictions of future pollutant concentration can be considerable. 66 

Stochastic models may provide additional insight into the risk and probability of achieving 67 

groundwater standards.  68 

 69 

One of the most difficult issues in groundwater management modeling is dealing adequately 70 

with the effect of model uncertainty in optimal decision making (Wagner and Gorelick, 1987). 71 

The uncertainty stems from a wide variety of factors ranging from partial knowledge about 72 

aquifer properties, its boundary conditions, land use practices, on-ground pollutant loading, soil 73 

characteristics, depth to water table, flow and transport parameters affecting pollutant fate and 74 



transport in groundwater, to economic, regulatory and political factors. The effect of these 75 

uncertainties on groundwater management at contaminated sites has been widely reported in 76 

the literature, mostly for pumping remediation strategies (Freeze and Gorelick, 1999). The 77 

main approaches to deal with these uncertainties can be divided into classic chance-constrained 78 

programming and Monte Carlo-based methods. Chance-constrained programming allows for 79 

constraints’ violations up to preassigned probability levels, based on the derivation of 80 

deterministic equivalents of the chance-contraints (Charnes et al., 1958; Charnes and Cooper, 81 

1963). This often involves an a priori assumption of the statistical distribution of the random 82 

variable (e.g. Tung, 1986; Wagner and Gorelick, 1987). For cases involving numerical models 83 

of complex hydrogeology, an alternative is to generate a set of equally likely multiple 84 

realizations of the hydraulic conductivity field, using then Monte Carlo analysis to assess 85 

uncertainty regarding the achievement of the environmental objectives with the optimal 86 

strategy (e.g., Wagner and Gorelick, 1989; Morgan et al., 1993; Feyen and Gorelick, 2004). 87 

Monte Carlo methods can be further subdivided into the following simulation-optimization 88 

techniques: stacking management models, Monte Carlo optimization, and mixed-integer 89 

stochastic optimization with predefined reliability. All these approaches will be subsequently 90 

discussed in the methodology section.  91 

 92 

Most previous applications of these four approaches have focuses on “pump and treat” 93 

alternatives for optimal remediation of contaminated aquifers. Most of these studies deal with 94 

uncertainty on the hydraulic conductivity or the regional boundary conditions (e.g., Wagner 95 

and Gorelick, 1989; Feyen and Gorelick, 2004), although other sources of uncertainty have 96 

been also considered (eg. Van den Brink et al., 2008)  97 

 98 



This paper presents a stochastic hydro-economic modelling framework for analyzing fertilizer 99 

management strategies to control groundwater nitrate pollution under groundwater parameter 100 

uncertainty. It does not intend to discuss the choice of different policy instruments for efficient 101 

pollution control, topic for which an extensive literature already exits (e.g., Shortle and Griffin, 102 

2001; Batie and Horan, 2004). Instead, the main contribution of this research is to analyze the 103 

influence of uncertainty in the physical parameters of a heterogeneous groundwater diffuse 104 

pollution problem on the results of fertilizer management strategies, and to introduce methods 105 

that integrate uncertainty and reliability in order to obtain strategies of spatial allocation of 106 

fertilizer use in agriculture (fertilizer standards) to meet the groundwater nitrate concentration 107 

limits required by law (e.g., EU Water Framework Directive) .  108 

The paper is organized as follows. First, we describe the proposed hydro-economic framework 109 

and analyze four different approaches (based on Monte Carlo analysis of multiple stochastic 110 

realizations) to deal with uncertainty in the pollutant concentration predictions due to uncertain 111 

in the spatial variability of the hydraulic conductivity. Then, a 2D synthetic case study is used 112 

to illustrate the application of the methodology.  113 

 114 

2. Methods 115 

The heterogeneity of hydraulic conductivity field has a strong influence on the migration and 116 

evolution in time and space of the pollutant concentration in groundwater and therefore on the 117 

optimal fertilizer application. The K of an aquifer can vary spatially by several orders of 118 

magnitude (see, e.g., Salamon et al, 2007). To the important variability of the parameter we 119 

have to add the lack of data in most practical cases. Given the uncertainty in the conductivity, 120 

our groundwater flow and mass transport predictions, based on the conductivity fields, will be 121 

uncertain. Therefore, the uncertainty of the K spatial variability should be incorporated into the 122 

decision process in order to derive a strategy to control groundwater nitrate pollution with 123 



certain reliability. This paper presents a systematic stochastic framework, using four different 124 

formulations, to explicitly incorporate the effects of uncertainty through to the design of 125 

reliable groundwater quality schemes. The stochastic hydro-economic modeling framework has 126 

been designed for determining groundwater nitrate pollution from agriculture, considering the 127 

uncertainty in the conductivity field and the reliability in the optimal strategy designed. All the 128 

stochastic formulations are based upon the deterministic framework presented by Peña-Haro et 129 

al. (2009). A brief description of the method is provided in the next section.  130 

 131 

The stochastic approaches for dealing with uncertainty require the generation of multiple 132 

equiprobable spatial K fields (realizations), which can be obtained by means of an appropriate 133 

geostatistical approach (such as interpolation methods, sequential Gaussian or indicator 134 

simulation, conditional K fields obtained from inverse models, etc.). Obviously, the uncertainty 135 

in the results will be strongly influenced by the variance of the hydraulic conductivity 136 

probability distribution and the spatial correlation structure. Therefore, the aquifer should be 137 

characterized as adequately as possible in order to obtain reliable results. Moreover, a 138 

sensitivity analysis with regard the uncertain parameters should accompany a work like this.   139 

 140 

2.1. Deterministic hydro-economic management model 141 

The deterministic management model for groundwater pollution control was formulated in 142 

Peña-Haro et al. (2009). A holistic optimization model is used to determine the spatial and 143 

temporal fertilizer application rate that maximizes the net benefits in agriculture constrained by 144 

the quality requirements in groundwater at specified control sites. In accordance with the WFD, 145 

the maximum concentrations at these control sites are the policy targets, which are defined by 146 

imposing legal upper bounds on the concentration level of specified pollutants in water, based 147 

on specific criteria such as adequate margins of safety for human or ecological health. A 148 



coupled agronomic and flow and transport-groundwater modeling approach is used to quantify 149 

the relationship between emissions (i.e., nitrogen loading rates) and groundwater quality 150 

impacts at regulatory control sites. Specifically, Pena-Haro et al. (2009) compute unit response 151 

functions for each source-well pair, which is generated by simulating long-term nitrate 152 

concentration evolution at the control sites in response to uniform source loading with unit 153 

stress. The integration of the response matrix in the constraints of the management model 154 

allows simulating by superposition the evolution of groundwater nitrate concentration over 155 

time at different points of interest throughout the aquifer resulting from multiple pollutant 156 

sources distributed over time and space. Linearity of the system is required to apply 157 

superposition; therefore groundwater flow has to be considered as steady-state. The approach 158 

explicitly simulate the fate and transport of nitrates within the aquifer in the optimization 159 

model, unlike methods that use black-box statistical models such as artificial neural networks 160 

or genetic algorithms to relate on-ground nitrogen loadings with nitrate concentrations (Almasri 161 

and Kaluarachchi, 2007; Aly and Peralta, 1999; Ritzel et al., 1994). 162 

The benefits in agriculture were determined through crop prices and crop production functions, 163 

being the management model for groundwater pollution control formulated as follows: 164 
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 166 

subject to: 167 

ytcqcrRM
s

tcysystc ,,, ∀≤⋅∑ ××××                                                     (2) 168 

where Π  �is the objective function to be maximized and represents the present value of the 169 

net benefit from agricultural production (€) defined as crop revenues minus fertilizer and water 170 

variable costs (fixed costs are not included); As is the area cultivated for crop located at source 171 

s; ps is the crop price (€/kg); Ys,y is the production yield of crop located at source s at planning 172 



year y (kg/ha), that depends on the nitrogen fertilizer and irrigation water applied; pn is the 173 

nitrogen price (€/kg); Ns,y is the fertilizer applied to crop located at source s at year y (kg/ha), pw 174 

is the price of water (€/m3), and Ws,y is the water applied to crop located at source s at each 175 

planning year y (m3); r is the annual discount rate, RM is the unitary pollutant concentration 176 

response matrix where each column is the nitrate concentration for each crop area (s) times de 177 

number of years within the planning horizon (y), the number of rows equals the number of 178 

control sites (c) times the number of simulated time steps (t) in the frame of the problem; q is a 179 

vector of water quality standard imposed at the control sites over the simulation time (kg/m3); 180 

cr is a vector representing the nitrate concentration recharge (kg/m3) reaching groundwater 181 

from a crop located at source s, which is obtained dividing the nitrate leached over the water 182 

that recharges the aquifer. Both nitrate leached and crop production are represented by 183 

polynomial regression equations depending on the water and fertilizer use (see Peña-Haro et 184 

al., 2009). These equations can be derived from the results of agronomic simulations models 185 

like EPIC (Williams, 1995; Liu et al., 2007; Peña-Haro et al., 2010)  186 

This modeling approach was developed under several assumptions: 187 

 No crop rotation, changes in farm management practices or changes in crop patterns are 188 

considered. This issue is very important for irrigation districts and crops in which 189 

farmers may react to input regulations with changes in crop patterns and crop rotation 190 

practices. Rotation with crops like alfalfa is a useful management practice for 191 

controlling the soil nitrate content (e.g. Toth and Fox, 1998). Changes in management 192 

practices and cropping patterns are less likely in the short run than changes in the input 193 

levels (Helfand and House, 1995).  194 

 The data on leaching corresponds to average water application rates. No dynamic 195 

changes of irrigation applications and rainfall over time are considered.  196 



 Only restrictions on fertilizer use are considered; irrigation cutting could be also a way 197 

of decreasing nitrate leaching.   198 

  The cost of the policies for controlling nitrate pollution is simplified as the direct costs 199 

to the users, in terms of net income losses. Transaction costs associated with 200 

introducing and maintaining a policy instrument are not considered, although they 201 

might be significant in certain cases.   202 

As mentioned, this formulation assumes fixed water applications and crop locations; therefore, 203 

the word “optimal” is used hereinafter to refer just to the fertilization rates resulting from the 204 

optimization problem defined for controlling groundwater nitrate pollution and not to better 205 

irrigation plans or the most environmentally appropriate locations for growing crops. 206 

 207 

The optimization problem is coded in GAMS, a high-level modeling system for mathematical 208 

programming problems (GAMS, 2008a).  209 

 210 

2.2. Stochastic hydro-economic approaches 211 

The framework allows considering four different stochastic approaches to analyze groundwater 212 

quality management under parameter uncertainty: 213 

 214 

2.2.1. Reliability of deterministic optimization. Monte Carlo simulation with pre-assumed 215 

(“true”) parameter field. 216 

The objective is to evaluate the reliability of the optimal fertilizer application for an aquifer 217 

with a pre-assumed heterogeneous hydraulic conductivity field. This is carried out by assuming 218 

one of the multiple K fields generated as the “true” hydraulic conductivity field (e.g., Bark et 219 

al., 2003; Ko and Lee, 2008), and determining the corresponding optimal fertilizer application. 220 

The reliability of meeting the standard (or probability of not failure) and the uncertainty of the 221 



pre-assumed optimal application are evaluated by simulating the resulting fertilizer allocation 222 

for the series of  random fields stochastically generated, and testing whether the maximum 223 

concentrations are reached or not.  224 

 225 

2.2.2. Uncertainty on optimal fertilizer application. Monte Carlo optimization  226 

Monte Carlo management models solve the nonlinear simulation-optimization problem 227 

individually for each one of a series of multiple equiprobable realizations obtained using an 228 

appropiate geostatistical model. Because of its simplicity, this approach has been widely 229 

applied to the design of optimal groundwater remediation strategies (e.g., Gorelick 1983; 230 

Wagner and Gorelick, 1989; Freeze and Gorelick 1999; Feyen and Gorelick, 2004; Lacroix et 231 

al., 2005; Ko and Lee, 2008; Van den Brink et al., 2008).In this approach, a series of individual 232 

optimization problems are solved, each for a single realization of hydraulic conductivity. Each 233 

one of the fertilizer applications obtained represents a random sampling from the cumulative 234 

density function (CDF) of optimal fertilizer application rates. Therefore, the results of the 235 

Monte Carlo hydro-economic modeling can be used to characterize the probability distribution 236 

of the optimal fertilizer application rates. 237 

 238 

2.2.3. Multiple realizations or stacking management approach 239 

In the multiple realization or stacking approach the nonlinear simulation-optimization problem 240 

is simultaneously solved for a set of different scenarios representing uncertainty, e.g., by using 241 

a sampling of hydraulic conductivity realizations generated using geostatistical techniques 242 

(e.g., Wagner and Gorelick, 1989; Aly and Peralta, 1999; Feyen and Gorelick, 2004 and 2005; 243 

Ko and Lee, 2009). However, this approach does not allow a priori definition of the system 244 

reliability. The reliability is determined through post-optimization Monte Carlo analysis on a 245 



much larger set of realizations that were used in the stack. The mathematical formulation of the 246 

multiple realization groundwater quality management model consist of maximize (1) subject to: 247 

 248 

( ) ( ) ( ) ytciqcrRM
s
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 250 

where an additional component (i) is added to the RM matrix considered in the deterministic 251 

hydro-economic management model. This component is made up of as many elements as 252 

realizations of the random conductivity field are simultaneously considered in the management 253 

model. That is, the optimization problem is solved for 1,..., ni s= , where i represents a hydraulic 254 

conductivity realization, and sn is the stack size, i.e, the number of hydraulic conductivity 255 

realizations included in the stochastic management model. The optimization problem retains 256 

the same number of decision variables as the deterministic model, but the number of 257 

concentration constraints is increased by a factor of i. The reliability is determined through 258 

post-optimization Monte Carlo analysis on a much larger set of realizations that were used in 259 

the stack. 260 

 261 

2.2.4. Mixed-integer stochastic optimization with predefined reliability  262 

Morgan et al. (1993) introduced a mixed-integer approach to solve the problem of optimal 263 

groundwater remediation design with a certain degree of reliability. The approach combines the 264 

advantages of the simulation-optimization models with those of the chance-constrained models. 265 

In this case, the user selects the desired degree of reliability, which is accomplished by 266 

allowing a certain number of the Monte Carlo realizations to fail. Other authors have also 267 

applied this technique to groundwater remediation (e.g., Ritzel et al., 1994;, Dhar and Datta, 268 

2007; Ng and Eheart, 2008), which has also been termed as mixed-integer-chance-constrained 269 

programming (MICCP) (Morgan et al., 1993).  270 



We have reformulated the approach presented by Morgan et al. (1993) to deal with nitrate 271 

pollution abatement in order to meet certain groundwater quality standards, like the ones ruled 272 

by the EU Water Framework Directive. The proposed stochastic management problem was 273 

defined as finding the optimal fertilizer allocation (for a certain crop distribution) that 274 

maximizes the welfare from crop production that meet the groundwater quality constraints with 275 

a certain reliability. 276 

 277 

The chance-constrained problem is reformulated as a Mixed Integer Non-Linear Programming 278 

(MINLP). As in Morgan et al. (1993), the stochastic nature of the conductivity field is analyzed 279 

through Monte Carlo realizations, and multiple realizations make up the constraint sets of the 280 

optimization model (in this case, represented by pollutant concentration response matrices, as 281 

in Peña-Haro et al., 2009). The desired reliability of the system is predetermined by fixing the 282 

number of constraints that may be violated, which is done by replacing equations (1) and (2) 283 

with equations (4) to (7).  284 

 285 

The stochastic method is formulated as follows: 286 
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 296 

where: 297 

M is a large positive number;  298 

i is the hydraulic conductivity realization number,  299 

NR is the total number of realizations;  300 

f is a matrix of binary integer variables, where i is the realization number, c refers to control 301 

site, t stands for simulated time step, and y is the planning year. The matrix represents the 302 

individual failures, and its components take the value 1 if the quality standard is exceeded at 303 

any time in any control site, and 0 otherwise;  304 

F is a binary vector with i elements showing realization failures.  It takes the value 1, thus 305 

representing a failure, if the quality standard is exceeded in at least one time step at any control 306 

site for a certain realization i, and 0 otherwise.  307 

NF is the number of realization failures that are allowed, defined in accordance with the desired 308 

reliability level, R, which is given by, 309 

 310 

1
i

i

F
R

NR
= −

∑
                  (8) 311 

 312 

Therefore, reliability is maintained by constraining the number of failures allowed. Note that 313 

with this formulation for each realization i, a failure (Fi=1) is considered when the quality 314 

standard is not met, independently on how many times or in how many control sites the quality 315 

standard is exceeded. Therefore, for a single realization i, f may exceed the quality standard in 316 

several times steps or control sites, thus leading to define Fi as a failure, i.e., Fi =1. Finally, 317 

failures are penalized in the objective function as shown in (4). 318 



 319 

Unlike the classic chance-constrained applications (e.g., Tung, 1986; Wagner and Gorelick 320 

1987; McSweeny and Shortle, 1990; Wagner 1999), this formulation considers uncertainty in 321 

the response matrix coefficients and does not require a priori definition of the distribution, as it 322 

is required in the “classic” chance-constrained programming (Charnes et al., 1958; Charnes and 323 

Cooper, 1963), in which the problem has been usually solved by transforming the probabilistic 324 

constraints to deterministic equivalents given knowledge. The deterministic equivalent-based 325 

methods can be solved by linear or nonlinear programming methods (e.g., Charnes and Cooper, 326 

1963; Kataoka, 1963). Nevertheless, they entail a series of drawbacks such as requiring 327 

assumptions of parameter distributions that may induce to errors (for mathematical 328 

convenience, the most widely used statistical model is the normal distribution, e.g., Tung, 329 

1986; Wagner and Gorelick, 1987), or to be unsuitable for complex nonlinear problems where 330 

the deterministic equivalent may be difficult or even impossible to establish. Furthermore, they 331 

become cumbersome whenever reliability is defined as the probability of meeting a set of 332 

constraints simultaneously, rather than one or more (Ng and Eheart, 2008). All these problems 333 

are avoided with the approach here presented. However, the chance-constrained approach has 334 

also the advantage of requiring less computational effort that the multiple realization model or 335 

the mixed-integer models. 336 

 337 

3. Illustrative example 338 

The aquifer system configuration is the same that the one used by Peña-Haro et al. (2009), 339 

which apply the deterministic formulation to a 2D homogeneous synthetic aquifer. In this case, 340 

however, we consider heterogeneous hydraulic conductivity. 341 

The aquifer has impermeable boundaries and steady-state flow from top to bottom of the 342 

domain. The finite difference grid is 500 × 500 meters, and the domain has 58 rows and 40 343 



columns. A confined aquifer has been modeled with a thickness of 10 meters, effective porosity 344 

of 0.2, and dispersivity of 10 meters. The natural recharge is 500 m3/ha. There are 70 stress 345 

periods, each of one year (365 days). Seven different crop zones (pollution sources or just 346 

sources in our model formulation) with five different crops are considered. For each crop a 347 

quadratic production function and a leaching function have been defined (Peña-Haro et al., 348 

2009). Each source is related to a crop as shown in Figure 1. Three control sites with 349 

concentration upper bounds of 50 mg/l of nitrates, as established by the EU water legislation, 350 

are imposed. 351 

 352 

[Figure 1] 353 

 354 

The four different stochastic formulations described in section 2 were considered in order to 355 

analyze the effect of parameter uncertainty on “optimal” groundwater management and 356 

reliability in meeting the water quality standards. A 40 year planning horizon was considered 357 

for each scenario, with a constant annual fertilizer application during the 40 years. All the 358 

optimization models are coded in GAMS (GAMS, 2008a). The nonlinear optimization models 359 

were solved using CONOPT (Drud, 1985), which is based on the Generalized Reduced 360 

Gradient algorithm designed for large programming problems. The optimization problem 361 

reformulated as a MINLP is also coded in GAMS, using the SBB solver (GAMS, 2008b), 362 

combination of the standard Branch and Bound method and a standard nonlinear programming 363 

solver (CONOPT in this case). The prepossessing of all the required information in the format 364 

required by the GAMS code for the optimization models, including the simulations of the K 365 

fields and the generation of the pollutant concentration response matrices, has been automated 366 

by means of a “batch” file. 367 

 368 



3.1. Simulation of K fields 369 

The different stochastic optimization management formulations require the generation of 370 

multiple K fields. The simulation of these K fields, in the 2D synthetic case stated above, has 371 

been performed by means of a sequential Gaussian simulation using the computer code 372 

GCOSIM3D (Gómez-Hernández and Journel, 1993). The stochastic structure is assumed to be 373 

common for all simulated K fields, which simplifies the analysis avoiding the uncertainty on 374 

the stochastic structure. Because of this, all K fields are equally likely realizations, and 375 

therefore, are plausible representations of reality because they are conditional to the same data 376 

and display the same degree of spatial variability.  377 

 378 

The stochastic structure has been defined by using a spherical variogram with a range 379 

approximately equal to 1/5 of the aquifer size, 0.5 of nugget effect, and sill of 4. The effect of 380 

different degrees of heterogeneity of the parameters in the aquifer has been studied. 381 

Specifically, a sensitivity analysis by considering two different variances of the hydraulic 382 

conductivity distribution has been carried out, both with a normal distribution with mean 40 383 

m/day and with variances of 15 m2/day2 (referred as “case 1”) and 60 m2/day2 (“case 2”). A 384 

hundred realizations were generated for each case. We assume that this set is large enough to 385 

provide a significant representation of the variability of the parameter. Figure 2 illustrates the K 386 

field for the realization #1, while Figure 3 shows the frequency distribution and univariate 387 

statistics for all K realizations.  388 

 389 

[Figure 2] 390 

 391 

[Figure 3] 392 

 393 



3.2. Pollutant concentration response matrices 394 

Once the different conductivity fields were generated the pollutant concentration responses 395 

from unit recharge rates at the sources were simulated. The pollutant response matrix describes 396 

the influence of pollutant sources upon concentrations at the control sites over time. The 397 

simulated time horizon corresponds to the time for the solute to pass all the control sites, and it 398 

is independent of the length of the planning period. To construct the pollutant concentration 399 

response matrix the flow and transport governing equations must be solved. MODFLOW 400 

(McDonald and Harbough, 1988), a finite difference groundwater flow model, and MT3DMS 401 

(Zheng and Wang, 1999), a solute transport model were used. A pollutant concentration 402 

response matrix was generated for each k field realization.  403 

 404 

3.3. Reliability of the deterministic optimization. Monte Carlo simulation. 405 

The purpose is to assess the probability of meeting the quality standard for a policy that has 406 

been designed without taken into account hydraulic conductivity uncertainty. For this case, one 407 

of the realizations (realization 14) was chosen as the “true” K field The resulting optimal 408 

fertilizer application is then tested on the random fields generated to check the reliability of 409 

meeting the water quality standard (Monte Carlo simulation). Figure 4 shows the reliability or 410 

probability of not exceeding certain nitrate concentration level for the two cases with k fields 411 

with different variances, obtained from the maximum concentration values simulated at each 412 

conductivity field for the optimal fertilizer application of the “true” parameter field. The 413 

reliability level of the pre-assumed optimal policy for meeting the quality standard was only a 414 

14% for case 1 (i.e., only in 14 realizations out of the 100 simulated nitrate concentrations did 415 

not exceed the limit of 50 mg/l), and 24% for case 2. It is clear, however, that this reliability 416 

levels will highly depend on the realization chosen to find the optimal management (the chosen 417 

“true” field).With a larger variance, although the reliability of meeting the standard is higher 418 



the range of probable maximum concentrations increases, what can be relevant for the design 419 

of risk-averse policies.  420 

Reducing the fertilizer application rate, the reliability level can be increased up to 100%. For 421 

case 2, the mean application rate has to be reduced by 20% to obtain a global 100% reliability 422 

when checked with the 100 realizations. This result was obtained by lowering the constraining 423 

quality standard (to 30.6 mg/l), as proposed by Ko and Lee (2008) for the analysis of the 424 

optimal remediation design of a contaminated aquifer. Although this fertilizer management 425 

achieves 100% reliability, it is important to note that this strategy is not necessarily the 426 

“optimal” policy for 100% reliability. This fact will be further discussed in the section of the 427 

mixed-integer stochastic approach. The alternative with a 24% reliability level produces a total 428 

annual net benefit of 20.8 M€. With 100% reliability (20% fertilizer reduction), the total annual 429 

net benefits is reduced to 19.7 M€.  430 

 431 

[Figure 4] 432 

 433 

3.4. Uncertainty on optimal fertilizer application. Monte Carlo optimization 434 

In this formulation, the uncertainty is considered by solving the hydro-economic optimization 435 

model for each of the 100 individual realizations and comparing the corresponding results. This 436 

approach can be used to characterize the probability distribution of the optimal fertilizer 437 

application rates (Figure 5). The mean for the case 1 (variance of 15 m2/day2) is 138.3 kg/ha, 438 

the standard deviation is 2.9, and the mean fertilizer rates range from 131.4 to 148.5 kg/ha. 439 

However, it cannot be assured that all these strategies would have a high probability of meeting 440 

the standard, what limits the applicability to make decisions. In order to estimate the reliability 441 

of meeting the objectives of any of the specific strategies that we obtain, we have to simulate 442 

the strategy with the complete set of realizations (post-optimality Monte Carlo simulation). For 443 



example, for the strategy that corresponds to the mean fertilizer application, the reliability of 444 

meeting the standard is 33%.  445 

For case 2 (variance of 60 m2/day2), the mean value is similar (138.9 kg/ha), while the standard 446 

deviation goes up to 5.3. The reliability of the strategy corresponding to the mean rate is 35%. 447 

The results show more dispersivity and a broader range of possible values of the mean fertilizer 448 

rates obtained from a single-realization optimization, and therefore, a greater variability of the 449 

economic impact of the strategy for a larger variance in the K fields.  450 

 451 

[Figure 5] 452 

 453 

3.5. Stacking approach for optimal fertilizer allocation 454 

For this formulation, the hydro-economic management model is solved only once, 455 

simultaneously for the complete stack of 100 realizations of the random conductivity field; 456 

therefore, only one optimal fertilizer application is obtained. Chang (1993) investigated the 457 

number of realizations to be included in the staking in order to achieve a certain level of 458 

reliability, using a Bayesian framework. He obtained the following relationship between stack 459 

size (number of realizations, NR) and reliability (R): 460 

 461 
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 463 

Feyen and Gorelick (2004) concluded that the previous relationship obtained by Chan (1993) 464 

overestimates the reliability for different stack sizes, and presents a formula that provides 465 

expected reliability as a function of the number of realizations in the stack and the variance of 466 

the log hydraulic conductivity σ2 as: 467 

 468 
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 470 

For our case, the application of equations, (9) and (10) yields the same reliability for the 100 471 

realizations, 99%. Therefore, the size of the stack is considered big enough to assess reliability 472 

levels. 473 

As expected, the groundwater quality standard is not exceeded when simulating the optimal 474 

strategy for all the realizations of the stack (Figure 6). The reliability will be therefore 100%, 475 

assuming the 100 set of realizations as a representative measure of k variability. The total net 476 

benefit of the optimal solution with a 100% reliability is higher for case 1 (20.22 M€/year) than 477 

for the case with a larger variance (19.89 M€/year), since in the latter the fertilizer application 478 

has to be lower in order to meet the standards. However, the use of this approach does not 479 

allow for prespecification of the desired system reliability. Since the reliability of the system 480 

management is not explicitly considered in the optimal solution, the method can lead to 481 

conservative (and more expensive) solutions. 482 

 483 

[Figure 6] 484 

 485 

Figure 7 shows the influence of the stack size in the reliability of the resulting strategies. Post-486 

optimization Monte Carlo reliability analyses were carried out by simulating each optimal 487 

solution against the set of a hundred different hydraulic conductivity realizations. As expected, 488 

the reliability of the optimal solution increases with the stack size. The values of reliability 489 

versus stack size are in agreement with the findings of other authors (Wagner and Gorelick, 490 

1989; Chan 1993 and Ko and Lee, 2009) for the optimal remediation design to control 491 



groundwater pollution, and Feyen and Gorelick (2004) for controlling groundwater outflow in 492 

wetlands. The results also show that a high reliability can be achieved with a stack of a reduced 493 

number of realizations.  494 

 495 

[Figure 7] 496 

 497 

3.6. Mixed-integer stochastic approach with predefined reliability 498 

In this formulation, the stochastic nature of the conductivity field is considered in the decision-499 

making process by integrating the complete set of Monte Carlo realizations through the 500 

response matrix of the optimization management model. The method guarantees the optimal 501 

solution for a pre-specified reliability level by using simultaneously all the generated 502 

realizations and fixing the number of constraints that may be violated. Different reliability 503 

levels were tested. The range of the maximum concentration values that are reached decreases 504 

with increasing reliability of meeting the standard, and a steeper slope of the probability curve 505 

is observed (Figure 8). The worst-case (upper value) of the maximum nitrate concentrations 506 

increases with decreasing reliability (Figure 9). The larger the variance, the greater the range 507 

and the worst-case (maximum concentration values). These results tell us that with a high 508 

variance, a risk-averse decision-maker would prefer a more costly strategy with higher 509 

reliability of meeting the standard than in the case of low variance, in order to reduce the risk of 510 

a reaching a high nitrate concentration exceeding by far the standard (which will implies higher 511 

economic impacts in terms of environmental and resource costs).  512 

 513 

[Figure 8] 514 

 515 



[Figure 9] 516 

 517 

The objective function (the total net benefit) increases nonlinearly with decreasing reliability 518 

(Fig. 10). This implies that a larger amount of net benefit has to be sacrificed when a more risk-519 

averse management is considered.  520 

 521 

[Figure 10] 522 

 523 

For the same reliability level, the total net benefit is greater for a lower variance. A high 524 

variance also implies that some critical realizations further limit the fertilizer application rate 525 

for that reliability level. As the reliability level gets lower, the total net benefit for both K 526 

variance fields gets closer, since the fertilizer rate moves toward the optimal application that 527 

yields the maximum benefits. For each realization, the influence of the different sources upon 528 

the concentration at the control sites is different, and the corresponding benefits from crop 529 

production will differ. Table 1 shows the percentage of fertilizer reduction that produces the 530 

maximum crop yield that is required to meet the groundwater quality standards for different 531 

levels of reliability. These results are relevant for the design of optimal land use policies to 532 

control groundwater nitrate pollution. From the table we can see that no fertilizer reduction is 533 

need in certain areas, while in the other areas the reduction has to be greater in order to achieve 534 

a higher reliability of meeting the standards. The pattern of the spatial fertilizer reduction is 535 

maintained for the different reliability levels, showing the robustness of the solution.   536 

 537 

[Table 1] 538 

 539 

4. Discussion 540 



The four stochastic modeling approaches aforementioned have been applied to analyze how 541 

uncertainty of hydraulic conductivity leads to different reliability levels of meeting the quality 542 

standards. Eventually, this is translated into different optimal fertilizer application rates, and 543 

therefore, different net benefits (or reduction of income losses). The four approaches tackle this 544 

problem from different points of view. Some important insights can be drawn from the results 545 

above presented.  546 

First, we have assessed the reliability of the policy derived from the deterministic optimization 547 

for a pre-assumed parameter field. The chosen K field is not necessarily true, and therefore, the 548 

obtained optimal fertilization scheme could succeed or fail in meeting the groundwater 549 

concentrations standards when applied to random K fields by means of Monte Carlo 550 

simulations. As it has been shown, this formulation may lead to low reliability levels. Hence, 551 

this formulation is not recommended to derive reliable policies (especially in very 552 

heterogeneous aquifers) and should be discarded in the decision making process.  Although we 553 

can artificially reduce the constraining quality standard in order to achieve a higher reliability 554 

in meeting the 50 mg/l of groundwater nitrate concentration, it has been proved that this 555 

solution does not necessarily yield the maximum for the objective function (total net benefits). 556 

The Monte Carlo optimization approach can be used to characterize the probability distribution 557 

of the mean optimal fertilizer application rates. A post-optimality Monte Carlo simulation is 558 

required to estimate the reliability of meeting the standards. Results from these post-559 

simulations have shown that the mean value of the probability distribution can lead, again, to 560 

low reliability levels regardless of the variance of the K fields. The different strategies of 561 

fertilizer application rates may have a high probability of not meeting the standard, what limits 562 

the applicability to make decisions. On the other hand, a choice of a more restrictive fertilizer 563 

application (e.g., the lower quartile value of the distribution) could result in too conservative 564 

(and more expensive) solution. 565 



Contrary, in the stacking approach, the fertilizer standard resulting from the optimization model 566 

fulfills the quality standards for all the realizations (Figure 6);  therefore, the relativity level is 567 

equal to 100%, assuming that the set of K realizations used in the stacking is large enough to 568 

provide a significant representation of the parameter variability. The literature has provided 569 

formulas that relate the number of realizations to include in the staking in order to achieve a 570 

certain level of reliability. Our results are in line with those presented by other works related to 571 

pumping remediation of aquifer pollution (e.g., Chan, 1993; Feyen and Gorelick, 2004). By 572 

means of a post-optimization Monte Carlo analysis, the results show that high reliability levels 573 

(greater than 90%) can be reached with a small stack sizes (Figure 7). However, since the 574 

reliability of the system management is not explicitly considered in the optimal solution, the 575 

method can lead to conservative and less economic efficient solutions.  576 

This problem is overcome by resorting to a mixed-integer stochastic approach with an a priori 577 

defined reliability level, allowing a certain number of simulations to fail the standards. The 578 

higher the predefined reliability level and the lower variance, the lower the minimum 579 

concentration that can be reached (Figure 8 and Figure 9). In addition, the lower the variance, 580 

the higher the benefits (Figure 10). As a result, this approach leads to less costly and more 581 

reliable solutions than in the staking approach, guaranteeing the “optimal” strategy of spatial 582 

fertilizer application (maximum total benefit) for a fixed reliability level.  583 

 584 

5. Conclusions  585 

A stochastic hydro-economic modeling framework for optimal management of groundwater 586 

pollution under K uncertainty has been presented. A holistic optimization model determines the 587 

spatial and temporal fertilizer application rate that maximizes the net benefits in agriculture 588 

constrained by the groundwater nitrate concentration standards at various control sites. The 589 

stochastic management framework presented allows to derive least-cost fertilizer plans in order 590 



to meet the groundwater quality standards ruled by the EU Water Framework Directive or any 591 

other water legislation under conditions of parameter uncertainty. As shown in the results, 592 

parameter uncertainty leads to different management policies with clear implications in 593 

reliability levels, costs and benefits. The study of the least-cost alternative for meeting the 594 

environmental objectives is also important in order to justify potential time and objective 595 

derogation when disproportionate costs are identified (WFD, art. 4). 596 

Four different formulations (Monte Carlo simulation with preassumed parameter field, Monte 597 

Carlo optimization, stacking approach, and mixed-integer stochastic optimization with 598 

predefined reliability level) have been applied in order to analyze the influence of the 599 

uncertainty of the spatial variability of the hydraulic conductivity upon the optimal 600 

management of groundwater nitrate pollution from agricultural sources. All the approaches use 601 

a Monte Carlo-type analysis involving a series of realizations of the uncertain parameter, in 602 

order to assess reliability and uncertainty of different fertilizer application strategies. These 603 

results represent an upper bound or benchmark comparison to possible second-best solutions 604 

for controlling nitrate pollution, like economic taxes or incentives either on inputs or ambient 605 

standards.  606 

The framework has been applied to a controlled 2D synthetic aquifer system, offering insights 607 

into the impacts of uncertainty in the optimal management strategies. Given the uncertainty in 608 

the pollutant concentration predictions due to uncertain spatial variability of the hydraulic 609 

conductivity, the solution of the optimization of a single realization does not guarantee a high 610 

reliability in meeting the groundwater quality standards. A stochastic analysis that considers 611 

uncertainty in the performance of the system allows providing more reliable management 612 

strategies than deterministic models. 613 

In order to increase the reliability, we can simultaneously optimize for a sampling or stack of 614 

hydraulic conductivity realizations (stacking approach). The reliability of the optimal solution 615 



increases with the stack size. However, this approach does not allow for pre-specification of the 616 

desired system reliability, and the method can lead to too conservative solutions.  617 

In decision-making processes, reliability and risk-aversion play a decisive role. By using a 618 

mixed-integer stochastic formulation, an a priori reliability level of the strategy can be 619 

explicitly fixed. As the mixed-integer stochastic model includes the complete set of 620 

realizations, it guarantees the best optimal strategy (maximum total net benefit) for that level of 621 

reliability, as shown by the results.  This approach also allows deriving the trade-off curve 622 

between the reliability level and the net benefits.  623 

In a risk-averse decision-making, not only the reliability of meeting the standards counts, but 624 

also the probability distribution of the maximum pollutant concentrations. A risk-averse 625 

decision-making is specially justified when dealing with well-capture zones for drinking water 626 

supply (health risk) or sensitive areas of groundwater dependent ecosystems. A sensitivity 627 

analysis was conducted to assess the influence of the variance of the hydraulic conductivity 628 

fields on the optimal strategies. The results have shown that the larger the variance, the greater 629 

the range of maximum nitrate concentrations and the worst-case (or maximum value) that could 630 

be reached for the same level of reliability of meeting the standard.  631 

In the reliability versus net benefit trade-off, for the same reliability level, the total net benefit 632 

is greater when the variance is lower. Note that by assuming uncertainty in the random function 633 

(e.g., Llopis-Albert and Capilla, 2009) or by considering higher variances of the K, a greater 634 

influence in the results than in the analyzed cases should be expected. 635 

The uncertainty can be reduced by improving the site characterization, providing more realistic 636 

and reliable management schemes. For that purpose, a promising extension of the present work 637 

is the integration of a stochastic inverse model in the described framework, in which the 638 

stochastic simulations are constrained to data such as hydraulic conductivity, piezometer head, 639 

solute concentrations, travel times or secondary data obtained from expert judgment and 640 



geophysical surveys. The influence of the K uncertainty is only analyzed for a fertilizer 641 

standards policy. There is a broad range of policies for controlling nitrates in the literature 642 

(standards or economic instruments on inputs, emissions or ambient concentrations) (Shortle 643 

and Griffin, 2001). A further extension of this work is to incorporate these different policies 644 

into the hydro-economic formulation in order to compare their effectiveness in controlling 645 

nitrate pollution as second-best solutions. 646 

Besides groundwater hydraulic conductivity, there are many other sources of uncertainty, 647 

ranging from partial knowledge about the aquifer properties and boundary conditions, land use 648 

practices, on-ground nitrogen loading, nitrogen soil dynamics, soil characteristics, depth to 649 

water table, to the diverse economic, regulatory and political factors. The analysis of 650 

uncertainty and risk can be also extended to the derived health risk problem (Lichtenberg et al., 651 

1989; Innes and Cory, 2008). Further research is required in order to represent the diversity of 652 

potential on-farm management decisions and other policy options rather than fertilizer use, and 653 

to extend the analysis to other sources of uncertainty. 654 

Finally, the method can be extended to consider other sources of nitrate pollution such as 655 

animal farming, landfills, and septic tanks. Although the method and tools are suitable for 656 

simulating the effects of these sources on nitrate concentration at the control sites, further 657 

research would be required for modeling the economics of abating the pollution from these 658 

other sources.  659 
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Figure 1. Aquifer system 



 

Figure 2. K field for realization #1 and variances of 15 (left) and 60 (rigth) 



 

Figure 3. Frequency distribution and univariate statistics for all K realizations and variances 
of 15 (left) and 60 (rigth) 
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Figure 4. Reliability (probability of not exceeding the maximum nitrate concentration) of the 
optimal fertilzer application for realization 14 with variances of 15 and 60. 
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Figure 5. Probability distribution of the mean fertilizer application, case 1. 
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Figure 6. Maximum nitrate concentration vs. reliability of not exceeding the nitrate 
concentration (post Monte Carlo simulation). 
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Figure7. Mean reliability (post Monte Carlo simulation) vs. stack size. 
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Figure 8. Probability of not exceeding the nitrate concentration for different reliability levels. 
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Figure 9. Reliability vs. upper value of maximum nitrate concentrations 
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Figure 10. Trade-off between reliability and benefits 
 



Table 1. Percentage of spatial fertilizer reduction for different levels of reliability 

Crop Reliability 
Area 100% 80% 60% 

s1 3.29% 2.58% 2.12% 
s2 0.00% 0.00% 0.00% 
s3 43.07% 29.22% 22.17% 
s4 0.00% 0.00% 0.00% 
s5 17.99% 14.00% 11.48% 
s6 2.75% 2.15% 1.76% 
s7 0.00% 0.00% 0.00% 

 

 


