

Dynamic power-aware techniques for
real-time multicore embedded systems

JOSÉ LUIS MARCH CABRELLES

Universitat Politècnica de València

Ph.D. Thesis

Dynamic Power-Aware Techniques for

Real-Time Multicore Embedded Systems

Author:

José Luis March Cabrelles

Advisors:

Prof. Salvador V. Petit Mart́ı

Prof. Julio Sahuquillo Borrás

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Engineering)

in the

Parallel Architectures Group

Department of Computer Engineering

December 2014

http://www.upv.es/index-va.html
http://www.gap.upv.es/jomarcab
http://www.disca.upv.es/spetit
http://www.disca.upv.es/jsahuqui
http://www.gap.upv.es
http://www.upv.es/entidades/DISCA/indexi.html

Collection Doctoral Thesis

© José Luis March Cabrelles

© 2015, of the present edition: Editorial Universitat Politècnica de València
 Telf.: 963 877 012 / www.lalibreria.upv.es

ISBN: 978-84-9048-327-5 (printed version)

Any unauthorized copying, distribution, marketing, editing, and in general any other exploitation, for
whatever reason, of this piece of work or any part thereof, is strictly prohibited without the authors’
expressed and written permission.

This guy’s walking down a street when he falls in a hole. The walls are so steep, he

can’t get out. A doctor passes by, and the guy shouts up, “Hey you, can you help me

out?” The doctor writes a prescription, throws it down in the hole and moves on. Then

a priest comes along, and the guy shouts up “Father, I’m down in this hole, can you

help me out?” The priest writes out a prayer, throws it down in the hole and moves on.

Then a friend walks by. “Hey Joe, it’s me, can you help me out?” And the friend jumps

in the hole. Our guy says, “Are you stupid? Now we’re both down here.” The friend

says, “Yeah, but I’ve been down here before, and I know the way out.”

Leo McGarry (played by John Spencer), The West Wing.

TECHNICAL UNIVERSITY OF VALENCIA

Abstract

School of Computer Engineering

Department of Computer Engineering

Doctor of Philosophy

(Computer Engineering)

Dynamic Power-Aware Techniques for

Real-Time Multicore Embedded Systems

by José Luis March Cabrelles

The continuous shrink of transistor sizes has allowed more complex and powerful devices

to be implemented in the same area, which provides new capabilities and functionalities.

However, this complexity increase comes with a considerable rise in power consumption.

This situation is critical in portable devices where the energy budget is limited and,

hence, battery lifetime defines the usefulness of the system. Therefore, power consump-

tion has become a major concern in the design of real-time multicore embedded systems.

This dissertation proposes several techniques aimed to save energy without sacrifying

real-time schedulability in this type of systems. The proposed techniques deal with

different main components of the system. In particular, the techniques affect the task

partitioner and the scheduler, as well as the memory controller.

Some of the techniques are especially tailored for multicores with shared Dynamic Vol-

tage and Frequency Scaling (DVFS) domains. Workload balancing among cores in a

given domain has a strong impact on power consumption, since all the cores sharing a

DVFS domain must run at the speed required by the most loaded core.

In this thesis, a novel workload partitioning algorithm is proposed, namely Load-

bounded Resource Balancing (LRB). The proposal allocates tasks to cores to balance

a given resource (processor or memory) consumption among cores, improving real-time

schedulability by increasing overlapping between processor and memory. However, dis-

tributing tasks in this way regardless the individual core utilizations could lead to unfair

load distributions. That is, one of the cores could become much loaded than the others.

To avoid this scenario, when a given utilization threshold is exceeded, tasks are assigned

to the least loaded core.

v

http://www.upv.es/index-en.html
http://www.upv.es/entidades/ETSINF/indexi.html
http://www.upv.es/entidades/DISCA/indexi.html

vi Abstract

Unfortunately, workload partitioning alone is sometimes not able to achieve a good work-

load balance among cores. Therefore, this work also explores novel task migration

approaches. Two task migration heuristics are proposed. The first heuristic, referred to

as Single Option Migration (SOM), attempts to perform only one migration when the

workload changes to improve utilization balance. Three variants of the SOM algorithm

have been devised, depending on the point of time the migration attempt is performed:

when a task arrives to the system (SOMin), when a task leaves the system (SOMout), and

in both cases (SOMin−out). The second heuristic, referred to as Multiple Option Migra-

tion (MOM) explores an additional alternative workload partitioning before performing

the migration attempt.

Regarding the memory controller, memory controller scheduling policies are de-

vised. Conventional policies used in Non Real-Time (NRT) systems are not appropriate

for systems providing support for both Hard Real-Time (HRT) and Soft Real-Time

(SRT) tasks. Those policies can introduce variability in the latencies of the memory

requests and, hence, cause an HRT deadline miss that could lead to a critical failure of

the real-time system. To deal with this drawback, a simple policy, referred to as HR-

first, which prioritizes requests of HRT tasks, is proposed. In addition, a more advanced

approach, namely ATR-first, is presented. ATR-first prioritizes only those requests of

HRT tasks that are necessary to ensure real-time schedulability, improving the Quality

of Service (QoS) of SRT tasks.

Finally, this thesis also tackles dynamic execution time estimation. The accuracy

of this estimation is important to avoid deadline misses of HRT tasks but also to increase

QoS in SRT systems. Besides, it can also help to improve the schedulability of the sys-

tems and reduce power consumption. The Processor-Memory (Proc-Mem) model, that

dynamically predicts the execution time of real-time application for each frequency level,

is proposed. This model measures at the first hyperperiod, making use of Performance

Monitoring Counters (PMCs) at run-time, the portion of time that each core is per-

forming computation (CPU), waiting for memory (MEM), or both (OVERLAP). This

information will be used to estimate the execution time at any other working frequency.

UNIVERSIDAD POLITÉCNICA DE VALENCIA

Resumen

Escuela Técnica Superior de Ingenieŕıa Informática

Departamento de Informática de Sistemas y Computadores

Doctor en Filosof́ıa

(Ingenieŕıa Informática)

Técnicas Dinámicas con Control de Consumo para

Sistemas Empotrados Multinúcleo de Tiempo Real

por José Luis March Cabrelles

La continua reducción del tamaño de transistor ha permitido la implementación de

dispositivos más complejos y potentes en una misma área, lo que proporciona una mayor

capacidad y funcionalidad. Sin embargo, este incremento en la complejidad conlleva un

considerable aumento del consumo energético. Esta situación es cŕıtica en dispositivos

móviles, donde la capacidad energética está limitada y, por lo tanto, la vida útil de la

bateŕıa define la usabilidad del sistema. En consecuencia, el consumo energético se ha

convertido en un aspecto crucial en el diseño de sistemas empotrados multinúcleo de

tiempo real.

Esta disertación propone diversas técnicas con el objetivo de ahorrar enerǵıa sin sacri-

ficar la planificabilidad de tiempo real en este tipo de sistemas. Las técnicas propues-

tas actúan sobre diferentes componentes principales del sistema. En particular, estas

técnicas afectan al particionador de tareas y al planificador, aśı como al controlador de

memoria.

Algunas de estas técnicas están especialmente concebidas para sistemas multinúcleo con

dominios DVFS (Dynamic Voltage and Frequency Scaling) compartidos. Equilibrar la

carga entre los núcleos en un dominio dado tiene un fuerte impacto en el consumo de

enerǵıa, ya que todos los núcleos que comparten un dominio DVFS deben funcionar a

la velocidad requerida por el núcleo más cargado.

En esta tesis se propone un nuevo algoritmo de particionado de carga, denominado

Load-bounded Resource Balancing (LRB). La propuesta asigna las tareas a los núcleos

para equilibrar el consumo de un recurso dado (procesador o memoria) entre los núcleos,

mejorando la planificabilidad de tiempo real al incrementar el solapamiento entre proce-

sador y memoria. Sin embargo, distribuir las tareas de esta forma sin tener en cuenta

vii

http://www.upv.es/index-es.html
http://www.upv.es/entidades/ETSINF/indexc.html
http://www.upv.es/entidades/DISCA/indexc.html

viii Resumen

la utilización individual de los núcleos podŕıa dar lugar a distribuciones de carga dese-

quilibradas. Es decir, uno de los núcleos podŕıa estar mucho más cargado que el resto.

Con tal de evitar este escenario, cuando se supera un umbral de utilización dado, las

tareas son asignadas al núcleo menos cargado.

Desafortunadamente, sólo con el particionado de carga a veces no es suficiente para

conseguir un buen equilibrado de carga entre los núcleos. Por lo tanto, este trabajo

también explora nuevas aproximaciones basadas en migración de tareas. Se propo-

nen dos heuŕısticas con migración de tareas. La primera heuŕıstica, llamada Single Op-

tion Migration (SOM), intenta realizar sólo una migración cuando la carga cambia para

mejorar el equilibrio de la utilización. Se han ideado tres variantes del algoritmo SOM,

en función del instante de tiempo en el que se realiza el intento de migración: cuando

una tarea llega al sistema (SOMin), cuando una tarea sale del sistema (SOMout), y en

ambos casos (SOMin−out). La segunda heuŕıstica, denominada Multiple Option Migra-

tion (MOM), explora un particionado de carga alternativo adicional antes de realizar el

intento de migración.

Respecto al controlador de memoria, se han concebido dos poĺıticas de planificación

para el controlador de memoria. Las poĺıticas convencionales usadas en sistemas

que no son de tiempo real no son apropiadas para sistemas que dan soporte a tareas

tanto de tiempo real estricto (Hard Real-Time o HRT) como de tiempo real flexible (Soft

Real-Time o SRT). Esas poĺıticas pueden introducir variabilidad en las latencias de las

peticiones de memoria y, por consiguiente, causar una pérdida de deadlines que podŕıa

conllevar un fallo cŕıtico del sistema de tiempo real. Para tratar este inconveniente,

se propone una poĺıtica simple, denominada HR-first, que prioriza peticiones de tareas

HRT. Además, se presenta una aproximación más elaborada, llamada ATR-first. ATR-

first prioriza sólo aquellas tareas HRT que son necesarias para asegurar la planificabilidad

de tiempo real, mejorando la calidad de servicio (Quality of Service o QoS) de las tareas

SRT.

Finalmente, esta tesis también aborda la estimación dinámica del tiempo de eje-

cución. La precisión de esta estimación es importante para evitar la pérdida de dead-

lines de tareas HRT, pero también para incrementar la QoS en sistemas SRT. Además,

también puede ayudar a mejorar la planificabilidad del sistema y reducir el consumo

de enerǵıa. Se propone el modelo Processor-Memory (Proc-Mem), que dinámicamente

predice el tiempo de ejecución de aplicaciones de tiempo real para cada nivel de frecuen-

cia. Este modelo mide en el primer hiperperiodo, haciendo uso de Performance Monitor-

ing Counters (PMCs) en tiempo de ejecución, la porción de tiempo que cada núcleo está

realizando cómputos (CPU), esperando a memoria (MEM), o ambos (OVERLAP). Esta

información será usada para estimar el tiempo de ejecución a cualquier otra frecuencia.

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Resum

Escola Tècnica Superior d’Enginyeria Informàtica

Departament d’Informàtica de Sistemes i Computadors

Doctor en Filosofia

(Enginyeria Informàtica)

Tècniques Dinàmiques amb Control de Consum per a

Sistemes Encastats Multinucli de Temps Real

per José Luis March Cabrelles

La cont́ınua reducció de la grandària dels transistors ha permès la implementació de

dispositius més complexes i potents en una mateixa àrea, proporcionant una major

capacitat i funcionalitat. No obstant, aquest increment en la complexitat comporta un

considerable augment del consum energètic. Aquesta situació és cŕıtica en dispositius

mòbils, on la capacitat energètica està limitada i, per tant, la vida útil de la bateria

defineix la usabilitat del sistema. En conseqüència, el consum energètic s’ha convertit

en un aspecte crucial en el disseny de sistemes encastats multinucli de temps real.

Aquesta dissertació proposa diverses tècniques amb l’objectiu d’estalviar energia sense

sacrificar la planificabilitat de temps real en aquest tipus de sistemes. Les tècniques

proposades actuen sobre diferents components principals del sistema. En particular,

aquestes tècniques afecten el particionador de tasques i el planificador, aix́ı com el con-

trolador de memòria.

Algunes d’aquestes tècniques estan especialment concebudes per a sistemes multinucli

amb dominis DVFS (Dynamic Voltage and Frequency Scaling) compartits. Equilibrar la

càrrega entre els nuclis en un domini donat té un fort impacte en el consum d’energia,

ja que tots els nuclis que comparteixen un domini DVFS han de funcionar a la velocitat

requerida pel nucli més carregat.

En aquesta tesi es proposa un nou algorisme de particionat de càrrega, anomenat

Load-bounded Resource Balancing (LRB). La proposta assigna les tasques als nuclis per

equilibrar el consum d’un recurs donat (processador o memòria) entre els nuclis, millo-

rant la planificabilitat de temps real en incrementar el solapament entre processador i

memòria. No obstant, distribuir les tasques d’aquesta manera sense tenir en compte la

ix

http://www.upv.es/index-va.html
http://www.upv.es/entidades/ETSINF/indexv.html
http://www.upv.es/entidades/DISCA/indexv.html

x Resum

utilització individual dels nuclis podria donar lloc a distribucions de càrrega desequili-

brades. És a dir, un dels nuclis podria estar molt més carregat que la resta. Per tal

d’evitar aquest escenari, quan se supera un llindar d’utilització donat, les tasques són

assignades al nucli menys carregat.

Desafortunadament, només amb el particionat de càrrega de vegades no és suficient

per aconseguir un bon equilibrat de càrrega entre els nuclis. Per tant, aquest treball

també explora noves aproximacions basades en migració de tasques. Es proposen

dues heurstiques amb migració de tasques. La primera heuŕıstica, anomenada Single

Option Migration (SOM), intenta realitzar només una migració quan la càrrega canvia

per millorar l’equilibri de la utilització. S’han ideat tres variants de l’algorisme SOM,

en funció de l’instant de temps en què es realitza l’intent de migració: quan una tasca

arriba al sistema (SOMin), quan una tasca surt del sistema (SOMout), i en ambdós casos

(SOMin−out). La segona heuŕıstica, anomenada Multiple Option Migration (MOM),

explora un particionat de càrrega alternatiu addicional abans de fer l’intent de migració.

Respecte al controlador de memòria, s’han concebut dos poĺıtiques de planificació

per al controlador de memòria. Les poltiques convencionals usades en sistemes que

no són de temps real no són apropiades per a sistemes que donen suport a tasques tant

de temps real estricte (Hard Real-Time o HRT) com de temps real flexible (Soft Real-

Time o SRT). Aquestes poĺıtiques poden introduir variabilitat en les latències de les

peticions de memòria i, per tant, causar una pèrdua de deadlines que podria comportar

una fallada cŕıtica del sistema de temps real. Per tractar aquest inconvenient, es proposa

una poĺıtica simple, anomenada HR-first, que prioritza peticions de tasques HRT. A més,

es presenta una aproximació més elaborada, anomenada ATR-first. ATR-first prioritza

només aquelles tasques HRT que són necessàries per a assegurar la planificabilitat de

temps real, millorant la qualitat de servei (Quality of Service o QoS) de les tasques SRT.

Finalment, aquesta tesi també aborda la estimació dinàmica del temps d’execució.

La precisió d’aquesta estimació és important per evitar la pèrdua de deadlines de tasques

HRT, però també per incrementar la QoS en sistemes SRT. A més, també pot ajudar

a millorar la planificabilidad del sistema i reduir el consum d’energia. Es proposa el

model Processor-Memory (Proc-Mem), que dinàmicament prediu el temps d’execució

d’aplicacions de temps real per a cada nivell de freqüència. Aquest model mesura en

el primer hiperpeŕıode, fent ús de Performance Monitoring Counters (PMCs) en temps

d’execució, la porció de temps que cada nucli està realitzant còmputs (CPU), esperant

a memòria (MEM), o ambdós (OVERLAP). Aquesta informació serà usada per estimar

el temps d’execució a qualsevol altra freqüència.

Acknowledgements

This work would have never been possible without the support of many people through-

out these years. First of all, I have to mention my parents and my sister, without whom

I would not be who I am. Second, I also have to acknowledge my advisors Salva Petit

and Julio Sahuquillo, as well as Houcine Hassan, for their guidance and help in achieving

this goal.

Looking back, I started my journey in this university ten years ago. Now, after an

Engineering Degree, a Master’s Degree and a Ph.D., I am happy to remember a lot of

moments and experiences, and so I want to thank everyone in the university that helped

me feel really comfortable all these years. Thanks.

Regarding my research group mates, I appreciate the great atmosphere they all have

built, not only at work but also going out together for lunch or dinner, japanese food,

paella or torrà at Carlos’ place, karting, etc. Although the full list would be longer,

I would like to mention Roberto, Crisṕın, Carlos, Josué, José Maŕıa, Davide, Javi,

José Cano, etc. Moreover, working in my laboratory allowed me to build up a good

friendship with Raúl and Mónica. I had interesting and deep discussions with them

about everything including, of course, food and running. The three of us became an

excellent team facing the daily problems of work and life. Finally, a special mention

deserve both biondi Alejandro Valero and Mario Lodde, with whom I shared a lot of

conversations, laughs, travels, concerts, conferences and, in the end, great moments. I

met Mario when studying our Master’s Degree, he taught me italian and music stuff

and, as years went by, we were turning into closer amici. Àlex and I became so good

friends that we even shared an apartment (with a Death Room and a Rat’s Room) for

almost two years of our lives. Currently, we are far away from each other due to our jobs,

however, I know with them I have two trusty friends no matter where we are. Grazie

Mille a Tutti.

I would like to thank Blas for introducing me to Fútbol Xtreme, where I have not only

enjoyed playing football but I have also made a lot of friends. As I have been able

to confirm throughout my life (C.I.L., C.D. Deportes Arnau, C.D. Serranos, Fac-In,

Los de Siempre, Alfonso, HideSport, Nottingham Por, etc.), that is the main result of

playing football: to make friends. In fact, I have to acknowledge football itself, as well as

running, music, movies and TV series, for being such a useful tool to face stress periods

during the development of this work. Gracias.

From my stay at the MDH (Mälardalens Högskola) in Väster̊as (Sweden), I am very

grateful to Thomas Nolte and Moris Behnam. They were very kind, introducing me to

xi

xii Acknowledgements

their research group and making me feel like anyone else on the team. By the way, an

excellent group of people not only in research duties but also in a personal sense. In

the same way, several nice words should be said about some friends I made in Väster̊as.

Sama and Richi were gentle and helpful in the time we spent together. Miguel and Laura

are my family in Sweden, and I know I can count on them. And with Berta I had deep

and enriching discussions about life and muffins. Tack S̊a Mycket.

Here in Spain I also had friends that supported me during all these years: Roman,

Caraltu, Cenci, Maci, Toni, Kent, Amparo, Yasmin, Paula, Cedric, etc. I remember

with special affection the year I shared an apartment with Francesco and Silvia. More

recently, last year I shared another apartment with Jaume and Dani, and they quickly

turned from flatmates into actual friends. Back to the past again, I met Irene fifteen

years ago at school, and despite we now live in different cities, she is always there to

state a helpful judgement in anything that happens in my life. Gràcies.

Crossing the Atlantic Ocean until Brazil, I can not forget Dra. Dra. Juliana Dos Anjos,

who was a really close friend during her stay in Valencia. If we go further through the

Pacific Ocean we will arrive in Japan and find Dr. Pablo Lamilla (a.k.a. Buci). He was

a constant support when we were at university in Valencia studying together and also

later when he moved to Kōchi. Muito Obrigado & Dōmo Arigatō.

And last but not least, I really would like to thank my most true friends Alejandro Arcos

and Jonatan Linares (a.k.a. Xona). Arcos is always there to contradict me, even when

he agrees with me. We shared many moments, at university, in the football field or

traveling. And he hosted me many times in London and Madrid, where I felt like home.

With Xona I also shared many experiences, working together in university projects,

talking about movies and soundtracks, having lunch at Tony’s or driving a Jeep through

the caribbean jungle. Besides, he is a dynamic entrepreneurial endeavour with many

start-up projects in his mind, in which I try to help him. The three of us shared many

great nights, starting with bravas at La Rosa Negra having deep discussions and laughs,

and ending where the flow takes us. I know Arcos and Xona for ten years, and they

were always with me in the good, the bad and the ugly times.

Contents

Abstract v

Resumen vii

Resum ix

Acknowledgements xi

Contents xiii

List of Figures xvii

List of Tables xix

Acronyms xxi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Power-Aware Multicore Processors 1

1.1.2 Real-Time Task Partitioners and Schedulers 2

1.1.3 Memory Controller Scheduling Policies 3

1.1.4 Dynamic Execution Time Estimation 4

1.2 Contributions of the Thesis . 4

1.3 Thesis Outline . 7

2 Related Work 9

2.1 Real-Time Scheduling in Power-Aware Multicore Processors 9

2.1.1 Task Partitioning . 11

2.1.2 Task Migration . 11

2.2 Memory Controller Scheduling Policies . 12

2.3 Execution Time Estimation . 13

3 System Model 17

3.1 Baseline Design . 17

3.1.1 Real-Time Tasks . 19

3.1.2 Power-Aware Scheduler . 19

3.2 The Multi2Sim Simulation Framework . 21

3.2.1 Simulation Models . 22

xiii

xiv Contents

3.2.2 Main Proposed Extensions . 22

3.2.2.1 Task Repetition . 23

3.2.2.2 Priority . 24

3.2.2.3 Frequency . 25

3.2.2.4 Latency of Frequency Changes 25

3.2.2.5 Task Partitioner . 26

4 Task Partitioning 29

4.1 Introduction . 29

4.2 Partitioning Heuristics . 30

4.2.1 HRT Heuristic . 30

4.2.2 Power-Aware HRT Scheduler . 31

4.2.3 Providing Support for SRT Tasks 32

4.3 Experimental Evaluation . 35

4.3.1 Designing and Planning Mix Execution for HRT Tasks 36

4.3.2 Designing Hybrid Mixes . 39

4.3.3 Energy Savings for HRT Mixes . 39

4.3.4 Energy Savings versus Deadline Misses for Hybrid Mixes 42

4.4 Conclusions . 46

5 Task Migration 47

5.1 Introduction . 47

5.2 Proposed Task Migration Heuristics . 47

5.2.1 Single Option Migration Policies 48

5.2.2 Multiple Option Migration Dynamic Partitioner 49

5.3 Experimental Results . 51

5.3.1 Impact of Applying Migrations at Specific Points of Time 53

5.3.2 Comparing MOM versus SOM Variants 56

5.4 Conclusions . 59

6 Memory Controller Scheduling Policies 61

6.1 Introduction . 61

6.2 Power-Aware Scheduler . 62

6.3 Memory Controller . 62

6.3.1 HRT Requests First . 63

6.3.2 Active Task Requests First . 64

6.4 Experimental Results . 65

6.5 Conclusions . 69

7 Dynamic Execution Time Estimation 71

7.1 Introduction . 71

7.2 System Architecture . 72

7.2.1 Partitioning and Scheduling . 73

7.2.2 Memory System . 73

7.3 Processor-Memory Model . 74

7.4 Model Validation . 76

7.5 Frequency Selection Policy based on the Proc-Mem Model 80

7.5.1 Scheduler Working Behavior . 80

Contents xv

7.5.2 Experimental Results . 81

7.6 Conclusions . 83

8 Conclusions 85

8.1 Contributions . 85

8.2 Publications . 87

References 91

List of Figures

1.1 Components of the studied system and thesis contributions 5

3.1 Modeled system. 18

3.2 Active and inactive periods example. 23

3.3 Decreasing and increasing frequency. 26

4.1 Load-bounded Resource Balancing heuristic. Legend: RES refers to the
resource being balanced. 31

4.2 HRT and SRT frequency calculation. 33

4.3 Frequency adjustment due to SRT deadline misses. 34

4.4 Example of the Gantt chart for mix 6. Continuous line means that the
period is active. Discontinuous line means that the task is out of the
system (inactive period). 38

4.5 Normalized energy (2 cores). 40

4.6 Normalized energy (4 cores). 41

4.7 Normalized deadline misses and energy (2 cores). 43

4.8 Normalized deadline misses and energy (4 cores). 44

5.1 Example of task migrations to balance the system workload. 49

5.2 Migration Attempt algorithm. 50

5.3 Multiple Option Migration dynamic partitioner algorithm. 51

5.4 SOMin−out versus MOM working example. 52

5.5 SOM variants comparison for different DVFS levels and number of cores. 54

5.6 Effective action of the SOMin partitioning algorithm. 55

5.7 Differences of the required frequencies in the 3-core system for mix 4. . . . 57

5.8 SOMin−out versus MOM for different DVFS levels and number of cores. . 58

6.1 HR-first request scheduling policy. 64

6.2 ATR-first request scheduling policy. 65

6.3 Normalized energy and deadline misses for 2 cores. 67

6.4 Normalized energy and deadline misses for 4 cores. 69

7.1 System model. 72

7.2 Execution time model. 74

7.3 Execution overlap between processor and memory for two different fre-
quencies in a superscalar architecture. 75

7.4 Estimates of the Proc-Mem model in stand-alone execution in the single-
core superscalar architecture. 77

xvii

xviii List of Figures

7.5 Maximum deviation in processor cycles in a single-core superscalar archi-
tecture. 78

7.6 Average of maximum deviations in a multicore superscalar architecture. . 78

7.7 Estimates of the Proc-Mem model in a multicore processor. 79

7.8 Power-aware scheduler actions of the system across the hyperperiods. . . . 80

7.9 Normalized energy consumption of Proc-Mem and CMAT with respect
to a system working at the maximum speed. 82

List of Tables

3.1 Machine parameters. 19

3.2 Benchmark description. 20

3.3 Frequency (F), voltage (V) and power (P) for each DVFS level. 21

4.1 Benchmarks requirements and classification in categories H, M, L. 35

4.2 Benchmark mixes. 36

4.3 Benchmarks classification intervals attending to their processor require-
ments and memory reference instructions. 37

4.4 Distribution of resource requirements and utilization (core 0, core 1) for
each scheduling heuristic for mix 6. 37

4.5 QoS requirements trade-off. 45

5.1 Benchmarks and mixes. Legend: * the benchmark appears more than
once in the mix. 53

5.2 Algorithms action on workload changes. 56

5.3 Average and standard deviation of task utilization. 59

6.1 Benchmarks and mixes. Legend: * the benchmark appears more than
once in the mix. 66

7.1 Mix composition: benchmarks and instances of each benchmark. 81

7.2 Deadline misses in the CMAT and Proc-Mem models and active periods
of the mixes. 83

xix

Acronyms

ATR-first Active Task Requests first

BF Best Fit

CGMT Coarse-Grain MultiThreading

CMAT Constant Memory Access Time

DVFS Dynamic Voltage and Frequency Scaling

EDF Earliest Deadline First

FF First Fit

FSP Frequency Selection Policy

FGMT Fine-Grain MultiThreading

HRT Hard Real-Time

HR-first HRT Requests first

LRB Load-bounded Resource Balancing

MOM Multiple Option Migration

MPSoC MultiProcessor System-on-Chip

NRT Non Real-Time

OS Operating System

PDA Personal Digital Assistant

PMC Performance Monitoring Counter

Proc-Mem Processor-Memory

QoS Quality of Service

RMS Rate Monotonic Scheduling

SMP Symmetric Multiprocessor Platform

SMT Simultaneous MultiThreading

SOM Single Option Migration

SRT Soft Real-Time

xxi

xxii Acronyms

WCET Worst Case Execution Time

WF Worst Fit

WRR Weighted Round-Robin

Chapter 1

Introduction

1.1 Motivation

This chapter introduces the motivation and contributions of this thesis. The motivation

deals with four main elements in a power-aware real-time multicore system: i) the

power-aware multicore processor, ii) the real-time task partitioner and scheduler, iii)

the memory controller, and iv) dynamic execution time estimation. These four elements

are highlighted in bold letters in Figure 1.1. Next, we motivate the significance of these

elements for the performance and power consumption of real-time systems.

1.1.1 Power-Aware Multicore Processors

Because of technology advances power consumption has emerged up as an important

design issue in modern microprocessors. This fact is especially critical when these pro-

cessors are designed for real-time systems (e.g., robotics, sensor networks) and embedded

systems (e.g., PDAs, mobile phones), where the battery lifetime is a crucial issue [1].

As a consequence, research on reducing power consumption has become a hot research

topic when designing embedded computing systems [2–4].

A straightforward way to reduce power consumption consists on using processors that do

not implement the most power-hungry microarchitectural mechanisms (e.g., the out-of-

order issue logic). However, this situation does not always match the design constraints

since processors must support a growing number of applications. Thus, many research

1

2 Chapter 1. Introduction

works have concentrated on attacking hot spots [5] or reducing consumption in the larger

microprocessor components like the cache memory [6]. A different power management

technique which applies on the whole microprocessor die and that is being implemented

in most current microprocessors is Dynamic Voltage and Frequency Scaling (DVFS) [2].

It applies on the whole microprocessor and allows the system to improve its energy

consumption by reducing the frequency when the processor has a low activity level (e.g.,

a mobile phone that is not being actively used). This technique allows the system to

work at different frequency/voltage levels, and it has been implemented in many modern

microprocessors like the Transmeta Crusoe [7], the Intel Xeon [8], or the Mobile AMD

Duron [9].

Depending on either each core has its own DVFS regulator or the same regulator is

used to supply voltage to all cores (forcing them to work at the same speed), DVFS

can be classified as local and global, respectively. Local DVFS is more complex and

expensive because more frequency/voltage regulators are required in the power delivery

network. In this way, many multicore processors use a single clock domain since using

independent clock domains is much more expensive, as stated in [1]. In addition, it has

been shown that if the workload is properly balanced among the cores, global DVFS can

be as efficient as local DVFS [10]. Thus, there are several high-performance processors,

such as the IBM Power 7 [11], that implement global DVFS. However, recent manycore

processors are incorporating multiple frequency/voltage domains, where each domain

applies to a subset of the processor cores.

1.1.2 Real-Time Task Partitioners and Schedulers

The problem of power aggravates with the increasing number of cores in the processors

die [12], which is the current trend. In such processors, where different computational

units are implemented, real-time systems include a workload partitioner in charge of

distributing the task set among the available computational units according to a given

heuristic [13, 14]. Typically, these heuristics only addressed the workload partitioning

in the past; nevertheless, and due to energy concerns, power-aware heuristics have been

recently proposed. In this context, several studies have analyzed the energy consump-

tion by revisiting previous heuristics like the Worst Fit (WF) or Best Fit (FF) [15, 16].

Chapter 1. Introduction 3

Unfortunately, the nature of some workload mixes prevents the partitioner from achiev-

ing a good balance. To deal with this drawback some systems allow task migration in

order to move their execution from one core to another, which results in energy saving

improvements. Note that nowadays an Operating System (OS) is typically used to gov-

ern any embedded system (even in the form of a micro/pico kernel), however this study

is abstracting the workload as a set of periodic tasks.

Regarding real-time constraints, the current embedded market requires these systems to

host both Hard Real-Time (HRT) and Soft Real-Time (SRT) tasks, as well as tasks with-

out timing constraints (i.e., Non Real-Time or NRT tasks). Unlike HRT environments

where task deadlines must be guaranteed, in SRT environments this constraint is not

mandatory, that is, deadline misses can be tolerated [17, 18]. Since in embedded systems

HRT tasks are used to model critical applications due to safety and correctness reasons,

SRT and NRT tasks are usually assigned the lowest priority. Nevertheless, a key require-

ment for market penetration of commodity embedded systems such as smartphones or

tablets is to ensure not only a correct operation, but also the highest performance for

SRT applications such as video streaming.

1.1.3 Memory Controller Scheduling Policies

Besides, due to packaging restrictions, which are often accentuated in embedded systems,

memory controllers are shared among a set of its computing cores. In this context,

the cores sharing the same memory controller are said to belong to the same memory

domain. Applications executing in the same memory domain may suffer contention when

accessing the shared memory controller, which leads to unpredictable behavior. Thus,

memory controller policies must be specially designed to tackle this issue.

To avoid unpredictable behavior in the execution of memory requests from critical appli-

cations, conventional memory controller scheduling policies used in NRT systems (e.g.,

FIFO) are not appropriate, since these policies can introduce a wide variability in the

latencies of the memory requests, which is likely to cause HRT deadline misses. Recall

that a deadline miss in HRT could lead to an important damage of the real-time system.

4 Chapter 1. Introduction

1.1.4 Dynamic Execution Time Estimation

In addition, real-time systems require to estimate the Worst Case Execution Time

(WCET) of the applications they run to ensure the system schedulability. The WCET

must be estimated with the highest accuracy in order to provide either high Quality of

Service (QoS) in SRT systems or to prevent possible damages due to deadline misses

in HRT systems. Also, a high estimation accuracy allows the system to save power,

improve the schedulability, or both.

As commented above, there are severals aspects difficulting the estimation of the exe-

cution time of tasks in these processors. First, the running threads compete for shared

resources such as the memory controller. Second, the aforementioned DVFS technique,

aimed at managing power consumption more efficiently, difficults the execution time es-

timations, since it must be taken into account the range of frequencies that the regulator

supports.

Typically, estimations of the WCET can be performed off-line by running the jobs in an

isolated way. However, advances in processor design make this technique not appropriate

for its use in most current multithreaded microprocessor generations. In addition, some

research works assume that the memory access time (quantified in processor cycles)

is constant regardless the processor frequency. This assumption considers that all the

processor components scale their speed at the same pace. Nevertheless, it can bring

important deviations to the estimation of the execution time since main memory devices

have their own power supply and work independently of the processor DVFS regulator.

1.2 Contributions of the Thesis

The goal of this thesis is to devise multiple techniques to reduce power consumption in

a multicore embedded real-time system. This thesis offers four major contributions that

are enclosed with dotted lines in Figure 1.1: i) task partitioning, ii) task migration, iii)

memory request scheduling policies, and iv) dynamic execution time estimation. These

contributions are described below:

1. Task Partitioning.

A partitioning heuristic aimed at increasing the overlapping time between memory

Chapter 1. Introduction 5

Figure 1.1: Components of the studied system and thesis contributions

access and computation time is proposed. This algorithm distributes tasks, both

HRT and SRT, among cores balancing the demand of a major system component

(processor or memory) until a given utilization threshold is reached. Then, as all

cores are assumed to work at the same speed (global DVFS), the less loaded core

policy is followed to better balance speed requirements. In this context, there is a

trade-off between the system frequency and the percentage of deadline misses. In

other words, the lower the frequency, the less the energy consumption but also a

higher number of deadline misses will rise and viceversa. The proposed algorithm,

referred to as Load-bounded Resource Balancing (LRB), addresses this trade-off

by varying the system speed, and uses a threshold as an indicator of acceptable

deadline misses. To this end, different aggressiveness ways to increase and decrease

the frequency have been devised. This technique varies the frequency to reduce

power consumption while guaranteeing HRT deadlines and allowing the miss of

some SRT deadlines.

2. Task Migration.

Two algorithms allowing task migration are proposed. The simpler algorithm,

6 Chapter 1. Introduction

namely Single Option Migration (SOM), checks just one target core before per-

forming a migration. In contrast, the Multiple Option Migration (MOM) searches

the optimal target core. To address energy savings, the devised schedulers follow

two main rules: (i) migrations are allowed only in those points of time when the

workload changes, that is, when tasks enter or leave the system, and (ii) only one

task is allowed to migrate each time because analyzing all the possible task migra-

tions may result in a prohibitive overhead. Thes partitioner module is in charge of

readjusting possible workload imbalances at run-time that may occur at arrivals

or exits of tasks by applying task migration. To keep overhead low and to study

the impact of the point of time when the algorithm is applied, three variants of the

SOM algorithm have been devised, depending on the point of time the scheduler

is applied: when a task arrives to the system (SOMin), when a task leaves the

system (SOMout), and in both cases (SOMin−out).

3. Memory Controller Scheduling Policies.

A simple memory controller scheduling policy would prioritize requests of HRT

tasks over the remaining ones, from now on HR-first. This would increase the

number of deadline misses of SRT tasks and the execution time of NRT tasks,

negatively impacting on the QoS of SRT and non-critical applications. Moreover,

a high number of SRT deadline misses during HRT peak activity may leave the

system unresponsive for significant periods of time. To overcome this problem, a

novel memory controller policy, referred to as ATR-first, is proposed. This policy

ensures Earliest Deadline First (EDF) schedulability without sacrificing QoS of

non-critical applications. The proposed approach prioritizes only those requests

of HRT tasks that are critical to accomplish real-time schedulability. For dynamic

scheduling algorithms, such as EDF, this set of tasks varies during execution and

depends on the running workload as well as the computing power of the system

(i.e., number of cores and multithreading capabilities of each core).

4. Dynamic Execution Time Estimation.

A model that dynamically predicts the execution time of real-time applications is

proposed. The proposal, referred to as Processor-Memory (Proc-Mem), executes

all the workload at the maximum speed during the first hyperperiod, which is used

to collect the required inputs to the model. When this hyperperiod expires, the

Chapter 1. Introduction 7

model is used to estimate the lowest (i.e., the most energy-efficient) working fre-

quency that fulfills the deadline through the different applications’ periods. These

input values are saved and used by the scheduler for subsequent hyperperiods.

Notice that selecting the optimal frequency not only can bring important energy

savings but also improves system schedulability. Besides, a Frequency Selection

Policy (FSP) based on the model is also devised and compared with the Constant

Memory Access Time (CMAT) model, where the memory access time (quantified

in processor cycles) is constant regardless the processor frequency.

1.3 Thesis Outline

This thesis is structured in 8 chapters. Chapter 2 discusses the related research. Chap-

ter 3 describes the baseline system model and presents the simulation framework used

for the experiments.. Chapter 4 introduces the LRB task partitioning algorithm. Chap-

ter 5 explains both SOM and MOM task migration algorithms. Chapter 6 analyzes the

proposed memory controller policies HR-first and ATR-first. Chapter 7 describes the

Proc-Mem model to predict the execution time of real-time tasks. Finally, Chapter 8

summarizes the thesis and presents some concluding remarks.

Chapter 2

Related Work

This chapter presents the related work with the thesis contributions as described in

Chapter 1.

2.1 Real-Time Scheduling in Power-Aware Multicore Pro-

cessors

Numerous research papers have explored energy management on uniprocessor real-time

systems. Most of them focus on periodic task systems [19, 20], but also some propos-

als have been published dealing with soft aperiodic tasks [21] and sporadic tasks [22].

Buttazzo et al. [19] present an algorithm for energy management based on DVFS that

integrates the elastic scheduler for discrete voltage mode processors. In [20], AlEnawy

et al. analyze the performance optimization problems for real-time systems that have to

rely on a fixed energy budget during an operation. They adopt the weakly-hard real-time

scheduling paradigm to ensure a predictable performance for all the tasks; that is, they

minimize the number of dynamic failures (in terms of (m,k)-firm deadline constraints)

while remaining within the energy budget.

To deal with both computational and power management requirements, many systems

use multicore processors. These processors allow a more efficient power management

than complex monolithic processors for a given performance level. In multiprocessors

platforms, where energy efficient scheduling of real-time tasks is an NP-Hard prob-

lem [1, 15], two main scheduling categories exist depending on whether the task queue is

9

10 Chapter 2. Related Work

shared among all the processors (global scheduling) or not (partitioned scheduling). In

the former case, tasks are allowed to migrate among processors and the highest priority

executable tasks are selected for execution. For instance, in [23], Kato et al. present

a global EDF based scheduler [24] for sporadic tasks. In the latter case, a task is as-

signed permanently to a given processor and it is not allowed to migrate. When using

this technique the multiprocessor scheduling problem is split into several uniprocessor

scheduling problems. Therefore, well established algorithms such as EDF and RMS

(Rate Monotonic Scheduling) from uniprocessor theory can been adopted. For exam-

ple, in [16], AlEnawy et al. consider the problem of energy minimization for periodic

preemptive HRT tasks scheduled on a Symmetric Multiprocessor Platform (SMP) with

DVFS capability. In [25] Zikos et al. present an energy aware algorithm for clusters of

heterogeneous processors, based on favoring job allocation to the most energy efficient

processors. Notice that these works do not model multithreaded processors, which are

standard nowadays.

Many manufacturers (e.g., Intel, IBM, Sun, etc.) deliver processors providing multi-

threading capabilities, that is, they provide support to run several threads simultane-

ously. Some examples of current multithreaded processors are Intel Montecito [26] and

IBM Power 5 [27]. Also, leading manufacturers of the embedded sector, like ARM,

plan to include multithreading technology in next-generation processors [28]. Regard-

ing research in these multithreaded systems, in [29], Park et al. provide a performance

guaranteed energy management for multithreaded applications in multicore processors.

In [30] Cazorla et al. present an architecture where a Simultaneous MultiThreading

(SMT) processor interacts with the OS to improve real-time predictability. However,

none of these works consider real-time schedulability and energy management as a whole.

In [31], El-Haj-Mahmoud et al. state that SMT processors hardly provide HRT guaran-

tees, and proposes virtualizing them into multiple single-threaded superscalar processors.

This architecture incorporates a static scheduler to execute periodic tasks. They com-

pare their scheduler to a multiprocessor implementing EDF in terms of rate of deadline

misses. Nevertheless, this work does not tackle energy consumption.

Chapter 2. Related Work 11

2.1.1 Task Partitioning

With respect to partitioning heuristics, many proposals have recently been published.

In [32] Wei et al. exploit parallelism of multimedia tasks on a multicore platform com-

bining DVFS with switching-off cores to reduce energy consumption. In [15], Aydin

et al. develop a framework where load balancing is used to produce energy-efficient

partitionings of real-time tasks in a SMP system with DVFS. These partitionings are

evaluated using the EDF algorithm. Schranzhofer et al. [33] presented a method for

allocating tasks to cores in a multiprocessor platform, aimed at minimizing the aver-

age power consumption, however, the application is modeled without considering timing

constraints. In [16], authors focus on the impact of heuristics on feasibility and en-

ergy consumption, and propose a new one that reserves a subset of processors for light

tasks. In [34] Brandenburg et al. present an empirical evaluation of several global and

partitioned scheduling algorithms. The evaluation was conducted on a Sun Niagara

multicore platform with 32 logical CPUs (eight cores and four hardware threads per

core). Although each tested algorithm proved to be a feasible choice for some subset of

the considered workload categories, they do not take into account power saving aspects.

Finally, concerning memory-processor overlapping, El-Haj-Mahmoud et al. [35] devise a

technique for tolerating memory latencies in HRT systems implemented in Coarse-Grain

MultiThreading (CGMT) processors. They derive a closed-form schedulability test to

determine whether a HRT task set is schedulable in the context of Weighted Round-

Robin (WRR) scheduling on a multithreaded processor. Unfortunately, this work does

not deal with energy management and multiple cores.

2.1.2 Task Migration

Some proposals dealing with task migration can be found in the bibliography. Bran-

denburg et al. [34] evaluate global and partitioned scheduling algorithms in terms of

scalability, although power consumption was not investigated. In [36], Zheng divides

tasks into fixed and migration tasks, allocating each of the latter category to two cores,

so they can migrate from one to another. Unlike this thesis, that paper does not con-

sider dynamic workload changes, instead, all tasks are assumed to reach the system at

the same instant, so migrations can be scheduled off-line. In [37] Brião et al. analyze

how migrating SRT tasks affects NoC-based MPSoCs in terms of deadline misses and

12 Chapter 2. Related Work

energy consumption for non-threaded architectures. Seo et al. [1] present a dynamic

repartitioning algorithm with migration to balance the workload and reduce power con-

sumption. They perform a theoretical exploration assuming parameters like number of

cores and number of tasks, but neither computational core nor real-time benchmarks

are used through their evaluation. Thus, their main contribution is the theoretical es-

timation of benefits. Fisher and Baruah [38] derived near-optimal sufficient tests for

determining whether a given collection of jobs with precedence constraints can feasi-

bly meet all deadlines upon a specified multiprocessor platform allowing task migration

under global EDF scheduling. However, this work does not tackle reduction of energy

consumption, which is major concern of this research. Notice that in multicores, task

migration may cause additional traffic for the coherence protocol too; this problem has

been studied previously and reduced by modification to the coherence scheme [39].

2.2 Memory Controller Scheduling Policies

Schliecker et al. [40] and Pellizzoni et al. [41] analyze the delay of memory access in

systems where several simultaneously-running tasks share the main memory. Their

proposals require a detailed profiling of application memory access patterns and a deep

understanding of the memory scheduling policy.

Predator [42] is a memory controller for multiprocessors that guarantees a bandwidth

requirement to a given task and requires the user to assign a fixed priority to each task.

The controller is implemented in the network interface of a network on chip targeted

for a specific DRAM device, a JEDEC-compliant 32 Mb 16 DDR2-400B SDRAM. This

solution fits well in streaming or multimedia real-time applications, in which a bandwidth

QoS requirement can be easily defined.

In [43], Paolieri et al. present a JEDEC-compliant DDRx SDRAM analyzable memory

controller for multicore architectures that reduces the impact that a memory request

can suffer due to the memory interferences introduced by other tasks, allowing the

computation of tight WCET estimations. This research is orthogonal to the memory

controller scheduling policy proposed on this thesis, that improves QoS of SRT tasks in

a heavily loaded real-time system.

Chapter 2. Related Work 13

In [44], a shared memory multicore that allows concurrent execution of HRT and non-

HRT applications is proposed. They give an Upper Bound Delay to memory requests of

HRT tasks, so that these tasks can meet their deadlines while providing high-performance

for non-HRT tasks. However, the power consumption of the proposal is not tackled. To

the best of our knowledge, our work addresses for the first time the trade-off between

the energy consumption and SRT QoS while guaranteeing HRT constraints.

2.3 Execution Time Estimation

A number of static WCET analysis methods have been designed in the last two decades,

mainly for monoprocessors [45]. These research works use execution time estimates to

choose the optimal DVFS level to enhance power savings and reduce deadline misses.

Seth et al. [46] study the effects of DVFS on static timing analysis taking into account

power consumption. They calculate the execution time in any frequency range using a

parametric model that depends on the number of cache misses. However, their approach

is static and needs the source files of the applications. Another model is proposed by

Snowdon et al. [47]. They perform an on-line evaluation of application characteristics

using performance counters, nevertheless, it is combined with an off-line characteriza-

tion of the hardware platform. Miftakhutdinov et al [48] propose a DVFS performance

predictor for memory systems with a streaming prefetcher. They also take into account

that memory latencies (as measured in seconds) are not affected by frequency scaling.

However, their proposal is static, without real-time constraints and does not consider

multiple cores. Unlike these works, our proposal dynamically estimates the execution

time and focuses on multicore processors.

Some work has dealt with the estimation of the execution time of concurrent tasks.

Several studies focus on timing analysis for single-threaded architectures by using static

code analysis. Schaefer et al. [49] propose to measure execution time at basic block

level and using this data to estimate WCET of the entire program. Wenzel et al. [50]

propose a decomposition of the program into segments performing a timing analysis

for each segment. Authors also propose an approach for program segmentation that

balances the number of program segments with the average number of paths per segment.

These studies propose improvements of measurement-based timing techniques for single-

threaded processors.

14 Chapter 2. Related Work

Regarding multithreading, Cullmann et al. [51] analyze the design of future multi-

threaded processors for time-critical systems. They show that some processor designs

make the timing analysis infeasible and suggest design principles for making multi-

threaded architectures predictable. Based on the theoretical analysis, authors give

guidelines for designing predictable architectures.

Finally, in [52], Radojković et al. propose a method that quantifies the slowdown that

concurrent tasks may experience due to contention in shared processor resources. The

presented method is used to determine if a given multithreaded processor is a good

candidate for systems with timing requirements. They use the method to analyze three

multithreaded architectures exhibiting different configurations of resource sharing. How-

ever, they do not tackle the schedulability analysis of the system.

Execution time estimation for multicore platforms has been the subject of rather few

studies. Most of them focused on cache-aware methods. Hardy et al. [53] present a

WCET estimation method for multicore platforms with shared instruction caches. The

proposed method provides estimates through the control of the contents of the shared

instruction caches. More precisely, by caching only the blocks statically known to be

reused and bypassing from shared caches the other blocks.

There are some works that study the effect of the main memory in the estimation of

the WCET for multithreaded and multicore architectures. Shah et al. [54] make use

of bank interleaving and applying Priority based Budget Scheduling (PBS) to share

SDRAM among multiple masters. This technique permits to bound the WCET of

an application accessing a shared SDRAM using the worst case access pattern. They

implemented the memory system in an FPGA. Their proposal produces safe and low

WCET bounds. Ungerer et al. [55] build a predictable multicore architecture for mixed

critical applications. Predictability is achieved by giving the highest priority to the

HRT tasks while on the shared bus access latency is bounded by a Round Robin (RR)

scheduling policy. The memory is accessed through an Analyzable Memory Controller

(AMC), which implements bank interleaving. Through theoretical analysis, latency

parameters are extracted to calculate the WCET. The AMC applies the maximum of

Read/Write and Write/Read switching latencies as a constant worst case latency on

every access. Such assumption, while making the analysis simple, cannot produce precise

bounds. Moreover, the RR policy with one request per master cannot satisfy the need

Chapter 2. Related Work 15

of different bandwidth requirements. If more than one request per master is assigned,

the WCET is severely degraded [54].

Chapter 3

System Model

This chapter presents the baseline multicore system used in this thesis. We also detail

the extensions that have been carried out to the Multi2Sim [56] simulation framework

to model real-time constraints.

3.1 Baseline Design

The multicore system studied in this thesis consists of a source and a sink of real-time

tasks, a workload partitioner, a power-aware scheduler, and a multicore processor with

m cores. Figure 3.1 depics a block diagram of the modeled system.

When a task arrives to the system, a partitioner module allocates it into a task queue

associated to a given core, which contains the tasks that are ready for execution in that

core. These queues are components of the power-aware scheduler that controls a global

DVFS regulator [2]. In this scheme, the scheduler is in charge of adjusting the working

frequency of the cores in order to satisfy the workload requirements.

The system consists of multiple superscalar cores that can issue more than one instruc-

tion to execution every cycle. Besides, due to energy constraints of embedded systems,

an in-order issue logic has been assumed, as deployed in embedded processors like the

Intel Atom [57]. Table 3.1 summarizes the simulated machine architectural parameters

of each core.

17

18 Chapter 3. System Model

Figure 3.1: Modeled system.

Many commercial systems are implementing multithreading capabilities in multicore

processors. To this end, three main paradigms can be used: Simultaneous Multi-

Threading (SMT), Coarse-Grain MultiThreading (CGMT) and Fine-Grain MultiThread-

ing (FGMT) [58]. For instance, Intel’s Montecito [26] multicore processor implements

CGMT while Sun’s UltraSPARC T2 [59] uses FGMT. Several SMT implementations

also exist in commercial processors, like the IBM Power 5 [27] or the Intel Atom [60].

SMT processors are more complex and less predictable. Because of these reasons, this

work focuses on CGMT which offers a good trade-off between power consumption and

real-time schedulability [35]. CGMT processors provide multithreading capabilities by

switching the running thread when a long latency event occurs (e.g., a memory access).

In such a case, a new thread takes the processor control while the other performs the

memory access, so during the long latency event both threads are allowed to overlap

their execution. In this context, the saved time can be devoted to reduce frequency in

order to save energy. If the new thread also stalls due to a long latency memory event,

then the issue slots are temporarily reassigned to the highest priority thread among

those that are not waiting for memory, until the event is resolved. This thread switch

can occur among the available hardware threads. That is, the issue slots are always

assigned to the hardware thread executing the task with the highest real-time priority,

which varies according to the scheduling algorithm.

Chapter 3. System Model 19

Microprocessor core

Issue policy In order
Fetch kind Switch on event
Branch Prediction Two-level global history

256 entries BTB, 4096 2-bit
saturating counters GHB

Issue bandwidth 2 instructions/cycle
Int ALUs, mult/div 2,1
FP ALUs, mult/div 2,1

Table 3.1: Machine parameters.

3.1.1 Real-Time Tasks

The system workload executes periodic real-time tasks. There is no task dependency

and each task has its own period of computation. A task can be launched to execute

at the beginning of each active period and it must end its execution before reaching its

deadline. The end of the period and the deadline of a task are assumed to be the same

for a more tractable scheduling process. There are also some periods where tasks do not

execute since they are not active (i.e., inactive periods). In short, a task arrives to the

system, executes during several active periods repeatedly, leaves the system, remains

out of the system for some inactive periods, and then it enters the system again. This

sequence of consecutive active and inactive periods allows modeling real systems with

mode changes. Table 3.2 shows the benchmarks from WCET Analysis Project [61] that

have been used to prepare real-time workload mixes.

Besides its period and deadline, a task is also characterized by its WCET. The WCET is

obtained by executing the task in isolation. To avoidWCET variability due to concurrent

execution, we assume that the processor and the memory controller support priorities.

The task utilization is obtained as U =
WCET

Period
and it is used by several schedulers and

partitioners to check whether schedulability of the task set is feasible or not.

3.1.2 Power-Aware Scheduler

The power-aware scheduler is composed of an EDF scheduler per core and the global

DVFS regulator [10]. Once a task is allocated to a core, it is inserted into the task queue

of that core. These queues are ordered according to the EDF policy, which prioritizes

20 Chapter 3. System Model

Name Function Description

Adpcm Adaptive pulse code modulation algorithm
Bitcnts Test program for bit counting functions
Bs Binary search for a 15-element array
Bsort100 Bubblesort program
Cnt Counts non-negative numbers in a matrix
Compress Data compression program
Cover Program for testing many paths
Crc Cyclic redundancy check on 40-byte data
Duff Copy 43-byte array
Edn FIR filter calculations
Expint Series expansion for integral function
Fac Factorial of a number
Fdct Fast Discrete Cosine Transform
Fft1 1024-point Fast Fourier Transform
Fibcall Simple iterative Fibonacci calculation
Fir Finite impulse response filter
Insertsort Insertion sort on a reversed array of size 10
Janne complex Nested loop program
Jfdctint Discrete-cosine transformation
Lcdnum Read ten values, output half to LCD
Lms LMS adaptive signal enhancement
Loop3 Function with diverse loops
Ludcmp LU decomposition algorithm
Matmult Matrix multiplication of two 20x20 matrices
Minmax Minimum and maximum functions
Minver Inversion of floating point matrix
Ndes Complex embedded code
Ns Search in a multi-dimensional array
Nsichneu Simulate an extended Petri Net
Prime Calculates whether numbers are prime
Qsort-exam Non-recursive version of quick sort algorithm
Qurt Root computation of quadratic equations
Select Nth largest number in a floating point array
Sqrt Square root function
Statemate Automatically generated code
Ud Calculation of matrixes

Table 3.2: Benchmark description.

the tasks whose deadlines expire earlier. Thus, the tasks with the closest deadlines will

be the ones mapped into the hardware threads implemented in each core. If some thread

context is occupied by a lower priority task, preemption is applied.

Once the control logic of the global DVFS receives the speed requirements from all the

EDF schedulers in the system, it supplies to the cores an appropriate frequency/voltage

level to fulfill these requirements. The target frequencies are recalculated only when

Chapter 3. System Model 21

F[MHz] 1700 1500 1400 1300 1200 1100 900 600

V[Volts] 1.48 1.48 1.48 1.39 1.18 1.18 1 0.96

P[Watts] 24.5 24.5 22 22 12 12 7 6

Table 3.3: Frequency (F), voltage (V) and power (P) for each DVFS level.

the workload changes, that is, when a task arrives to and/or leaves the system. In the

former case, a higher speed can be required because the workload increases. In the

latter, it could happen that a lower frequency could satisfy the deadline requirements of

the remaining tasks.

Table 3.3 shows the different frequency/voltage values considered for the power-aware

scheduler based on the frequency levels of a Pentium M [62]. Frequency changes are

not considered instantaneous since some time is needed to overcome the voltage gap

between two different DVFS levels. In this sense, the latency of changing the DVFS

level has been modeled according to a voltage transition rate of 1mv/1µs [63]. To model

this latency and the power overhead caused by these changes, the worst case for that

transition has been assumed. That is, during a frequency transition the speed of the

lowest frequency and the power consumption of the highest one are considered.

To calculate the energy consumption, the number of cycles working at each frequency

is multiplied by the energy required per cycle at that frequency. Then, this value is

normalized using as baseline the energy consumed by the system working always at the

maximum speed. Notice that it is important to reduce the time spent at the higher

frequency/voltage levels, since the normalized power for a given technology (e.g., 45nm)

grows exponentially with the processor clock [1]. Thus, the scheduler must concentrate

on the most efficient frequency/voltage levels.

3.2 The Multi2Sim Simulation Framework

Multi2Sim [56] is a cycle-by-cycle execution driven simulation framework for evaluating

processors, which is being used by manufacturer companies like AMD or NVIDIA. As

in commercial processors, three main parts can be distinguished: the core, the cache

hierarchy and the interconnection network. Multithreaded cores can be modeled on

this simulator with three multithreading paradigms: FGMT, CGMT and SMT. Distinct

22 Chapter 3. System Model

configurations are allowed to represent different sharing strategies of pipeline stages

and resources. It models different memory hierarchies with diverse sharing strategies

and cache levels among cores and threads. A cache coherence protocol (MOESI) for

sharing data among cores is also implemented. Finally, several interconnection network

topologies can be configured.

3.2.1 Simulation Models

In Multi2Sim three different simulation techniques are used: Functional Simulation,

Detailed Simulation and Event-Driven Simulation (timing simulation is performed by

the latter two). Functional Simulation is implemented as an autonomous module that

provides an interface to the rest of the simulator. It does not consider any hardware

structure, as cores or threads, it just deals with software contexts. Its main functions are

to create and destroy contexts, perform program loading, enumerate existing contexts

and consult their status, execute machine instructions and handle speculative execution.

In Detailed Simulation the specific hardware microarchitecture is taken into account,

with elements as pipeline structures (stage resources, instruction queues, reorder buffer,

etc), branch predictor, cache memories or segmented functional units. Each cycle the

detailed simulation module uses the functional simulation module interface to update

the context status. The Detailed Simulation module analyzes the recently executed

instructions accounting the operation latencies caused by hardware structures. With

functional and detailed simulation built in independent modules, the implementation of

machine instructions behaviour can be centralized in a single file (functional simulation),

while function calls that activate hardware components (detailed simulation) return the

latency required to be completed. In some situations that latency cannot be calculated

when the function is called, it needs to be simulated cycle by cycle. That is the case

of the interconnection network and cache memories. In that situation an Event-Driven

Simulation module is required to obtain delays of message transfers caused by memory

accesses.

3.2.2 Main Proposed Extensions

In order to make Multi2Sim able to support real-time tasks and, at the same time,

model a power-aware system, many extensions have been implemented in an additional

Chapter 3. System Model 23

Figure 3.2: Active and inactive periods example.

module. This power-aware real-time module is in charge of: i) manage periodic tasks

repetition with its alternate active and inactive periods; ii) create a deadline based task

priority system; iii) support processor frequencies; iv) model penalty latency cycles when

frequency changes; and v) provide a task partitioner to distribute the workload among

cores. These assignments can be seen as sub-modules, and a more detailed description

of each one is presented below.

3.2.2.1 Task Repetition

In the original Multi2Sim, tasks (benchmarks) are just executed once. In contrast, in

real-time systems tasks are entering and leaving the system constantly, alternating a

number of consecutive (periodic task repetition) active and inactive periods, until the

end of the simulation. When a task finishes, it can be scheduled for another execution

period or leave the system (active-inactive transition). In the latter case, the task will

remain out of the system for some consecutive periods, and then it will enter it again

(inactive-active transition). Figure 3.2 shows an example of a task with 2 active and

3 inactive periods. In this submodule, the chosen approach to model periodic task

repetition is repeating the program loading process. When the last instruction of a task

finishes its commit stage, that task is removed, and immediately it is reloaded again.

This includes creating context, restoring data, arguments, environment variables, etc.

24 Chapter 3. System Model

3.2.2.2 Priority

In order to model a more realistic system, it is also necessary to increase the number of

tasks that the simulator is able to schedule because the original Multi2Sim only accepts

as many tasks as the total number of hardware threads in the system, that is, the number

of hardware threads per core multiplied by the number of cores. This change implies

implementing a task queue for each core, so active tasks can wait for a chance to use

the processor when a task that is running finishes. These are priority queues, based

on the EDF algorithm, although other algorithms can be also applied. In this context,

tasks priorities regarding EDF are taken into account. As Coarse-Grain is the assumed

multithreading paradigm, thread switches occur when a long latency event appears (e.g.,

main memory accesses). On the other hand, we do not consdier the timeslice thread

switch implemented in real CGMT processors.

In this way, at the beginning of the simulation the highest priority tasks are launched

to execution. A task switch caused by a long latency event from the highest priority

thread enables the highest priority active task among the remaining ones to use the

processor. When the long latency event is resolved, preemption is applied to allow the

highest priority thread that was stalled to continue execution. In short, the processor

must be occupied by the task with the highest priority not stalled by a long latency

event. Moreover, preemption must be also applied when a higher priority task becomes

active and all the threads of the core are occupied. In that case, the lowest priority

task among the executing ones will be replaced by the new one. This expulsion requires

saving the execution state of the replaced task, so it can be reloaded from that point

later when any mapped task finishes. The aim is to ensure that, the tasks with the

closest deadlines will run regardless of when they arrived to the system.

Unlike the other extensions proposed, priority thread switching requires to alter the

original Mult2Sim pipeline because the instruction fetch stage needs to be modified so

task deadlines are considered in the decision of whether to change the current thread or

not, since it is in that stage where thread switching occurs.

Chapter 3. System Model 25

3.2.2.3 Frequency

In Multi2Sim there is not a model of the processor clock frequency. However, the

number of latency cycles requested for a main memory access is a configurable parameter.

Therefore, we use the relative speed between CPU and memory is used to model different

processor frequency levels. In this way, a faster processor will stall during more processor

cycles than a slower one for a given memory latency. That is, for each processor cycle,

there will be potentially more memory events serviced in the slower processor than in the

faster one. Once the system is able to run tasks with different frequencies, the assumed

global DVFS controls system speed depending on the workload requirements. Note that

the frequency will only be recalculated when a workload change occurs, that is, when a

task enters or leaves the system to perform a consecutive sequence of active or inactive

periods, respectively.

3.2.2.4 Latency of Frequency Changes

Frequency changes are not instantaneous, some time is needed to overcome the voltage

difference between the previous frequency and the new one. Besides, another consid-

eration is the power overhead caused by these changes. In real processors frequency

changes are gradual, but in this case it is modeled a simpler approach. Only the old

and the new frequencies are considered, with a latency depending on the worst case. If

a frequency increase is required, the system will remain at the same speed during some

penalty cycles before actually changing the working frequency. On a decrease request

this sequence is reversed, that is, first the working frequency is decreased; after that

the penalty cycles are accounted. In both cases, the number of penalty cycles will be

proportional to the voltage difference between the two frequencies.

If the system is able to run tasks at more than two different frequencies, then it is possi-

ble that a frequency change implies passing through some intermediate frequency levels.

In that case we repeat the aforementioned sequence for each two pair of intermediate

frequency levels. For example, in a system with 3 frequency levels it could be requested

a change of the working frequency from the maximum to the minimum one, and that

will be modeled decreasing the frequency from the maximum speed to the intermediate

one, waiting the corresponding penalty cycles, and then arriving finally to the minimum

26 Chapter 3. System Model

Figure 3.3: Decreasing and increasing frequency.

frequency, followed by some additional penalty cycles. The left part of Figure 3.3 rep-

resents the frequency transition commented above. In addition, the right part of the

figure represents the transition from the minimum to the maximum frequency.

Frequency changes cause more power consumption. To model this power overhead it is

assumed that during a frequency transition power consumption is the one correspond-

ing to the highest frequency among the ones involved in the change, independently of

whether it is an increase or a decrease. That is, the worst case is assumed for ev-

ery frequency change. Note that we assume the worst case for both speed and power

consumption. Regarding speed, the worst case means that the system works at the

lowest frequency during the transition, while regarding power it means that the system

consumes the same power that the highest frequency would consume during the whole

transition.

3.2.2.5 Task Partitioner

The last extension is a task partitioner module. This component is in charge of allocat-

ing all the tasks to the available cores as they arrive at the system. This distribution is

a major concern since it will have a very important influence on the system efficiency, in

terms of power consumption, tasks execution time and schedulability. This is because

many different partitioning algorithms can be applied, and the workload balance among

the cores will depend on the selected algorithm. Good algorithms will be those that can

better balance workload so the system can work at lower frequencies reducing power

consumption. For instance, if the system has two cores, a hypothetical balanced work-

load could present 0.5 utilization for each core, while another algorithm could allocate

tasks to cores causing a 0.2 utilization for one core and 0.8 for the other one. The former

algorithm would be better than the latter, since that task distribution could allow the

Chapter 3. System Model 27

system to reduce power consumption by working at a global lower speed, while in the

second algorithm the system may not be able to work at a low frequency because that

would imply missing deadlines in the most loaded core.

Chapter 4

Task Partitioning

4.1 Introduction

This chapter presents a partitioning heuristic, referred to as Load-bounded Resource

Balancing (LRB), aimed at increasing the overlapping time between memory access

time and computation time; thus reducing energy consumption in CGMT multicore

processors working on a global DVFS regulator. The algorithm distributes tasks among

cores balancing the demand of a given system component (core or memory) until a

given utilization threshold is reached. Then, as all cores work at the same speed (global

DVFS), the less loaded core policy is followed to balance speed requirements.

Both HRT and SRT tasks are considered, since most current embedded systems run both

kinds of applications, e.g., avionics and robotics systems. Unlike HRT environments

where task deadlines must be guaranteed, in SRT environments this constraint is not

mandatory, that is, deadline misses can be tolerated [17, 18]. In this context, there

is a trade-off between the system frequency and the percentage of deadline misses. In

other words, the lower the frequency, the less the energy consumption but also a higher

number of deadline misses will rise and viceversa. The proposed algorithm addresses this

trade-off by varying the system speed, and uses a threshold as an indicator of acceptable

deadline misses. To this end, different ways with distinct aggressiveness have been

devised to increase and decrease the frequency. To sum up, the proposed algorithm

varies the frequency to reduce power consumption while guaranteeing HRT deadlines

and allowing the miss of some SRT deadlines.

29

30 Chapter 4. Task Partitioning

4.2 Partitioning Heuristics

As mentioned above, CGMT processors switch the running thread when a long latency

event rises. This feature allows overlapping the execution of diverse tasks, provided

that one of them is consuming CPU while the other ones are accessing to main memory

or waiting for it. In a real-time system, the consequence of this overlapping is that

non priority tasks are allowed to either execute processor instructions or access to main

memory. Thus, they can finish earlier their execution than when executing in a non-

threaded processor. This property allows the system to get slack time that can be

used to reduce the processor speed and save energy. Note that this slack time can be

enlarged when the co-running task threads are complementary regarding processor and

memory requirements. In short, the main goal of the proposed heuristic is to increase the

processor-memory overlapping time. With this aim, the proposed heuristic distributes

complementary tasks among the available cores.

However, distributing tasks in this way regardless the individual core utilizations could

lead to an unfair load distribution. That is, one of the cores could become much loaded

than the others. In this situation, it would be not feasible to globally reduce the con-

sumption by lowering the system speed, since the accumulated utilization of one core

would force to execute its workload at a higher speed in order to guarantee the dead-

lines of the tasks assigned to that core. Therefore, to avoid this situation the heuristic

should first provide a good resource (CPU or memory) balancing among cores in order

to increase overlapping, while bounding the utilization of the individual cores.

4.2.1 HRT Heuristic

The proposed LRB policy, pursues to balance a given resource utilization. Two different

variants have been devised depending on the balanced resource (memory and CPU). The

variant balancing memory will be referred to as LRB-M, and that balancing CPU as

LRB-C. Figure 4.1 summarizes the LRB policy. The algorithm distributes tasks among

cores by assigning the most resource-consuming task to the core with least accumulated

consumption for the resource being balanced. Then, it updates the task set to be

distributed, as well as the accumulated resource consumption and utilization of the

target core.

Chapter 4. Task Partitioning 31

1: Algorithm: Load-bounded Resource Balancing (LRB)
2: Input: Tasks: task set to be distributed
3: Output: Tasks1, Tasks2, ..., Tasksm: tasks sets assigned to the different cores

4: Let Uth =

∑n
i=1 Ui

m
5: while Tasks is not empty do
6: target task ← max : ∀task ∈ Tasks,RESmax ≥ REStask

7: target core← min : ∀core,RESmin ≤ REScore

8: if Utarget core + Utarget task > Uth then
9: target core← min : ∀core, Umin ≤ Ucore

10: end if
11: Utarget core ← Utarget core + Utarget task

12: REStarget core ← REStarget core +REStarget task

13: Taskstarget core ← Taskstarget core ∪ {target task}
14: Tasks← Tasks− {target task}
15: end while

Figure 4.1: Load-bounded Resource Balancing heuristic. Legend: RES refers to the
resource being balanced.

This behavior is maintained whenever the accumulated utilization of the target core

after the assignment does not exceed a given threshold, calculated by averaging the

utilization of the cores assuming that the workload is perfectly balanced. If this threshold

is exceeded, then the task is assigned to the least loaded core. In this way, the algorithm

pursues to balance the workload, enabling global speed and energy savings.

Finally, to evaluate how the proposed heuristics (LRB-M and LRB-C) perform they

have been compared to the WF heuristic. The latter pursues to balance only the system

workload, and it is known that it achieves the best overall performance among the

partitioning heuristics in the literature [16].

Once the workload is partitioned, the power-aware scheduler must deal with scheduling

the workload as well as energy savings.

4.2.2 Power-Aware HRT Scheduler

The power-aware scheduler is composed of an EDF scheduler per core and the global

DVFS controller. Each EDF scheduler has two main jobs. First, the scheduler selects

the minimum speed at which the task set running on its core is schedulable following the

EDF algorithm [64] and sends this requirement to the global DVFS controller. Second,

each core is assumed to execute three hardware threads, thus it can launch to execution

up to three ready tasks, those with higher priority in its task set. Regarding EDF, these

32 Chapter 4. Task Partitioning

tasks are those whose deadlines expire earlier. If any thread context is occupied by a

low priority task, preemption is applied.

Recall that these jobs are performed each time a task arrives to or leaves the system due

to two main reasons. The first one is because when the tasks set changes, a different

speed can be required, and the second reason is that it may happen that because of

a good overlapping of tasks running on the same core, when a task ends its execution

there is more slack time (i.e., the remaining tasks will finish earlier), allowing the EDF

scheduler to fullfil real-time constraints at lower speeds.

The power-aware scheduler has been modeled working with different levels (2, 3, and 5)

of frequency and voltage. These models will be referred to as 2L, 3L, and 5L respectively.

Frequency has been assumed ranging from 100 MHz to 500 MHz in steps of 100 MHz.1

The 5L model allows the system to work at all the five frequency/voltage levels. The 2L

only supports the extreme frequencies (i.e., 100 MHz and 500 MHz), and the 3L model

also supports the intermediate one (i.e., 300 MHz).

In order to evaluate the performance of the proposed partitioner, two different baseline

schedulers have been also evaluated: a single-level scheduler (1L), which always works

at the maximum processor speed, and a naive two-level scheduler (2LN). The latter

scheduler assumes that the processor is always working at the maximum speed (500

Mhz) except when there is no task running on any core. In that case, the system

frequency is dropped down to the minimum one (100 Mhz).

4.2.3 Providing Support for SRT Tasks

When running a workload composed of only HRT tasks, the frequency might be set

higher than needed due to the elapsed memory-processor overlapping time. However,

setting a lower frequency could incur in deadline misses, which is not allowed in HRT

workloads. In contrast, when supporting SRT tasks, relaxing the target frequency (i.e.,

setting it lower or much lower than required by the EDF scheduler) could bring important

energy benefits. This can be done since SRT tasks can tolerate a certain percentage of

deadline misses.

1Energy values have been extrapolated from the ones described in Chapter 3.

Chapter 4. Task Partitioning 33

frequency calculation()
1 if workload change
2 then
3 FREQHRT ← HRT calculation()
4 switch
5 case mode 1 :
6 FREQ← FREQHRT − 100
7 case mode 2 :
8 FREQ← FREQHRT − 200
9 case mode 3 :
10 FREQ← FREQHRT − 300
11 case mode 4 :
12 FREQ← FREQHRT − 400
13 if activations = w
14 then
15 activations← 0
16 if lost deadlines > th
17 then FREQ← FREQ+ 100
18 lost deadlines← 0
19

Figure 4.2: HRT and SRT frequency calculation.

When combining HRT and SRT tasks in the same workload, the target frequency is

limited by the frequency required by HRT workloads to be schedulable. In addition,

SRT tasks will have a lower priority than HRT tasks. Therefore, SRT tasks are allowed

to run only when there is not any HRT task requiring processor computation. In short,

SRT tasks are scheduled in background.

To support this behavior, the power-aware scheduler has been extended in several ways.

First, the scheduler task queue has been split into two different queues, one for HRT

tasks, and the other one for SRT tasks. Second, to obtain the working frequency, the

scheduler calculates the frequency required by the whole workload (both HRT and SRT

tasks) that avoids deadline misses. Then, this frequency is reduced depending on the

selected power-saving execution mode. Four different modes have been implemented

with different degrees of aggressiveness. These modes are referred as mode-1, mode-2,

mode-3 and mode-4, where the number indicates how many frequency levels are reduced

with respect to the frequency required by the EDF scheduler. For instance, if the

required frequency is 400 MHz then mode-1, and mode-2 would reduce this frequency to

300 and 200 MHz, respectively. The first conditional structure of the algorithm detailed

in Figure 4.2 shows how these values are calculated.

34 Chapter 4. Task Partitioning

Figure 4.3: Frequency adjustment due to SRT deadline misses.

In this system, the frequency must be checked (and changed if required) in two main

cases. The first case corresponds to the case described in Subsection 4.2.2. In addition,

the frequency must be also checked when a SRT task misses its deadline. In the latter

case, frequency will be risen to the next level when the amount of deadline misses reach

a given threshold th. The algorithm checks the number of missed deadlines for a given

task after w executions of that task, namely the window size. Missed deadline counters

for each task are increased each time a deadline miss occurs and reset at the end of the

window.

Figure 4.3 shows two examples of frequency adjustment due to SRT deadline misses

varying w and th. For instance, a w = 4 window size rises the frequency at the end of

the second window, because the allowed misses threshold is exceeded (i.e., 2), whereas a

w = 12 window size with th = 6 does not modify the system frequency, since the number

of deadlines missed is only 6 in the first window and 2 in the second one. Notice that,

in this example, using a w = 4 window size avoids one deadline miss with respect to the

w = 12 window size (sixth deadline miss).

When the frequency is risen because the threshold is reached, this new frequency level

will remain stable during a minimum period of time, in order to avoid that the relaxed

execution modes slow down too much the frequency which can bring an unacceptable

number of deadline misses. This period has been fixed to 0.5M cycles in the experiments

after checking a wide range of values.

Chapter 4. Task Partitioning 35

Benchmark Processor Memory
Name (M of cycles) (%)

Adpcm 6.41 H 24 L
Bitcnts 1.90 H 14 L
Bs 0.24 L 22 L
Bsort100 0.29 L 23 L
Cnt 0.43 M 22 L
Compress 0.41 M 26 M
Cover 0.32 M 22 L
Crc 1.01 H 22 L
Duff 0.28 L 24 L
Edn 2.91 H 30 H
Expint 0.35 M 24 L
Fac 0.25 L 22 L
Fdct 0.32 M 25 M
Fft1 0.34 M 25 M
Fibcall 0.25 L 27 M
Fir 0.34 M 24 M
Insertsort 0.28 L 24 L
Janne complex 0.21 L 22 L
Jfdctint 0.32 M 23 L
Lms 13.21 H 27 H
Ludcmp 0.39 M 28 M
Matmult 9.62 H 27 M
Minver 0.29 L 24 L
Ndes 2.11 H 29 H
Ns 0.67 L 22 L
Nsichneu 0.41 M 33 H
Prime 0.60 M 24 L
Qsort-exam 0.25 L 24 L
Qurt 0.23 L 23 L
Select 0.25 L 24 M
Statemate 0.27 L 29 H
Ud 0.34 M 23 M

Table 4.1: Benchmarks requirements and classification in categories H, M, L.

4.3 Experimental Evaluation

For evaluation purposes, the system has been modeled on top of the Multi2Sim simula-

tion framework, which was extensively extended as it has been explained in the previous

chapter. More details about the required extensions to model this kind of systems can

be found in [65].

To perform the experiments with two and four cores, a wide set of benchmarks from [61]

have been used. Different mixes have been designed to explore the benefits on energy

36 Chapter 4. Task Partitioning

Mix Benchmarks

Mix 1
Cover, Duff, Fir, Janne complex, Ludcmp, Ndes, Ns, Nsichneu,
Statemate, Ud.

Mix 2 Cover, Duff, Expint, Fibcall, Jfdctint, Lms, Nsichneu, Ud.

Mix 3 Adpcm, Edn, Fft1, Lms, Matmult, Ndes, Ns, Qsort-exam, Qurt, Select.

Mix 4
Bitcnts, Bsort100, Compress, Crc, Fac, Jfdctint, Matmult, Minver,
Prime, Qurt.

Mix 5 Bitcnts, Bs, Bsort100, Cnt, Compress, Cover, Crc, Duff, Edn, Ndes.

Mix 6
Minver, Ndes, Ns, Nsichneu, Prime, Qsort-exam, Qurt, Select,
Statemate, Ud.

Mix 7
Adpcm, Bitcnts, Cnt, Compress, Cover, Crc, Duff, Edn, Expint, Fac,
Fdct, Fft1, Fibcall, Fir, Insertsort, Janne complex, Jfdctint.

Mix 8
Duff, Expint, Fdct, Fibcall, Insertsort, Janne complex, Jfdctint,
Lms, Matmult, Nsichneu, Qurt, Select, Statemate.

Mix 9
Bitcnts, Bs, Bsort100, Cnt, Compress, Cover, Crc, Duff, Edn, Expint,
Fdct, Fibcall, Janne complex, Jfdctint, Ndes, Nsichneu, Ud.

Mix 10
Adpcm, Bitcnts, Bsort100, Compress, Crc, Edn, Fac, Fft1, Jfdctint,
Lms, Matmult, Minver, Ndes, Ns, Prime, Qsort-exam, Select.

Table 4.2: Benchmark mixes.

savings as described below.

4.3.1 Designing and Planning Mix Execution for HRT Tasks

A methodology consisting on the following main steps has been applied to design the

benchmark mixes:

1. Benchmark characterization.

2. Benchmark classification.

3. Benchmark selection for a given mix.

4. Mix execution planning.

Table 4.1 shows the benchmarks used through the experiments, the corresponding mem-

ory and processor requirements, and Table 4.2 the mixes and their composition. These

mixes were designed aimed at achieving core utilizations falling in between 30% and

90%. Memory requirements indicate the percentage of executed memory reference in-

structions (load instructions) and processor requirements are quantified in millions (M)

Chapter 4. Task Partitioning 37

Criterion Interval

3 > High > 1
Processor 0.7 > Medium > 0.4

0.4 > Low > 0.2

34 > High > 30
Memory 30 > Medium > 25

24 > Low > 20

Table 4.3: Benchmarks classification intervals attending to their processor require-
ments and memory reference instructions.

of cycles. Benchmarks have been classified attending to resource consumption. For

each resource (processor and memory), benchmarks have been broken down into three

main groups: low -L- (benchmarks having few resource requirements), high -H- (those

having exceptional requirements), and medium size -M-. Table 4.3 shows the intervals

considered for this classification.

The utilization value of each core depends on the applied partitioning heuristic since

tasks distribution among cores varies according to the heuristic. As an example, Ta-

ble 4.4 shows the results for mix 6 in a 2-core system. Values are presented as two pairs

in each cell of the table. The first value of each pair represents the requirement of a

given resource in core 0, expressed in percentage, with respect to the total requirements

of both cores. The second one indicates such percentage for the second core. For in-

stance, comparing the values corresponding to the WF heuristic (first column), with the

ones corresponding to the LRB-M (second column), it can be seen that the first one

distributes quite uniformly but in an unfair way resource usage while the second one

improves the distribution of utilization and memory between both cores.

In the last step of the mix design, a planning of the execution of each mix is performed.

The main aim behind this step is to simulate that in critical real-time applications, tasks

are dynamically entering and leaving the system at different rates [12], as explained in

Heuristic
Resource WF LRB-M LRB-C

(%) Memory (63,37) (51,49) (48,52)
(%) CPU (60,40) (51,49) (49,51)

Utilization (84,77) (85,76) (78,83)

Table 4.4: Distribution of resource requirements and utilization (core 0, core 1) for
each scheduling heuristic for mix 6.

38 Chapter 4. Task Partitioning

Figure 4.4: Example of the Gantt chart for mix 6. Continuous line means that the
period is active. Discontinuous line means that the task is out of the system (inactive

period).

Subsection 3.2.2.1. Due to this fact, the task period can be either active or inactive

depending on if the corresponding task restarts the execution or not. Therefore, to

evaluate these systems we need not only to select which benchmarks belong to each mix,

but also how these benchmarks behave along the hyperperiod (lowest common multiple

of the benchmarks period). The distribution of active and inactive periods for a given

task has been randomly designed in order to introduce workloads variations which enable

the power-aware scheduler to change the DVFS frequency/voltage level.

Figure 4.4 shows an example of a Gantt chart corresponding to mix 6 during its hy-

perperiod. This chart shows the relationship between the period of each task and the

hyperperiod of the mix. It also shows the distribution of active (continuous line) and

inactive (discontinuous line) periods. For instance, this mix is composed of ten bench-

marks, which arrive to the system at the same time and whose hyperperiod is 90M

cycles. Notice that the benchmark Ndes is running during the whole hyperperiod. On

the contrary, the rest of the benchmarks remain active a given number of periods, log

off the system, and after a given number of inactive periods enter the system again.

Chapter 4. Task Partitioning 39

4.3.2 Designing Hybrid Mixes

To evaluate the impact of combining HRT and SRT tasks (i.e., hybrid mixes), new mixes

have been designed. Unlike in previous subsection where only HRT task are considered,

the aim of these hybrid mixes is to check how the performance of SRT tasks may be

altered due to the presence of HRT tasks in the system. This is a difficult task since

HRT and SRT workloads may interact among them. For simplification purposes, it has

been assumed that HRT tasks have not only the highest priority but also that their

schedulability for the most aggressive execution mode is guaranteed. The methodology

followed to design hybrid mixes matches the described above with the only exception

that the focus is on SRT tasks since HRT tasks are assumed to have the same execution

behavior. In addition, mixes have been designed to simulate how the system performs

on overloaded conditions. In this way, the required processor speed will be one of

the highest of the system, so the algorithm must tradeoff between energy savings and

deadline misses.

4.3.3 Energy Savings for HRT Mixes

Figure 4.5 depicts the normalized energy consumption for the set of mixes (mix 1 to

mix 6) in a two-core system. Energy values have been normalized with respect to the

baseline model (1L) whose energy consumption has been assumed to be equal to 1. From

these values, power benefits can straightforwardly be deduced. For instance, a 0.4 value

means that a given heuristic requires 40% the energy consumed by the baseline. Thus,

the heuristic achieves energy savings by 60% (i.e., 1 − 0.4). In other words, it requires

2.5 (1/0.4) times less energy.

Attending to these results, three main conclusions can be drawn. Regarding the parti-

tioning heuristics, the proposed heuristic (LRB-M) consumes about 4% (i.e., 0.39−0.35)

less energy than the WF heuristic for the 5L model, which represents about 10% relative

energy savings.

Regarding the distribution of memory/processor requirements, the LRB-M heuristic

achieves, on average, higher energy savings than the LRB-C heuristic. For instance,

normalized energy consumed by the mix 2 with the LRB-M heuristic is about 3% less

than the consumed by the LRB-C. This is because the memory time is significantly

40 Chapter 4. Task Partitioning

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 AVG

N
o

rm
a
li

z
e
d

E
n

e
rg

y

(a) Worst Fit (WF)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 AVG

N
o

rm
a
li

z
e
d

E
n

e
rg

y

(b) Load-bounded Resource Balancing - Memory (LRB-M)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN 5L 3L 2L2LN

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 AVG

N
o

rm
a
li

z
e
d

E
n

e
rg

y

(c) Load-bounded Resource Balancing - CPU (LRB-C)

Figure 4.5: Normalized energy (2 cores).

higher (about four times) than the processor time. Therefore, the overlapping time

highly increases when the memory time is balanced, so allowing the scheduler to turn

down the speed.

Chapter 4. Task Partitioning 41

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN

Mix 7 Mix 8 Mix 9 Mix 10 AVG

N
o

rm
a
li

z
e
d

E
n

e
rg

y

(a) Worst Fit (WF)

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN

Mix 7 Mix 8 Mix 9 Mix 10 AVG

N
o

rm
a
li

z
e
d

E
n

e
rg

y

(b) Load-bounded Resource Balancing - Memory (LRB-M)

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN 5L 3L 2L 2LN

Mix 7 Mix 8 Mix 9 Mix 10 AVG

N
o

rm
a
li

z
e
d

E
n

e
rg

y

(c) Load-bounded Resource Balancing - CPU (LRB-C)

Figure 4.6: Normalized energy (4 cores).

Regardless the applied heuristic, the best results are achieved when working with the

higher number of frequency/voltage levels. This is because when the system has a wide

range of frequencies, the scheduler adjusts better the speed of the system to the task

42 Chapter 4. Task Partitioning

set requirements. For instance, if the task set requires at least a 150 MHz frequency,

the 3L model would select the 300 MHz frequency while the 5L model would select 200

MHz. Therefore, the latter model saves more energy. Results show that working with

the 5L model provides, on average, by about 29% more relative power savings than

working with the 2L model. Energy differences among the 2L and the 2LN levels (see

Subsection 4.2.2) are significant, on average, about 18% which shows that applying the

power-aware scheduler has an important effect on power-consumption.

The proposed policies can work on any number of cores. Notice that a higher number

of cores, which is the current trend in multicore systems [1, 11], will waste an important

percentage of the energy budget when using global DVFS. Nevertheless, when applying

the algorithm in a m-core system, the algorithm must guarantee that the utilization

per core and the task resource consumption is equally distributed. Figure 4.6 shows the

experimental results for different mixes (mix 7 to mix 12) when executing in a four-core

system. As the mixes executed in the four-core system have similar characteristics (i.e.,

similar utilization values and resource requirements) to the ones shown in Figure 4.5

(two-core system) the results are also in the same line.

Finally, the main conclusion that can be drawn is that by using the power-aware sched-

uler with a high number of frequency levels (5L) and a fair heuristic strategy (LRB-M),

normalized energy can be 65% lower than working with the baseline model.

4.3.4 Energy Savings versus Deadline Misses for Hybrid Mixes

When SRT tasks are introduced in the system, not only the energy savings must be

evaluated, but also the QoS in terms of deadline misses as well. The experiments have

been run varying the window size (w = 2 and w = 4), the threshold (th = 1 and th = 2

for w = 4, and th = 1 and th = 6 for w = 12) and the execution mode (-1, -2, -3 and -4).

Figures 4.7 and 4.8 show the relative deadline misses and power consumption for the

extended LRB-M heuristic when applied in a system supporting HRT and SRT tasks, for

2 and 4 cores, respectively. Notice that only the 5L configuration has been considered for

hybrid experiments since it makes no sense to have more execution modes than available

frequency levels. The percentage of deadline misses is obtained by dividing the number

of lost deadlines by the total number of SRT periods executed.

Chapter 4. Task Partitioning 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

R
el

at
iv

e
D

ea
dl

in
e

M
is

se
s

Threshold 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6
Window 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12

Mode -4 -3 -2 -1 -4 -3 -2 -1 -4 -3 -2 -1

mix 11
mix 12
mix 13

(a) Deadline Misses.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Threshold 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6
Window 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12

Mode -4 -3 -2 -1 -4 -3 -2 -1 -4 -3 -2 -1

mix 11
mix 12
mix 13

(b) Energy Consumption.

Figure 4.7: Normalized deadline misses and energy (2 cores).

The results show that both deadline misses and power consumption graphics have op-

posite forms, that is, the more the power consumption, the less the number of deadline

misses. This is due to the fact that when the frequency is risen, more slack time is

available and hence SRT tasks are easily scheduled, however, more energy is consumed.

44 Chapter 4. Task Partitioning

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

R
el

at
iv

e
D

ea
dl

in
e

M
is

se
s

Threshold 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6
Window 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12

Mode -4 -3 -2 -1 -4 -3 -2 -1 -4 -3 -2 -1

mix 14
mix 15
mix 16

(a) Deadline Misses.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

Threshold 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6 1 2 1 6
Window 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12

Mode -4 -3 -2 -1 -4 -3 -2 -1 -4 -3 -2 -1

mix 14
mix 15
mix 16

(b) Energy Consumption.

Figure 4.8: Normalized deadline misses and energy (4 cores).

Looking at the three parameters shown in Figures 4.7 and 4.8 (threshold, window size,

and mode) it can be pointed out that the mode parameter is the one that has the

strongest impact on both power consumption and deadline misses. If the main ob-

jective of the system is to minimize the number of deadline misses, the best choice

Chapter 4. Task Partitioning 45

Power Consumption Deadline Misses

High Low

Intermediate-High Intermediate-Low

Intermediate-Low Intermediate-High

Low High

Table 4.5: QoS requirements trade-off.

is mode-1, whereas if the priority is to reduce power consumption, mode-4 should be

the selected mode. For intermediate requirements mode-2 and mode-3 would be more

suitable choices.

Notice that safer modes (-1 and -2) lose less deadlines but the most aggressive present

less power consumption. As stated above, the system has to trade-off between these

two parameters to establish the frequency value. In this sense, the system uses the

threshold parameter to determine the risk assumed in terms of deadline misses. Recall

that a higher threshold can reduce power consumption, but at the expense of allowing

more deadline misses. The influence of the threshold is larger in the two more risky

frequency modes (-4 and -3), as it can be seen in Figure 4.7(a). This is because in the

safer modes (-1 and -2) working at higher frequencies prevents the system from losing

an excesive number of deadlines, since the threshold is not reached as many times as in

the risky modes. It can be also seen that given a threshold for mode-4, a larger window

size implies more energy savings although the number of deadline misses increases.

In spite of the aforementioned considerations, the used window lenghts obtain important

energy savings and this parameter might be tuned depending on the workload charac-

teristics, that is, considering the number of task repetitions. For example, in a system

where most benchmarks execute from 5 to 8 times during the hyperperiod, a 4 window

size would be more appropriate and would achieve better results than a 12 window size.

Once a mode is chosen, the system can prioritize the QoS requirements in a different

manner during its lifetime (Table 4.5). For instance, the system could start by setting a

low number of deadline misses, but at the end of the system mission, when the battery

is going down, it can be more useful allowing more deadline misses in order to reduce

power consumption and make a better use of the remaining energy budget.

Regarding the scalability, the mixes (14, 15 and 16) launched in the four-core processor

were designed following the same criteria as the mixes (11, 12 and 13) launched in the

46 Chapter 4. Task Partitioning

two-core processor. Comparing Figure 4.7 and Figure 4.8, it can be noticed that the

scheduler shows a good behavior with the number of cores in both deadline misses and

power consumption.

4.4 Conclusions

This chapter has presented HRT and SRT power-aware partitioner and scheduler for a

CGMT multicore processor implemented in a wide range of embedded systems. The

scheduler guarantees HRT task deadlines and saves energy applying DVFS techniques.

Regarding the partitioner, a new heuristic to partition the workload has been intro-

duced. The proposed heuristic distributes the task set attending to the CPU or memory

requirements among the system cores in order to increase the overlapping time and hence

get extra slack time that can be devoted to reduce power consumption.

Results show that applying the proposed heuristic (LRB-M) in HRT task environments,

energy consumption is by 10% lower than when applying the WF heuristic with a power-

aware scheduler and 5 DVFS frequency/voltage levels. If no power-aware scheduler is

applied (2LN), the results provided by the LRB-M heuristic achieve about 14% more

energy benefits than WF.

Regarding the results of the extended heuristic scheduler when executing hybrid mixes

composed of HRT and SRT tasks, energy consumption can vary from 8% to 70%, and

deadline misses from 3% to 48%, depending on the allowed deadline misses and on the

selected frequency. Therefore, the required QoS is the key issue to determine both power

consumption and deadline misses. Then, a higher number of allowed deadline misses of

SRT tasks can help to reduce much more power consumption at the expense of increasing

the deadline misses and viceversa.

Chapter 5

Task Migration

5.1 Introduction

This chapter presents two task migration algorithms to reduce energy consumption in

multicore embedded systems with real-time constraints implementing DVFS capabili-

ties. The simpler algorithm, namely, Single Option Migration (SOM) only checks just

one target core before performing a migration. In contrast, the Multiple Option Migra-

tion (MOM) searches the optimal target core. To address energy savings, the devised

algorithms follow two main rules: (i) migrations are allowed only in those points of

time when the workload changes, that is, when tasks enter or leave the system, and

(ii) only one task is allowed to migrate each time because checking all the possible task

migrations may result in a prohibitive overhead. The partitioner module is in charge of

readjusting possible workload imbalances at run-time that may occur at arrivals or exits

of tasks by applying task migration. Three variants of the SOM algorithm have been

devised, depending on the point of time the scheduler is applied: when a task arrives

to the system (SOMin), when a task leaves the system (SOMout), and in both cases

(SOMin−out).

5.2 Proposed Task Migration Heuristics

There are several partitioning heuristics that can be used to distribute tasks among cores

as they arrive to the system. As commented in Subsection 4.2.1, the WF partitioning

47

48 Chapter 5. Task Migration

heuristic is considered one of the best choices in order to balance the workload [16],

yielding to improved energy savings. WF balances the workload by assigning each

incoming task to the least loaded core. If more than one task arrives to the system

at the same time, WF arranges the incoming tasks in a decreasing utilization order

and assigns them to the cores starting with the task with the highest utilization. This

algorithm was originally used in partitioned scheduling, and it does not support any

task migration among cores by design. In other words, once WF assigns an incoming

task to a given core, the task remains in that core until it leaves the system (i.e., it has

executed all its active periods). To allow migration, SOM policies are devised in the

next subsection.

5.2.1 Single Option Migration Policies

Figure 5.1 shows an example of how task migration could improve workload balance. At

the beginning of the execution (time t0), task 0 and task 1 are the only tasks assigned

to core 0 and core 1, respectively. Task 0 presents an utilization by 33%, while the

utilization of task 1 is around 25% (i.e., its WCET occupies a quarter of its period).

At point t2, task 2, whose utilization is around 66%, arrives to the system. The WF

algorithm would assign it to core 1 (since it is the least loaded core); leading the system

to a high workload imbalance since the global utilization of core 0 and core 1 would be

33% and 91%, respectively. This imbalance problem could be solved by allowing task

migration. For instance, allowing task 1 to migrate to core 0, would provide a much fair

balance (58% in core 0 versus 66% in core 1).

This work assumes that the running workload dynamically changes at run-time. In this

context, the system can mainly become strongly unbalanced when the workload changes,

that is, when a task enters or leaves the system, as seen in the previous example. Thus,

in the evaluated system migration policies should apply in these points in order to

maximize benefits due to migration. For this purpose, we have devised three policies

based on the WF policy to explore energy benefits: SOMin, SOMout, and SOMin−out.

The first one, SOMin, allows migration only when a new task arrives to the system,

SOMout when a task leaves the system, and the last one, SOMin−out, allows migration

in both cases.

Chapter 5. Task Migration 49

Figure 5.1: Example of task migrations to balance the system workload.

Since workload changes only at two points of time (when a task arrives to the system or

when a task leaves the system) it only makes sense to apply migration at these events.

In addition, to avoid performing an excessive number of migrations, which could lead to

an unacceptable overhead, the number of migrations is limited to only one.

Figure 5.2 illustrates the devised Migration Attempt (MA) algorithm. This algorithm

calculates the imbalance by subtracting the utilization of the least loaded core from the

utilization of the most loaded one. This result is divided by two to obtain a theoretical

utilization value that represents the amount of work that should migrate to achieve a

perfect balance between both cores, and hence, a better global balance. Then, it searches

the task in the most loaded core whose utilization is the closest one to this value. Notice

that if the utilization of the selected task is not close enough, the migration could yield to

a worse imbalance; therefore, the algorithm performs the migration only if it effectively

reduces the imbalance.

5.2.2 Multiple Option Migration Dynamic Partitioner

This subsection presents the MOM dynamic partitioner algorithm, which applies both

at tasks’ arrivals and exits. When a task arrives to the system, MOM selects the target

50 Chapter 5. Task Migration

1: imbalance← max core utilization−min core utilization
2: target utilization← imbalance/2
3: minimum difference←MAX V ALUE
4: for all task in most loaded core do
5: if |Utask − target utilization| < minimum difference then
6: minimum difference← |Utask − target utilization|
7: candidate← task
8: end if
9: end for

10: new max core utilization← max core utilization− Ucandidate

11: new min core utilization← min core utilization+ Ucandidate

12: new imbalance← |new max core utilization− new min core utilization|
13: if new imbalance < imbalance then
14: migrate(candidate)
15: end if

Figure 5.2: Migration Attempt algorithm.

core and performs a migration attempt acording to the MA algorithm discussed above.

When a task leaves the system, MOM checks if a migration attempt would provide

energy improvements.

MOM (Figure 5.3) arranges the tasks arriving to the system in decreasing utilization

order. Then, it iteratively performs a temptative assignment of the task showing more

utilization to each core in order to find which assignment provides the minimum utiliza-

tion (Umin variable in the figure) for the most loaded core. Notice that all the possible

assignments include amigration attempt according to theMA algorithm discussed above.

Finally, the task assignment that provides the best overall balance is applied and the

algorithm continues with the next task.

Figure 5.4 depicts an example where the MOM heuristic improves the behavior of

SOMin−out on a task arrival. The SOMin−out allocates the incoming task to core 0

and then performs a migration attempt, but in this case, there is not any possible migra-

tion enabling a better workload balance. Thus, the final imbalance becomes 40% (i.e.,

90% − 50%). In contrast, when MOM is applied, it also checks the result of allocating

the new task to core 1 (arrow labeled as MOM B) and then considering one migration.

In this case, the task migration enables a better balance since both cores remain equally

loaded with 70% of utilization, which is the distribution selected by MOM.

To sum up, the main difference between SOMin−out and MOM is that the former selects

only one core and performs a migration attempt, whereas the proposed heuristic checks

Chapter 5. Task Migration 51

1: Algorithm: Multiple Option Migration Dynamic Partitioner (MOM)
2: Input: Task set(Task0, Task1, ..., TaskT−1): task set to be distributed;
3: Input: T : number of tasks
4: Input: Core set(Core0, Core1, ..., CoreM−1): cores in the system
5: Input: M : number of cores
6: Input/Output: Tasks0, Tasks1, ..., TasksM−1: tasks sets assigned to the different

M cores
7: while Task set is not empty do
8: target task ← Taski : (Taski) ≥MAX(U(Task0), U(Task1), ..., U(TaskT−1))
9: Umin ←∞

10: initial task assignment = Tasks0, Tasks1, ..., TasksM−1

11: for all target core in Core set do
12: Taskstarget core ← Taskstarget core ∪ {target task}
13: Migration Attempt()
14: if Umin > MAX(U(Core0), U(Core1), ..., U(CoreM−1)) then
15: Umin ←MAX(U(Core0), U(Core1), ..., U(CoreM−1))
16: best task assignment← Tasks0, Tasks1, ..., TasksM−1

17: end if
18: Tasks0, Tasks1, ..., TasksM−1 ← initial task assignment
19: end for
20: Tasks0, Tasks1, ..., TasksM−1 ← best task assignment
21: end while

Figure 5.3: Multiple Option Migration dynamic partitioner algorithm.

different cores, and then choses the best option in terms of workload balance.

5.3 Experimental Results

Experimental evaluation has been conducted on the extended Multi2Sim simulation

framework. This section evaluates a multicore processor with two, three and four cores,

implementing three hardware threads each. Regarding the migration overhead, a 10.000

cycles penalty has been assumed [66]. This penalty is applied each time a running

context moves its execution to another core.

Because of energy constraints, embedded systems are still limited to a lower number

of cores than their high-performance counterparts. Therefore, energy evaluation results

focus on a low number of cores: two, three and four cores. Some examples are the

bi-core Intel Atom [60], the tri-core Marvell ARMADATM 628 [67] or the quad-core

ARM 11 MPCore [68]. On the other hand, this chapter assumes a relatively wide

number of frequency/voltage levels (up to eight) in order to approach the results to real

systems. The 8L configuration allows the system to work at all the frequencies indicated

52 Chapter 5. Task Migration

Figure 5.4: SOMin−out versus MOM working example.

in Chapter 3, whereas the 4L mode permits running tasks at 1700, 1400, 1100 and

600 MHz. The last DVFS configuration, referred to as 2L, only supports the extreme

frequencies (i.e., 600 and 1700 MHz).

Table 5.1 shows the benchmarks from [61] that have been used to prepare real-time

workload mixes (a benchmark name with an asterisk means that the benchmark is used

in the mix more than once). These experiments focus on a HRT system, so deadline

misses are not allowed. Each mix is composed of a set of benchmarks whose number

ranges from 7 to 34, running concurrently depending on the number of cores. Mixes 1,

2 and 3 are executed in a 2-core system, mixes 4, 5 and 6 in a system with three cores,

and mixes 7, 8 and 9 in a 4-core system. To calculate the WCET, each benchmark has

been executed alone in the modeled system working always at the lowest frequency. The

WCET is measured in number of cycles, that is, it accounts the total number of cycles

that a thread takes to execute.

In order to test the algorithms behavior across a wide range of situations, when designing

Chapter 5. Task Migration 53

Mix Benchmarks

Mix 1 Bs, Fac, Fibcall, Janne complex, Lcdnum, Sqrt, Statemate.

Mix 2
Cnt, Compress, Expint, Fac, Fft1, Janne complex, Jfdctint,
Ludcmp, Qurt.

Mix 3
Bs, Bsort100, Cnt, Compress, Duff, Expint, Fac, Fft1, Fibcall,
Insertsort, Lcdnum, Loop3, Minver, Ns, Statemate.

Mix 4
Bs*, Cnt, Compress, Duff*, Expint*, Fac*, Fft1*, Fibcall*,
Insertsort*, Lcdnum*, Minver*, Statemate*.

Mix 5
Cover*, Fdct, Fir, Janne complex*, Jfdctint, Ludcmp*, Minmax*,
Nsichneu*, Qsort-exam*, Qurt*, Select*, Sqrt*.

Mix 6 Fibcall*, Lcdnum*, Loop3*, Minmax*, Select*, Sqrt*.

Mix 7
Cnt*, Compress*, Crc*, Edn*, Expint*, Fac*, Fft1*, Janne complex*,
Jfdctint*, Ludcmp*, Qurt*.

Mix 8
Cover*, Fdct*, Fir*, Janne complex*, Jfdctint*, Ludcmp*, Minmax*,
Nsichneu*, Qsort-exam*, Qurt*, Select*, Sqrt*.

Mix 9 Bs*, Fac*, Fibcall*, Janne complex*, Lcdnum*, Sqrt*, Statemate*.

Table 5.1: Benchmarks and mixes. Legend: * the benchmark appears more than once
in the mix.

mixes it has been taken into account the task utilization, the task WCET and the

sequence of active and inactive periods. To this end, the global system utilization is set

ranging from 35% to 95% in a single execution, task periods from 100K to 18M cycles,

the number of times that a task arrives to and leaves the system from 1 to 21, and the

consecutive number of active periods of a task from 1 to 70.

5.3.1 Impact of Applying Migrations at Specific Points of Time

This section analyzes the three devised SOM variants (SOMin, SOMout and SOMin−out).

The main goal is to identify the best points of time to carry out migrations. Figure 5.5

shows, for different benchmark mixes, the relative energy consumption compared to the

energy consumed by the system working always at the maximum speed varing the DVFS

configurations and number of cores.

As it can be observed in the results of the 2-core system (Figure 5.5(a)), migration

can provide important energy savings with respect to no migration (WF). For instance,

for mix 2 in the 4L case with task migration, both when a task arrives to and leaves

the system, the energy consumption can be reduced up to by 23.27% compared to

the execution without migration. Notice that the system behaves in a similar way

regardless of the number of cores, that is, the benefits of migration that are observed in

54 Chapter 5. Task Migration

(a) 2 Cores

(b) 3 Cores

(c) 4 Cores

Figure 5.5: SOM variants comparison for different DVFS levels and number of cores.

a system with two cores are also similar in systems with three or four cores, as shown in

Figures 5.5(b) and 5.5(c). This fact makes the proposal a good candidate for commercial

systems attending to the current industry trend of increasing the core count.

Chapter 5. Task Migration 55

Figure 5.6: Effective action of the SOMin partitioning algorithm.

An interesting observation is that, in some mixes, the SOMin variant consumes more

power than the classical WF algorithm with no migration. For example, in the 3-core

system (Figure 5.5(b)) allowing migrations only at tasks’ arrivals turns out in harmful

effects for mix 4 in terms of power consumption, where SOMin consumes 12.27% more

energy than WF for 4L configuration. The reason is related to the fraction of time

length that the system is controlled by the partitioning algorithm. That is, the SOMin

partitioning heuristic only applies at tasks’ arrivals. Therefore, as soon as a task leaves

the system, the workload imbalance will rise since SOMin does not apply on such events.

Figure 5.6 illustrates an example. At time t0 tasks T1, T2, and T3 arrive to the

system, and the scheduler selects the frequency/voltage level that best fits the workload

requirements. Lets assume that the workload is perfectly balanced in a 2-core system.

Then at time t1, task T1 leaves the system, so workload imbalance will rise (dashed

area), in algorithms such as WF or SOMin where migration is not performed, so yielding

to energy wasting. Notice that this area is uncontrolled since the set of tasks running

has changed. On the contrary, the controlled time periods are those where the set of

tasks running matches the set used to perform the scheduling actions. Moreover, further

imbalance would rise if the next task T2 leaves the system from the same core. This

imbalance will remain until the algorithm applies, which happen only on tasks’ arrivals

in WF and SOMin (in t3). This drawback is solved in the algorithms which allow task

migration at such points like SOMout, SOMin−out and MOM. Table 5.2 shows which

actions are performed by the different algorithms both when a task arrives to and leaves

the system.

The longer the algorithm controls the running workload, the better the workload balance.

Consequently, the frequency levels requested by the different cores will be similar, so

56 Chapter 5. Task Migration

Algorithm Task Arrival Task Exit

WF WF -

SOMin WF, Task Migration -

SOMout WF Task Migration

SOMin−out WF, Task Migration Task Migration

MOM MOM Task Migration

Table 5.2: Algorithms action on workload changes.

avoiding energy wastings. Figure 5.7 shows, for mix 4, in a 3-core system with 8 DVFS

levels, the difference among frequencies required by the cores along the execution time

(in percentage). For instance, label 0 means that both cores require the same frequency

and label 2 means that the core with less frequency/voltage requirements requested level

i to the DVFS regulator, while the core with the maximum requirements requested level

i+2. This figure explains the curious behavior identified above, where SOMin performed

worse than WF. As observed, both partitioners yield the system to spend a similar

amount of time with all the cores requiring a similar speed (i.e., with a difference less

or equal than 1 level). Nevertheless, the main reason why SOMin consumes more power

than WF is that, in this mix, there is a significant amount of time where the difference

in speed required by the cores in SOMin is 3 and 4 levels, while in WF most of this time

the difference is only 2 levels. Notice that SOMout and SOMin−out balance the workload

in a better way (area associated to label 0 is much longer) than WF and SOMin, the

reason is due to the former control the system both at tasks’ arrivals and exits.

As expected, if the system implements more DVFS frequency levels, then more energy

savings can be potentially obtained since the system can select a frequency closer to the

optimal estimated by the scheduler. However, despite this fact, in some cases energy

benefits due to migration in a system with few frequency levels can reach or even surpass

the benefits of having more levels without migration. For example, the energy consump-

tion of SOMin−out for mix 2 in the 4L 2-core system is around 44% the consumption of

the baseline, whereas the same value of WF in the 8L system is 46%.

5.3.2 Comparing MOM versus SOM Variants

This section analyzes the energy improvements of the proposed MOM algorithm over

the SOM variants. For comparison purposes the best SOM variant (SOMin−out), on

Chapter 5. Task Migration 57

Figure 5.7: Differences of the required frequencies in the 3-core system for mix 4.

average, and a theoretical threshold have been also included in the plots. This theoretical

threshold is a value that represents the maximum energy savings that can be achieved in

a system where the number of task migrations is not limited, they have no cost, and they

can be performed at any point of the execution time. That is, a system with perfect task

balancing and without penalties due to migration. Figure 5.8 shows the energy results

for two, three and four cores, normalized with respect to the energy consumed by the

system working always at the maximum speed.

Results show that regardless of the number of cores, the mix, and the number of fre-

quency levels, MOM saves more energy than SOMin−out. For example, when running

mix 3 in the 2L 2-core system, MOM consumes 60.17% and 68.01% of the energy con-

sumed by WF and by SOMin−out, respectively. The reason is that MOM enables the

cores of the system to work at a similar frequency for longer than any SOM variant.

This can be also observed in Figure 5.7.

As the proposal combines scheduling with partitioning, one could ask which part of the

benefits comes from the scheduler and which ones from the partitioner. To discern this

aspect, we implemented the RMS scheduler for energy comparison purposes. Looking

at Figure 5.7, one can appreciate that benefits mainly come from the partitioner side

instead of the scheduler side, since RMS with WF partitioning presents similar results

as the EDF with the same partitioner heuristic.

Comparing the working behavior of MOM with SOMin−out it can be appreciated that

both algorithms perform the same action when a task leaves the system (see Table 5.2).

58 Chapter 5. Task Migration

(a) 2 Cores

(b) 3 Cores

(c) 4 Cores

Figure 5.8: SOMin−out versus MOM for different DVFS levels and number of cores.

Therefore, differences in benefits between them come from applying the algorithm at

tasks’ arrivals. The reason is that SOMin−out first allocates the incoming task and then

makes one migration attempt, whereas MOM checks for each core which combination of

task-to-core allocation plus a single migration attempt would achieve a better workload

balance. Thus, MOM examines a wider range of possible distributions.

Chapter 5. Task Migration 59

Mix 1 2 3 4 5 6 7 8 9

Average 30.54 24.29 15.32 14.96 14.86 20.28 19.94 13.33 16.06
Standard Deviation 13.86 8.12 5.29 3.39 2.76 4.44 12.07 3.64 10.46

Table 5.3: Average and standard deviation of task utilization.

Moreover, in some mixes (e.g., mix 3) MOM results fall very close to the energy savings

of the theoretical threshold. However, if the utilizations of the tasks in a given mix

widely differ among them and depending on how run-time conditions evolve, the results

of any practical scheduler may be far from the theoretical threshold (e.g., mix 7, mix 9).

The standard deviation of the task utilization (see Table 5.3) in these mixes is relatively

high since a few tasks have a huge utilization. This fact prevents SOM and MOM from

achieving a perfect balancing in some scenarios, as done by the theoretical threshold.

Notice that mix 1 for a 2-core system also presents a high standard deviation value, but

in this case it is due to a single task with much higher utilization. On the other hand, in

mix 3 most tasks present similar utilizations within a limited range (10%-17%). Thus,

it is more feasible that practical schedulers can obtain a perfect balancing.

Finally, as the number of cores and voltage levels increase (4 cores), a SOM algorithm is

enough to achieve important energy savings, although MOM can slightly improve those

results. Moreover, these results fall close to the theoretical maximum. Thus, in this

scenario, a possible choice to enhance energy savings is to change the voltage regulator

domain (i.e., to implement several regulators, each one shared by a subset of cores).

5.4 Conclusions

Workload balancing has been proved to be an efficient power technique in multicore

systems. Unfortunately, unexpected workload imbalances can rise at run-time provided

that the workload changes dynamically since new tasks arrive to or leave the system. To

palliate this shortcoming, this chapter has analyzed the impact on energy consumption

due to task migration strategies in a multicore embedded system implementing DVFS.

Two power-aware migration heuristics working with real-time constraints, namely SOM

andMOM have been devised, which check only one target core or the optimal core before

performing a migration, respectively. To prevent excessive overhead, task migration has

been strategically applied at three specific execution points of time where the workload

60 Chapter 5. Task Migration

changes: at tasks’ arrivals, at tasks’ exits, and in both cases. Three variants of SOM

algorithm are devised depending on the point of time the algorithm applies.

Experimental evaluation has been performed using sets of mixes of real-time benchmarks

executed on a modeled ARM11 MPCore processor. A first observation is that applying

the algorithm at tasks’ exits achieves better energy savings than applying it at tasks’

arrivals, but the highest benefits are obtained when the algorithm is applied in both

cases. On the other hand, MOM performs in general better than SOM, however as the

number of cores and frequency/voltage levels increases, the differences among energy

benefits are reduced. Results show that task migration allows the proposed schedulers

to achieve important energy benefits over WF. These benefits are, on average, by 17%

and 24% over WF, for SOM and MOM, respectively. Moreover, in some cases MOM ’s

benefits are up to 40%.

This chapter has also shown how task migration combined with DVFS can allow impor-

tant energy savings. Thus, benefits come from both techniques. Analyzing the results

one can notice that migration is a powerful technique since it allows reducing energy

consumption compared to a system with more voltage levels without migration.

A final remark is that improving the workload balance by supporting task migration,

not only energy savings can be enhanced, but since the utilization of the most loaded

core is also reduced, then also a wider set of tasks could be scheduled.

Chapter 6

Memory Controller Scheduling

Policies

6.1 Introduction

Memory requests compete to access to the main memory at the memory controller. In

order to satisfy real-time constraints of HRT tasks, a simple memory controller schedul-

ing policy would prioritize requests of these tasks, over SRT tasks. This policy, from

now on HR-first, will increase the number of deadline misses of SRT tasks. This way

negatively impacts on the QoS of SRT applications. Moreover, a high number of SRT

deadline misses during peak activity of HRT tasks may leave the system unresponsive for

significant periods of time. This situation will be perceived by the user as unreliability

and bad performance (e.g., movie blinking) of the device. To overcome this problem,

DVFS mechanisms could be used to adjust system performance temporarily, increasing

energy consumption and battery discharge rate during peak activity.

This chapter presents a scheduler for memory requests at the memory controller; this pol-

icy, referred to as ATR-first, is aimed for a multicore multithreaded embedded real-time

system with DVFS support. The proposed policy ensures EDF schedulability with-

out sacrificing QoS of non-critical applications. This approach prioritizes only those

requests of HRT tasks that are critical to accomplish real-time schedulability. For dy-

namic scheduling algorithms, such as EDF, this set of tasks varies during execution and

61

62 Chapter 6. Memory Controller Policies

depends on the running workload as well as the computing power of the system (i.e.,

number of cores and multithreading capabilities of each core).

6.2 Power-Aware Scheduler

Notice that although both HRT and SRT tasks are considered in this chapter, the

scheduler must only guarantee HRT task deadlines. Therefore, the task set considered for

estimating the target working frequency must include at least all the HRT tasks. Recall

that HRT tasks have always more priority than SRT tasks, regardless their deadlines.

Of course, the lower the number of SRT task deadline misses, the higher QoS of the

system. However, there are situations (e.g., low battery) where maintaining the battery

charge is preferable over improving QoS.

In this sense, this work proposes two scheduling policies: H-mode and H+S-mode. The

former considers only HRT tasks for estimating the target machine speed. The latter,

considers both HRT and SRT tasks for frequency estimation. As experimental results

will show, H-mode presents lower energy consumption than H+S-mode but at expense

of QoS of SRT tasks. On the other hand, H+S-mode consumes more energy since

higher frequencies are required to meet the deadlines of the larger workload demands.

Depending on the situation (e.g., the battery charge level) the system could dynamically

select one or another scheduling strategy.

This work evaluates a DVFS with 8, 4 and 2 frequency/voltage levels. With the 8-level

configuration (8L) the system can run tasks at the frequencies indicated in Chapter 3.

The 4-level (4L) one allows to work at 1700, 1400, 1100 and 600 MHz. Finally, the 2L

configuration only supports the extreme frequencies (i.e., 600 and 1700 MHz).

6.3 Memory Controller

The memory controller manages memory requests from all the threads in the system.

The modeled memory controller includes advanced features like load forwarding and load

bypassing. That is, if the address of a load from a given thread matches the address of

a previous pending store, the requested data is forwarded from the store queue to the

load. On the other hand, if no address of a previous store matches the load address, then

Chapter 6. Memory Controller Policies 63

the load is allowed to bypass the previous stores. The controller also gives precedence

to loads over stores from any thread since stores do not stall the processor activity, so

long store latencies do not affect the system schedulability.

In order to support priorities among requests from different threads, as done in [42],

different queues have been modeled in the memory controller. This feature is required

since a simple FCFS memory-request scheduling policy will cause HRT deadline misses

as it introduces unexpected variability in load latencies. The model also assumes as many

memory ports as computing cores, avoiding that memory contention afects schedulability

of critical HRT tasks. In addition to the proposed ATR-first, a more intuitive HR-first

policy has been implemented for comparison purposes. Below both policies are described.

6.3.1 HRT Requests First

In this policy, the memory controller is configured to prioritize requests from HRT tasks

over requests from SRT tasks. Requests from the same kind of tasks (HRT or SRT) are

ordered according to EDF scheduling. For instance, if a new memory request from an

HRT task arrives to the memory controller queue, it will be issued before any pending

memory request from SRT tasks but after other requests from HRT tasks with higher

priority. This policy can be implemented with the same priority order as the one used

by the power-aware scheduler.

A working example of this scheduling policy is shown in Figure 6.1. The requests

are labeled in the queue according to the memory operation (load or store) and their

relative priority (1 is the highest priority). The background color of the request entry

distinguishes HRT requests from SRT ones. As explained above, loads take precedence

over stores, so they have the highest priority values. Among loads, those from HRT

tasks are prioritized over those from SRT tasks. Regarding stores, they are issued after

all the loads, and stores from HRT tasks are issued first. Thus, the older store request

in the queue (priority 6) is the last request issued to memory since it is a store from an

SRT task.

64 Chapter 6. Memory Controller Policies

Figure 6.1: HR-first request scheduling policy.

6.3.2 Active Task Requests First

The priority ordering used in HR-first prioritizes load requests of HRT tasks. Assuming

EDF scheduling, this condition is sufficient to ensure schedulability of HRT tasks but

it is not necessary. The necessary condition is that requests from HRT tasks with the

closest deadline get the highest priority. From now on, we refer to the task with the

closest deadline of a given task queue as the active task. This task is mapped to one of

the threads of the core associated with the task queue.

Therefore, requests from SRT tasks can be issued before requests from HRT tasks that

are not active, so improving their QoS. In this sense, ATR-first issues first requests

from active HRT tasks, then requests from (active and non-active) SRT tasks, and

finally requests from the remaining (non-active) HRT tasks. As in HR-first, loads take

precedence and requests from the same type of tasks (active HRT, active SRT, non-active

SRT, or non-active HRT) are ordered according to EDF.

An example of how this policy works is depicted in Figure 6.2. Memory requests can

be classified in two groups depending on whether their source task is active or not. For

instance, loads from active tasks in the figure have the highest priorities (1 and 2), and

among them, the load from the active HRT task takes precedence. In contrast, the

priority of loads from non-active tasks is reversed. That is, the load from the non-active

SRT task presents higher priority (3) than the load from the non-active HRT task (4).

Finally, here are only two stores in the example, one from a non-active SRT task and

Chapter 6. Memory Controller Policies 65

Figure 6.2: ATR-first request scheduling policy.

another from a non-active HRT task. In this case, the store from the non-active SRT

task presents higher priority (5).

6.4 Experimental Results

In order to evaluate the proposal, the Multi2Sim simulation framework has been ex-

tended to support the memory controller. In this case, a system with two and four cores

supporting three hardware threads per core has been evaluated.

Similar criteria as in previous chapters has been considered to prepare real-time mixes,

also using benchmarks from [61] (see Table 6.1). The number of tasks executed in a

2-core system (mixes 1, 2 and 3) ranges from 7 to 15, whereas in a system with four

cores (mixes 4, 5 and 6) the number of tasks vary from 20 to 31.

For all the mixes, there is a subset of tasks that are considered HRT tasks. At the

maximum speed, the cumulative utilization of this subset ranges from 50% to 95%.

Since the HRT task with the closest deadline has the maximum priority, the set of HRT

tasks is feasible by the EDF scheduler. However, as the total mix utilization is over

100%, there will be SRT tasks that will not meet their deadlines. This mix design

allows us to compare different memory controller policies in terms of number of deadline

misses. Experimental results are presented in terms of normalized energy consumption

and SRT deadline misses.

66 Chapter 6. Memory Controller Policies

Mix Benchmarks

Mix 1
Cnt, Compress, Expint, Fac, Fft1, Janne complex, Jfdctint,
Ludcmp, Qurt.

Mix 2
Bs, Bsort100, Cnt, Compress, Duff, Expint, Fac, Fft1, Fibcall,
Insertsort, Lcdnum, Loop3, Minver, Ns, Statemate.

Mix 3 Bs, Fac, Fibcall, Janne complex, Lcdnum, Sqrt, Statemate.

Mix 4
Cnt*, Compress*, Crc*, Expint*, Fac*, Fft1*, Janne complex*,
Jfdctint*, ludcmp*, Qurt*.

Mix 5
Cover*, Fdct*, Fir*, Janne complex*, Jfdctint*, Ludcmp*,
Minmax*, Nsichneu*, Qsort-exam*, Qurt*, Select*, Sqrt*.

Mix 6 Bs*, Fac*, Fibcall*, Janne complex*, Lcdnum*, Sqrt*, Statemate*.

Table 6.1: Benchmarks and mixes. Legend: * the benchmark appears more than once
in the mix.

Figures 6.3(a) and 6.3(b) show, for different benchmark mixes, the normalized energy

consumption and SRT deadline misses of a system with two cores when varying the

number of DVFS levels (2L, 4L, and 8L), the task set considered for calculating the

working frequency (H-mode and H+S-mode), and the memory controller policies (HR-

first and ATR-first).

As observed, ATR-first does not incur in significant power overheads. That is, the

energy consumed by ATR-first is similar to HR-first, regardless the task set mode and

the number of DVFS levels. In fact, the average difference between both policies is only

by 1%. A higher energy consumption can be mainly appreciated in mix 3, where the

energy consumption increases by 17% for 4-level DVFS in H+S-mode. Nevertheless, for

2-level DVFS in H-mode, ATR-first reduces energy consumption about 22%.

As usual, the number of available DVFS levels has a strong impact on energy consump-

tion. In this sense, the best results are achieved when working with the highest number

of DVFS levels since, as mentioned in Subsection 4.3.3, this allows the scheduler to fit

better the system speed to the workload requirements.

This effect is more pronounced when the system is neither overloaded (most of the

time working at the maximum speed) nor underused (most of the time working at the

minimum speed). The latter may happen with the H-mode, whereas the former with the

H+S-mode. Note that the H-mode always consumes much less energy than the H+S-

mode since less tasks are taken into account for the frequency calculation. Results show

Chapter 6. Memory Controller Policies 67

(a) Normalized energy

(b) Deadline misses

(c) Energy per deadline misses

Figure 6.3: Normalized energy and deadline misses for 2 cores.

that working with the eight frequency/voltage levels can reduce power consumption by

43% compared when working with two levels.

Regarding deadline misses, ATR-first achieves significant benefits for any frequency

calculation mode and DVFS configuration. This proposal reduces on average around

48% SRT deadline misses, reaching in some cases the fulfillment of all deadlines as

observed in mix 1 for the 8L system configuration. Moreover, despite choosing the

H+S-mode consumes more energy, it misses less deadlines than the H-mode across all

the evaluated mixes.

68 Chapter 6. Memory Controller Policies

An interesting remark is that ATR-first can allow reducing both deadline misses and

power consumption, when it is carefully combined with a frequency calculation mode

and a given number of DVFS levels. For instance, ATR-first misses 31% of the deadlines

and consumes by 25% of power of the baseline system for mix 2 in a 4L system with

the H-mode, whereas for the same mix and number of frequencies using HR-first and

the H+S-mode provides 33% of deadline misses and 84% of power consumption. The

former case also gets better results than HR-first in the same mix in a 2L system with

the H+S-mode, which achieves 34% of deadline misses and 90% of power consumption.

In order to evaluate the efficiency of the design in terms of energy and QoS we propose

the metric Energy Deadline misses Product (EDmP) as the product of the relative energy

consumption and the relative deadline misses. This metric makes sense when energy

consumption is pretty much the same or rather close, and provides insights in which is

the best scheduling strategy. In other words, when evaluating the EDmP there is an

upper bound in the QoS that should not be surpassed. For instance, a huge reduction

in power consumption would not be acceptable with a 90% of relative deadline misses

in normal battery charges. EDmP closely resembles the Energy Delay Product (EDP)

widely used to identify the best hardware design.

Figure 6.3(c) shows the EDmP results of the evaluated schedulers. Notice that the

maximum percentage of deadline misses is about 54%, in some cases when HR-first is

applied. As it can be appreciated, this metric clearly identifies the ATR-first policy as

the best scheduler design with a noticeable difference with respect to HR-first.

Figure 6.4(a) shows the normalized energy consumption and Figure 6.4(b) the number of

deadline misses for a system with four cores. As observed, energy values corresponding

to the HR-first and ATR-first memory controller policies are also very close, with an

average difference of 0.4%. The differences in normalized energy come again from the

speed mode, depending on whether SRT tasks are considered or not, and from the

number of DVFS levels. Notice that the EDmP metric in a 4-core system (Figure 6.4(c))

also remarks the benefits obtained by ATR-first in any case.

Furthermore, ATR-first obtains around 50% reduction in deadline misses, on average,

achieving again all deadlines fulfillment in some scenarios, such as in mix 6 in a 4L

system with the H+S-mode. Based on these results, it can be said that the results

obtained by the proposal follow the same trend as in the 2-core system.

Chapter 6. Memory Controller Policies 69

(a) Normalized energy

(b) Deadline misses

(c) Energy per deadline misses

Figure 6.4: Normalized energy and deadline misses for 4 cores.

6.5 Conclusions

The design of multicore embedded systems with real-time constraints should pursue

three main aims: i) to reduce power consumption, ii) to ensure deadlines fulfillment of

HRT tasks, and iii) to improve SRT tasks QoS. To this end, memory latencies must

be addressed. A key component to handle memory latencies is the memory controller,

which manages the access to main memory among requests from the different tasks.

This chapter has proposed the ATR-first policy to schedule memory requests in the

70 Chapter 6. Memory Controller Policies

memory controller device. This policy relaxes the constraints of a more intuitive HR-

first policy prioritizing always HRT task requests over SRT ones. In contrast, ATR-first

prioritizes only the HRT task requests that are crucial to achieve workload schedulability.

For the remaining tasks, memory requests from SRT tasks take precedence. This design

improves QoS of SRT tasks while ensuring HRT tasks deadlines fulfillment.

Results show that using the proposed ATR-first policy consumes pretty much the same

power as the HR-first policy. In addition, ATR-first always reduces the number of SRT

deadline misses with respect to HR-first. This reduction is on average around 49% and,

in some cases, can allow the system to fulfill all of the deadlines.

Finally, to remark that the ATR-first policy is shown to be more energy-efficient in all

the experiments, as demonstrated by the Energy Deadline misses Product metric. To

the best of our knowledge, this is the first time a metric measuring the trade-off between

energy consumption an deadline misses is proposed.

Chapter 7

Dynamic Execution Time

Estimation

7.1 Introduction

Estimating the execution time for a real-time task dynamically can help the system

provide better schedulability and energy savings. This fact becomes difficult in current

microprocessors working with different frequency levels. An additional problem rises

because processor cores and main memory work at different speeds.

Some research works assume that the memory access time (quantified in processor cycles)

is constant regardless the processor frequency. We will refer to this model as Constant

Memory Access Time (CMAT) [69]. This model assumes that all the processor com-

ponents scale their speed at the same pace, which can bring important deviations to

estimate the execution time since main memory devices have their own power supply

and work independently of the DVFS regulator. To deal with this shortcoming, other re-

searchers have devised alternative models [46, 47] to achieve a better estimation. These

models, however, are static and rely on either analyzing the workload source code [46]

or performing off-line characterization of the architectural parameters [47].

This chapter presents a model that predicts at run-time the execution time of real-time

applications running in multicores supporting different frequency domains (i. e., local

DVFS), without the need of analyzing any source code or hardware platform. Instead,

71

72 Chapter 7. Dynamic Execution Time Estimation

Figure 7.1: System model.

the proposed model uses the first hyperperiod to investigate the workload characteristics.

Then, this information is used by the power-aware scheduler to choose the most suitable

frequency for the following hyperperiods. In this way, not only important energy savings

can be achieved but also system schedulability is improved. For instance, if the system

utilization decreases and more slack time is available, this extra time could be used to

reduce the frequency for energy savings or to introduce additional tasks in the system.

The presented model, referred to as Processor-Memory (Proc-Mem), predicts the exe-

cution time for each task and frequency level. To this end, Proc-Mem uses Performance

Monitoring Counters (PMCs) to measure the time that each core spends performing

computation (CPU), waiting for memory (MEM), and overlapping time (OVERLAP)

between computation and memory access. Since the overlapping time of a given task

depends not only of itself but also on the co-running tasks, the input values of the model

must be taken at run-time. The proposed model uses the first hyperperiod to gather

the required values. Then, the scheduler uses the model estimates to choose the most

suitable working frequency in each active period of the following hyperperiods to address

both energy and deadline misses.

7.2 System Architecture

The baseline model has been slightly modified, as shown in Figure 7.1. This modeled

system consists of a single-threaded superscalar multicore. These cores can work at a

different range of frequency levels, as adopted in recent embedded systems [70].

Chapter 7. Dynamic Execution Time Estimation 73

The working frequency of each core is controlled by a local DVFS regulator [10], that

is, cores can run at different speeds. The considered DVFS local regulators implement

7 and 4 frequency levels for core 0 and core 1, respectively. The 7L configuration allows

the system to work at all the frequencies ranging from 1.1 GHz to 1.7 GHz in steps of 100

MHz, whereas the 4L (Low-Power) mode permits running tasks at four low frequencies

(1.4, 1.3, 1.2 and 1.1 GHz).

7.2.1 Partitioning and Scheduling

The WF algorithm implemented in the partitioner module balances the workload by

assigning each incoming task to the least loaded core. Since in the modeled system

each core works with a different set of frequency levels, the WF policy must be properly

adjusted. For this purpose, the following extension has been adopted. In case that the

partitioner detects that core 1 is fully loaded (100% utilization) when working at its

maximum working frequency (1.4 GHz), then the new incoming tasks are allocated to

core 0, even if this action introduces imbalance into de system, since core 0 can work at

higher frequencies than core 1.

The devised schedulers are also in charge of calculating the required target speed of

each core according to its utilization. In this sense, the power-aware EDF scheduler

implemented in each core chooses the minimum frequency that fulfills the temporal

constraints of its task set in order to minimize power consumption.

7.2.2 Memory System

Regarding the memory system, all cores send their memory requests to a common mem-

ory controller that handles the accesses to a shared scratchpad memory at the maximum

speed (1.7 GHz). A fair memory access scheduling policy has been implemented in the

memory controller to minimize inter-core interferences. The memory controller han-

dles its internal request queues according to the FCFS-RR (First-Come First-Served,

Round-Robin) policy [71].

The scratchpad memory is composed of eight banks. Bank conflicts are taken into

account so that if a bank is being accessed and a younger request demands the same

74 Chapter 7. Dynamic Execution Time Estimation

Figure 7.2: Execution time model.

bank, this request waits at the memory controller until the previous access finishes.

Otherwise, the new request can proceed.

7.3 Processor-Memory Model

The execution time of a task can be considered as composed of two main components,

(CPU) time and memory (MEM) time. The former can vary according to data, struc-

tural and control hazards presented by the application at the core side, while the latter

grows with the number of memory accesses. Both times can overlap since the core can

dispatch instructions while the memory is being accessed. This time, from now on re-

ferred to as OVERLAP, is defined as the time the processor is executing non-dependent

instructions while a memory request is being served.

Figure 7.2 depicts a simplified overview of the execution time components. The model

assumes that PMCs [72] typically implemented in most current processors, are available

in the multicore system. These registers allow the processor to gather multiple variables.

This chapter assumes that the variables required by the scheduler can be gathered in

the target processor.

Since the MEM value is gathered in processor cycles, the smaller the processor cycle

time (i.e., the higher the processor frequency) the higher the MEM value gathered in the

corresponding performance counter. Therefore, the MEM value for a target frequency j

can be estimated from the MEM value collected for the current frequency i as given by

Equation 7.1. This effect can be appreciated in Figure 7.2. It also can be appreciated

that if the elapsed time is quantified in processor cycles, the CPU value remains constant.

Chapter 7. Dynamic Execution Time Estimation 75

Figure 7.3: Execution overlap between processor and memory for two different fre-
quencies in a superscalar architecture.

MEMj = MEMi ×
Freqj
Freqi

(7.1)

On the other hand, in-order processors write the results to the corresponding destina-

tion register in program order at the writeback (WB) stage. This means that after a

long latency event (e.g. a memory access), the execution (EX) stages of subsequent in-

structions are delayed to perform the WB stage in program order. The memory latency

in current systems, regardless of the working frequency, is typically much longer than

that of arithmetic operators. Thus, the number of instructions that can be executed

while a previous memory request is being processed remains constant to comply with

the WB order. In other words, the OVERLAP time, measured in processor cycles, can

be assumed to be constant.

Figure 7.3 illustrates this behavior. It depicts, a possible instructions-time diagram cor-

responding to the execution of five instructions (one memory reference and four arith-

metics) that overlap their execution in a 2-instruction issue width superscalar processor

working at two different frequencies i (upper side) and j (lower side). This example

assumes 3-cycle latency for arithmetic operations. The number of overlapped cycles is

exactly the same in both frequencies due to the part of CPU time overlapping with the

76 Chapter 7. Dynamic Execution Time Estimation

memory access is fixed (all stages DI, two stages EX of the two first arithmetic instruc-

tions and one EX stage of the two latter arithmetic instructions). This fact is taken into

account in Equation 7.2, which estimates the total execution time in cycles for a given

working frequency j. Note that both CPU and OVERLAP values do not depend on the

working frequency.

Texej = CPU −OV ERLAP +MEMj (7.2)

Substituting MEMj from Equation 7.1 in Equation 7.2, we can derive Equation 7.3,

which estimates the overall execution time for any working frequency j as a function of

the inputs of the model gathered during the program execution at a different working

frequency i.

Texej = CPU −OV ERLAP +MEMi ×
Freqj
Freqi

(7.3)

Finally, it is important to note that in multicore processors, where different cores com-

pete for shared resources, new interferences appear. These interferences mainly rise

when memory requests from different cores reach the memory controller, where they

are scheduled for main memory access. Consequently, the individual execution time

(measured either in cycles or in temporal units) of each task increases with respect to

stand-alone execution in a single-core system. In spite of this fact, as shown in the next

section, the proposed model remains mostly valid in this scenario since the extra time

waiting at the memory controller is already included in the MEM component.

7.4 Model Validation

To evaluate the goodness of the model the Multi2Sim simulation framework has been

used. The system executes only SRT tasks, and experiments have been conducted with

20 different benchmarks from WCET Malardalen Project [61], although for illustrative

purposes, only the results of two representative benchmarks (fir and sqrt) are presented.

These benchmarks are executed in 2-way superscalar cores that include multicycle op-

erators whose latencies range from 1 cycle to 3 cycles.

Chapter 7. Dynamic Execution Time Estimation 77

(a) Fir

(b) Sqrt

Figure 7.4: Estimates of the Proc-Mem model in stand-alone execution in the single-
core superscalar architecture.

Figure 7.4 compares the execution time estimates provided by the Proc-Mem and the

CMAT models for fir (left side) and sqrt (right side) benchmarks. The latter assumes

a constant number of processor cycles for each memory access (i.e. the memory speed

depends on the DVFS frequency). The stand-alone execution time (labeled as Exe Time)

of both benchmarks in a single-core superscalar architecture is also represented. Model

inputs were taken when running the processor at the highest frequency, that is, at 1.7

GHz. The remaining points of the plot (from 1.6 GHz down to 1.1 GHz) were estimated

with the studied models. For comparison purposes, the three main components (CPU,

OVERLAP and MEM) of the execution time are represented. As observed, CPU and

78 Chapter 7. Dynamic Execution Time Estimation

Figure 7.5: Maximum deviation in processor cycles in a single-core superscalar archi-
tecture.

OVERLAP values keep constant for both benchmarks, while MEM increases with the

frequency, which illustrates that Proc-Mem is suitably designed to model the target

system.

Proc-Mem estimates closely follow the execution time regardless the target frequency; in

contrast, the error introduced by the CMAT model grows as the frequency moves away

from 1.7 Ghz. Proc-Mem deviation is on average around 2.5% and 1.5% depending on

the benchmark, and never exceeds 5.5%. In contrast, the CMAT approach incurs in a

noticeable higher error, which is already around 7% for both benchmarks in the first 100

MHz away from 1.7 GHz. Moreover, this deviation worsens as the frequency decreases,

exceeding 30% in both benchmarks at 1.1 GHz.

The maximum deviation for Proc-Mem and CMAT accross a relatively wide set of 20

evaluated benchmarks is shown in Figure 7.5. Proc-Mem error is always around 5%,

while that incurred by CMAT is always over 30%.

Figure 7.6: Average of maximum deviations in a multicore superscalar architecture.

Chapter 7. Dynamic Execution Time Estimation 79

(a) Fir

(b) Sqrt

Figure 7.7: Estimates of the Proc-Mem model in a multicore processor.

Once it has been proven that the proposal provides good estimates for single-core exe-

cution, Proc-Mem results are explored in a two-core architecture. To this end, we have

performed an exhaustive study with multiple experiments by concurrently executing all

the possible pairs of benchmarks for the different working frequencies. In these exper-

iments we assume that both cores work at the same frequency. Figure 7.6 shows the

average of the maximum deviations incurred by CMAT and Proc-Mem for each bench-

mark across all the experiments. The deviation of Proc-Mem for all benchmarks is, on

average, 5.6% with respect to the measured execution time, while the deviation of the

CMAT model is, on average, 36.4%.

80 Chapter 7. Dynamic Execution Time Estimation

Figure 7.8: Power-aware scheduler actions of the system across the hyperperiods.

For illustrative purposes, Figure 7.7 presents the results of the previously studied bench-

marks (fir and sqrt) when executing concurrently for the different frequencies. In this

case, the maximum deviation of the CMAT model is 39.8% for fir and 32.7% for sqrt,

whereas in the Proc-Mem model the maximum deviation is 6.9% and 7.3% for fir and

sqrt respectively. Moreover, the plots confirm the robustness of the proposed model even

in the presence of interferences due concurrent execution across all the experiments.

7.5 Frequency Selection Policy based on the Proc-Mem

Model

7.5.1 Scheduler Working Behavior

The Proc-Mem model provides estimates of the execution time for the different instances

of the tasks in each target frequency. These estimates can be used for several purposes

by the scheduler such as to predict the task utilization or to choose the target frequency.

As an example, this section illustrates how the estimates provided by the model can

help the power-aware scheduler to choose the most suitable DVFS levels to both save

energy or address deadline misses. This component of the scheduler will be referred to

as Frequency Selection Policy or FSP. Next, the proposed policy is presented.

The actions performed by the scheduler at run-time using the devised FSP are depicted

in Figure 7.8 for the studied two-core processor. Actions mainly differ depending on the

considered hyperperiod; the first one, namely H0, is used as a sampling period to obtain

the workload characteristics to be used by the model in the following hyperperiods.

Chapter 7. Dynamic Execution Time Estimation 81

Mix Benchmark (instances)

Mix 1 Bsort100 (1) Cnt (16)
Mix 2 Bsort100 (1) Cnt (90)
Mix 3 Bsort100 (1) Cnt (6) Compress (3) Cover (3)
Mix 4 Bsort100 (1) Cnt (10) Compress (10) Cover (10)
Mix 5 Bsort100 (1) Cnt (6) Compress (10) Cover (16)
Mix 6 Duff (5) Edn (1) Expint (13) Fac (13) Fdct (3)
Mix 7 Duff (12) Edn (1) Expint (15) Fac (24) Fdct (15)
Mix 8 Duff (12) Edn (1) Expint (16) Fac (32) Fdct (15)

Table 7.1: Mix composition: benchmarks and instances of each benchmark.

In hyperperiod H0, PMCs are used to gather the main components of the execution

time (CPU, OVERLAP, and MEM). This is done for each active period and task. Each

core of the bi-core system is assumed to work at the same frequency during the whole

hyperperiod. This initial frequency can be any of the available in the DVFS regulators

that ensures meeting all task deadlines, although this example assumes that each core

works at its maximum frequency (i.e. core 0 works at 1.7 GHz and core 1 at 1.4 GHz.)

When hyperperiod H0 expires, the inputs required by the Proc-Mem model (i.e., CPU,

OVERLAP, and MEM) have already been gathered for each active period. Then, the

proposed FSP is applied to select the target core frequencies to be used in subsequent

active periods of the following hyperperiods. The devised policy uses the model to esti-

mate the execution time at each frequency for each task and period. Taking into account

these estimates, the policy chooses the lowest frequency for each period that fulfills its

deadline while maximizing energy savings. In addition, the obtained estimates are also

used by the power-aware scheduler to correct possible deviations in the WCET and

calculate tasks utilizations, which are required to perform partitioning and scheduling

actions.

7.5.2 Experimental Results

To evaluate the proposed scheduler, it has been compared to a variant using the CMAT

model in terms of energy and deadline misses. To this end, we have designed eight mixes

consisting of benchmarks that are executed multiple times in different active periods

across the hyperperiod. Table 7.1 presents the mix composition and the number of

instances of each individual benchmark in one hyperperiod. Benchmarks were randomly

82 Chapter 7. Dynamic Execution Time Estimation

Figure 7.9: Normalized energy consumption of Proc-Mem and CMAT with respect
to a system working at the maximum speed.

selected to build the mixes. We designed mixes with different number of tasks (2, 4, and

5 tasks) and different number of active periods per task (varying from 1 up to 90 active

periods) to explore the behavior of the proposal in a wide range of scenarios. Notice

that we start with few benchmarks in order to have a good control and feedback of the

experiment to correct deviations.

Figure 7.9 shows the normalized energy consumption during hyperperiod H1 of both

proposals with respect to a system working always at the maximum speed for eigth

different mixes of benchmarks. Compared to the CMAT model, Proc-Mem significantly

reduces power consumption across all the mixes. The reason is that Proc-Mem estimates

the execution time much more accurately than the CMAT model, which allows the

scheduler to select lower frequencies. Energy reduction is as high as 31% in some cases,

and around 18% on average. Notice that in mixes 1, 3 and 4, Proc-Mem consumes

half the energy of the system working at the maximum speed. The reason is that when

executing these mixes with the Proc-Mem based scheduler the system runs all the time at

the minimum speed available in both local DVFS regulators, whereas when using CMAT

higher frequencies are used due to higher deviations in the execution time estimates. We

found that deviations of CMAT grow with the weight of the memory access time over

the execution time.

As mentioned above, this work focuses on SRT systems, where deadline misses are

allowed. In these systems, a critical issue is that the implemented schedulers tradeoff

energy to deadline misses; that is, energy saving must be achieved but guaranteeing a

minimum quality of service (deadline misses). Table 7.2 presents the number of misses in

Chapter 7. Dynamic Execution Time Estimation 83

Mix
Deadline Misses

Active Periods
CMAT Proc-Mem

Mix 1 0 0 17
Mix 2 0 2 91
Mix 3 0 0 13
Mix 4 0 0 31
Mix 5 1 1 33
Mix 6 0 0 35
Mix 7 5 5 67
Mix 8 1 1 76

Table 7.2: Deadline misses in the CMAT and Proc-Mem models and active periods
of the mixes.

the experiments of the Proc-Mem and CMAT models for each mix. The number of active

periods of the tasks of a mix during a hyperperiod is also included. As observed, in four

mixes there is not any deadline miss neither in Proc-Mem nor in CMAT. Nevertheless,

in three of them (i.e., mix 1, mix 3 and mix 4) Proc-Mem model energy savings are

higher (i.e. by 22%) than when using CMAT.

Some deadline misses appear in the remaining mixes, where two cases can be distin-

guished. On the one hand, the same number of misses rises in mixes 5, 7 and 8. How-

ever, in this case, Proc-Mem is more energy efficient (by 10%) than CMAT. On the

other hand, in mix 2, Proc-Mem misses two deadlines while no deadline is missed with

CMAT. Comparing the latter result to performance, Proc-Mem misses by 2% of the

active periods’ deadlines, while savings in energy consumption are by 15%. Therefore,

we can conclude that estimating tight execution times can incur in a limited amount

of additional deadline misses. However, in this case, important energy savings can be

brought.

7.6 Conclusions

Accurately estimating task execution time in a real-time multicore embedded system

supporting DVFS is a critical issue for enhancing the schedulability of the system and

improving energy consumption. Since this kind of systems support multiple core speeds,

different execution times should be estimated, one for each speed. This chapter has

proposed the Proc-Mem model that estimates the execution times, for each instance of

a real-time task, at the available frequencies in the multicore. These estimates are used

84 Chapter 7. Dynamic Execution Time Estimation

by a power-aware scheduler to choose the most suitable working frequency to address

both energy and deadline misses.

To provide accurate execution times, Proc-Mem uses Performance Monitoring Counters

(PMCs) to measure the time that each core spends performing computation (CPU),

waiting for memory (MEM), and overlapping time (OVERLAP) between computation

and memory access. Based on this information, Proc-Mem estimates the execution times

for each task and frequency level.

We have devised a Frequency Selection Policy that uses the Proc-Mem model to reduce

energy consumption while incurring in scarce deadline misses. Compared to the Constant

Memory Access Time model used in recent works, the use of Proc-Mem allows the

power-aware EDF scheduler to significantly improve energy savings without significantly

increasing the number of deadline misses. Experiments show that the accuracy of the

proposed model allows the system to reach energy savings by 18% on average, and up

to 31% in some workloads.

Chapter 8

Conclusions

This thesis has proposed several dynamic power-aware techniques to reduce power con-

sumption in real-time multicore embedded systems supporting DVFS where power con-

sumption is a major design issue. Three main issues of the system are covered in this

thesis: i) workload balancing, ii) memory controller, and iii) execution time estimation.

Regarding workload balancing, two aproaches have been studied to help reducing the fre-

quency, and hence, to bring energy savings. First, a partitioning algorithm that increases

the overlapping time between CPU and memory has been devised. Second, different

partitioning algorithms that allow task migration have been also proposed. In addition,

this thesis also has covered the memory access problem at the memory controller by

proposing two policies that reorder memory requests depending on real-time priorities.

Regarding estimation of execution time, a model to dynamically estimate the execution

time of a task for different frequency levels has been proposed. All these techniques have

been implemented and evaluated on top of the extensively used Multi2Sim [56] simula-

tion framework. In this final chapter, the conclusions of this dissertation are analyzed,

summarizing the contributions of each chapter. Finally, we also expose the results in

terms of scientific publications derived from the work presented in this dissertation.

8.1 Contributions

In Chapter 4, a power-aware partitioner and scheduler for a CGMT multicore processor

has been presented. Using DVFS techniques, the scheduler can guarantee HRT tasks’

85

86 Chapter 8. Conclusions

deadlines and reduce power consumption. The proposed partitioner, LRB, distributes

the workload attending to the CPU or memory requirements among cores of the system.

As a consequence, the overlapping time increases which produces extra slack time that

can be used to save energy. Experimental results in HRT environments show that

the proposed heuristic can reduce energy consumption compared to the WF heuristic.

Regarding the results of the extended heuristic scheduler when executing hybrid tasks

composed of HRT and SRT tasks, the required QoS is the key issue to determine both

power consumption and deadline misses. That is, a higher number of allowed deadline

misses of SRT tasks can help reducing much more power consumption at the expense of

increasing the deadline misses and viceversa.

Chapter 5, has introduced two partitioning algorithms, namely SOM and MOM, that

consider task migration. The former checks only one target core, whereas the latter

searches the optimal core before performing a migration. Three variants of SOM al-

gorithm are devised depending on the point of time the algorithm applies (at tasks’

arrivals, at tasks’ exits, and in both cases). A first observation is that applying the

algorithm at tasks’ exits achieves better energy savings than applying it only at tasks’

arrivals, but the highest benefits are obtained when the algorithm is applied in both

cases. On the other hand, MOM performs in general better than SOM, however as the

number of cores and frequency/voltage levels increase, differences among energy benefits

are reduced. Results show that task migration allows the proposed schedulers to achieve

important energy benefits over the WF policy. In addition, using task migration to

improve the workload balance not only can bring energy savings, but also a wider set of

tasks could be scheduled since the utilization of the most loaded core is also reduced.

Chapter 6 has presented two policies for the memory controller. The first and simpler

HR-first policy prioritizes always scheduling memory requests at requests of HRT tasks

over SRT ones. The second and more accurate approach, ATR-first, gives priority only

to the requests of HRT tasks that are necessary to maintain schedulability. For the

remaining tasks, memory requests from SRT tasks take precedence. This design improves

QoS of SRT tasks while ensuring HRT tasks deadlines fulfillment. Experimental results

show that the power consumption of the system when using either HR-first or ATR-first

is similar. Besides, with ATR-first the number of SRT deadline misses is always reduced

compared to HR-first, allowing the system to fulfill all deadlines in some cases.

Chapter 8. Conclusions 87

Finally, in Chapter 7, the Proc-Mem model to estimate the execution time of a real-time

task has been discussed. Since a multicore platform supporting multiple core speeds is

considered, for each instance of a task different execution times should be estimated, one

for each speed. Proc-Mem uses Performance Monitoring Counters (PMCs) to measure

the time that each core spends performing computation (CPU), waiting for memory

(MEM), and overlapping time (OVERLAP) between computation and memory access.

Compared to the Constant Memory Access Time model used in recent works, the use

of Proc-Mem allows the power-aware EDF scheduler to significantly improve energy

savings without significantly increasing the number of deadline misses.

8.2 Publications

The following papers related with this dissertation were submitted and accepted for

publication in different international journals and conferences.

Journals:

• J. L. March, J. Sahuquillo, H. Hassan, S. Petit and J. Duato. ”A New Energy-

Aware Dynamic Task Set Partitioning Algorithm for Soft and Hard Embedded

Real-Time Systems”. The Computer Journal. Volume 54. Issue 8. Pages 1282-

1294. ISSN: 0010-4620. Oxford University Press. August 2011. (JCR 2nd Quar-

tile)

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Power-Aware

Scheduling with Effective Task Migration for Real-Time Multicore Embedded Sys-

tems”. Concurrency and Computation: Practice and Experience. Volume 25. Issue

14. Pages 1987-2001. ISSN: 1532-0626. Wiley-Blackwell. September 2013. (JCR

2nd Quartile)

Conferences:

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”A Dynamic Power-

Aware Partitioner with Task Migration for Multicore Embedded Systems”. In Pro-

ceedings of the 17th International European Conference on Parallel and Distributed

88 Chapter 8. Conclusions

Computing (Euro-Par). Pages 218-229. ISBN: 978-3-642-23399-9. Springer-

Verlag. Bordeaux, France. 29 August - 2 September 2011. (CORE A)

• J. L. March, S. Petit, J. Sahuquillo, H. Hassan and J. Duato. ”Efficiently Handling

Memory Accesses to Improve QoS in Multicore Systems under Real-Time Con-

straints”. In Proceedings of the 24th International Symposium on Computer Ar-

chitecture and High Performance Computing (SBAC-PAD). Pages 286-293. ISBN:

978-1-4673-4790-7. IEEE. New York, NY, USA. 24-26 October 2012. (CORE B)

• J. L. March, S. Petit, J. Sahuquillo, H. Hassan and J. Duato. ”Dynamic WCET

Estimation for Real-Time Multicore Embedded Systems Supporting DVFS”. In

Proceedings of the 16th International Conference on High Performance Computing

and Communications (HPCC). Pages 27-33. ISBN: 978-1-4799-6123-8. IEEE.

Paris, France. 20-22 August 2014. (CORE B)

• J. L. March, J. Sahuquillo, H. Hassan, S. Petit and J. Duato. ”Extending a Multi-

core Multithread Simulator to Model Power-Aware Hard Real-Time Systems”. In

Proceedings of the 10th International Conference on Algorithms and Architectures

for Parallel Processing (ICA3PP), Workshop on Multicore and Multithreaded Ar-

chitectures and Algorithms (M2A2). Pages 444-453. 978-3-642-13135-6. Springer-

Verlag. Busan, Korea. 21-23 May 2010. (CORE B)

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”How to Model

Real-Time Task Constraints on a High-Performance Processor Simulator”. 7th

HiPEAC International Summer School on Advanced Computer Architecture and

Compilation for High-Performance and Embedded Systems (ACACES). Pages 301-

304. ISBN: 978-90-382-1798-7. Academia Press. Fiuggi, Italy. July 2011.

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Dynamic Virtual

Migration to Reduce Power Consumption in Multicore Embedded Systems”. 8th

HiPEAC International Summer School on Advanced Computer Architecture and

Compilation for High-Performance and Embedded Systems (ACACES). Pages 241-

244. ISBN: 978-90-382-1987-5. Academia Press. Fiuggi, Italy. July 2012

In addition, also in domestic conferences some related papers have been published:

Chapter 8. Conclusions 89

• J. L. March, J. Sahuquillo, H. Hassan, S. Petit and J. Duato. ”Ampliación de

un simulador de sistemas multinúcleo para la ejecución de tareas de tiempo real

con control de consumo”. XXI Jornadas de Paralelismo. Pages 391-398. ISBN:

978-84-92812-49-3. Ibergarceta Publicaciones. Valencia, Spain. 7-10 September

2010.

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Real-Time Task

Migration with Dynamic Partitioning to Reduce Power Consumption”. XXII Jor-

nadas de Paralelismo. Pages 185-190. ISBN: 978-84-694-1791-1. Servicio de Pub-

licaciones de la Universidad de La Laguna. Tenerife, Spain. 7-9 September 2011.

• J. L. March, J. Sahuquillo, S. Petit, H. Hassan and J. Duato. ”Balanceo Dinámico

con Control de Consumo en Sistemas Multinúcleo de Tiempo Real”. XXIII Jor-

nadas de Paralelismo. Pages 206-211. ISBN: 978-84-695-4471-6. Servicio de Pub-

licaciones de la Universidad Miguel Hernández. Elche, Spain. 19-21 September

2012.

• J. L. March, S. Petit, J. Sahuquillo, H. Hassan and J. Duato. ”Poĺıticas para

el Controlador de Memoria en Sistemas Multinúcleo de Tiempo Real”. XXIV

Jornadas de Paralelismo. Pages 30-35. ISBN: 978-84-695-8330-2. Servicio de

Publicaciones de la Universidad Complutense de Madrid. Madrid, Spain. 17-20

September 2013.

The following paper has been submitted and it is currently under review process:

• J. L. March, S. Petit, J. Sahuquillo, H. Hassan and J. Duato. ”A Dynamic Execu-

tion Time Estimation Model to Save Energy in Heterogeneous Multicore Embed-

ded Systems”. Journal of Systems Architecture. Submitted.

All the works listed above are exclusively related with this thesis. The specific contribu-

tions of the Ph.D. candidate reside mostly in the implementation of the system model

and the proposed techniques, the setup and execution of all simulation experiments, and

the writing of the paper drafts describing the work. Along with these processes, the co-

authors have repeatedly provided useful hints and advices, which the Ph.D. candidate

has then applied to make the work evolve into its final version. All the conference papers

90 Chapter 8. Conclusions

listed above were presented and defended by the Ph.D. candidate, except [65] in Busan

(Korea) and [73] in New York City (USA).

Finally, the acquired skills by the Ph.D. candidate during the development of this work

have been also applied at laboratory sessions in the Advanced Computer Architectures

Course of the Computer Engineer Degree offered by the School of Computer Engineering

at Universitat Politècnica de València during 2012-2013 and 2013-2014 academic years.

References

[1] E. Seo, J. Jeong, S. Park, and J. Lee. Energy Efficient Scheduling of Real-Time

Tasks on Multicore Processors. IEEE Transactions on Parallel and Distributed

Systems, 19(11):1540–1552, 2008.

[2] C. Hung, J. Chen, and T. Kuo. Energy-Efficient Real-Time Task Scheduling for a

DVS System with a Non-DVS Processing Element. In Proceedings of the 27th Real-

Time Systems Symposium, pages 303–312, Rio de Janeiro, Brazil, 5-8 December

2006. IEEE Computer Society.

[3] R. Ubal, J. Sahuquillo, S. Petit, H. Hassan, and P. López. Power Reduction in

Advanced Embedded IPC Processors. Intelligent Automation and Soft Computing,

15(3):495–507, 2009.

[4] M. Moncuśı, A. Arenas, and J. Labarta. Energy Aware EDF Scheduling in Dis-

tributed Hard Real Time Systems. In Proceedings of the Real-Time Systems Sympo-

sium, pages 101–103, Cancun, Mexico, 3-5 December 2003. IEEE Computer Society.

[5] A. Iyer and D. Marculescu. Power Aware Microarchitecture Resource Scaling. In

Proceedings of the Conference on Design, Automation and Test in Europe, pages

190–196, Munich, Germany, 13-16 March 2001. IEEE Computer Society.

[6] Q. Zhu and Y. Zhou. Power-Aware Storage Cache Management. IEEE Transactions

on Computers, 54(5):587–602, 2005.

[7] Transmeta Crusoe. Santa Clara, CA, USA, Transmeta Corp. [Online]. Available:

http://www.transmeta.com.

[8] INTEL-XEON. Santa Clara, CA, USA, INTEL Corp.. [Online]. Available: http:

//www.intel.com/products/processor/xeon.

91

http://www.transmeta.com
http://www.intel.com/products/processor/xeon
http://www.intel.com/products/processor/xeon

92 References

[9] AMD Duron. Sunnyvale, CA, USA, AMD Corp. [Online]. Available: http://www.

amd.com.

[10] J. Donald and M. Martonosi. Techniques for Multicore Thermal Management: Clas-

sification and New Exploration. In Proceedings of the 33rd International Symposium

on Computer Architecture, pages 78–88, Boston, MA, USA, 17-21 June 2006. IEEE

Computer Society.

[11] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s Next-Generation

Server Processor. IEEE Micro, 30(2):7–15, 2010.

[12] G. R. Goud, N. Sharma, K. Ramamritham, and S. Malewar. Efficient Real-Time

Support for Automotive Applications: A Case Study. In Proceedings of the 12th

International Conference on Embedded and Real-Time Computing Systems and Ap-

plications, pages 335–341, Sydney, Australia, 16-18 August 2006. IEEE Computer

Society.

[13] J. López, J. Dı́az, M. Garćıa, and D. Garćıa. Worst-Case Utilization Bound for

EDF Scheduling on Real-Time Multiprocessor Systems. In Proceedings of the 12th

Euromicro Conference on Real-Time Systems, pages 25–33, Stockholm, Sweden,

19-21 June 2000. IEEE Computer Society.

[14] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies for Assigning Real-

Time Tasks to Multiprocessor Systems. IEEE Transactions on Computers, 44(12):

1429–1442, 1995.

[15] H. Aydin and Q. Yang. Energy-Aware Partitioning for Multiprocessor Real-Time

Systems. In Proceedings of the 17th International Parallel and Distributed Process-

ing Symposium, Workshop on Parallel and Distributed Real-Time Systems, page

113, Nice, France, 22-26 April 2003. IEEE Computer Society.

[16] T. A. AlEnawy and H. Aydin. Energy-Aware Task Allocation for Rate Monotonic

Scheduling. In Proceedings of the 11th Real Time and Embedded Technology and

Applications Symposium, pages 213–223, San Francisco, CA, USA, 7-10 March 2005.

IEEE Computer Society.

[17] C.L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in

a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.

http://www.amd.com
http://www.amd.com

References 93

[18] J. A. Stankovic and K. Ramamritham. Editorial: What is Predictability for Real-

Time Systems? Real-Time Systems, 2(4):247–254, 1990.

[19] M. Marinoni and G. Buttazzo. Elastic DVS Management in Processors With Dis-

crete Voltage/Frequency Modes. IEEE Transactions on Industrial Informatics, 3

(1):51–62, 2007.

[20] T. A. AlEnawy and H. Aydin. Energy-Constrained Scheduling for Weakly-Hard

Real-Time Systems. In Proceedings of the 26th Real-Time Systems Symposium,

pages 376–385, Miami, FL, USA, 6-8 December 2005. IEEE Computer Society.

[21] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware

QoS Management in Web Servers. In Proceedings of the 24th Real-Time Systems

Symposium, pages 63–72, Cancun, Mexico, 3-5 December 2003. IEEE Computer

Society.

[22] A. Qadi, S. Goddard, and S. Farritor. A Dynamic Voltage Scaling Algorithm for

Sporadic Tasks. In Proceedings of the 24th Real-Time Systems Symposium, pages

52–62, Cancun, Mexico, 3-5 December 2003. IEEE Computer Society.

[23] S. Kato and N. Yamasaki. Global EDF-based Scheduling with Efficient Priority

Promotion. In Proceedings of the 14th International Conference on Embedded and

Real-Time Computing Systems and Applications, pages 197–206, Kaohisung, Tai-

wan, 25-27 August 2008. IEEE Computer Society.

[24] H. Chetto and M. Chetto. Some Results of the Earliest Deadline Scheduling Algo-

rithm. IEEE Transactions on Software Engineering, 15(10):1261–1269, 1989.

[25] S. Zikos and H.D. Karatza. Performance and Energy Aware Cluster-Level Schedul-

ing of Compute-Intensive Jobs with Unknown Service Times. Simulation Modelling

Practice and Theory, 19(1):239–250, 2010.

[26] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium Pro-

cessor. IEEE Micro, 25(2):10–20, 2005.

[27] R. Kalla, B. Sinharoy, and J.M. Tendler. IBM Power5 Chip: A Dual-Core Multi-

threaded Processor. IEEE Micro, 24(2):40–47, 2004.

94 References

[28] Agam Shah. Arm plans to add multithreading to chip design. IT-

world, 2010. [Online]. Available: http://www.itworld.com/hardware/122383/

arm-plans-add-multithreading-chip-design.

[29] S. Park, W. Jiang, Y. Zhou, and S. Adve. Managing Energy-Performance Tradeoffs

for Multithreaded Applications on Multiprocessor Architectures. In Proceedings

of the SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, pages 169–180, San Diego, CA, USA, 12-16 June 2007. ACM.

[30] F. Cazorla, P. Knijnenburg, R. Sakellariou, E. Fernández, A. Ramirez, and

M. Valero. Predictable Performance in SMT Processors: Synergy between the

OS and SMTs. IEEE Transactions on Computers, 55(7):785–799, 2006.

[31] A. El-Haj-Mahmoud, A. AL-Zawawi, A. Anantaraman, and E. Rotenberg. Vir-

tual Multiprocessor: An Analyzable, High-Performance Architecture for Real-Time

Computing. In Proceedings of the International Conference on Compilers, Archi-

tectures and Synthesis for Embedded Systems, pages 213–224, San Francisco, CA,

USA, 24-27 September 2005. ACM Press.

[32] Y. Wei, C. Yang, T. Kuo, and S. Hung. Energy-Efficient Real-Time Scheduling

of Multimedia Tasks on Multi-Core Processors. In Proceedings of the 25th Sympo-

sium on Applied Computing, pages 258–262, Sierre, Switzerland, 22-26 March 2010.

ACM.

[33] A. Schranzhofer, J.-J. Chen, and L. Thiele. Dynamic Power-Aware Mapping of Ap-

plications onto Heterogeneous MPSoC Platforms. IEEE Transactions on Industrial

Informatics, 6(4):692–707, 2010.

[34] B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson. On the Scalability

of Real-Time Scheduling Algorithms on Multicore Platforms: A Case Study. In

Proceedings of the 29th Real-Time Systems Symposium, pages 157–169, Barcelona,

Spain, 30 November - 3 December 2008. IEEE Computer Society.

[35] A. El-Haj-Mahmoud and E. Rotenberg. Safely Exploiting Multithreaded Proces-

sors to Tolerate Memory Latency in Real-Time Systems. In Proceedings of the

International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems, pages 2–13, Washington, DC, USA, 22-25 September 2004. ACM Press.

http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-design
http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-design

References 95

[36] Liu Zheng. A Task Migration Constrained Energy-Efficient Scheduling Algorithm

for Multiprocessor Real-time Systems. In Proceedings of the International Con-

ference on Wireless Communications, Networking and Mobile Computing, pages

3055–3058, Shanghai, China, 21-25 September 2007. IEEE Computer Society.

[37] E. Brião, D. Barcelos, F. Wronski, and F. R. Wagner. Impact of Task Migration

in NoC-based MPSoCs for Soft Real-time Applications. In Proceedings of the In-

ternational Conference on VLSI, pages 296–299, Atlanta, GA, USA, 15-17 October

2007. IEEE Computer Society.

[38] N. Fisher and S. Baruah. The Feasibility of General Task Systems with Precedence

Constraints on Multiprocessor Platforms. Real-Time Systems, 41(1):1–26, 2009.

[39] R. Giorgi and C. A. Prete. PSCR: A Coherence Protocol for Eliminating Passive

Sharing in Shared-Bus Shared-Memory Multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, 10(7):742–763, 1999.

[40] Simon Schliecker, Mircea Negrean, Gabriela Nicolescu, Pierre Paulin, and Rolf

Ernst. Reliable Performance Analysis of a Multicore Multithreaded System-on-

Chip. In Proceedings of the 6th IEEE/ACM/IFIP international conference on Hard-

ware/Software codesign and system synthesis, CODES+ISSS ’08, pages 161–166,

New York, NY, USA, 2008. ACM.

[41] R. Pellizzoni, A. Schranzhofery, J.-J. Cheny, M. Caccamo, and L. Thiele. Worst

Case Delay Analysis for Memory Interference in Multicore Systems. In Design,

Automation Test in Europe Conference Exhibition (DATE), 2010, pages 741 –746,

March 2010.

[42] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a Predictable

SDRAM Memory Controller. In Proceedings of the 5th IEEE/ACM international

conference on Hardware/software codesign and system synthesis, pages 251–256,

New York, NY, USA, 2007. ACM.

[43] M. Paolieri, E. Quiñones, F.J. Cazorla, and M. Valero. An Analyzable Memory

Controller for Hard Real-Time CMPs. Embedded Systems Letters, IEEE, 1(4):86

–90, dec. 2009.

[44] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and Ma-

teo Valero. Hardware Support for WCET Analysis of Hard Real-Time Multicore

96 References

Systems. In Proceedings of the 36th annual international symposium on Computer

architecture, ISCA ’09, pages 57–68, New York, NY, USA, 2009. ACM.

[45] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschu-

lat, and Per Stenström. The Worst-Case Execution Time Problem - Overview of

Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53,

May 2008.

[46] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. FAST: Frequency-Aware

Static Timing Analysis. In Proceedings of the 24th International Real-Time Systems

Symposium, pages 40–51, Cancun, Mexico, 3-5 December 2003. IEEE Computer

Society.

[47] D. C. Snowdon, G. Van Der Linden, and S. M. Petters. Accurate Run-Time Pre-

diction of Performance Degradation under Frequency Scaling. In Proceedings of the

Workshop on Operating Systems Platforms for Embedded Real-Time Applications,

Pisa, Italy, 4-6 July 2007.

[48] Rustam Miftakhutdinov, Eiman Ebrahimi, and Yale N. Patt. Predicting Perfor-

mance Impact of DVFS for Realistic Memory Systems. In Proceedings of the 45th

International Symposium on Microarchitecture, pages 155–165, 2012.

[49] Stefan Schaefer, Bernhard Scholz, Stefan M. Petters, and Gernot Heiser. Static

Analysis Support for Measurement-based WCET Analysis. In In 12th IEEE Inter-

national Conference on Embedded and Real-Time Computing Systems and Applica-

tions, Work-in-Progress Session, 2006.

[50] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner.

Measurement-based Timing Analysis. In Proceedings of the 3rd International Sym-

posium on Leveraging Applications of Formal Methods, Verification and Validation,

pages 430–444, Porto Sani, Greece, 2008.

References 97

[51] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund,

Claire Maiza Burguière, Jan Reineke, Benôıt Triquet, and Reinhard Wilhelm. Pre-

dictability Considerations in the Design of Multi-Core Embedded Systems. Proceed-

ings of Embedded Real Time Software and Systems, 2010. http://www.erts2010.

org.

[52] Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia,

and Francisco J. Cazorla. On the Evaluation of the Impact of Shared Resources

in Multithreaded COTS Processors in Time-Critical Environments. ACM Trans.

Archit. Code Optim. TACO, 8(4):34:1–34:25, January 2012.

[53] D. Hardy, T. Piquet, and I. Puaut. Using Bypass to Tighten WCET Estimates for

Multi-Core Processors with Shared Instruction Caches. In 30th IEEE Real-Time

Systems Symposium, 2009, pages 68–77, 2009.

[54] H. Shah, A. Raabe, and A. Knoll. Bounding WCET of applications using SDRAM

with Priority Based Budget Scheduling in MPSoCs. In Design, Automation Test

in Europe Conference Exhibition, pages 665–670, 2012.

[55] T. Ungerer, F.J. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quiones,

M. Gerdes, M. Paolieri, J. Wolf, H. Cass, S. Uhrig, I. Guliashvili, M. Houston,

F. Kluge, S. Metzlaff, and J. Mische. Merasa: Multicore Execution of Hard Real-

Time Applications Supporting Analyzability. Micro, IEEE, 30(5):66–75, 2010.

[56] R. Ubal, J. Sahuquillo, S. Petit, and P. López. Multi2Sim: A Simulation Framework

to Evaluate Multicore-Multithreaded Processors. In Proceedings of the 19th Inter-

national Symposium on Computer Architecture and High Performance Computing,

pages 62–68, Gramado, RS, Brazil, 24-27 October 2007. IEEE Computer Society.

[57] Tom R Halfhill. Intel’s Tiny Atom: New Low-power Microarchitecture Rejuvenates

the Embedded x86. Micro Report, 22(4):1, 2008.

[58] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing On-

Chip Parallelism. In Proceedings of the 22nd Annual International Symposium on

Computer Architecture, pages 392–403, Santa Margherita Ligure, Italy, 22-24 June

1995. IEEE Computer Society.

http://www.erts2010.org
http://www.erts2010.org

98 References

[59] M. Shah et al. UltraSPARC T2: A Highly-Threaded, Power-Efficient, SPARC

SOC. In Proceedings of the IEEE Asian Solid-State Circuits Conference, pages

22–25, Jeju, Korea, 12-14 November 2007. IEEE Computer Society.

[60] Intel Atom Processor Microarchitecture. Santa Clara, CA, USA, INTEL Corp..

[Online]. Available: http://www.intel.com.

[61] WCET Analysis Project. WCET Benchmark Programs. Mälardalen Real-Time Re-

search Center, Väster̊as, Sweden, 2006. [Online]. Available: http://www.mrtc.

mdh.se/projects/wcet.

[62] Intel Pentium M Processor Datasheet. INTEL Corp., Santa Clara, CA, USA, 2004.

[Online]. Available: http://download.intel.com/support/processors/mobile/

pm/sb/25261203.pdf.

[63] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu, J. Lee, and

D. Brooks. A Dynamic Compilation Framework for Controlling Microprocessor

Energy and Performance. In Proceedings of the 38th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 271–282, Barcelona, Spain, 12-16

November 2005. IEEE Computer Society.

[64] H. Aydin, P. Mej́ıa-Alvarez, D. Mossé, and R. Melhem. Dynamic and Aggressive

Scheduling Techniques for Power-Aware Real-Time Systems. In Proceedings of the

22nd Real-Time Systems Symposium, pages 95–105, London, UK, 2-6 December

2001. IEEE Computer Society.

[65] J.L. March, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato. Extending a Multicore

Multithread Simulator to Model Power-Aware Hard Real-Time Systems. In Pro-

ceedings of the 10th International Conference on Algorithms and Architectures for

Parallel Processing, pages 444–453, Busan, Korea, 21-23 May 2010. Springer-Verlag,

Berlin.

[66] P. Chaparro, J. González, G. Magklis, Qiong Cai, and A. González. Understand-

ing the Thermal Implications of Multi-Core Architectures. IEEE Transactions on

Parallel and Distributed Systems, 18(8):1055–1065, 2007.

[67] Marvell ARMADATM 628. Santa Clara, CA, USA, Marvell Semiconductor,

Inc. [Online]. Available: http://www.marvell.com/company/press_kit/assets/

Marvell_ARMADA_628_Release_FINAL3.pdf.

http://www.intel.com
http://www.mrtc.mdh.se/projects/wcet
http://www.mrtc.mdh.se/projects/wcet
http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf
http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf
http://www.marvell.com/company/press_kit/assets/Marvell_ARMADA_628_Release_FINAL3.pdf
http://www.marvell.com/company/press_kit/assets/Marvell_ARMADA_628_Release_FINAL3.pdf

References 99

[68] K. Hirata and J. Goodacre. ARM MPCore; The Streamlined and Scalable ARM11

Processor Core. In Proceedings of the Conference on Asia South Pacific Design Au-

tomation, pages 747–748, Yokohama, Japan, 23-26 January 2007. IEEE Computer

Society.

[69] Marco E. T. Gerards and Jan Kuper. Optimal DPM and DVFS for Frame-based

Real-Time Systems. ACM Transactions on Architecture and Code Optimization, 9

(4):41:1–41:23, January 2013.

[70] ARM big.LITTLE Processing, ARM Holdings. [Online]. Available: http://www.

arm.com/products/processors/technologies/biglittleprocessing.php.

[71] E. Ipek, O. Mutlu, J.F. Martinez, and R. Caruana. Self-Optimizing Memory Con-

trollers: A Reinforcement Learning Approach. In 35th International Symposium on

Computer Architecture, ISCA, pages 39–50, 2008.

[72] Stéphane Eranian. What Can Performance Counters Do for Memory Subsystem

Analysis? In Proceedings of ACM SIGPLAN workshop on memory systems perfor-

mance and correctness (ASPLOS’08), pages 26–30. ACM, 2008.

[73] J.L. March, S. Petit, J. Sahuquillo, H. Hassan, and J. Duato. Efficiently Handling

Memory Accesses to Improve QoS in Multicore Systems under Real-Time Con-

straints. In IEEE 24th International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD), pages 286–293, New York, NY, USA,

24-26 October 2012. IEEE. ISBN 978-1-4673-4790-7.

http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php

	Cobert
	Credits
	Abstract
	Resumen
	Resum
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Chapter 1. Introduction
	1.1 Motivation
	1.1.1 Power-Aware Multicore Processors
	1.1.2 Real-Time Task Partitioners and Schedulers
	1.1.3 Memory Controller Scheduling Policies
	1.1.4 Dynamic Execution Time Estimation

	1.2 Contributions of the Thesis
	1.3 Thesis Outline

	Chapter 2. Related Work
	2.1 Real-Time Scheduling in Power-Aware Multicore Processors
	2.1.1 Task Partitioning
	2.1.2 Task Migration

	2.2 Memory Controller Scheduling Policies
	2.3 Execution Time Estimation

	Chapter 3. System Model
	3.1 Baseline Design
	3.1.1 Real-Time Tasks
	3.1.2 Power-Aware Scheduler

	3.2 The Multi2Sim Simulation Framework
	3.2.1 Simulation Models
	3.2.2 Main Proposed Extensions

	Chapter 4. Task Partitioning
	4.1 Introduction
	4.2 Partitioning Heuristics
	4.2.1 HRT Heuristic
	4.2.2 Power-Aware HRT Scheduler
	4.2.3 Providing Support for SRT Tasks

	4.3 Experimental Evaluation
	4.3.1 Designing and Planning Mix Execution for HRT Tasks
	4.3.2 Designing Hybrid Mixes
	4.3.3 Energy Savings for HRT Mixes
	4.3.4 Energy Savings versus Deadline Misses for Hybrid Mixes

	4.4 Conclusions

	Chapter 5. Task Migration
	5.1 Introduction
	5.2 Proposed Task Migration Heuristics
	5.2.1 Single Option Migration Policies
	5.2.2 Multiple Option Migration Dynamic Partitioner
	5.3 Experimental Results
	5.3.1 Impact of Applying Migrations at Speci�c Points of Time
	5.3.2 Comparing MOM versus SOM Variants

	5.4 Conclusions

	Chapter 6. Memory Controller Scheduling Policies
	6.1 Introduction
	6.2 Power-Aware Scheduler
	6.3 Memory Controller
	6.3.1 HRT Requests First
	6.3.2 Active Task Requests First

	6.4 Experimental Results
	6.5 Conclusions

	Chapter 7. Dynamic Execution Time Estimation
	7.1 Introduction
	7.2 System Architecture
	7.2.1 Partitioning and Scheduling
	7.2.2 Memory System

	7.3 Processor-Memory Model
	7.4 Model Validation
	7.5 Frequency Selection Policy based on the Proc-Mem Model
	7.5.1 Scheduler Working Behavior
	7.5.2 Experimental Results

	7.6 Conclusions

	Chapter 8. Conclusions
	8.1 Contributions
	8.2 Publications

	References

