
 

Refractive devices for acoustical 
and flexual waves 

ALFONSO CLIMENTE ALARCÓN 



Departamento de Ingenieŕıa Electrónica
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Resumen de la tesis doctoral

Dispositivos refractivos para
ondas acústicas y flexurales

de

Alfonso Climente Alarcón
Doctor en Ciencias por el Departamento de Ingenieŕıa Electrónica

Universitat Politècnica de València, Valencia, Diciembre 2014

El objetivo de esta tesis doctoral ha sido el diseño y demostración de

dispositivos refractivos, no sólo para las ondas acústicas, sino también

para ondas flexurales en placas delgadas.

Matemáticamente estos problemas han sido tratados por medio de

la teoŕıa de la dispersión mltiple. Esta teoŕıa es adecuada para los ca-

sos aqúı tratados ya que las geometŕıas de los problemas son principal-

mente circulares. En este manuscrito, describimos la teoŕıa de dispersión

múltiple ya empleada en trabajos anteriores. Asimismo, desarrollamos

un análogo de la teoŕıa para ondas flexurales en sistemas multicapa. El

algoritmo queda aqúı detallado y ha sido utilizado con éxito para sim-

ular numéricamente el comportamiento de distintos dispositivos. Por lo

tanto, este manuscrito está divido en dos partes.

La primera parte se centra en dos dispositivos acsticos refractivos:

una lente de ı́ndice de gradiente y un absorbente acústico omnidirec-

cional de banda ancha, o “ agujero negro acústico ”. Ambos se basan

en cristales sónicos compuestos de cilindros ŕıgidos sumergidos en aire.

Como establece el método de homogeneización, el ı́ndice de refracción

deseado puede obtenerse mediante la variación de los radios de los cilin-

dros. Una vez diseñados los dispositivos, se llevaron a cabo simulaciones

numéricas y mediciones para probar el comportamiento de cada uno de

ellos. Para este propósito, se desarrollaron dos sistemas de medición es-

pećıficos, la cámara bidimensional y la cámara de impedancias, ambas



quedan explicadas en detalle en esta tesis.

La segunda parte describe el diseño de dispositivos refractivos para

ondas flexurales. En lugar de usar “cristales platónicos”, se ha hecho

uso de la relación de dispersión peculiar de este tipo de ondas. Como

establece la ecuación de propagación, la velocidad de onda se ve mod-

ificada, no sólo por las propiedades elásticas de la placa, sino también

por su espesor. El uso de este último enfoque nos ha permitido simular

numéricamente una serie de lentes de gradiente de ı́ndice radialmente

simétricas ya conocidas en la literatura. Asimismo, se ha diseñado un

dispositivo omnidireccional de banda ancha para aislar de las ondas flex-

urales una región de una placa delgada. Costa de una región anular con

un perfil de espesor que imita la combinación de un potencial atractivo

y otro repulsivo. Las ondas se concentran en su parte inferior y se disi-

pan por medio de una capa absorbente colocada sobre la placa. Tras

presentar simulaciones numéricas, los resultados son discutidos.

Por último, presentamos un resonador en el plano para ondas flex-

urales consistente en un agujero atravesado por una varilla rectangular.

Para resolver el problema, se acoplan las ecuaciones de movimiento de

Kirchhoff-Love y Euler-Bernoulli, y se introduce una forma compacta de

la matriz de transferencia. Para demostrar su validez, las simulaciones

numéricas obtenidas mediante este algoritmo son contrastadas contra un

simulador comercial basado en elementos finitos.



Resum de la tesi doctoral

Dispositius refractius per a
ones acústiques i flexurales

de

Alfonso Climente Alarcón
Doctor en Ciències pel Departament d’Enginyeria Electrònica

Universitat Politècnica de València, Decembre 2014

L’objectiu d’aquesta tesi doctoral ha estat el disseny i demostració de

dispositius refractius, no només per les ones acústiques, sinó també per

ones flexurales en plaques primes.

Matemàticament aquests problemes han estat tractats per mitjà de

la teoria de la dispersió múltiple. Aquesta teoria és adequada per als

casos aqúı tractats ja que les geometries dels problemes són principalment

circulars. En aquest manuscrit, descrivim la teoria de dispersió múltiple

ja emprada en treballs anteriors. Aix́ı mateix, desenvolupem un anàleg

de la teoria per ones flexurales en sistemes multicapa. L’algorisme queda

aqúı detallat i ha estat utilitzat amb èxit per simular numèricament el

comportament de diferents dispositius. Per tant, aquest manuscrit està

dividit en dues parts.

La primera part se centra en dos dispositius acústics refractius: una

lent d’́ındex de gradient i un absorbent acústic omnidireccional de banda

ampla, o “forat negre acústic”. Tots dos es basen en cristalls sònics com-

postos de cilindres ŕıgids submergits en aire. Com estableix el mètode

d’homogenëıtzació, l’́ındex de refracció desitjat es pot obtenir mitjanant

la variació dels radis dels cilindres. Un cop dissenyats els dispositius,

es van dur a terme simulacions numèriques i mesuraments per provar el

comportament de cada un d’ells. Per a aquest propòsit, es van desen-

volupar dos sistemes de mesura espećıfics, la càmera bidimensional i la

càmera d’impedàncies, ambdues queden explicades en detall en aquesta



tesi.

La segona part descriu el disseny de dispositius refractius per ones

flexurales. En lloc d’usar “vidres platònics”, s’ha fet ús de la relació

de dispersió peculiar d’aquest tipus d’ones. Com estableix l’equació de

propagació, la velocitat d’ona es veu modificada, no noms per les propi-

etats elàstiques de la placa, sinó tamb per la seva espessor. L’ús d’aquest

últim enfocament ens ha permès simular numèricament una sèrie de lents

de gradient d’́ındex radialment simètriques ja conegudes en la literatura.

Aix́ı mateix, s’ha dissenyat un dispositiu omnidireccional de banda am-

pla per äıllar de les ones flexurales una regió d’una placa prima. Costa

d’una regió anullar amb un perfil de gruix que imita la combinació d’un

potencial atractiu i un altre repulsiu. Les ones es concentren a la part

inferior i es dissipen per mitjà d’una capa absorbent collocada sobre la

placa. Després de presentar simulacions numèriques, els resultats són

discutits.

Finalment, presentem un ressonador en el pla per ones flexurales

consistent en un forat travessat per una vareta rectangular. Per resol-

dre el problema, s’acoblen les equacions de moviment de Kirchhoff-Love

i Euler-Bernoulli, i s’introdueix una forma compacta de la matriu de

transferència. Per demostrar la seva validesa, les simulacions numèriques

obtingudes mitjanant aquest algorisme són contrastades contra un sim-

ulador comercial basat en elements finits.



Abstract of the doctor thesis

Refractive devices for
acoustical and flexural waves

by

Alfonso Climente Alarcón
Doctor of Science in the Ingenieŕıa Electrónica department

Universitat Politècnica de València, Valencia, December 2014

The aim of this work has been the design and demonstration of re-

fractive devices, not only for acoustic waves, but also for flexural waves

in thin plates.

Mathematically these problems have been treated by means of the

multiple scattering theory, because the geometries of the problems were

mainly circular and such theory is the best one in these cases. The multi-

ple scattering theory, previously stated, is here explained. Additionally,

a multilayer scattering theory for flexural waves is here introduced and

successfully used to numerically simulate their behavior. Therefore, this

PhD thesis is divided in two parts.

The first part is devoted to describe two acoustic refractive devices: a

gradient index lens and an omnidirectional broadband acoustic absorber,

or “acoustic black hole”. Both are based on sonic crystals consisting

of of rigid cylinders immersed in a fluid background. As the homoge-

nization method states, the desired refractive index can be obtained by

tailoring the radii of the cylinders. Thereafter, numerical simulations

and measurements were conducted to test the behavior of each device.

For this purpose, two specific measuring systems were developed: the

two-dimensional chamber and the impedance chamber. Both are here

explained in detail.

The second part describes the design of refractive devices for flexural

waves. Instead of using “platonic crystals”, we made use of the pecu-



liar dispersion relationship of flexural waves. As the equation states, the

wave speed is modified not only by the elastic properties of the plate, but

also from its thickness. Using the latest approach a set of numerical sim-

ulations of known circularly symmetrical gradient index lenses have been

performed. Additionally, an omnidirectional broadband insulating device

for flexural waves has been designed. It consist of a well-like thickness

profile in an annular region of the plate, that mimics the combination

of an attractive and repulsive potentials. The waves are focused at its

bottom and dissipated by means of an absorptive layer placed on top.

Numerical simulations are here presented and discussed.

Finally, we present an in-plane flexural resonator, consisting of a hole

in a thin plate traversed by a beam. Here, a closed form of the trans-

fer matrix is obtained by coupling the Kirchhoff-Love and the Euler-

Bernoulli motion equations. Numerical simulations, tested against a

commercial finite element simulator, prove its efficiency.
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Introduction





3

State of the Art

Music has been a part of every known culture, past and present. Since all

people of the world, including the most isolated tribal groups, have a form

of music, it may be concluded that music is likely to have been present

in the ancestral population prior to the dispersal of humans around the

world. Consequently music may have been with us for at least 50,000

years, varying widely between times and places. But, from a scientific

point of view, music is a compilation of sound waves generated by the

vibration of materials.

Since the time of Pythagoras, in the ancient Greek (6th century BC)

the propagation of sound waves, and the reason explaining why some

combinations of musical sounds seemed more beautiful than others has

driven the research on acoustics. Later on, in about 20 BC, the Ro-

man architect and engineer Vitruvius wrote a treatise on the acoustic

properties of theaters including discussion of interference, echoes, and

reverberation. Also Galileo Galilei, in the 16th century contributed to

this field. But it was not until the 19th century where Lord Rayleigh

combined, in his monumental work The Theory of Sound (1877), his

own copious contributions to the field of acoustics with the work of an-

other major figure of mathematical acoustics, Hermann von Helmholtz.

One year later, in 1888, Augustus Edward Hough Love, using assump-

tions proposed by Gustav Kirchhoff, expanded the one-dimensional beam

theory developed by Leonhard Euler and Daniel Bernoulli to create a

two-dimensional mathematical model used to determine the stresses and

deformations of thin plates. From that point on, the acoustics and vi-

brations fields saw an increasing number of research lines in the 20th

century. In this manuscript we will focus on two main topics: acoustic

and flexural metamaterials.

Acoustic metamaterials

Acoustic metamaterials were developed in parallel with the study of

electromagnetic metamaterials introduced by John Pendry during the
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90’s [60]. The boost in the study of acoustic metamaterials began with

the fabrication and demonstration of sonic crystals [67]. A sonic crys-

tal consists of a periodic distribution of inclusions immersed in a fluid

background. Commonly, these structures present, for frequencies of the

order of the lattice separation, a band of frequencies (band gap) in which

the sound propagation is forbidden because of Bragg reflection. For the

case of two-dimensional (2D) sonic crystals (SC), this behavior has been

already analyzed in a broad range of frequencies [67]. However, these

2D metamaterials usually gain special properties from structure rather

than composition, using the inclusion of small inhomogeneities to enact

effective macroscopic behavior [17, 42]. Therefore, in the range of low

frequencies (homogenization limit) they behave like homogeneous media

whose effective acoustic parameters, dynamical mass density, and bulk

modulus, basically depend on the lattice filling fraction [32,48,74,76].

The homogenization properties of sonic crystals have been employed

to design refractive devices like, for example, acoustic lenses whose focus-

ing properties are based on their external curved surfaces [11,25,49], flat

surface lenses [3] or FabryPerot type acoustic interferometers [68]. Ad-

ditionally, other type of flat lenses, like the gradient index ones (GRIN)

have also been designed as sonic crystals (SC). Like their optical coun-

terparts, the proposed 2D GRIN SC lenses have flat surfaces and are

of easier fabrication than curved SC lenses. The propagation of sound

through the medium is obtained by tuning the local refractive index of

the lens. Theoretical demonstrations have been proposed were the in-

dex gradient was obtained by changing the SC filling fraction, which is

directly related to the local refraction index, [77]; or by changing the

material composition of the cylinder along the lens [39]. More recently, a

GRIN SC lens based on a different approach has been proposed and ex-

perimentally demonstrated [61]; it is designed for a frequency within the

first acoustic band with negative slope. This type of GRIN lenses, work-

ing with wavelengths of the order of the lattice parameter, tend to have

a very small working bandwidth centered on the single operational fre-

quency at which they have been designed. Experimental demonstrations
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of acoustic lenses were then reported for airborne [90], and underwa-

ter [46] sound propagation.

Other interesting proposals with electromagnetic metamaterials have

also influenced new research lines in acoustics. This is the case of the “op-

tical black-hole” introduced by Narimanov and Kildishev [30, 52]. This

work inspired several theoretical proposals for EM waves [21, 56, 81], as

well as numerical realizations based on photonic crystals [40, 43] and an

experimental demonstration [13,89]. Following these results with electro-

magnetic metamaterials, “acoustic black holes” based on sonic crystals

were also theoretically proposed [38] with a performance similar to that

for electromagnetic waves. Experimental results were then conducted for

airborne sound [79] and underwater waves [51].

Flexural metamaterials

Elastic metamaterials have been a hot topic in the last years. How-

ever, in this work we focus on the propagation of flexural waves through

thin plates [24, 37, 72]. One type of elastic metamaterials are the so

called platonic crystals, which were developed also as the counterpart of

electromagnetic metamaterials. They consist on periodic arrangements

of scatterers or inclusions. The simplest form is obtained by drilling

holes whose radii is changed according to a specific relationship hole

radius-refractive index. The scattering by holes in plates has been an-

alyzed [36, 50, 54, 59, 70] and the resulting band structures have been

obtained [26, 27, 47]. Moreover, by introducing anisotropy in the sys-

tem, more complicated structures were designed in order to obtain novel

elastic devices [12, 53].

As in the case of sonic crystals, the control of the propagation of

flexural waves by gradient index devices has been studied. Results were

reported for positive [18,82], negative [9,19,63] and double negative [41]

refractive devices. These lenses also have proved to be useful for struc-

tural testing [20, 80]. Although the frequency response of the refractive

devices described above is known to be broadband, the major drawback
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is that a gradient index device requires a continuous variation of the re-

fractive index, which obviously cannot be done with discrete lattices of

holes, since the result will always be a stepped profile [71].

However, the local dependence of the elastic properties can also be

obtained by means of thickness variation. Known as wedges, these struc-

tures produce a gradual reduction in the velocity of the wave by changing

the plate’s local thickness. This approach has been employed by Krylov

and Tillman in 2004 [34]. It is based on the peculiar dispersion relation-

ship of flexural waves, which depends not only on the material of the

plate but also on its thickness, which is a parameter that can be easily

controlled at almost every scale. The approach has been extensively ap-

plied to carry out experimental investigations to achieve efficient damping

of flexural waves; first, at the edge of plates [55] and then at the plate

center [22, 35] which consists of designed pits with a layer of absorbing

materials attached in the middle. For more information on these topics,

see Ref. [33].

In addition to the phenomena described above, embedding local res-

onances in a thin plate has expanded the control over the propagation

of flexural waves. [87, 88]. The elastic properties were adjusted to open

band gaps in regions associated with the frequency of the resonance, in-

stead of opening in the wavelength region of the order of the structural

period, were they usually generate.

The local resonances have been achieved by introducing surface “in-

clusions” on top of semi-infinite mediums [29] or thin plates, such as hol-

low spheres or cylinders [65], spring-masses [85, 86], simple pillars [62],

composite pillars [57] or in-plane resonator [2]. Experiments have been

reported proving the existence of tunable band gaps by using stubs [58,84]

or piezoelectric shunts [10] on plates. Examples of potential applications

of this local resonators range from vibration absorption [5] to an elastic

analoge of graphene [75] or decreasing the vibrational response of pan-

els [14,15]. For more information on this topic the reader is addressed to

the reviews [28,45,83] and references therein.
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Outline of the PhD manuscript

Apart from the introduction, the concluding remarks and the appendix,

the manuscript is divided in two main parts. These cover the main

topics of the PhD Thesis, sound waves and vibrations, and are likewise

separated into many chapters.

Part I: Sound Waves Here we cover the refractive devices for acoustic

waves. Next, the content of each chapter inside this part is detailed.

Chapter 1 presents the theoretical introduction needed to understand

the next two chapters of this part. Here Helmholtz equation, Multiple

Scattering theory and the Homogenization method are explained in de-

tail among others. Other quantities used to analyze the results, as the

acoustic intensity and the scattering cross section, are also explained.

Chapter 2 describes the design, implementation and measurement of

a gradient index sonic lens. A ray model is developed from Fermat’s

principle to predict the position of the focal spot. The experimental

setup, named as 2D chamber, is explained and, afterward, numerical

simulations are compared against the experimental results.

Chapter 3 describes the design, implementation and measurement of

an omnidirectional broadband acoustic black hole based on sonic crys-

tals. Different absorbing materials are introduced and characterized in an

impedance tube. These materials are later used as the absorbing core of

the black hole. Finally, a metamaterial core based also on sonic crystals

is designed to be the optimal absorber. The whole structure is measured

in a new experimental setup, named as 2D impedance chamber, which is

also explained in detail. Finally, the experimental results are given and

fully analyzed.

Part II: Vibrations Here we cover the refractive devices for flexural

waves. Next, the content of each chapter is detailed.

Chapter 1 presents the theoretical introduction needed to understand

the next three chapters. Here the Euler-Bernoulli and the Kirchhoff-Love

motion equations are derived. Furthermore, the multilayer scattering

theory is explained in detail. Other quantities used to analyze the re-
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sults, as the flexural energy flux and the scattering cross section, are also

explained.

Chapter 2 describes the method to design any type of gradient index

device in thin plate by tailoring the plate’s thickness. Different lenses

known in optics are numerically simulated and the results are presented.

The broadband performance is analyzed by means of the scattering cross

section.

Chapter 3 further extends the previous chapter by designing and im-

plementing an omnidirectional broadband insulating device for flexural

waves. The Ross-Kerwin-Ungar model is here explained and analyzed.

Finally, numerical simulations of the insulating device are presented and

discussed.

Chapter 4 describes the process to obtain the transfer matrix of a

flexural resonator. The resonator consists of a hole in a thin plate crossed

by a beam. The approach to obtain the transfer matrix is based on an

analoge of the acoustic impedance method, also explained. Finally, finite

element simulation are compared against the analytical model to test it.

Concluding Remarks Here the concluding remarks on each chapter of

the PhD manuscript are given. Also, the future work is introduced and

all the publications generated throughout this work are listed.

Appendix Finally, in the Appendix, Bessel’s functions and their proper-

ties are given, paying attention to Graf’s addition theorem. Additionally,

the measurement method used in the impedance tube is explained.



Part I

Sound waves





Chapter 1

Theoretical introduction

In this chapter, the acoustic theory needed for the next chapter is intro-

duced. Concepts like bulk modulus and mass density and the relationship

they have with the speed of sound will be explained. Additionally, the

Helmholtz equation is derived, an example of solution is given and the

boundary conditions for different systems will be explained.
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1.1 Fluid Physics

The systems researched throughout this work are comprised of two di-

mensional (2D) homogeneous isotropic materials and only linear wave

phenomena are considered. Therefore, non-linear elements will be ne-

glected.

1.1.1 Equation of motion

The equation of motion of a fluid describes how the pressure P (r, t) inside

a differential volume located at r changes with time. The pressure P is

defined as the amount of force F acting on a surface dA as

P = −dF

dA
(1.1.1)

where the minus sign comes from the fact that the force is acting on the

surface and the pressure is reacting outwards. Let us consider that a

pressure wave propagates through an homogeneous and isotropic fluid.

Then, to obtain the equation of motion it’s necessary to consider three

equations previously, which are the force equilibrium, the mass conser-

vation law and the state equation.

Force equilibrium

Figure 1.1 shows a differential element of dimensions dx × dy × dz an

mass dm on which forces Fxi
are acting on each of its faces. From the

definition of pressure and Newton’s second law we obtain

∑

Fx = −∂P

∂x
dV = axdm, (1.1.2)

∑

Fy = −∂P

∂y
dV = aydm, (1.1.3)

∑

Fz = −∂P

∂z
dV = azdm, (1.1.4)
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Figure 1.1: Differential element of a fluid with forces acting perpendicular

to each face of the volume dV .

where axi
is the acceleration in the xi-direction. Taking into account the

definition of mass density ρ = dm/dV both the three equations can be

combined as

−∇P = ρa = ρ
∂v

∂t
, (1.1.5)

being v = dr/dt the particle velocity vector.

Mass conservation Law

The mass conservation law states that the decreasing mass in a given

volume equals the mass flux through the surface boundary S of such

volume, i.e.

∂

∂t

∫∫∫

V

ρdV = −
∫∫

S

ρv · dS, (1.1.6)
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where the right hand side can be converted into a volume integral apply-

ing Gauss’ theorem

∂

∂t

∫∫∫

V

ρdV = −
∫∫∫

V

∇(ρv)dV, (1.1.7)

therefore, the continuity equation is

∇(ρv) +
∂ρ

∂t
= 0. (1.1.8)

State equation

The state equation is derived from the Bulk modulus, which is defined

as the ratio of the infinitesimal pressure increase to the resulting relative

decrease of the volume.

B = −V
dP

dV
= ρ

dP

dρ
→ dP =

B

ρ
dρ. (1.1.9)

Taking into account Eq. (1.1.1) and applying the chain rule to differen-

tiate Eq. (1.1.9) with respect to space r and time t we can obtain the

following equation

∂P

∂t
dt+ dr · ∇P =

B

ρ

(

∂ρ

∂t
dt+ dr · ∇ρ

)

, (1.1.10)

then dividing by dt we obtain the state equation

∂P

∂t
+ v · ∇P =

B

ρ

(

∂ρ

∂t
+ v · ∇ρ

)

. (1.1.11)

Helmholtz equation

Once the three equations are obtained, by neglecting non-linear terms,

they can be rewritten as
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∇P + ρ
∂v

∂t
= 0, ((1.1.5) revisited)

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, ((1.1.8) revisited)

∂P

∂t
− B

ρ

(

∂ρ

∂t
+ v · ∇ρ

)

= 0. ((1.1.11) revisited)

By combining Eq. (1.1.8) and (1.1.11) we obtain

∂P

∂t
+ B∇ · v = 0. (1.1.12)

Taking the derivative of Eq. (1.1.5) with respect to space and the

derivative of Eq. (1.1.12) with respect to time and combining them we

arrive to the well known Helmholtz equation

∇2P +
ρ

B

∂2P

∂t2
= 0. (1.1.13)

Equation (1.1.13) shows, that the Bulk modulus B and the mass density

ρ define the acoustic properties of an isotropic fluid. Sometimes these

parameters are given in terms of the sound speed c or the characteristic

acoustic impedance Z, which are defined as

c =

√

B

ρ
, (1.1.14)

Z = ρc. (1.1.15)

1.1.2 Solutions to the Helmholtz equation

To show an example of the solution of Equation (1.1.13), let’s consider an

homogeneous 2D fluid media with Bulk modulus B and mass density ρ.

Considering time harmonic solutions of the form e−iωt, then the solution

of the Eq. (1.1.13) for Cartesian coordinates has the following form

P (x, y) =
[

C
(x)
1 eikxx + C

(x)
2 e−ikxx

] [

C
(y)
1 eikyy + C

(y)
2 e−ikyy

]

, (1.1.16)
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where the C
(x)
i and C

(y)
i are coefficients to be determined with the bound-

ary conditions and ki are the wave number components, such that

k2 = k2
x + k2

y =
ρω2

B
. (1.1.17)

In a similar way, the solution of Eq. (1.1.13) (polar coordinates) is an

expansion in q-terms of Bessel functions (see Appendix A). The incoming

and outgoing waves are expressed as a combination of regular Bessel

functions Jq(x) and first kind Hankel functions Hq(x) = Jq(x) + iYq(x),

respectively, i.e.

P (r, θ) =
∑

q

[AqJq(krr) + BqHq(krr)] e
iqθ, (1.1.18)

where the Aq and Bq are coefficients to be determined using the boundary

conditions. In addition, kr is the wave number obtained from

k2
r =

ρω2

B
. (1.1.19)

1.1.3 Boundary conditions

To couple the solution of the equation of motion of two different media,

the boundary conditions have to applied at the interface between the two

media Ω. For the case of two fluid media, continuity of the pressure and

the normal speed has to be accomplished.

P−∣
∣

Ω
= P+

∣

∣

Ω
, (1.1.20a)

v−
⊥
∣

∣

Ω
= v+

⊥
∣

∣

Ω
. (1.1.20b)

Notice that the particle velocity v can be defined in terms of the pressure

P using Eq. (1.1.5).

From the equations above every other boundary condition can be

specified. The most common are the rigidly condition, when the wave

impinges a rigid object in which the particles cannot be displaced, so

that



1.2 Single scatterer 17

v−
⊥
∣

∣

Ω
= 0, (1.1.21)

and the vacuum condition, where the lack of particles makes it impossible

to have a pressure, so

P−∣
∣

Ω
= 0. (1.1.22)

1.2 Single scatterer

When an external field impinges a close region Ω with different acoustic

parameters than the background, a scattering phenomenon occurs. In

the present work, the close region is considered an infinite long cylinder

and therefore the problem will be solved using Polar coordinates in 2D.

Let us consider a fluid cylinder with radius Ra and acoustic param-

eters (Ba, ρa) immersed in a fluid background with acoustic parame-

ters (Bb, ρb) as schematically depicted in Fig 1.2. The solution of the

Helmholtz equation in each medium (in polar coordinates) takes the form

P (inc) + P (scat) =
∑

q

AqJq(kbr)e
iqθ +

∑

q

BqHq(kbr)e
iqθ r > Ra,

(1.2.1a)

P (int) =
∑

q

CqJq(kar)e
iqθ r ≤ Ra,

(1.2.1b)

where

kb =

√

ρb
Bb

ω, (1.2.2a)

ka =

√

ρa
Ba

ω, (1.2.2b)
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Figure 1.2: Single scatter with radiusRa and acoustic parameters (Ba, ρa)

immersed in a fluid background with acoustic parameters (Bb, ρb). An

incoming wave Pinc impinges the cylinder and generates a scattering wave

Pscat and an internal wave Pint.

and P (inc), P (scat) and P (int) defines the incoming, scattered and internal

wave, respectively. Notice that the field inside of the cylinder does not

have an outgoing wave, since there is no source inside.

In the general problem, the incoming coefficients Aq are the inputs

and the scattered coefficients Bq are the outputs. Therefore, both of

them can be related through a infinite matrix called the transfer matrix

or T-matrix as









...

Bq

...









=









. . .
...

· · · Tqs · · ·
...

. . .

















...

As

...









(1.2.3)

To obtain the T-matrix it is necessary to apply the boundary condi-

tions of a circular interface [Eq. (1.1.20)] to our system
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(

P (inc) + P (scat)
)∣

∣

r=Ra
= P (int)

∣

∣

r=Ra
, (1.2.4a)

1

ρb

(

∂P (inc)

∂r
+

∂P (scat)

∂r

)∣

∣

∣

∣

r=Ra

=
1

ρa

∂P (int)

∂r

∣

∣

∣

∣

r=Ra

, (1.2.4b)

leading to the following system of equations

∑

q

AqJq(kbRa)e
iqθ +

∑

q

BqHq(kbRa)e
iqθ =

∑

q

CqJq(kaRa)e
iqθ,

(1.2.5a)

kb
ρb

∑

q

AqJ
′
q(kbRa)e

iqθ +
∑

q

BqH
′
q(kbRa)e

iqθ =
ka
ρa

∑

q

CqJ
′
q(kaRa)e

iqθ.

(1.2.5b)

The sums in q can be eliminated multiplying by eisθ and integrating

from 0 to 2π. In this case only the terms s = q are different than zero

and the equations become

AqJq(kbRa) + BqHq(kbRa) = CqJq(kaRa), (1.2.6a)

kb
ρb
AqJ

′
q(kbRa) + BqH

′
q(kbRa) =

ka
ρa

CqJ
′
q(kaRa). (1.2.6b)

Solving this system of equations we obtain the relationship between

the coefficients as

Tq =
Bq

Aq

= −
ρqJ

′
q(kbRa)− Jq(kbRa)

ρqH ′
q(kbRa)−Hq(kbRa)

, (1.2.7a)

Cq

Aq

=
Jq(kbRa) + TqHq(kbRa)

Jq(kaRa)
, (1.2.7b)

where
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ρq =
ρakb
ρbka

Jq(kaRa)

J ′
q(kaRa)

. (1.2.8)

For the cylinder case, the T-matrix is diagonal and note that these equa-

tions are only valid when the center of the coordinate system coincides

with the center of the cylinder.

1.2.1 Types of incoming waves

�

�
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�
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�
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Figure 1.3: Source types: (a) Plane wave with wavenumber ~k and (b)

cylindrical point source at (Rs,Φs) impinging a cylinder at (Rα,Φα).

As shown previously, to obtain the scattering coefficients, the incom-

ing field impinging the system has to be expressed as a combination of

Bessel functions with arguments given in polar coordinates r = (r, θ).

Additionally, if the cylinder is not centered at the origin of coordinates,

the reference frame of the incoming field has to be shifted to coincide

with the one of the cylinder. The most common incoming waves are the

plane wave and the cylindrical point source.

Plane Wave

The plane wave is a constant-frequency wave whose wavefronts (surfaces

of constant phase) are infinite parallel planes of constant peak-to-peak
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amplitude normal to the phase velocity vector. This incoming field is

defined by the wavenumber ~k = k = k(cos(θs), sin(θs)) and is represented

by

Ps(r) = eik·r. (1.2.9)

By using the integral definition of the Bessel function [1] it can be

given as

Ps(r) =
∑

q

[

iqe−iqθs
]

Jq(kr)e
iqθ =

∑

q

AqJq(kr)e
iqθ. (1.2.10)

When the scatter is not placed at the center of the coordinates, the

incoming wave can be expressed in a different reference frame α, shown

in Fig. 1.3(a), as

Ps(rα) = eik·Rαeik·rα =
∑

q

[

iqek·Rαe−iqθs
]

Jq(krα)e
iqθα

=
∑

q

(Aq)αJq(krα)e
iqθα ,

(1.2.11)

where rα = r−Rα

Cylindrical point source

The point source is defined as a Hankel function of the same order ξ. Let

us consider a cylindrical point source ξ = 0 with wavenumber k located

at Rs = (Rs,Φs) as shown in Fig. 1.3(b), then the incoming pressure

pressure field is defined as

Ps(r) = Hξ(krs)e
iξθs , (1.2.12)

where rs = r − Rs = (rs, θs). Using Graph’s Addition Theorem (see

Appendix A.3), the previous equation can be expanded in regular Bessel

functions and expressed in a different frame α, shown in 1.3(b), as
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Ps(rα) =
∑

q

[

Hq−ξ(kRαs)e
i(ξ−q)Ψαs

]

Jq(krα)e
iqθα =

∑

q

(Aq)αJq(krα)e
iqθα ,

(1.2.13)

where rα = r−Rα.

1.3 Multiple scattering
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Figure 1.4: Cluster of N=2 cylinders located at (Rα,Φα) and (Rβ,Φβ).

Consider a cluster of N cylinders with arbitrary position located at

(Rα,Φα) and radius Rcyl
α with α = 1, 2, . . . , N as shown if Fig. 1.4. If an

external field interacts with the cluster, the total field incoming on the α-

cylinder will be a combination of the incident field and the scattered field

of all the other cylinders. Therefore the system is completely coupled as

the wave ”bounces” back and forth through the cluster.

Let us define the total incoming field as P
(inc)
α , which takes into ac-

count all the incoming waves arriving to the α-cylinder; and the total
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scattered field as P
(scat)
α . Their expressions have the form

P (inc)
α =

∑

s

(A(T )
s )αJs(kbr)e

isθ, (1.3.1a)

P (scat)
α =

∑

q

(B(T )
q )αHq(kbr)e

iqθ, (1.3.1b)

where (A
(T )
s )α and (B

(T )
q )α are the total incoming and scattered coeffi-

cients, which are related by

(B(T )
q )α =

∑

s

(Tqs)α(A
(T )
s )α. (1.3.2)

As was explained in the previous chapter, the T-matrix relates the

incoming and the scattered wave, but only when the center of the co-

ordinate system and the cylinder coincide. To change the position of

the origin of coordinates, Graph’s Theorem (see Appendix A.3) can be

applied, such that the total scattering field created by the β-cylinder

described as

P
(scat)
β (rβ, θβ) =

∑

r

(B(T )
r )βHr(kbrβ)e

irθβ , (1.3.3)

can be rewritten in the system of coordinates centered at α as

P
(scat)
β (rα, θα) =

∑

r

(B(T )
r )β

∑

s

[

Hs−r(kbRαβ)e
i(r−s)Φαβ

]

Js(kbrα)e
isθα .

(1.3.4)

Then the total incident field on the α-cylinder is written as

P (inc)
α =

∑

s

(As)αJs(kbrα)e
isθα +

∑

β 6=α

P
(scat)
β (rα, θα), (1.3.5)

where (As)α are the incoming coefficients of the external field expressed

in the α frame. Notice that both fields are now expressed in the α frame.

Combining Eq. (1.3.1a) with (1.3.5) and rearranging terms we obtain
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(A(T )
s )α = (As)α +

∑

β 6=α

∑

r

(B(T )
r )βHs−r(kbRαβ)e

i(r−s)Φαβ . (1.3.6)

Multiplying this equation by (Tqs)α and adding for all s we get

(B(T )
q )α =

∑

s

(Tqs)α(As)α+
∑

β 6=α

∑

s

(Tqs)α
∑

r

(B(T )
r )βHs−r(kbRαβ)e

i(r−s)Φαβ .

(1.3.7)

By introducing the Kronecker delta function (δij = 1 only if i = j)

and rearranging terms we arrive to the following equation

∑

β

∑

r

(Mqr)αβ(B
(T )
r )β = (Nq)α, (1.3.8)

where

(Mqr)αβ = δαβδqr −
∑

s

(1− δαβ)(Tqs)αHs−r(kbRαβ)e
i(r−s)Φαβ , (1.3.9a)

(Nq)α =
∑

s

(Tqs)α(As)α. (1.3.9b)

More specifically, equation (1.3.8) can be written in matrix form as











...
...

...
··· [Mqr]α−1β−1 [Mqr]α−1β [Mqr]α−1β+1 ···
··· [Mqr]α β−1 [Mqr]α β [Mqr]α β+1 ···
··· [Mqr]α+1β−1 [Mqr]α+1β [Mqr]α+1β+1 ···

...
...

...



























...

[B(T )
r ]β−1

[B(T )
r ]β

[B(T )
r ]β+1

...

















=

















...

[Nq]α−1

[Nq]α
[Nq]α+1

...

















,

(1.3.10)

where [Mqr]αβ is a (q × r) matrix, [B(T )
r ]β is a r-length vector and [Nq]α

is a q-length vector defined as
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[Mqr]αβ =

















...
...

...

· · · (Mq−1r−1)αβ (Mq−1r)αβ (Mq−1r+1)αβ · · ·
· · · (Mq r−1)αβ (Mq r)αβ (Mq r+1)αβ · · ·
· · · (Mq+1r−1)αβ (Mq+1r)αβ (Mq+1r+1)αβ · · ·

...
...

...

















,

(1.3.11a)

[B(T )
r ]β =



















...

(B
(T )
r−1)β

(B
(T )
r )β

(B
(T )
r+1)β
...



















; [Nq]α =

















...

(Nq−1)α
(Nq )α
(Nq+1)α

...

















. (1.3.11b)

To solve the infinite linear systems described in Eq. (1.3.10) it is

truncated so that max |q| = max |r| = max |s| < Q. Then the total

scattering coefficients (B
(T )
r )α are obtained and the total pressure field P

in the background medium is calculated as

P (r) =
∑

q

AqJq(kbr)e
iqθ +

∑

α

∑

q

(B(T )
q )αHq(kbrα)e

iqθα , (1.3.12)

with rα = r−Rα being the distance from the center of the α-cylinder to

an arbitrary position r in the background medium.

To calculate the internal field of each cylinder, the internal coefficients

of each cylinder (Cq)α are needed. These are obtained by inserting the

total incoming coefficients of the α-cylinder [see Eq. (1.3.6)] into Eq.

(1.2.7b).

1.4 Effective transfer matrix

The effective transfer matrix T eff describes the effective scattering prop-

erties of a cluster of N cylinders. With this matrix is possible to calculate
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Figure 1.5: Schematic view of (a) a cluster of cylinders located at Rα

with radius Rcyl
α and (b) effective cylinder of radius Reff .

the total scattering field outside the cluster, expressed as the scattering

field from an effective cylinder with radiusReff = max(Rα+Rcyl
α ) (dashed

line in Fig. 1.5). This will be important later on to obtain the effective

medium properties of the cluster in the low frequency limit.

The total scattering field produced by a cluster of cylinder can be

obtained from the second term of Eq. (1.3.12) (changing the notation)

as

P (scat)(r) =
∑

β

∑

r

(B(T )
r )βHr(kbrβ)e

irθβ . (1.4.1)

By applying Graf’s addition theorem, as described in Appendix A.3, it

can be cast as

P (scat)r =
∑

p

Beff
p Hp(kbr)e

ipθ, r > Reff (1.4.2)

where Beff
p are the effective scattering coefficients of the introduced ef-

fective cylinder

Beff
p =

∑

β

∑

r

Jp−r(kbRβ)e
i(r−p)Φβ(BT

r )β. (1.4.3)
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Combining this equation with Eq. (1.3.8) , the relationship between the

incoming wave coefficients in the α-frame and the effective scattering

coefficients are obtained as

Beff
p =

∑

α,β

∑

q,r,s

Jp−r(kbRβ)e
i(r−p)Φβ(M−1

qr )αβ(Tqs)α(As)α. (1.4.4)

Notice that the M matrix has been inverted. Now, the coefficients (As)α
have to be expressed in the origin of coordinates. Thus, by applying

Graf’s addition theorem (Appendix A.3), the effective T-matrix is finally

obtained as

T eff
pt =

Beff
p

At

=

∑

α,β

∑

q,r,s,t

Jp−r(kbRβ)e
i(r−p)Φβ(M−1

qr )αβ(Tqs)αJt−s(kbRα)e
i(t−s)Φα .

(1.4.5)

1.5 Scattering cross section

Once the scattering field of a cylinder or cluster is obtained it is possible

to plot the resulting two dimensional pressure maps. This is a useful

technique, but in order to compare the effects produced by two different

systems, two dimensional plots are not enough. Line plots are more

suitable to do it. The most useful scalar quantity is the scattering cross

section (SCS).

The SCS is defined in optics as a hypothetical area describing the

likelihood of light particles being scattered by a scattering center. It is a

measure of the strength of the interaction between the scattered particles

and one or several scattering centers. In our case, the SCS also describes

the shape of the scattered pressure at the far field produced by a single

cylinder or cluster. It is defined as

σscat(k, θ) = lim
r→∞

∣

∣

√
rP scat(r, θ)

∣

∣ , (1.5.1)
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where P scat is the scattered field produced by the cylinder or the cluster.

As explained before, both are combination of Hankel functions, so the

asymptotic expression detailed in Appendix A can be used.

Combining Eq. (1.2.1a), (1.5.1) and (A.1.10) the SCS of a single

cylinder centered in the origin of coordinates is

σscat(k, θ) =

∣

∣

∣

∣

∣

√

2

πk

∑

q

(−i)qBqe
iqθ

∣

∣

∣

∣

∣

. (1.5.2)

This equation is also valid to calculate the scattering by a cluster if the

effective scattering coefficients are known. Instead of using Bq, we should

use the coefficients Beff
q .

Φ��

�
�

�
�

�

��

Figure 1.6: Variables needed to calculate the scattering cross section.

Another way to calculate the SCS of a cylinder is through the (B
(T )
q )α

coefficients [see Eq. (1.3.12)]. The calculation is more complex and some

of the steps will be below. Let’s consider the cluster shown in Fig 1.6.

From the right hand side of Eq. (1.3.12) we know that
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P scat(r, θ) =
∑

α

∑

q

(B(T )
q )αHq(krα)e

iqθα . (1.5.3)

When r → ∞ we can apply the asymptotic expression of the Hankel

function [Eq. (A.1.10)]. Then the previous equation is rewritten as

lim
r→∞

P scat(r, θ) ≈
∑

α

∑

q

(B(T )
q )α

√

2

πkr
(−i)qe−iπ/4eik(rα−Rα cos(θ−Φα))eiqθ,

(1.5.4)

where the following simplifications have been performed

lim
r→∞

rα ≈
{

r −Rα cos(θ − Φα) For the exponentials

r For the rest
(1.5.5)

lim
r→∞

θα ≈ θ (1.5.6)

Finally, the SCS of a cluster of cylinders is

σscat(k, θ) =

∣

∣

∣

∣

∣

√

2

πk

∑

q

∑

α

(−i)q(B(T )
q )αe

−ikRα cos(θ−Φα)eiqθ

∣

∣

∣

∣

∣

. (1.5.7)

1.6 Energy flux

In a two dimensional system, the energy flux (Φ) is the rate of energy

transfer through a boundary and is mathematically defined as the integral

of the intensity vector I normal to the contour Ω

Φ =

∫

Ω

(I · n) dΩ, (1.6.1)

where I is defined as the pressure P times the complex conjugate of the

particle velocity v. Applying Eq. (1.1.5) the final form of the intensity

is
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Figure 1.7: Variables used to calculate the intensity of (a) a plane wave

and (b)a cluster .

I =
1

2
ℜ [Pv∗] =

1

2ωρ
ℜ [iP∇P ∗] . (1.6.2)

In the following paragraphs, we calculate the energy flux of the two

main fields used during this work: A plane wave and the field produced

by the interaction of an external wave impinging a cylinder or a cluster.

Plane wave

In the case of a plane wave, it is common to calculate the energy flux of

a line segment Ω of length hΩ (see Fig. 1.7a) . Taking into account that

the wavenumber is defined as ~k = k = (kx, ky) and the vector normal to

Ω is n ≡ x̂, then the energy flux is

Φ =

∫ hΩ/2

−hΩ/2

Ixdy. (1.6.3)

Since the x-component is needed, combining Eq. (1.2.9) and (1.6.2) gives

the intensity as

Ix =
kx
2ωρ

, (1.6.4)
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and the energy flux is

Φ =
kxhΩ

2ωρ
. (1.6.5)

Single cylinder or cluster

To calculate the energy flux of a cylinder or cluster it is common to define

the contour Ω as the boundary of a circle of radius

rΩ > max(Rα +Rcyl
α ), (1.6.6)

Rα being the radial position of the cylinder and Rcyl
α the radius of the

cylinder (see Fig. 1.7b). In this case, the normal vector to the contour

coincides with the radial vector and only the radial component of the

intensity Ir is needed. Then the energy flux is defined as

Φ =

∮ 2π

0

Irdθ. (1.6.7)

From Eq. (1.2.1a) we know that the background field produced by a

single scattered is

P (r, θ) =
∑

q

[

AqJq(kr) +

(

∑

s

TqsAs

)

Hq(kr)

]

eiqθ, (1.6.8)

where the definition of the T-Matrix [Eq. (1.2.3)] was used. Then,

Ir =
1

2ωρ
ℜ [iP∇P ∗

r ] , (1.6.9)

with

P∇P ∗
r =

∑

q

∑

r

kei(q−r)θ

[

AqJq(kr) +

(

∑

s

TqsAs

)

Hq(kr)

]

×
[

A∗
rJ

′∗
r (kr) +

(

∑

t

T ∗
rtA

∗
t

)

H ′∗
r (kr)

]

.

(1.6.10)
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Note the change in the sub-indexes. To further simplify this equation a

few points have to be stressed

1. To obtain the energy flux [Eq. (1.6.7)], the radial intensity is inte-

grated from 0 to 2π. In this case, only the terms r = q are different

from zero.

2. If the arguments J and H are real, then the complex conjugate of

the radial functions can be eliminated by expanding H = J + iY .

Additionally, the Wronskian identity defined in Appendix A can be

used.

3. Notice also from Eq. (1.6.9) that only the pure imaginary terms

are needed.

4. The following properties apply to complex numbers ZZ∗ = |Z|,
Z + Z∗ = 2ℜ[Z] and Z − Z∗ = 2ℑ[Z].

By considering the points above and rearranging terms the final form of

the energy flux is

Φ =
2

ωρ

∑

q

∑

s

∑

t

ℜ
[

AsA
∗
t (δqsT

∗
qt + TqsT

∗
qt)
]

. (1.6.11)

For the case of a cluster instead of using the matrix elements Tqs, we

use the elements T eff
pt described in Eq. (1.4.5), changing the sub-indexes

accordingly.

As stated previously, the normal to the surface coincides with the

radial vector (towards infinity). As a consequence, if Φ > 0 then inside

the region there is a source of energy. When Φ < 0 the inside the region is

absorptive. Finally, if Φ = 0 then the same amount of energy that enters,

leaves the region enclosed by Ω. This method has been used through out

this work to test if the T-matrix has been calculated correctly.
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1.7 Homogenization method

The homogenization defines the procedure of retrieving the effective pa-

rameters from the properties of a metamaterial sample. To fully under-

stand the process of obtaining these effective properties, the reader is

addressed to the work of Torrent et al. [76]. Here only a brief explana-

tion and the final results are given. The homogenization method states

that, for wavelengths larger than a certain cut-off given approximately by

λ > 4a, where a is the lattice separation, a composite material behaves as

an homogeneous one with effective acoustic and geometric properties. In

our case, the metamaterial consists of a lattice of sound scatters, named

sonic crystals.

Figure 1.8: Types of sonic crystals (SC): (a) 1D-SC as a combination of

different materials, (b) 2D-SC as a hexagonal cluster of cylinders and (c)

3D-SC as a cluster of spheres.

Sonic crystals (SC) are periodic arrangements of inclusion inside an

homogeneous background. As figure 1.8 shows, SC can be one, two and

three dimensional system. The 1D-SC consist mainly of alternate binary

structures, being the 2D-SC and 3D-SC commonly formed by inclusions
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of infinite long cylinders or spheres, respectively, embedded in a back-

ground.

a�

��
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�

�

b�
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Figure 1.9: Types of sonic crystal structures:(a) Square and (b) Hexag-

onal Lattices.

For the whole extent of this manuscript, let us focus in 2D-SC. As

explained, they consist of infinite long cylinders arranged in many differ-

ent crystal structures. The most common are shown in figure 1.9: the

square (a) and the hexagonal (b) lattices. From solid state physics it

is known that a crystal structures is comprised of unit cells (red areas).

Inside each one, a scattering unit is placed. The 2D-SC is represented

in terms of its the Bravais lattice R = n1a1 + n2a2, where n1 and n2 are

real numbers and a1 and a2 are the primitive vectors

a1 = (a, 0) ; a2 = (0, a) Square Lattice (1.7.1)

a1 = (

√
3

2
a,

1

2
a) ; a2 = (0, a) Hexagonal Lattice (1.7.2)

The filling fraction ff is defined as the ratio between the total area

occupied by the scatters inside the unit cell and the area of the unit cell

itself.
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ffsq =
πR2

α

a2
= π

(

Rα

a

)2

(1.7.3)

ffhex =
πR2

α√
3a2/2

=
2π√
3

(

Rα

a

)2

(1.7.4)
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Figure 1.10: Effective sound speed (blue continuous line) and effective

mass density (green dashed line) as a function of the filling fraction.

Once the sonic crystals are introduced, the process for obtaining their

effective properties can be described. As explained, the scattered field

produced from a cluster can be expressed in terms of the effective T-

matrix T eff
qs [Eq. (1.4.5)]. If the external shape of the cluster is nearly

circular, it is expected that the cluster can be homogenized to a single

scattered with effective acoustic and geometric properties. Then, its

matrix elements T cyl
qs can also be calculated. In the low frequency limit

we propose the condition

lim
λ→∞

T eff
qs

T cyl
qs

∀q, s (1.7.5)
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and through a process that applies the asymptotic form of the Bessel and

Hankel equations, the effective properties of the cluster are obtained as

1

Beff

=
1− ff

Bb

+
ff

Ba

(1.7.6)

ρeff =
ρa(∆ + ff) + ρb(∆− ff)

ρa(∆− ff) + ρb(∆ + ff)
ρb (1.7.7)

ceff =

√

Beff

ρeff
(1.7.8)

where the factor ∆ is a function of ff and the acoustic parameters of

the cylinders. Bi and ρi are the Bulk modulus and the mass density,

respectively. The sub-index b makes reference to the background and the

sub-index a makes reference to the cylinders. The reader is addressed

to the work of Torrent et al. to find a comprehensive account of the

homogenization method. For the purpose of this manuscript, the factor

is tabulated in the Appendix C for the case of rigid cylinders. As a

demonstration, Fig. 1.10 shows the behavior of the effective properties

of a cluster of rigid cylinders (ρa → ∞) for different filling fractions.

Another important parameter used throughout this work is the effec-

tive refractive index neff of the sonic crystals in the homogenization limit.

neff is a dimensionless number that describes how the waves propagates

through the medium. It is defined as

neff ≡ cb
ceff

, (1.7.9)

where cb is wave speed in the background. For example, a value of

neff = 1.33, means that light travels 1.33 times slower in the meta-

material than in the background fluid. Typically, in optics, the refractive

index determines how much light is bent, or refracted, when entering a

material. The refractive index was described by Snell’s law of refraction,

n1 sin θ1 = n2 sin θ2, where θ1 and θ2 are the angles of incidence and re-

fraction, respectively, of a ray crossing the interface between two media

with refractive indices n1 and n2. The refractive indices also determine
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Figure 1.11: Effective refractive index as a function of the filling fraction

the amount of light that is reflected when reaching the interface, as well

as the critical angle for total internal reflection. Fig. 1.11 shows how the

effective refractive index changes with the filling faction. Notice that for

values over neff > 1.4 it changes rapidly with ff , so it will be difficult

to control.

Small disturbances in the position or the radius of the cylinders, also

known as ”‘weakly distortion”’ and ”‘structural disorder”’, respectively,

where studied by Torrent et al. who concluded that both produce little

deviations on the effective parameters for very high filling fractions.

Finally, the effective geometry depends on the original shape of the

cluster, but two main cases can be differentiated: the circular and the

rectangular shape.

For the first case, let’s consider the cluster of N cylinders. Then, the

effective radius Reff of the homogenized cylinder is defined as

Reff =

√

NAuc

π
, (1.7.10)
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where Auc is the area of the unit cell.
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Figure 1.12: Rectangular cluster (7 rows and 5 columns) of width w and

length d. The scatters are arranged in a hexagonal lattice with lattice

parameter a. The separation between rows and columns of cylinders is

a/2 and
√

3/2a, respectively.

The rectangular case is shown in Fig. 1.12. It consist of a rectan-

gular hexagonal lattice SC with M rows and N columns. Following the

standard solid state physics, the surface position is taken at a distance

above the atoms equal to a half of the lattice vector. Then the width w

and the length d are defined as

w = (M − 1)
a

2
+ 2

a

4
(1.7.11)

d = (N − 1)a+ 2
a

2
(1.7.12)

where ai are the lattice vector defined in Eq. (1.7.1). Notice that it is

important to take the orientation of the hexagonal lattice crystal into

account, as the components of the lattice vector are different.



Chapter 2

Gradient index lens

This chapter is devoted to the theoretical definition of a gradient index

(GRIN) lens. A model based in ray theory is used to derive the focal

position. The GRIN lens sample is designed and its implementation using

a 2D sonic crystal is explained. Additionally, the experimental setup

employed to characterize the sample is explained. Finally, numerical

simulations and experimental data are presented and discussed.
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2.1 Introduction
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Figure 2.1: Schemes of gradient index lens with length d and width 2h:

(a) Refractive index values and (b) ray trajectory in function of the y-

position, respectively

An acoustic gradient index lens is an acoustic lens in which the re-

fractive index n varies gradual along the axis transverse with respect to

the propagating wave (see Fig. 2.1). The lens is symmetrical to the

wave propagation direction and, by not having a curvature, it is easy

to be build. Its upper/lower boundaries have the same refractive index

as the background. In optics it is usually fabricated by superposition of

homogeneous layers. Each layer has a different refractive index. Thus,

the thickness and number of layers defines the quality of the lens. The

propagation axis of the GRIN lenses considered here is defined along the

x-axis and, therefore, the our lens is built by superpositioning layers in

the y-direction. Thus, the refractive index ny changes along the y-axis;

ny(y).

The physic principle behind the lens operates is the delay introduced
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by each layer in the wave that impinges its entrance. The refractive index

of the upper layers nh is smaller than the one of the center n0, so the

particles travel faster there than the ones traveling through the center.

This forces the wave front to bends inside the lens. This effect can be de-

scribed by an internal ray trajectory model. Additionally, upon exiting,

the mismatch of refractive index between the lens and the background,

forces the beam to further bend. This effects is described in the external

ray trajectory model.

��
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Figure 2.2: Scheme of upper half part of the GRIN lens. The red line

shows the trajectory of a ray that enters the lens at (x0, y0) and exits at

(xd, yd). The ray follows the trajectory L0 before entering, L1 inside the

lens and L2 after exiting.

Let’s suppose the system described in Fig. 2.2. The ray is initially

following the trajectory L0. Then, it impinges the lens at the point

(x0, y0) with an angle of θ0. Due to the change of medium it bends

towards the normal with an internal angle θ′0. Then it travels through

the lens following the trajectory L1 described in the internal model and

eventually reaches its end. There, the wave impinges the lenses right

boundary at (xd, yd) with an internal angle θ′d. Applying Snell’s law one

more time, the external angle θd at the exit point is calculated. After

that, it follows a straight line, L2, and eventually collides with the beam
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coming from the other half of the lens forming the focal spot.

2.1.1 Internal ray trajectory model

�

�’

���, ��

	


�

�

Figure 2.3: Variables of Fermat’s principle.

To predict the focal spot position, beam theory can be used to develop

a simple model. Although this is used for high frequencies, the error is

small and can be corrected using an error constant k added to the lens

length d. From the Eikonal Equation in optics [8, p. 122] [78, p. 36] we

know that

∇n(r)− d

ds

[

n(r)
dr

ds

]

= 0, (2.1.1)

where r = (x, y) = xx̂+yŷ is the particle position and s is the arc length,

both shown in Fig. 2.3. In this case, the n(x, y) ≡ n(y), so Eq. (2.1.1)

can be separated in two parts
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− d

ds

[

n(y)
dx

ds

]

= 0 For x̂, (2.1.2)

∂n(y)

∂y
− d

ds

[

n(y)
dy

ds

]

= 0 For ŷ, (2.1.3)

with ds =
√

dx2 + dy2, and therefore, Eq. (2.1.2) can cast in

dx =
C0

√

n2(y)− C2
0

dy, (2.1.4)

where C0 is a constant to be determined. This equation allows to calcu-

late the trajectory of a particle moving inside the refractive medium.

Refractive index function

Once the trajectory is known, a refractive index has to be chosen. The

lens is designed with the goal of having low aberration of the focal spot.

The aberration is the average deviation of the focal spot along the propa-

gation axis. If the focal spot is inside the lens, the aberration is produced

only by the refractive index pattern. In the case of an external focal spot,

the aberration is the internal one amplified upon exiting the lens by Snells

Law. To minimize this effect, a refractive index profile in the form of a

hyperbolic secant is chosen. This refractive index is theoretical stud-

ied in [39] achieving internal focusing in large enough GRIN structures

without aberration. So the refractive index profile along the transverse

direction (y-axis) is defined as

n(y) = n0 sech(αy) =
n0

cosh(αy)
, (2.1.5)

with

α =
1

h
arcosh

(

n0

nh

)

, (2.1.6)

where h is the semi-width of the lens, n0 is the refractive index along the

x-axis and nh is the refractive index at the edge of the lens.
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Using Eq. (2.1.5) to solve Eq. (2.1.4) (integration by substitution

using t = C0 sinh(αy)/n0 is needed), the trajectory of a particle inside

the GRIN lens L1 is obtained as

L1(x) =
1

α
arsinh

[

U0 cos(αx) +
U1

α
sin(αx)

]

, (2.1.7)

where

U0 = sin(C1)

√

(

n0

C0

)2

− 1, (2.1.8)

U1 = α cos(C1)

√

(

n0

C0

)2

− 1, (2.1.9)

and C0 and C1 are constants obtained from the initial conditions.

2.1.2 External ray trajectory model

In our case, the wave propagates along the x-axis . Let us consider that

an infinite number of rays impinges the surface of the lens with an angle

θ0 = θ′0 = 0. So, the beam impinging at a height y0 has the following

initial condition

L1(0) = y0, (2.1.10)

L′
1(0) = tan(θ′0), (2.1.11)

giving the following values for the constants U0 = sinh(αy0) and U1 = 0.

As explained previously (Fig. 2.2), once the beam exits the lens, it

travels along a straight line, so

L2(x) = L1(d) + (x− d) tan(θl), (2.1.12)

where
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tan(θd) =
sin(θd)

√

1− sin2(θd)
. (2.1.13)

Using Snell’s Law nb sin(θd) = n(yd) sin(θ
′
d) we can relate the internal

and the external angles as

tan(θd) =
n(yd) sin(θ

′
d)

√

n2
b − n2(yd) sin

2(θ′d)
. (2.1.14)

From the definition of the slope we know that tan(θ′d) = L′
1(d) < 0, then

sin(θ
(I)
d ) =

L′
1(d)

√

1 + L′
1(d)

2
. (2.1.15)

Combining Eq. (2.1.14) and Eq. (2.1.15) we obtain

tan(θd) =
n(yd)L′

1(d)
√

n2
b − L′

1(d)
2 [n2(yd)− n2

b ]
. (2.1.16)

Notice that tan(θd) < 0, so the slope of L2 is also negative.

Since the problem is symmetric with respect to x = 0, to find the

local spot position, we have to find the value that makes L2 = 0. This

value is called the external focal position Fext defined as

Fext ≡ d− L1(d)

L′
1(d)

√

n2
b − L′

1(d)
2 [n2(yd)− n2

b ]

n2(yd)
. (2.1.17)

2.2 Design and implementation of a GRIN

lens using SC

To obtain the local variation in the refractive index, the GRIN lens has

been designed as a 2D sonic crystal (see Fig. 2.4). The SC is made of

a rectangular cluster of aluminum cylinders distributed in an hexagonal

lattice with lattice parameter a = 2 cm. The cluster has a number of

M = 10 rows (the 11th one is not fabricated), and a maximum number
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Figure 2.4: (a) Scheme and (b) photo of a 9 columns (layers) gradient

index sonic crystal lens.

N = 9 of columns. The hexagonal lattice has been chosen because of the

possibility of achieving higher filling fractions.

Due to the high acoustic impedance of aluminum compared to air,

this material is considered as a rigid body with an infinite mass density.

Therefore, the simplified version of the Homogenization method for rigid

cylinders can be used. Then, the effective parameters of each unit cell

are

1

Beff

=
1− ff

Bb

, (2.2.1)

ρeff =
∆+ ff

∆− ff
ρb, (2.2.2)

which give the following effective refractive index

neff =

(

ceff
cb

)−1

=

(
√

∆− ff

∆+ ff

1√
1− ff

)−1

. (2.2.3)

The 2D GRIN SC lens studied is designed with a profile n(y) as closer
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Table 2.2.1: Effective refractive index neff (yℓ) and cylinder radius Rℓ of

the studied 2D GRIN SC

Odd Layers Even Layers

yℓ [mm] n(yℓ) neff (yℓ) ℓ Rℓ [mm] ℓ Rℓ [mm]

0 1.330 1.339 6 9.0 - -

10 1.326 1.339 - - 5 9.0

20 1.314 1.313 5 8.75 - -

30 1.293 1.293 - - 4 8.5

40 1.266 1.258 4 8.0 - -

50 1.232 1.228 - - 3 7.5

60 1.193 1.201 3 7.0 - -

70 1.149 1.151 - - 2 6.0

80 1.102 1.107 2 5.0 - -

90 1.052 1.070 - - 1 4.0

100 1 1 1 0 - -

as possible to that in Eq. (2.1.5) with w = 10 cm, n0 = 1.33 and nh = 1.

As in the case of the optical GRIN lens, the acoustical counterpart is also

made of L layers. A given layer ℓ is parallel to the x-axis and its indepen-

dently homogeneous and isotropic. Then the continuous variation of the

refractive index n(y) is discredited in neff (yℓ). Inside each unit cell, the

radius of the cylinder Rℓ depends on its yℓ-position and is calculated us-

ing the Homogenization method equations (2.2.2) and the equation of the

filling fraction of a hexagonal unit cell defined as ffhex = 2π/
√
3(Rℓ/a)

2.

Table 2.2.1 reports the values of Rℓ obtained. Note that the values

corresponding to the upper half of the SC are the only ones reported since

the lens is symmetric with respect to the x-axis. Figure 2.4 shows that

odd layers have 11 cylinders while even layers have 10 cylinders. Column

n(yℓ) in the table report the exact hyperbolic secant profile while those

under neff (yℓ) are those effectively achieved in the sample.

Note that the last condition, yℓ = 100, allows a smooth transition

with the surrounded air and therefore reduces the unwanted diffraction
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effects. These cylinders are not fabricated, as Rell = 0, and therefore

there are M = 10 rows. Then, the effective width and length of the

rectangular cluster can be calculated using the equations Eq. (1.7.11)

as weff = Ma = 20 cm and deff = Na(
√
3/2) that changes with the

number of rows N .

2.3 Experimental setup: 2D anechoic cham-

ber

Figure 2.5: Scheme of the 2D anechoic chamber.

Fig. 2.5 shows a scheme of the experimental setup designed to char-

acterize the 2D GRIN SC lenses. The 2D anechoic chamber consists of

two parallel metal sheets separated a distance H = 5 cm used to simulate

a 2D environment. A hole is left in the center of the chamber to place

the sample, leaving enough space on the sides. The main objective of

the metal sheets is to confine the waves in the z direction. This produces

a number n of modes each one with a certain cut-off frequency, f
(n)
c ,

calculated with

f (n)
c =

n

2H
cb. (2.3.1)

For frequencies below f
(1)
c = 3.4 kHz the chamber is considered mono

mode along the z direction and the system can be considered as two

dimensional. For the frequencies analyzed, from 3.5 kHz up to 4.5 kHz,
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there are two vertical modes propagating through the chamber, but the

second one has a much larger wavelength and is considered as an offset.

The chamber is open along the y = 0 and y = W boundaries. Part

of the wave is radiated outside and another one is reflected back. To

minimize the disturbance, modulated gaussian pulses are used. Since

the experiments are done in the acoustic domain, and, that the sound

speed is inferior to the light speed, short pulses can be used instead of

continuous signals. The echoes produced by the boundaries have a delay

and take more time to arrive at the microphone, so if the signal is a short

pulse, the echoes can be filtered by cutting the measurement time. Thus,

obtaining an “anechoic effect”. The modulated gaussian pulse, G(t), is

defined as

G(t) = e−t2
(σπ)2

ln 2 cos(2πfΩ). (2.3.2)

It is known that a Gaussian Pulse has the same profile in frequency and

time domain. The parameters affecting the signal are the bandwidth at

3 dB, σ, and the carrier frequency, fΩ. It is important to choose the

value of σ correctly or it will affect the measures. If the bandwidth is

small, the modulated gaussian pulse is smaller in time so the echoes have

less probability to interact. On the other hand, if the bandwidth is high,

it will have more cycles so the spectral energy will be higher, making the

signal resistant to noise.

The sound waves propagating along the x-axis are generated with

a UDE AC-150 column loudspeaker separated 2 m from the chamber

in order to get approximately a plane wavefront at the entrance. To

record the transmitted sound, we use a B&K 4958 microphone. Data

are acquired in a square area of 24× 24 cm2. The acquisition points are

separated by equal distance along the x- and y-axis; i.e., ∆x = ∆y =

2 cm. For the wavelength of interest, it satisfies Nyquist criteria, and by

interpolating the result data, the complete acoustic field is reconstructed.

The data is processed using a PCI acquisition card NI-5105 in a computer.

For minimizing the noise, only the FFT value at the used frequency fΩ
is saved.
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Figure 2.6: Total pressure maps of the empty chamber at 3.5 kHz (a)

and 4.5 kHz (b). The upper panels display the absolute value and the

lower panels the real part.

Fig. 2.6 shows measurements made without lens at (a) 3.5 kHz and

(b) 4.5 kHz. The upper panels display the absolute value and the lower

panels the real part. These results confirm that the propagating field

inside the chamber has practically a plane wavefront.

2.4 Simulations and Experiments

Using the described 2D anechoic chamber, seven different 2D GRIN

SC lenses have been characterized. The lenses differ in the number of

columns along the x-axis, from N = 4 to N = 10. To further analyze the

data, the recorded 2D maps have been compared with those obtained by

a numerical simulations based on the multiple scattering theory (MST)
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explained in section 1.3. Finally, the measured focal spots Fext have

been also compared with the values predicted by the ray theory [see Eq.

(2.1.17)].

Measurements and simulations are performed from 3.5 kHz up to

4.5 kHz every 100 Hz. In section 1.7, the limit for the Homogeniza-

tion method is set at λ < 4a, which, in our case, corresponds to linear

frequencies of 4.3 kHz. However, let us stress that the onset for the

homogenization is not an exact value and here, we report GRIN lenses

working at 4.5 kHz, which is a frequency slightly above the cut-off limit.

Moreover, it will be shown that a better agreement with the ray model

is obtained in a wider range of lens thicknesses for frequencies near the

cut-off limit.
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Figure 2.7: Total pressure maps (amplitude) generated by sound waves

of 3.5 kHz impinging a 2D GRIN SC lens N = 9 columns thick. (a) Nu-

merical simulations performed by using a multiple scattering algorithm.

(b) Measurement made in an area 24 × 24 cm2 behind the lens. The

asterisks mark the positions of the focal spot Fext.

In brief, a 2D sound wave with a plane wavefront is assumed that

impinges the lens from the left and the pressure map is calculated or

measured at the opposite side. Figs. 2.7(a) and 2.7(b) show the pressure
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maps of a GRIN lens made of N = 9 columns for the frequency of 3.5

kHz. The focusing effects, focal spot and diffraction lobes, are clearly

seen in both maps, calculated and measured. However, the focal area

is interrupted for about 5 cm due to some spurious reflection inside the

chamber.
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Figure 2.8: Comparison between the Multiple Scattering simulation (blue

curve) and the measurements (red dots), for (a) the longitudinal cut and

(b) the traversal cut of the the pressure maps in Fig. 2.7 at the focal

plane. Both simulations and measurements were made with a N = 9 row

GRIN PC at a frequency of 3.5 kHz.

A better comparison between data and simulations is given in Figs.

2.8(a) and 2.8(b) that show the longitudinal and traversal profiles at the

focal spot obtained from the pressure maps. Good qualitative agreement

exists between data and simulations.

Figures 2.9(a) and 2.9(b) present similar plots for the same lens,

N = 9, but at 4.5 kHz. In comparison with results at 3.5 kHz, now

the wavelength is smaller and slightly above the homogenization limit,

λ ≈ 3.8a. However the SC clearly behaves like a GRIN lens. The non-

symmetric response observed in the experiment is due to the misalign-

ment of the lens inside the setup. The interference described for the larger
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Figure 2.9: Total pressure maps (amplitude) generated by sound waves

of 4.5 kHz impinging a 2D GRIN SC lens N = 9 columns thick. (a) Nu-

merical simulations performed by using a multiple scattering algorithm.

(b) Measurement made in an area 24 × 24 cm2 behind the lens. The

asterisks mark the positions of the focal spot Fext

frequency is also seen between 13 cm and 18 cm. Moreover, the longitu-

dinal and traversal cuts shown in Figs. 2.10(a) and 2.10(b), respectively,

let us to conclude that the agreement between data and simulations is

slightly better for this frequency than for 3.5 kHz.

Ray model comparison

In spite of the agreement reported above between theory and experiment

a comparison with the position of the focal spot Fext predicted by the

ray theory Eq. (2.1.17) must be also performed in order to support that

sound focusing is a truly effect produced by the bending of sound waves

inside the GRIN lens. As explained in section 2.2, in atomic physics, the

effective width and length of the lenses are given as weff = Ma = 20 cm

and deff = Na(
√
3/2), respectively. Then, the half-width h is determined

from 2h = weff = 10 cm and the lens thickness d is obtained from

d = deff + k, where k is an adjustable parameter used to fit Fext to the
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Figure 2.10: Comparison between the Multiple Scattering simulation

(blue curve) and the measurements (red dots), for (a) the longitudinal

cut and (b) the traversal cut of the the pressure maps in Fig. 2.9 at

the focal plane. Both simulations and measurements were made with a

N = 9 row GRIN PC at a frequency of 4.5 kHz.

data. Note that this procedure is reasonable since the surface of a SC

structure is not well defined.

Fig. 2.11 summarized the results obtained for the nine columns

GRIN SC lens at two working frequencies under analysis: (a) 3.5 kHz

and (b) 4.5 kHz. The values obtained for the adjustable parameter are

k = −0.41 cm for 3.5 kHz, and k = −0.28 cm for 44.5 kHz, which means

that the lens surface is nearer to the cylindrical units than that usu-

ally employed in atomic physics, where the surface position is taken at

a distance above the atoms equal to a half of the lattice parameter; i.e.

k = 0 in our modeling. The results show that a fairly good agreement

is obtained for the thicker lenses, N > 5, and for the large frequency,

4.5 kHz.

Data and numerical simulations show a better agreement with the ray

model when: i) the frequency operation is near the homogenization limit

and ii) for the thicker lens. These conclusions are physically intuitive.
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Figure 2.11: Behavior of the position of the focal spot as a function of the

lens thickness. The position Fext have been calculated by a ray model

(green doted curve) and the multiple scattering method (blue curve).

The red dots represent the data for (a) 3.5 kHz, and (b) 4.5 kHz.

On the one hand, for large wavelengths the homogenization in the SC

cluster averages several cells of the lattice and, as a consequence, the

locally designed refractive index profile n(y) is partially destroyed. On

the second hand, for thicker lenses the sound travels along larger lengths

and the lens surfaces are also better defined. The combination of these

two effects produces a better agreement with the predictions made by

the ray model.

Geometry modifications

As an additionally result, the geometry of the lens has been modified to

compare its behavior. The first layer of the lens (in our case is the layer

positioned at x = 0, the rightmost layer) can have an odd number or an

even number of cylinders. Fig. 2.12 shows the pressure maps obtained

by the multiple scattering simulation. The frequency was established at

4.3 kHz, the cut-off of the Homogenization limit. Three different samples

were studied, with 4, 7 and 9 layers. The left (a) and right (b) panels show
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the simulations result of a lens beginning with an even and odd number

of cylinders, respectively. There can be seen that the samples beginning

with odd layers have greater amplitude than the one beginning with an

even number. This effect is amplified when the lens grows in number of

layers. This is behavior is produced by border effects on the lens. The

contribution is greater in the case of the lens beginning with odd layers,

because corners are smoother than those of the other cases.
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Figure 2.12: Total pressure maps (amplitude) generated by a sound wave

of 4.3 kHz impinging a 2D GRIN SC lens with N = 4 (a1,b1), N = 7

(a2,b2) and N = 9 (a3,b3) columns thick. The left and right panels show

the results of the numerical simulations of a lens beginning with an even

and odd number of cylinders, respectively.



58 Gradient index lens



Chapter 3

Acoustic black hole

In this chapter, an omnidirectional acoustic absorber, here named “acous-

tic black hole” (ABH) is presented. It is based on a previous work done

in electromagnetism by Narimanov and Kildishev [30,52], who proposed

a structure consisting of a symmetric shell designed to bend the light rays

towards the center where an inner core perfectly absorbs the focused en-

ergy. Here, its acoustic counterpart is theoretically proposed, designed

and implemented using a cylindrical gradient index lens based on SC.

Experimental measurements are presented and discussed.
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3.1 Introduction

Figure 3.1: Scheme of the acoustic black hole

Fig. 3.1(a) shows an scheme of the 2D acoustic black hole. It consists

of a cylindrically symmetric shell, with a radial variation of the acoustic

refractive index n(r), and an inner core, where the acoustic energy is

dissipated. The shell is a GRIN lens with n(r) matching the index of the

outer medium (air) and the internal core, respectively. Thus, the shell

guides the energy sound to the inner core where it is dissipated by the

designed core. Fig. 3.1(b) shows the path trajectory that the rays follow

inside the structure.

The radial dependence of n(r) has been obtained using the mapping

existing between the EM and acoustic parameters for waves propagating

in a two dimensional space. So, it is possible to translate the solution

found for EM waves into the acoustic domain, leading to the following

radially dependent index

n(r) =











nb Rs < r
Rs

r
nb Rc < r < Rs

nc + iγ r < Rc

, (3.1.1)

where Rc and Rs are the radius of the core and the shell, respectively.

They are related through Rs = Rc(nc/nb), nb being the refractive index

of air, nc the real part of the refractive index of the core material and γ

is a parameter representing the absorptive properties of the core.
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To prove our hypothesis that the black hole effect can be reproduced

in the acoustic regime, finite element simulations has been performed

used a COMSOL. The parameters used for the simulation are the fol-

lowing. The ABH consists of a core and a shell with Rc = 60 mm and

Rs = 126 mm, respectively. The core refractive index is nc = 2.1 and

the shell refractive index variates along the radial position following Eq.

(3.1.1). All the structure is embedded in air. To ensure that the acoustic

impedance is perfectly matched, the mass density is equal on the three

media (ρc = ρs = ρb = 1.25kg/m3). Finally, the sound speed inside

the core is cc = cb/nc − 2000i, where the imaginary term introduces the

absorption of the core. The structure is excited with an narrow width

acoustic Gaussian beam with a wavelength λ = 3 mm.

Fig. 3.2 shows the modulus of the pressure obtained from the sim-

ulations. The beam impinges the shells at its edge and the wave front

starts to bend due to the gradient index. The sound travels through the

shell and eventually some part of the wave hits the core and is absorbed.

The other part is either trapped in the black hole like falling spiral or

follows a parabolic “escape” trajectory exiting the acoustic black hole. It

is important to note the reflection observed near the impact zone of the

wave against the core. Although it seemed that the core and the shell

were perfectly matched in terms of acoustic impedance and refractive

index, the imaginary part of the sound speed introduces the mismatch

explaining the reflection.

3.2 Design and implementation as a SC

The ABH is separated in two different parts, the shell and the core. The

core is defined as a cylinder of radius Rcore = 80 mm and a refractive

index ncore = 1.5. This value is chosen, because, as explained in sec-

tion 1.7 and seen in Fig. 1.11, the effective refractive index changes

rapidly with values greater than neff > 1.5. On the other hand, the

shell is implemented as a 2D sonic crystal, due to the difficulty of fab-

ricating a material with a continuous variation on the refractive index.
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Figure 3.2: Modulus of the pressure obtain from a COMSOL simulation.

A Gaussian beam of λ = 3 mm impinges the upper part of an acoustic

black hole with Rcore = 60 mm and nc = 2.1. The three regions (back-

ground, shell and core) have the same mas density (ρ = 1.25kg/m3) and

the refractive index of each region follows Eq. (3.1.1). The sound speed

inside the core is cc = cb/nc−2000i, where the imaginary term introduces

the absorption of the core.

This procedure was also used in section 2.2. The background fluid is

air with a refractive index nb = 1. Therefore, the shell has a radius

Rs = Rc(nc/nb) = 120 mm

3.2.1 Outer shell

Figure 3.3 shows a scheme of the structure. The shell is made of a cir-

cular cluster of cylinders distributed in an hexagonal lattice with lattice

parameter a = 7.5 mm. It is constructed with a 3D prototyping ma-

chine, so the cylinders are made of a plastic material (ABS), which can

be considered acoustically rigid in the air background due to the high
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Figure 3.3: Scheme of the ABH as a SC. The outer shell is made of

cylinders whose diameters increase with decreasing distance to the center,

while the core is defined within the red region.

impedance mismatch between these two media. The shell is designed

with five concentric layers with acoustic properties changing from the

inner layer (the one closer to the core) to the outer layer. The radius of

the cylinders in each layer is properly determined to obtain the required

local dependence of n(r) given by Eq. 3.1.1.

Figure 3.4 shows the variation of the acoustic impedance (blue curve)

and the refractive index (red curve) along the radial position. Notice the

increment of both values as they approach the core having a maximum

value of Zmax = 4200 rayls and nmax = 1.5. These effective parameters

have been calculated using Eq. (2.2.1) and (2.2.2).

Simulations

To test if the implementation as a sonic crystal works, multiple scattering

simulations are performed (see section 1.3). The values of velocity and
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Figure 3.4: Acoustic impedance (blue curve) and refractive index (green

curve) of the designed black hole shell.

mass density of the core have been taken from the effective parameters

of the closest shell cylinder, giving the values of ccore = 231.33 m/s and

ρcore = 18.16 kg/m3. The absorption of the core is defined as γ = 0.3.

To evaluate the absorption, we calculate the energy flux (Φ) intro-

duced in section 1.6. The energy flux in this case can also be considered

as an intensity loss. There are no sources inside the boundary Ω, so any

change in the energy flux is due to the absorption. The intensity loss of

the ABH is compared with that of a solid cylinder with the same acoustic

properties of the core, but having a radius Rshell.

In brief, a 2D sound wave with a plane wavefront impinges the struc-

ture from left to right and a pressure map and the intensity loss are cal-

culated. The frequencies analyzed are from 1 kHz up to 10 kHz in steps

of 200 Hz. Figure 3.5 shows the results of the intensity loss produced by

the ABH (blue continuous line) and by the solid absorbing cylinder (red

dashed curve). Note that up to the frequency of 5 kHz, the structure is
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Figure 3.5: Intensity loss produced by the ABH (blue continuous line)

with Rshell = 120 mm and a solid cylinder of radius Rcyl = 120 mm made

of the designed absorbing material (red dashed line).

absorbing more energy, having two peaks around 2.0 kHz and 3.6 kHz

which correspond to Fabry Pérot modes of the structure.

Figures 3.6(a) and 3.6(b) show the modulus of the pressure map pro-

duced by solid cylinder and the black hole structure, respectively, at

the frequencies of 2.0 kHz (left panels) and 3.6 kHz (right panels) corre-

sponding to the peaks in Fig. 3.5. It is seen that the ABH concentrates

the energy in the core due to the bending effect, and that has lower re-

flectance due the impedance matching, thus achieving more absorption

that the solid absorbing cylinder. The physical explanation of the differ-

ence of absorption between both configurations is intuitive: More energy

is absorbed when more energy enters into the core. From this simula-

tion, one concludes that, the shell has two main purposes: 1) matches the

background acoustic properties with the ones of the core and, 2), bends

the waves towards the core.
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Figure 3.6: Modulus of the pressure map of (a) the solid cylinder and

(b) the ABH at 2.0 kHz (left panels) and at 3.6 kHz (right panels)

3.2.2 Inner core

To implement the core, two different approaches were followed. In the

first one, eight different samples, made of existing absorbing materials

were characterized and their acoustic properties obtained as function

of the frequency. From the experimental results, which are explained

later on, we follow the second approach. Here, a metamaterial core was

designed as a sonic crystal with optimal acoustic parameters to maximize

the absorptive performance.

Cores existing in nature

As a first approach, eight different materials are chosen as cores. These

samples has been clasified in two categories, soft and hard materials.

The soft materials include three types of “Supreem” Foams (SF) and

one type of Fiber Glass (FG). The hard materials comprise three types

of Expanded Polystyrene (EPS) and two types of Polyurethane (PUR).

The eight samples has been characterized in a impedance tube with the

four microphones method described in the Appendix B.
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Table 3.2.1: Values of the characteristic impedance (Z) and the refractive

index (n) of the eight samples made of existing absorbing materials in

the frequency range from 580 Hz up to 3.4 kHz

Soft Hard

samples Z rayls n samples Z rayls n

SF-1 450± 20 1.12± 0.02 PUR-1 1780± 600 3.60± 0.20

SF-2 520± 20 1.34± 0.03 PUR-2 2370± 800 3.67± 0.25

SF-3 540± 40 1.43± 0.07 EPS-1 3530± 2200 5.61± 0.48

FG 470± 40 1.19± 0.06 EPS-2 3680± 1900 1.48± 0.28

EPS-3 5600± 3100 2.47± 0.71

The range of values of the complex refractive index and the acoustic

impedance of the eight samples are experimentally obtained for frequen-

cies from 580 [Hz] up to 3.4 kHz. Table 3.2.1 summarizes these results.
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Figure 3.7: Graphs of the characteristic acoustic impedance (Z), the

refractive index (n), the bulk modulus (B) and the mass density (ρ) of

the eight samples here analyzed (see text).
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To compare these materials, Fig. 3.7(a-d) shows the mean values

of the characteristic acoustic impedance, the refractive index, the bulk

modulus and the mass density, respectively, of the eight in nature existing

samples. Notice that the samples are sorted with increasing impedance.

As is expected the acoustic impedance from the soft materials is

smaller than the one of the hard materials. The soft materials are al-

most matched to air (Zair = 433 rayls and nair = 1) and seem to be very

similar, but later on, results will show some differences between them.

The PUR materials have a low impedance, for being hard materials,

but a very high refractive index. The compressibility modulus (or bulk

modulus) of these materials is also very similar to the one of air, but in

comparison they have a very high mass density.

The EPS materials deserve a brief explanation of their special prop-

erties. While EPS-1 and EPS-2 have almost the same impedance, much

lower than the one of EPS-3; EPS-1 has a very high refractive index

in comparison to EPS-2 and EPS-3. Notice also, that the properties of

EPS-2 are closer to the inner most layer of the shell, Zmax = 4200 [rayls]

and nmax = 1.5 (see Fig. 3.4). Finally, it worth to mention, that EPS-1

has almost the same bulk modulus as the PUR materials, while EPS-2

has almost the same mass density.

Later on, the characterization of these materials will be very useful

to understand the measurements obtained once these cores are inserted

inside the designed shell.

Metamaterial core

The metamaterial core (MMC) consists of a cluster of cylinders with

equal diameters distributed in a hexagonal lattice with a high filling

fraction to produce dissipation by friction. The hexagonal lattice has

been chosen because it can achieve higher filling fractions than the square

one. The radius of these cylinders coincides with the ones of the inner

layer cylinders of the shell. This ensures that the matching of acoustic

impedances between background and the core is also obtained.
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Figure 3.8: Photograph of the fabricated structure. The outer shell is

made of cylinders whose diameters increase with decreasing distance to

the center. The inner core is made of identical cylinders in a hexagonal

lattice with about 84% of filling fraction.

Figure 3.8 shows a photo of the sonic crystal shell and the metamate-

rial core. Both have been fabricated using the 3D prototyping machine.

The MMC is made of cylinders with equal diameter dc = 7.2 mm. Its

effective refractive index is nc = 1.5 and the corresponding hexagonal

lattice has a filling fraction fhex = π
2
√
3
(dc
a
)2 = 83.6%. Note that this

fraction of volume occupied by the sound scatterers is near to that cor-

responding to the close-packing (CP) condition, where d = a and, there-

fore, fCP
hex = π/(2

√
3) = 90.6%. Consequently, the air is forced to pass

through the narrow channels left between cylinders. The acoustic energy

is strongly dissipated by friction and introduces an imaginary part, γ, in

n(r).
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3.3 Experimental setup: Multi-modal im-

pedance chamber

The Multi-modal impedance chamber (MMIC) is a homemade experi-

mental setup which is based on the impedance tube and the four micro-

phones method described in the Appendix B.

Figure 3.9: Scheme of the multi-modal impedance chamber. The cham-

ber has a width D = 30 cm, a length L = 150 cm and height H = 5 cm.

The speaker (S) at the left excites an acoustic flow represented by coeffi-

cients A, while the back-scattered flow is given by coefficients B. Black

dots define the 9 pairs of microphones used to record the signal. Another

microphone (Ref. Mic.) is employed as the reference. The sample is

placed in the right hand side region, which is accessible by a removable

tap.

Let’s consider the rectangular waveguide depicted in Fig. 3.9, where

D = 30 cm and H = 5 cm. The total length is L = 150 cm and is closed

on both sides. The chamber is filled with air and is made of aluminum

1 cm thick. Due to the high mismatch of impedance, the walls can be

considered rigid. A speaker located at the chamber’s left side excites a

sound field that propagates along the positive x-axis. This sound field

leaves Region 1 and enters into Region 2 where interacts with the sample

and it is reflected at the chamber’s right end. Therefore, in principle, we
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assume that all the energy dissipated during the process is absorbed by

the sample. By properly measuring the sound field, the dissipated energy

can be estimated, and therefore characterize the absorbing efficiency of

the structure.

The pressure field P in the resonant chamber can be represented as

a linear combination of plane waves propagating along the x-axis. More-

over, since we consider that the chamber behaves as a waveguide with

rectangular section and rigid walls, in principle, all the modes in the Y Z

plane must be also taken into account. Applying boundary conditions,

and considering propagation in the x-direction, the pressure field of the

(m,n)-mode inside the chamber is described by

Pm,n(x, y, z) =
[

Am,ne
ikxx + Bm,ne

−ikxx
]

[

cos
(mπ

D
y
)

cos
(nπ

H
z
)]

,

(3.3.1)

where

k2 =

(

ω

cb

)2

= k2
x +

(mπ

D

)2

+
(nπ

H

)2

, (3.3.2)

cb is the speed of sound in air and ω = 2πf is the angular frequency.

Then, the cut-off frequencies fm,n can be derived from Eq. (3.3.2) as

fm,n =
( cb
2π

)2
[

(mπ

D

)2

+
(nπ

H

)2
]

. (3.3.3)

For frequencies below f0,1 = f6,0 = 3470 Hz, the chamber is consid-

ered mono-mode in the z-direction. Working under this premise, Eq.

(3.3.1) can be cast in

P (x, y) =
∞
∑

m=0

[

Ame
iβmx + Bme

−iβmx
]

cos
(mπ

D
y
)

, (3.3.4)

where

βm =

√

(

ω

cb

)2

−
(mπ

D

)2

. (3.3.5)
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Though the summation is infinite, as we increase m the propagation

constant βm becomes complex and the waves are evanescent; the contri-

bution of these modes to P is negligible and, therefore, P only depends

on a few number of coefficients Am and Bm. In our case, bellow f0,1 there

are only six propagating modes and therefore twelve constants need to

be determined from the measurements inside the multi-modal impedance

chamber.

���������
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Figure 3.10: Scheme of position of the microphones.

Figure 3.10 shows a 3D representation of the microphones depicted

in Fig. 3.9. Nine pairs of microphones are employed at selected positions

(xα, yα) in the chamber. The pairs of microphones are located along

the y-axis separated 3 cm. On the other hand, the microphones of each

pair are oriented along the x-axis and separated 3.5 cm. This separation

sets, through Nyquist theorem, the minimum wavelength λ = 7 cm, or

fny = 4960 Hz, that can be measured without error. This frequency

is much larger than the one established by the mono-mode propagation

along the z-axis.

Each microphone is inserted from above, without entering the cavity

of the chamber, but is flushed to the inner surface. An additional mi-

crophone is used as a reference (Ref. Mic. in Fig. 3.10). It is inserted

through one side of the chamber at position (x0, y0) and at the height
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H/2. This microphone is also flushed to the inner wall.

The chamber is excited with the speaker by injecting an Additive

White Gaussian Noise (AWGN). The choice of this type of signal makes

possible to measure a large bandwidth in one go. The drawback of this

method is that it makes impossible to obtain the pressure values directly,

because the input signal is non-deterministic. Let’s define the pressure

in each microphone position as Pα, and P0 for the case of the reference

one. Then, instead of obtaining the pressure, the microphones measure

the transfer function H0α = S0α/S00, where S0α = PαP
∗
0 is the cross-

spectrum between the signal of the α-microphone and the reference and

S00 = P0P
∗
0 is the auto-spectrum of the reference one. Therefore, the

reference microphone is used to get information of the phase.

Then, we obtain instead the coefficients Am/P0 and Bm/P0 by solving

the following linear system of equations

H0α =
Pα

P0

=
M
∑

m=0

[

Am

P0

eiβmxα +
Bm

P0

e−iβmxα

]

cos
(mπ

D
yα

)

. (3.3.6)

Note that we can determine the coefficients only relative to the pressure

field at the reference position, that is, Am/P0 and Bm/P0. However these

quantities still allow us to obtain the reflectance in Region 1, since this

reflectance is given by the ratio of the energy (or energy flux) that leaves

that region ΦB by the energy that enters it ΦA. These are obtained by

integrating the acoustic intensity across the chamber cross section (the

area being D ×H), as

ΦA =
DH

4ωρb
S00

M
∑

m=0

βm
|Am|2
|P0|2

, (3.3.7)

ΦB =
DH

4ωρb
S00

M
∑

m=0

βm
|Bm|2
|P0|2

. (3.3.8)

Note that S00 = |P0|2. Finally, the reflectance is obtained from R =

ΦB/ΦA and it is independent of any multiplicative factor appearing in

the coefficients. Finally, the energy absorbed by the sample is
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α = 1−R. (3.3.9)

Calibration

As explained previously, the system relays on the difference between mea-

surements in each microphone, so it is important to calibrate them. Let

us define the transfer function H
(M)
i (f) of the microphone Mi as

V (f) = H
(M)
i (f)P (f), (3.3.10)

where P (f) is the measured pressure and V (f) is the given electric volt-

age. All values are in function of the frequency f . Then, let’s consider

two microphones M1 and M2 located at different position α and β, re-

spectively. By taking data, interchanging the position and measuring

again, we obtain the following equations

V0 = P0H
(M)
0

V1 = P1H
(M)
1

and
V ′
0 = P0H

(M)
1

V ′
1 = P1H

(M)
0

. (3.3.11)

Note that, although measures where taken in the same place, two different

values of electric voltage V1 6= V ′
1 where obtained. This is due to the

different transfer function of each microphone. From this measures it is

possible to obtain the calibration constant as

K10 =

√

V1

V0

V ′
0

V ′
1

=
H

(M)
1

H
(M)
0

, (3.3.12)

which is a complex number. Then the calibrated values can be obtained

from

(

V1

V0

)

calib

=
V1

V0

1

K10

=
P1

P0

. (3.3.13)

Note that the relationship between the electric voltages and the pressures

is the same. Additionally, this procedure can be expanded for the case of
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three or more microphones. More information on this topic can be found

in [31]

Experimental test

To prove the efficiency of the experimental setup, the absorption pro-

duced by two samples of material SF-2 has been measured in the com-

mercial impedance tube (CIT) and in the MMIC. Both samples have a

length of ℓ = 7.7 cm and fill the whole medium in which they are inserted.

The sample of the tube is a cylinder with a diameter of d = 3.5 cm, while

the sample of the chamber is a prism with a width of d = D and a height

of h = H.
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Figure 3.11: Absorption coefficient produced by the fundamental mode

of a reference sample measured in a commercial Impedance Tube (red

dashed line) and the one measured with the MMIC developed for this

work (blue continuous line). The vertical lines are guides for the eye and

define the onset of modes m = 2 and m = 4.

Measurements have been performed for the two samples. The fre-
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quency region analyzed is from 100 Hz up to 3400 Hz. In the case of the

CIT only one mode is propagating, but in the MMIC the analyzed region

allows the propagation of modes m = 0 to m = 5. To be able to com-

pare them, the absorption coefficient of the MMIC has been calculated

by taking into account only the fundamental mode (m = 0). Since this

mode has no variation in the y-axis the absorption does not depend on

the samples width. The mono-mode absorption coefficient is calculated

as α0 = 1−B0/A0.

Figure 3.11 shows the results of both experiments. The blue continu-

ous and the red dashed curves show the absorption coefficient acquired by

measuring the sample in the commercial impedance tube and the MMIC,

respectively. The vertical black lines lines define the frequencies at which

the second (f2 = 1143.33 Hz) and the forth (f4 = 2286.66 Hz) modes

along the y-axis start propagating inside the chamber. The two curves

show a fairly good agreement. The result obtained from the MMIC con-

sidering only the fundamental mode are shifted towards lower frequencies

with respect to the one acquired using the CIT. Note that the shifting

appears when the second mode stars propagating, f > f2, and is em-

phasized for frequencies higher than f > f4. This could be due to mode

conversion happening inside the sample.

3.4 Results and discussion

Here, the results from the experiments done with the eight natural cores

and the metamaterial core are presented and discussed. For comparison

purpose, the absorption coefficient produced by the ABH, or the com-

bined structure of shell and core, is compared with the one produced

by two cylindrical samples made of the same material as the core, but

with different radii. The first one equals the radius of the used core

R1 = 80 mm, while the second one has the same radius as the shell

R2 = 120 mm. Figure 3.12 shows the three configuration studied, where

the absorbing material and the shell are depicted with the red and the

blue color, respectively.
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Figure 3.12: Definition of the three configurations used to compare the

absorption coefficient

As explained, for frequencies below f6 = 3470 Hz, the chamber is

considered mono-mode in the z-direction. Therefore, the range of mea-

sured frequencies is from fmin = 100 Hz up to fmax = 3400 Hz. The

broadband performance of the ABH shell is based on effective medium

theory, which is valid for any wavelength large enough to satisfy the ho-

mogenization condition, that is λ ≥ 4a. By substituting the value of a,

the corresponding frequencies are f ≤ 11430 Hz which is much higher

than the chosen range.

The frequency region analyzed allows the propagation of modesm = 0

to m = 5. However, due to the symmetry of the chamber and the

sample, the odd modes are not excited (their coefficients are negligible)

and, consequently, modes m =0, 2, and 4 are the only ones considered.

The second mode starts propagating inside the chamber after the cut-

off frequency f2 = 1143 Hz and the fourth mode after f4 = 2287 Hz.

The contribution of the evanescent modes should be also neglected, but

numerical test demonstrate that the algorithm gains stability if the first

even evanescent mode, only the reflected one, is also considered. The first

incident one has no physic logic and is not counted due its tendency to

infinite in Region 1. The coefficients of the modes that are not considered

have been set equal to zero.

Finally, although the absorption coefficient, α, has been measured in
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the chosen range of frequencies for all the samples, to be able to compare

them easily, we introduce the absorption quality factor, Qα, defined as

Qα ≡ 1

∆f

∫ fmax

fmin

α (f) df, (3.4.1)

where ∆f = fmax − fmin is the bandwidth.

3.4.1 Results for natural existing materials

The eight types of cores implemented with materials existing in nature

have been tested in the three possible configurations shown in Fig. 3.12.
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Figure 3.13: Absorptive quality factor Qα [see Eq. (3.4.1)] of the soft

samples analyzed in the two configurations shown in Fig. 3.12, ABH and

Bare Core 1.

Figure 3.13 present a graph of the quality factors Qα obtained for the

soft materials. Only the results of the ABH and bare cores with radius

Rc are shown. The results of the bare cores with radius Rs are omitted,

because the quality factors of the smaller bare cores are bigger than the

ones of the ABH configuration. The SF-2 and SF-3 materials are very

similar and almost no difference is found in the results.

Although the SF-1 material is the one with acoustic properties similar

to air, it presents lower absorption than the others. On the other hand,
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the FG material has almost the same acoustic properties as SF-1, but the

quality absorption is almost a 14% bigger, in the bare core configuration

with Rc.

In general, all the soft material are almost matched to the surrounding

air and deliver high quality factors in the bare core configurations. But

adding the shell to the soft material decreases the absorption. This effect

is produced by the impedance mismatch between the innermost layer of

the shell, (see Fig. 3.4 blue curve), and the cores made of soft materials

(see Table 3.2.1). Notice the difference of one order of magnitude between

the maximum characteristic impedance of the shell Zmax = 4200 [rayls]

and the ones of the soft materials (Z ∈ [440− 550] rayls). By the other

hand, these materials have approximately the same refractive index (n ∈
[1.2−1.4]) as the maximum value of the shell, nmax = 1.5. From here we

conclude, that the matching of impedances is more important than the

matching of refractive indexes.
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Figure 3.14: Absorptive quality factor Qα [see Eq. (3.4.1)] of the hard

samples analyzed in the three configurations shown in Fig. 3.12. The

materials have increasing impedance from left to right (see Table 3.2.1).

Figure 3.14 presents the graph of Qα obtained for the hard natural

materials in the three possible configurations. As expected, the Qα val-

ues obtained in the bare core configurations decreases with increasing
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impedance.

In the case of the first three materials (PUR-1, PUR-2 and EPS-1),

there is almost no difference between the bare core with Rs and the ABH

configurations. Looking back at Fig. 3.7, we notice the mismatch in the

bulk modulus (or in the refractive index) between these materials and

the goal value established by the shell.

The EPS-2 material is the one that has the acoustic properties more

similar to the ones required. Notice an improvement of a 24% and 14%

with respect to the bare configuration with Rc and Rs, respectively. In

spite of this, EPS-3 provides the highest quality factor in the ABH con-

figuration, with an improvement of 30% in comparison to the other two

configurations. In fact, this improvement is due to the low performance

of the EPS-3 materials in the two bare core configurations. Notice that

increasing the radius of the core from Rc = 80 mm to Rs = 120 mm

results in almost no variation in the quality factor, only a 1%.

In general, the shell with the hard material core has, not only, im-

proved the quality factor of the bare core with Rc, but also surpassed

the Qα of the bare core with Rs. As has been stressed, matching the

acoustic impedance improves the quality factor of the ABH, but for a

large enhancement of absorption, it is necessary to match the refractive

index, too.

Note from Table 3.2.1 that the hard materials have a characteristic

acoustic impedance (Z ∈ [1780 − 5600] rayls) with the same order of

magnitude as the maximum one of the shell Zmax = 4200 rayls. The

material EPS-2 is the one with most similar value (ZEPS−2 = 3680 rayls).

In the case of the first three materials, although the impedance is more

or less similar, there is almost no improvement. This is caused by the

difference between the refractive index of the inner most layer of the

shell (nmax = 1.5) and the one of the cores. In the case of the first three

materials, n > 3.5, and for the last two samples, n ≈ 1.5. As expected,

both, the refractive index and the characteristic acoustic impedance, have

to be matched for the ABH to work properly.

Finally, Figure 3.15 shows the frequency dependence of the absorption
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Figure 3.15: Absorption coefficient produced by EPS-2 material in two

configurations. The ABH (blue continuous curve) and the bare core

configuration with radius Rs (green dashed curve). The vertical lines are

guides for the eye and define the cutoffs at which the modes m = 2 and

m = 4, respectively, start propagating inside the chamber.

coefficient α for the ESP-2 sample in two configurations, the ABH and the

bare core with the same radius Rs. Note that for almost any frequency

the absorption factor is strongly enhanced by using the refractive shell.

3.4.2 Results with the metamaterial core

From the results presented in the previous section, we arrived at the

conclusion that, its necessary that, both, the refractive index and the

characteristic acoustic impedance, are matched for a good performance

of the ABH. Here, we report the measurements using the metamaterial

core (MMC), specially designed with these characteristics.

Figure 3.16 shows a graph with the quality factors Qα experimentally

determined for the three possible configurations. It is observed that
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Figure 3.16: Absorptive factor Qα [see Eq. (3.4.1)] of the metamaterial

core analyzed in the three configurations shown in Fig. 3.12.

the MMC behaves like the hard samples in the manner that the ABH

configuration provides better results than the other configurations. Also,

in a similar way to the EPS-3 material, there is almost no difference in

Qα of the two bare core configurations due to the high impedance of

metamaterial.

Notice, that the ABH configuration improves the quality factor, Qα, a

17% and 10% with respect to the bare core with Rc and Rs, respectively.

This result seems to be worst than the one achieved by the EPS-3 material

(30% improvement), but this is due to the low value of Qα obtained in

the bare core configuration. Also, in absolute values, Qα is bigger in the

case of the MMC than in the EPS-3 core.

Therefore, the MMC has almost the same acoustic properties than

the EPS-2 material, but with a higher impedance. In spite of this, it

provides better quality factors in the bare core configurations. Therefore,

we could say, that, although been a made of rigid cylinders, the MMC

presents more absorption than the EPS-2 material. The losses introduced

by friction adding to the combined effect of the black hole shell, show

results almost as good as the ones obtained by the soft materials, which
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are commonly used as absorbing materials.
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Figure 3.17: Absorption produced by the ABH configuration (blue con-

tinuous line) and by the metamaterial core (green dashed line). The

vertical lines are guides for the eye and define the cutoffs at which the

modes m = 2 and m = 4, respectively, start propagating inside the

chamber.

Figure 3.17 shows the frequency dependence of α for the metamaterial

core (blue continuous line) and for the ABH configuration (green dashed

line). Note that for almost any frequency the absorption of the bare core

2, with the same dimension than the ABH, is enhanced when the ABH

is considered, demonstrating the performance of the acoustic black hole.

In comparison with the data shown in Fig. 3.15 for the EPS-2 ab-

sorbing material, the MMC provides a larger enchancement of Qα in the

range from f = 1750 Hz up to f = 3000 Hz.
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Part II

Vibrations





Chapter 1

Theoretical introduction

This chapter introduces the basic theory needed to understand the fol-

lowing chapters. Concepts like strain and stress, the material’s properties

Poisson ratio, Young Modulus and mass density and the relationship they

have with the dynamics of elastic materials will be explained. Addition-

ally, the Euler-Bernoulli beam equation of motion and the Kirchhoff-Love

plate equation of motion will be derived, an example of solution for both

systems will be given and the boundary conditions for different systems

will be explained.

The systems used throughout this work are considered one dimen-

sional (1D) or two dimensional (2D), so the theory will be explained

from a 2D point of view. Then, from that point it’s easy to particu-

larize for the 1D systems. Also, in the scope of this work, we consider

isotropic homogeneous materials, although the resulting metamaterial

will be anisotropic and inhomogeneous.
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1.1 Stress and Strain

Strain and stress make reference to the ratio of deformation that a ma-

terial suffers and the force that its applied to create this deformation.

For two-dimensional systems, we find two different strains and stresses,

which may be classified as ’normal’ and ’shear’ (i.e. acting perpendicular

to or along the face of an element respectively).

For explaining the concept of strain, let’s consider the 2D infinitesimal

rectangular material element with dimensions dx × dy shown in Fig 1.1

, which after deformation, takes the form of a rhombus.
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Figure 1.1: Strain: Neutral and flexed states of a square plate.

The normal strain in the x-direction, εxx, is expressed as the ratio of

total deformation Lab to the initial dimension LAB. The normal strain

is positive if the material fibers are stretched and negative if they are

compressed. On the other hand, the shear strain γxy is defined as the

change in angle between lines AC and AB. Therefore,
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εxx =
Lab − LAB

LAB

=
∂ux

∂x
, (1.1.1)

γxy = α + β =
∂uy

∂x
+

∂ux

∂y
= γyx, (1.1.2)

where, for small deformations and rotations, the lengths and angles are

LAB = dx, (1.1.3a)

Lab =

√

(

dx+
∂ux

∂x
dx

)2

+

(

∂uy

∂x
dx

)2

≈ dx+
∂ux

∂x
dx, (1.1.3b)

α = arctan
∂uy

∂x
dx

dx+ ∂ux

∂x
dx

≈
∂uy

∂x
, (1.1.3c)

β = arctan

∂ux

∂y
dy

dy + ∂uy

∂y
dy

≈
∂ux

∂y
. (1.1.3d)

In addition, there exists a relationship between the normal stresses of

different faces. It is known that, when a materials suffers compressional

force on one pair of faces, this is usually accompanied by an elongation of

the material into another direction. The ratio of displacements is called

the Poisson’s ratio ν. Note that it is positive when a compressional force

creates an elongation, so

εyy = −νεxx, (1.1.4a)

εzz = −νεxx. (1.1.4b)

The values of the Poisson’s ratio range from −∞ to 1/2. For the majority

of materials in nature the Poisson’s ratio has positive values, where the

value 1/2 means that the material is incompressible.

As stated previously, to produce a strain (deformation) in a material,

it is necessary to apply a stress (force). For a linear elastic material (the

generalization of Hooke’s Law for continuous media), the normal stress

and the normal strain of a face are related through the Young’s modulus



90 Theoretical introduction

�

�

�

���
���

���

���

Figure 1.2: Stresses acting on a thin plate

E. In an similar way, the shear stress and the shear strain of one face

are related through the shear modulus G. In other words,

σxx
∼= Eεxx, (1.1.5a)

σxy
∼= Gγxy. (1.1.5b)

For the case of the materials used throughout this work, that is ho-

mogeneous and isotropic, the shear modulus is related to the Young’s

modulus and the Poisson’s ratio as

G =
E

2(1 + ν)
. (1.1.6)

Now, taking into account the combination all the stresses acting on

Fig. 1.2(2D system) the normal strains on each face are

ε(T )
xx =

1

E
(σxx − νσyy), (1.1.7a)

ε(T )
yy =

1

E
(σyy − νσxx), (1.1.7b)
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ε(T )
zz = − ν

E
(σxx + σyy), (1.1.7c)

and the shear strains are

γ(T )
xy =

1

G
σxy, (1.1.8a)

γ(T )
xz = 0, (1.1.8b)

γ(T )
yz = 0, (1.1.8c)

where T denotes total. Notice that the shear strains are not influenced

by the normal stresses.

1.2 Beam Physics

In this section, the Euler-Bernoulli beam equation of motion is derived,

a solution is given and finally the boundary conditions are presented.

1.2.1 Equation of motion

r
�

�

�

r

�

�
�

Figure 1.3: Beam variables in a neutral and flexed state.

The beam theory is a mathematical one-dimensional representation

of a long and thin three-dimensional body that undergoes flexure. The

thickness and the width of the beam are considered to be much smaller
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than its length (λ >> h), so the problem is reduced to finding the de-

flection of the middle axis of the beam. The following assumptions are

made:

1. The plane halving the beam height h is called the middle plane.

2. The normal to the middle plane remains normal after deformation.

3. The middle plane is unstrained.

4. The normal stress in the z-direction is negligible.

Let us consider the variables defined in Fig. 1.3. The displacement

in the x-direction, u(x, z), can be related to the angle of rotation ϕ as

ux(x, z) = −zϕ(x). (1.2.1)

Notice that for small deflections, the angle of rotation of the middle

axis may be approximated by the tangent itself (ϕ ∼= ∂w/∂x). Then,

from the definition of the normal strain, Eq. (1.1.1), we know that

εx = −z
∂2w

∂x2
, (1.2.2)

and by following Hooke’s Law, the axial stress acting on the cross section,

A, of the beam is defined as

σxx = −Ez
∂2w

∂x2
. (1.2.3)

The resultant moment M(x) produced on a cross section A of the

beam by σxx about an axis that passes through the middle plane is ob-

tain by integrating the moments produced by each individual differential

normal stress σxx, thus

M(x) =

∫

A

σxxzdA. (1.2.4)

Substituting Eqs. (1.2.3) into the above expression we obtain
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M(x) = −EI∂
∂2w

∂x2
, (1.2.5)

where I is the second moment of area.

In a similar way, the resultant shear force Q(x) acting on a cross

section A of the beam is obtained by integrating the differential shear

stresses σxz, thus

Q(x) =

∫

A

σxzdA, (1.2.6)

which is not derived in this explanation. Further on, it will be obtained

through a simpler method.

a� b�
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Figure 1.4: Forces and moments acting on a beam differential element

(a) and the effective differential element (b).

To derive the equation of motion for a beam let us consider a generic

differential element of length dx as shown in Fig. 1.4. Over the beam

an external force is applied that can be represented as a distributed

transverse load q(x). The right hand rule is applied, so a force in the

positive z-direction, will create a counter clock moment in the positive

faces. The sum of all the moment and shear forces on the differential

element have to met Newton’s Second Law, so
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q(x)dx−Q+

[

Q+
∂Q

∂x
dx

]

= m
∂2w

∂t2
dx, (1.2.7a)

Q
dx

2
+

[

Q+
∂Q

∂x
dx

]

dx

2
+M −

[

M +
∂M

∂x
dx

]

= 0, (1.2.7b)

where m is the mass per unit length. By neglecting second order terms,

the equations reduces

q(x) +
∂Q

∂x
= m

∂2w

∂t2
, (1.2.8a)

Q =
∂M

∂x
. (1.2.8b)

Substituting Eq. (1.2.5) and (1.2.8b) into Eq. (1.2.8a) we obtain the

known Euler-Bernoulli equation of motion for beams

∂2

∂x2
EI

∂2w

∂x2
−m

∂2w

∂t2
= q(x). (1.2.9)

1.2.2 Solution to the Euler-Bernoulli beam equa-

tion

To show an example of solution of the previous equation, let’s consider

time harmonic propagation of the form e−iωt inside an homogenous rect-

angular section beam with constant thickness h and width b over a length

L. Then the solution for the Euler-Bernoulli equation has the following

shape

w(x) = C1e
+ikx + C2e

−ikx + C3e
+kx + C4e

−kx, (1.2.10)

where the Ci are coefficients that have to be determined with the bound-

ary conditions and k is the wave number obtained from

k =

(

mω2

EI

)
1
4

, (1.2.11)
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being m = ρhb, ρ the mass density and I the second moment of area. For

the case of a rectangular section beam with the x-axis passing through

its center

I =

∫

A

z2dA =
bh3

12
. (1.2.12)

1.2.3 Boundary conditions

��
��

��,� ��,�
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Figure 1.5: Schematic view of the beam boundary conditions.

The boundary conditions determine how the equation of motion of

two different media are coupled. Being Eq. (1.2.9) a fourth order equa-

tion it will require four boundary conditions at the interface Ω. Thus,

the displacement Wi and the slope Wi,x have to be continuous and the

sum of the moments Mi and the shear forces Qi have to be zero (see Fig

1.5), that is
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W−(x)
∣

∣

Ω
= W+(x)

∣

∣

Ω
, (1.2.13a)

∂W−(x)

∂x

∣

∣

∣

∣

Ω

=
∂W+(x)

∂x

∣

∣

∣

∣

Ω

, (1.2.13b)

M−(x)
∣

∣

Ω
= M+(x)

∣

∣

Ω
, (1.2.13c)

Q−(x)
∣

∣

Ω
= Q+(x)

∣

∣

Ω
. (1.2.13d)

From these equations every other boundary condition can be specified,

being the most common ones, the clamped condition, when the boundary

is fixed to prevent any movement,

W−(x)
∣

∣

Ω
= 0, (1.2.14a)

∂W−(x)

∂x

∣

∣

∣

∣

Ω

= 0, (1.2.14b)

and the free vibration, when there is no moment or shear force acting on

the boundary,

M−(x)
∣

∣

Ω
= 0, (1.2.15a)

Q−(x)
∣

∣

Ω
= 0. (1.2.15b)

1.3 Plate Physics

In this section, the Kirchhoff-Love plate equation of motion is derived, a

solution is given for Cartesian and polar coordinates and the boundary

conditions are presented.

1.3.1 Equation of motion

The Kirchhoff-Love plate theory can be easy expanded from the Euler-

Bernoulli beam theory. It is intrinsically a 2D theory, and can be ex-

pressed for the two main coordinate system. First, the derivation for the
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Cartesian system is explained, then, following an analogy, the derivation

for the Polar system can be obtained. As in the case of the beam, the

thickness is considered to be much smaller than its length and width

(λ >> h), so the problem reduces to finding the deflection of the middle

axis of the beam. The following assumptions are made:

1. The plane halving the plate height h is called the middle plane.

2. The normal to the middle plane remains normal after deformation.

3. The middle plane is unstrained.

4. The normal stress in the z-direction is negligible.

Cartesian coordinates

�

� �
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��

�s

��

��

�t

Figure 1.6: Plate variables in a neutral and flexed state.

Let us consider the variables defined in Fig. 1.6. As in the case of

the beam, the displacement in the x-direction, ux, and the y-direction,

uy, can be related to the angles of rotation (ϕi) as
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ux(x, y, z) = −zϕx, (1.3.1a)

uy(x, y, z) = −zϕy. (1.3.1b)

Notice that for small deflections, the angle of rotation of the middle

axis may be approximated by the tangent itself (ϕi = ∂w/∂i). Then,

from the definition of the normal and shear stress Eqs. (1.1.7) and (1.1.8)

and from Eqs. (1.1.1) and (1.1.3) we obtain the stresses acting on a 2D

differential element as

σxx = − Ez

1− ν2

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

, (1.3.2a)

σyy = − Ez

1− ν2

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

, (1.3.2b)

σxy = σyx = − Ez

1 + ν

(

∂2w

∂x∂y

)

. (1.3.2c)

In analogy to the simple beam theory, the resultant bending and

twisting moments by unit length M produced by the normal stress about

an axis xi that passes through the middle plane are obtained by integrat-

ing the moments produced by each individual differential force σ along

the height of the plate, thus

Mx(x, y) =

∫ h/2

−h/2

σxxzdz = −D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

, (1.3.3a)

My(x, y) =

∫ h/2

−h/2

σxxzdz = −D

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

, (1.3.3b)

Mxy(x, y) = Myx =

∫ h/2

−h/2

σxyzdz = −D(1− ν)

(

∂2w

∂x∂y

)

, (1.3.3c)

where D = Eh3/12(1− ν2) is the flexural stiffness. In a similar way, the

resultant shear forces per unit length Q are obtained by integrating the

differential shear stress σxiz, thus
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Qx(x, y) =

∫ h/2

−h/2

σxzdz, (1.3.4a)

Qy(x, y) =

∫ h/2

−h/2

σyzdz, (1.3.4b)

which are not derived in this explanation. Further on, they will be obtain

through a simpler method.
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Figure 1.7: Plate Cartesian differential element.

To derive the equation of motion of a plate let us consider a generic

differential element of length dx×dy as shown in Fig. 1.7. Over the plate

an external force is applied that can be represented as a distributed load

q(x, y). The right hand rule is applied, so a force in the positive z-

direction, will create a counter clock moment in the positive faces. The

sum of all the moments and shear forces on the differential element have

to met Newton’s Second Law, so
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[

Qx +
∂Qx

∂x
dx

]

dy −Qxdy +

[

Qy +
∂Qy

∂y
dy

]

dx−Qydx+

q(x, y)dxdy = ρh
∂2w

∂t2
dxdy,

(1.3.5a)

Mydx−
[

My +
∂My

∂y
dy

]

dx+Mxydy −
[

Mxy +
∂Mxy

∂x
dx

]

dy+

Qydx
dy

2
+

[

Qy +
∂Qy

∂y
dy

]

dx
dy

2
= 0,

(1.3.5b)

Mxdy −
[

Mx +
∂Mx

∂x
dx

]

dy −Myxdx+

[

Myx +
∂Myx

∂y
dy

]

dx+

Qxdy
dx

2
+

[

Qx +
∂Qx

∂x
dx

]

dy
dx

2
= 0,

(1.3.5c)

where ρ is the mass density and h is the plate height. By neglecting third

order terms they reduce to

q(x, y) +
∂Qx

∂x
+

∂Qy

∂y
= ρh

∂2w

∂t2
, (1.3.6a)

Qy =
∂My

∂y
+

∂Mxy

∂x
, (1.3.6b)

Qx =
∂Mx

∂x
− ∂Myx

∂y
. (1.3.6c)

From here, applying Eq. (1.3.3), we can define the shear forces per unit

length as

Qx = −D
∂

∂x
(∆w) , (1.3.7a)

Qy = −D
∂

∂y
(∆w) . (1.3.7b)

where ∆ = ∇2 is the Laplace operator in Cartesian coordinates.

Substituting Eqs. (1.3.7) into (1.3.6a) we obtain the known Kirchhoff-

Love equation of motion for plate as
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D∇4w − ρh
∂2w

∂t2
= q(x, y), (1.3.8)

where ∇ is the Nabla operator in Cartesian coordinates.

Polar coordinates

The relationship between the Cartesian and the polar coordinates is

r2 = x2 + y2 ; θ = arctan
(y

x

)

. (1.3.9)

Applying the chain rule the following expression can be found for the

first derivative respect to x and y

∂w

∂x
=

∂w

∂r

∂r

∂x
+

∂w

∂θ

∂θ

∂x
=

∂w

∂r
cos θ − 1

r

∂w

∂θ
sin θ, (1.3.10a)

∂w

∂y
=

∂w

∂r

∂r

∂y
+

∂w

∂θ

∂θ

∂y
=

∂w

∂r
sin θ +

1

r

∂w

∂θ
cos θ. (1.3.10b)

Then the second order derivatives can be obtained from

∂2w

∂x2
=

(

∂

∂r
cos θ − 1

r

∂

∂θ
sin θ

)(

∂w

∂r
cos θ − 1

r

∂w

∂θ
sin θ

)

, (1.3.11a)

∂2w

∂y2
=

(

∂

∂r
sin θ +

1

r

∂

∂θ
cos θ

)(

∂w

∂r
sin θ +

1

r

∂w

∂θ
cos θ

)

, (1.3.11b)

∂2w

∂x∂y
=

(

∂

∂r
cos θ − 1

r

∂

∂θ
sin θ

)(

∂w

∂r
sin θ +

1

r

∂w

∂θ
cos θ

)

. (1.3.11c)

Repeating the operations, the third and forth order derivation are

obtained. Then, Eq. (1.3.8) can be written in polar coordinates as

D∇4w − ρh
∂2w

∂t2
= q(x, y), (1.3.12)

where now ∇ is the Nabla operator in polar coordinates.

Moments and shear forces can be transformed in a similar way. Let

us consider the differential element shown in Fig. 1.8 of length dr × dθ.
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Figure 1.8: Plate polar differential element.

Notice that the x-axis coincides with the radius r, so the bending and

twisting moments per unit length M coincide with the ones from Eq.

(1.3.3) at the same point, and by substituting θ = 0 in Eq. (1.3.11), we

obtain

Mr(r, θ) = −D

(

∂2w

∂r2
+ ν

[

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

])

, (1.3.13a)

Mr(r, θ) = −D

(

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
+ ν

∂2w

∂r2

)

, (1.3.13b)

Mrθ(r, θ) = Mθr = −D(1− ν)

(

1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ

)

. (1.3.13c)

In a similar manner to Eq. (1.3.7), we obtain the shear forces per

unit length as

Qr = −D
∂

∂r
(∆w) , (1.3.14a)

Qθ = −D
1

r

∂

∂θ
(∆w) . (1.3.14b)

where ∆ = ∇2 is the Laplace operator in polar coordinates.
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1.3.2 Solution to the Kirchhoff-Love’s plate equa-

tion

To show an example of the solution of the previous equation, let’s con-

sider an homogeneous plate with constant thickness h, Young Modulus

E, mass density ρ and Poisson’s ratio ν. Considering time harmonic so-

lutions of the form e−iωt, the solution of the Eq. (1.3.8) can be expanded

as W = W1 +W2, where W1 and W2 are solutions of the Helmholtz and

modified Helmholtz equations, respectively. Thus,

w =
(

Cx1e
+ikxx + Cx2e

−ikxx + Cx3e
+kxx + Cx4e

−kxx
)

(

Cy1e
+ikyy + Cy2e

−ikyy + Cy3e
+kyy + Cy4e

−kyy
)

,
(1.3.15)

where the Cxi and Cyi are coefficients have to be determined with the

boundary conditions and kx and ky are the wave numbers in the x- and

the y-direction, respectively. They are obtained from

k4 = k4
x + k4

y =
ρhω2

D
. (1.3.16)

In a similar way, the solution of Eq. (1.3.12) in Polar coordinates is

an expansion in q-terms of Bessel functions (see Appendix A). On the

one hand, the solutions to the Helmholtz equations correspond to Bessel

functions, Jq(x), and first kind Hankel functions, Hq(x) = Jq(x)+ iYq(x).

On the other hand, the solutions to the modified Helmholtz equation

are modified Bessel functions of the first, Iq(x), and second kind, Kq(x).

Then, the incoming and outgoing waves are expressed as

W (r, θ) =
∑

q

[

A(J)
q Jq(krr) + A(I)

q Iq(krr) +

B(H)
q Hq(krr) + B(K)

q Kq(krr)
]

eiqθ,

(1.3.17)

where A
(J)
q and A

(I)
q are the incoming wave coefficients and B

(H)
q and B

(K)
q

are the outgoing wave coefficients; all to be determined using boundary

conditions. In addition, kr is the wave number obtained from
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kr =

(

ρhω2

D

)1/4

. (1.3.18)

1.3.3 Boundary conditions
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Figure 1.9: Schematic view of the plate boundary conditions.

The boundary conditions determine how the equations of motion of

two different media are coupled. Being Eq. (1.3.8) or Eq. (1.3.12),

fourth order equations they will require four boundary conditions at the

interface Ω. Thus, the displacement in the surface WΩ and the normal

slope to the surface W,n have to be continuous and the sum of the normal

to the surface moments Mn and the shear forces acting on the surface

have to be are zero (see Fig. 1.9). That is
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W−∣
∣

Ω
= W+

∣

∣

Ω
, (1.3.19a)

∂W−

∂n

∣

∣

∣

∣

Ω

=
∂W+

∂n

∣

∣

∣

∣

Ω

, (1.3.19b)

M−
n

∣

∣

Ω
= M+

n

∣

∣

Ω
, (1.3.19c)

V −
n

∣

∣

Ω
= V +

n

∣

∣

Ω
, (1.3.19d)

where n and t make reference to the normal and tangent vectors to the

surface Ω, respectively. Vn is the Kirchhoff stress [72] defined as

Vn = Qn +
∂

∂t
Mnt. (1.3.20)

It is observed that the Kirchhoff stress takes into account not only the

shear forces, but also the twisting moments acting on the surface. Through-

out this work, we make an extensive use of the radial Kirchhoff-Stress

which is given by

Vr = −D
∂

∂r
∆w −D(1− ν)

1

r2
∂

∂θ

(

∂2w

∂r∂θ
− 1

r

∂w

∂θ

)

, (1.3.21)

where ∂/∂t ∼= (1/r) ∂/∂θ has been used.

From these equations every other boundary condition can be specified,

being the most common ones the clamped condition, where the wave

impinges a region which cannot support any displacement

W−∣
∣

Ω
= 0, (1.3.22a)

∂W−

∂n

∣

∣

∣

∣

Ω

= 0, (1.3.22b)

and the free condition, where the region is entirely free and there are no

twisting or bending moments and also no shear forces

M−
n

∣

∣

Ω
= 0, (1.3.23a)

V −
n

∣

∣

Ω
= 0. (1.3.23b)
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1.4 Single scatterer

When an external field impinges a close region Ω with different elastic

parameters as the background, a scattering phenomenon occurs. In the

present work, the close region is considered a cylinder and therefore the

problem can be solved using polar coordinates in 2D.

�� , ��, ��

��, ��, ��

������

�����	�

����	� ��, ��

��

Figure 1.10: Scheme of a plate of thickness hb and elastic parameters

(Eb, ρb, νv). The circular region with radius Ra has a thickness ha and

elastic parameters (Ea, ρa, νa). An incoming wave Winc impinges the

region and generates a scattering wave Wscat and an internal wave Wint.

Let consider a infinite plate of thickness hb with the following elastic

parameters, mass density ρb, Young’s modulus Eb and Poisson ratio νb.

The circular region defined by r ≤ Ra with thickness ha has different

elastic parameters as the plate, denoted by ρa, Ea and νa (see Fig. 1.10).

The plate thickness is not going to be considered a geometrical parameter

anymore, but it is instead introduced in the boundary conditions through

the elastic properties of the material. Then, the solution of the Kirchhoff-

Love plate equation in each medium in polar coordinates is
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W (inc) +W (scat) =
∑

q

[

A(J)
q Jq(kbr) + A(I)

q Iq(kbr)
]

eiqθ+

∑

q

[

B(H)
q Hq(kbr) + B(K)

q Kq(kbr)
]

eiqθ, r > Ra

(1.4.1a)

W (int) =
∑

q

[

C(J)
q Jq(kar) + C(I)

q Iq(kar)
]

eiqθ, r ≤ Ra

(1.4.1b)

where

kb =

(

ρbhbω
2

Db

)1/4

; ka =

(

ρahaω
2

Da

)1/4

, (1.4.2a)

Db =
Ebh

3
b

12(1− ν2
b )

; Da =
Eah

3
a

12(1− ν2
a)
, (1.4.2b)

and W (inc), W (scat) and W (int) make reference to the incoming, scattered

and internal wave, respectively.

Let’s group the incoming, outgoing and internal wave coefficients in

vector form as

Aq =

[

A
(J)
q

A
(I)
q

]

; Bq =

[

B
(H)
q

B
(K)
q

]

; Cq =

[

C
(J)
q

C
(I)
q

]

, (1.4.3)

Then, in the general problem, the incoming coefficients Aq are the inputs

and the scattered coefficients Bq are the outputs. They can be related

through a infinite matrix called the transfer matrix or T-matrix as









...

Bq

...









=









. . .
...

· · · Tqs · · ·
...

. . .

















...

As

...









. (1.4.4)

To obtain the T-matrix it is necessary to apply the boundary condi-

tions of a circular interface [see Eq. (1.3.19)]
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(

W (inc) +W (scat)
)∣

∣

r=Ra
= W (int)

∣

∣

r=Ra
, (1.4.5a)

(

∂W (inc)

∂r
+

∂W (scat)

∂r

)∣

∣

∣

∣

r=Ra

=
∂W (int)

∂r

∣

∣

∣

∣

r=Ra

, (1.4.5b)

(

M (inc)
r +M (scat)

r

)∣

∣

r=Ra
= M (int)

r

∣

∣

r=Ra
, (1.4.5c)

(

V (inc)
r + V (scat)

r

)∣

∣

r=Ra
= V (int)

r

∣

∣

r=Ra
. (1.4.5d)

To eliminate the sum in q, the equations are multiplied by eisθ and

integrating from 0 to 2π. Then, only the terms s = q are different than

zero and the system reduces to

Mq

[

Bq

Cq

]

= −Ns

[

As

]

, (1.4.6)

where Mq and Nq are matrix of the form

Mq =





Hq(kbRa) Kq(kbRa) −Jq(kaRa) −Iq(kaRa)

(kbRa)H′

q(kbRa) (kbRa)K′

q(kbRa) −(kaRa)J ′

q(kaRa) −(kaRa)I′q(kaRa)

SH
q (kb,Ra) SK

q (kb,Ra) −SJ
q (ka,Ra) −SI

q (ka,Ra)

TH
q (kb,Ra) TK

q (kb,Ra) −TJ
q (ka,Ra) −T I

q (ka,Ra)



,

(1.4.7)

Ns =











Js(kbRa) Is(kbRa)

(kbRa)J
′
s(kbRa) (kbRa)I

′
s(kbRa)

SJ
s (kb, Ra) SI

s (kb, Ra)

T J
s (kb, Ra) T I

s (kb, Ra)











, (1.4.8)

and
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Sξ
q (ki, r) = −Di

r2
[

(q2(1− νi)∓ (kir)
2)ξq(kir)− (1− νi)(kir)ξ

′
q(kir)

]

,

(1.4.9)

T ξ
q (ki, r) = −Di

r3
[

(q2(1− νi))ξq(kir)− (q2(1− νi)± (kir)
2)(kir)ξ

′
q(kir)

]

,

(1.4.10)

and ξ = J, I,H,K; the upper sign is used for (J,H) and the lower sign

for (I,K). To simplify Sξ
q (ki, r) and T ξ

q (ki, r), the second order ODEs

of these functions and the Wronskian (A.1.9) and (A.2.9) identities have

been used. Solving the previous system of equations we obtain the rela-

tionship between the coefficients as

−M−1
q Ns ≡

[

Tqs

Xqs

]

, (1.4.11)

where Tqs is the qs-element of the T-matrix and Xqs relates the Cq with

the As coefficients.

For a circular region, the T-matrix is semi-diagonal (the diagonal is

filled with two by two matrix) and note these equations are only valid

when the center of the coordinate system coincides with the center of the

circular region.

1.4.1 Types of incoming waves

To obtain the scattering coefficients, the incoming field has to be ex-

pressed as a combination of Bessel functions with arguments in polar

coordinates r = (r, θ). Additionally, if the circular region is not centered

in the origin of coordinates, the reference frame of the incoming field has

to be shifted to coincide with it. The most common incoming waves are

the plane wave and the cylindrical point source.
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Figure 1.11: Source types: (a) Plane wave and (b) cylindrical point

source.

Plane Wave

The plane wave is a constant-frequency wave whose wavefronts (surfaces

of constant phase) are infinite parallel planes of constant peak-to-peak

amplitude normal to the phase velocity vector. This incoming field is

defined by the wavenumber ~k = k = k(cos θs, sin θs) and is represented

by the equation

Ws(r) = eik·r (1.4.12)

By using the integral definition of the Bessel function [1] it can be

cast as

Ws(r) =
∑

q

[

iqe−iqθs
]

Jq(kr)e
iqθ =

∑

q

A(J)
q Jq(kr)e

iqθ. (1.4.13)

Notice that A
(I)
q = 0 for all q [see (1.4.1a)] . When the scatter is not

placed at the center of the coordinates, the incoming wave can be ex-

pressed in a different reference frame α, shown in Fig. 1.11(a), as
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Ws(rα) = eik·Rαeik·rα =
∑

q

[

iqek·Rαe−iqθs
]

Jq(krα)e
iqθα

=
∑

q

(A(J)
q )αJq(krα)e

iqθα ,
(1.4.14)

where rα = r−Rα

Cylindrical point source

The point source is defined as a combination of Bessel functions of the

same order ξ. Let us suppose a cylindrical point source ξ = 0 with

wavenumber k located at Rs = (Rs,Φs) as shown in Fig. 1.11(b), then

the wave equation is defined as

Ws(r) =
∑

q

[

Hξ(krs) +
2i

π
Kξ(krs)

]

eiqθs , (1.4.15)

where rs = r−Rs = (rs, θs). Using Graph’s Addition Theorem (see Ap-

pendix A.3), the previous equation can be expanded in Bessel functions

and expressed in a different frame α, shown in 1.11(b), as

Ws(rα) =
∑

q

[

Hq−ξ(kRαs)e
i(ξ−q)Ψαs

]

Jq(krα)e
iqθα+

∑

q

[

2i

π
(−1)qKq−ξ(kRαs)e

i(ξ−q)Ψαs

]

Iq(krα)e
iqθα

=
∑

q

(A(J)
q )αJq(krα)e

iqθα + (A(I)
q )αIq(krα)e

iqθα ,

(1.4.16)

where rα = r−Rα

1.5 Multiple scattering

Consider a cluster of N circular regions with arbitrary position located

at (Rα,Φα) and radius Rcyl
α with α = 1, 2, . . . , N as shown in Fig. 1.12.
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Figure 1.12: Cluster of N=2 circular regions located at (Rα,Φα) and

(Rβ,Φβ).

If an external displacement interacts with the cluster, the total incoming

displacement on the α-region will be a combination of the incident and

the scattered displacement of all the other region. Therefore the system

is completely coupled as the wave bounces back and forth through the

cluster.

Let us define the total incoming displacement as W
(inc)
α , which takes

into account all the incoming waves arriving to the α-region; and the

total scattered displacement as W
(scat)
α . Their expressions have the form

W (inc)
α =

∑

s

FJI
s (kbr, θ)(A

(T )
s )α, (1.5.1a)

W (scat)
α =

∑

q

FHK
q (kbr, θ)(B

(T )
q )α, (1.5.1b)

where

FΥΦ
q (κ, γ) =

[

Υq(κi) Φq(κ)
]

eiqγ , (1.5.2)

and (A(T )
s )α and (B(T )

q )α are the total incoming and scattered coefficients

in matrix form, respectively [see Eq. (1.4.3)]. They are related by
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(B(T )
q )α =

∑

s

(Tqs)α(A
(T )
s )α, (1.5.3)

where Tqs is a two by two matrix [see Eq. (1.4.11)].

As was explained in the previous chapter, the T-matrix relates the

incoming and the scattered wave, but only when the center of the coor-

dinate system and the circular region coincide. To change the position

of the origin of coordinates, Graphs Theorem (see Appendix A.3) can

be applied, such that the total scattering displacement created by the

β-region described as

W
(scat)
β (rβ, θβ) =

∑

r

FHK
r (kbrβ, θβ)(B

(T )
r )β, (1.5.4)

can be rewritten in the system of coordinates centered at α as

W
(scat)
β (rα, θα) =

∑

r

[

∑

s

FJI
s (kbrα, θα)Grs(kbRαβ,Φαβ)

]

(B(T )
r )β

(1.5.5)

where

Grs(κ, γ) =

[

Hs−r(κ) 0

0 (−1)rKs−r(κ)

]

ei(r−s)γ (1.5.6)

Then the total incident displacement on the α-region is written as

W (inc)
α =

∑

s

FJI
s (kbrα, θα)(As)α +

∑

β 6=α

W
(scat)
β (rα, θα), (1.5.7)

where (As)α are the incoming coefficients of the external displacement

field expressed in the α frame. Notice that both fields are now expressed

in the α frame. Combining Eq. (1.5.1a) with (1.5.7) and rearranging

terms we obtain

(A(T )
s )α = (As)α +

∑

β 6=α

∑

r

Grs(kbRαβ,Φαβ)(B
(T )
r )β (1.5.8)
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Multiplying this equation by (Tqs)α and adding for all s we get

(B(T )
q )α =

∑

s

(Tqs)α(As)α +
∑

β 6=α

∑

s

(Tqs)α
∑

r

Grs(kbRαβ,Φαβ)(B
(T )
r )β

(1.5.9)

By introducing the Kronecker delta function (δij = 1 only if i = j)

and rearranging terms we arrive to the following equation

∑

β

∑

r

(Mqr)αβ(B
(T )
r )β = (Nq)α (1.5.10)

where

(Mqr)αβ = δαβδqr −
∑

s

(1− δαβ)(Tqs)αGrs(kbRαβ,Φαβ) (1.5.11)

(Nq)α =
∑

s

(Tqs)α(As)α (1.5.12)

More specifically, equation (1.5.10) can be written in matrix form as

its acoustic counterpart [see Part I Eqs. (1.3.10)-(1.3.11b)]. Now each

element of the matrix will be a two by two matrix instead of a scalar

value. To solve the infinite linear systems described in Eq. (1.5.10) it

is truncated so that max |q| = max |r| = max |s| < Q. Then the total

scattering coefficients (B(T )
r )α are obtained and the total displacement

W in the background medium is calculated as

W (r) =
∑

q

FJI
q (kbr, θ)Aq +

∑

α

∑

q

FHK
q (kbrα, θα)(B

(T )
q )α, (1.5.13)

with rα = r −Rα being the distance from the center of the α-region to

an arbitrary position r in the background medium.

To calculate the internal displacement of each region, the internal

coefficients of each region (Cq)α are needed. These are obtained by com-

bining Eq. (1.5.8)] and Eq. (1.4.6).
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1.6 Multilayer scatterer

This section presents the multilayer scattering method. This models is

employed to make numerical simulations of structures that are radially

inhomogeneous, that is, their parameters depend only on the radial co-

ordinate.
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Figure 1.13: Multilayered structure employed in the multiple scattering

algorithm with N = 10 layers. The background layer is n = 0 and

corresponds to the region r > R1) and the core layer is n = N + 1 and

corresponds to the region r < RN+1.

The continuous variation of the parameters of the structures is dis-

cretized into a number N of homogeneous cylindrically symmetric layers.

Figure 1.13 shows the cylindrical structure discretized into N = 10 layers

each one with different elastic properties. The layers are numbered such

that the background corresponds to n = 0 and the core layer corresponds

to n = N + 1.

From the previous section, it is known that the displacement in a thin

plate is a combination of standard and modified Bessel function. So, in

the case of a multilayer structure, the field of the n-th layer is described

as
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Wn(r, θ) =
∑

q

[

(A(J)
q )nJq(knr) + (A(I)

q )nIq(knr)
]

eiqθ+

∑

q

[

(B(H)
q )nHq(knr) + (B(K)

q )nKq(knr)
]

eiqθ,
(1.6.1)

being (A
(J)
q )n, (A

(I)
q )n, (B

(H)
q )n, (B

(K)
q )n the coefficients of the expansion

(A for the incoming wave towards the center of the region and B for the

scattered one) and kn being the wavenumber in the n-th layer.

The objective now is to relate the coefficients of each layer with the

ones of the previous and next layer. Defining

Aq,n =

[

(A
(J)
q )n

(A
(I)
q )n

]

, Bq,n =

[

(B
(H)
q )n

(B
(K)
q )n

]

, (1.6.2)

from Fig. 1.13 we can deduce that the relation between the coefficients

of layers n and n− 1 is given by

Aq,n = Tq,n−1n ·Aq,n−1 +Rq,nn−1 ·Bq,n, (1.6.3a)

Bq,n−1 = Rq,n−1n ·Aq,n−1 +Tq,nn−1 ·Bq,n, (1.6.3b)

where Tq,n−1n and Rq,n−1n are the q-th element of the transmission and

reflection coefficient matrix (2x2) from layer n − 1 to n, respectively.

Defining the layer elastic impedance matrices (2x2) as Bq,n = Zq,n ·Aq,n,

the above equations read as

Aq,n =(I−Rq,nn−1 · Zq,n)
−1 ·Tq,n−1n ·Aq,n−1, (1.6.4a)

Aq,n =(Tq,nn−1 · Zq,n)
−1 · (Zq,n−1 −Rq,n−1n) ·Aq,n−1, (1.6.4b)

from which we can obtain the recursive relation for the coefficient Zq,n

as

Zq,n−1 = Rq,n−1n +Tq,nn−1 · Zq,n ·Xq,n, (1.6.5a)

Xq,n = (I−Rq,nn−1 · Zq,n)
−1 ·Tq,n−1n. (1.6.5b)
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Starting at the last layer n = N , since Bq,N+1 = 0, the impedance in

the last layer Zq,N is simply

Bq,N = Rq,NN+1 ·Aq,N → Zq,N = Rq,NN+1. (1.6.6)

The iterative process continues till n = 1, so all Zq,n and Xq,n matrix

are obtained. Then, the incoming and scattering coefficients of each layer

are given as a function of Aq,0, which is defined by the external incident

field, applying the following relationships

Bq,n = Zq,n ·Aq,n, (1.6.7a)

Aq,n+1 = Xq,n ·Aq,n. (1.6.7b)

Notice that with few modifications in the notation is is possible to couple

the Multiple Scattering (see 1.5) and the Multilayer Scattering algorithms

and therefore have a cluster of multilayered structures.

Reflection and transmission coefficients

The calculation of the reflection and transmission coefficients of every

layer in both propagation directions (to and from the center of the struc-

ture), required to realize the aforementioned procedure, is detailed below.

Let us consider a single layer with only one boundary where an in-

coming wave Aq,i impinges on the interface. In Fig. 1.14a the incoming

wave Aq,n travels towards the center of the circular region, producing

a reflected wave Bq,n in the opposite direction and a transmitted one

Aq,n+1 to the next layer. On the other hand, in Figure 1.14b, the in-

coming wave Aq,n+1 travels towards infinity, producing a reflected wave

Bq,n+1 towards the center of the circular region and a transmitted one

Aq,n to the previous layer.

To obtain these reflection and transmission matrices, the boundary

conditions described in Eqs. (1.4.4) are imposed. For the first system,

the coefficients of layers n and n+ 1 are related by
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Figure 1.14: Mono-layer systems employed to obtain the reflexion and

transmission matrices from layer n to n + 1 (a) and from layer n + 1 to

n (b).

M(1)
q

[

Bq,n

Aq,n+1

]

= −N(1)
q

[

Aq,n

]

, (1.6.8)

where

M(1)
q =





Hq(κn) Kq(κn) −Jq(κn+1) −Iq(κn+1)
(κn)H′

q(κn) (κn)K′

q(κn) −(κn+1)J ′

q(κn+1) −(κn+1)I′q(κn+1)

SH
q (κn) SK

q (κn) −SJ
q (κn+1) −SI

q (κn+1)

TH
q (κn) TK

q (κn) −TJ
q (κn+1) −T I

q (κn+1)



, (1.6.9)

N(1)
q =











Jq(κn) Iq(κn)

(κn)J
′
q(κn) (κn)I

′
q(κn)

SJ
q (κn) SI

q (κn)

T J
q (κn) T I

q (κn)











, (1.6.10)

and κn = knRn. Additionally, Sξ
n(κn) ≡ Sξ

n(kn, Rn) and T ξ
n(κn) ≡

T ξ
n(kn, Rn) where defined in Eq. (1.4.9) and Eq. (1.4.10), respectively.

Similarly, for the second system, the coefficients of layers n + 1 and

n are related by

M(2)
q

[

Bq,n+1

Aq,n

]

= −N(2)
q

[

Aq,n+1

]

, (1.6.11)
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where

M(2)
q =





Jq(κn+1) Iq(κn+1) −Hq(κn) −Kq(κn)

(κn+1)J ′

q(κn+1) (κn+1)I′q(κn+1) −(κn)H′

q(κn) −(κn)K′

q(κn)

SJ
q (κn+1) SI

q (κn+1) −SH
q (κn) −SK

q (κn)

TJ
q (κn+1) T I

q (κn+1) −TH
q (κn) −TK

q (κn)



, (1.6.12)

N(2)
q =











Hq(κn+1) Kq(κn+1)

(κn+1)H
′
q(κn+1) (κn+1)K

′
q(κn+1)

SH
q (κn+1) SK

q (κn+1)

TH
q (κn+1) TK

q (κn+1)











. (1.6.13)

Now, by knowing the definition of the reflection and transmission

matrices in the first system

Rq,nn+1 = Bq,n · (Aq,n)
−1, (1.6.14)

Tq,nn+1 = Aq,n+1 · (Aq,n)
−1, (1.6.15)

and the second system,

Rq,n+1n = Bq,n+1 · (Aq,n+1)
−1, (1.6.16)

Tq,n+1n = Aq,n · (Aq,n+1)
−1. (1.6.17)

It is straightforward to obtain them from Eq. (1.6.8) and (1.6.11).

1.7 Scattering cross section

As in the case of acoustics waves, the displacement maps of a plate can be

plotted, but to better analyze the results, or compare the effects produced

by two different systems, one dimensional plots are more suitable.

Once again, let us introduce the scattering cross section (SCS). The

scattering cross-section is defined in optics as a hypothetical area describ-

ing the likelihood of light particles being scattered by a scattering center.

It is a measure of the strength of the interaction between the scattered
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particles and one or several scattering centers. Also in this case, the SCS

also describes the shape of the scattered displacement at the far field

produced by a circular region. It is defined as

σscat(k, θ) = lim
r→∞

∣

∣

√
rW scat(r, θ)

∣

∣ (1.7.1)

where W scat is the scattered displacement, which is a combination of

Bessel functions. Its asymptotic expression detailed in Appendix A can

be used.

Combining Eq. (1.4.1a), (1.7.1) and (A.2.10) the SCS of the circular

region centered in the origin of coordinates is

σscat(k, θ) =

∣

∣

∣

∣

∣

√

2

πk

∑

q

(−i)qB(H)
q eiqθ

∣

∣

∣

∣

∣

. (1.7.2)
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Figure 1.15: Variables needed to calculate the scattering cross section.

The calculation of the SCS of a cluster is more complex and some

of the steps will be below. Let’s consider the cluster shown in Fig 1.15.

From the right hand side of Eq. (1.5.13) we know that
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W scat(r, θ) =
∑

α

∑

q

FHK
q (kbrα, θα)(B

(T )
q )α. (1.7.3)

When r → ∞ we can apply the asymptotic expression of the Bessel

functions [see Eq. (A.1.10) and Eq. (A.2.10)]. Note that Kq(r) → 0.

Then the previous equation is rewritten as

lim
r→∞

W scat(r, θ) ≈
∑

α

∑

q

(B(TH)
q )α

√

2

πkr
(−i)qe−iπ/4eik(rα−Rα cos(θ−Φα))eiqθ,

(1.7.4)

where (B
(TH)
q )α is the total scattering coefficient of the Hankel function

and the following simplifications have been performed

lim
r→∞

rα ≈
{

r −Rα cos(θ − Φα) For the exponentials

r For the rest
(1.7.5)

lim
r→∞

θα ≈ θ (1.7.6)

Finally, the SCS of a cluster of cylinders is

σscat(k, θ) =

∣

∣

∣

∣

∣

√

2

πk

∑

q

∑

α

(−i)q(B(TH)
q )αe

−ikRα cos(θ−Φα)eiqθ

∣

∣

∣

∣

∣

. (1.7.7)

1.8 Energy Flux

In a two dimensional system, the energy flux (Φ) is the rate of energy

transfer through a closed boundary Ω. Assuming a periodic motion of

the form e−iωt, it is defined as

Φ =
ωD

2

∫

Ω

I dΩ, (1.8.1)

where
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I = ℑ
[

W
∂

∂n
∆W ∗ −∆W ∗∂W

∂n

]

, (1.8.2)

and ∆ is the Laplace operator, ℑ denotes the imaginary part and ∂/∂n

is the derivative with respect to the normal of the boundary Ω.
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Figure 1.16: Variables used to calculate the intensity of a plane wave (a)

and a circular region (b)

In the following paragraphs, we calculate the energy flux of the two

main fields used during this work: A plane wave field and the field pro-

duced by the interaction of an incident wave impinging a circular region

inside a plate.

Plane wave

In the case of a plane wave, it is common to calculate the energy flux

of a line segment Ω of length ℓΩ, (see Fig. 1.16a). Taking into account

that the wavenumber of the plane wave is defined as ~k = (kx, ky) and the

vector normal to Ω is n ≡ x̂, then the energy flux is defined as

Φ =
ω3ph

kx
ℓΩ, (1.8.3)
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where h is the thickness of the plate. Notice that Φ variates with the

thickness. If the plate’s thickness decreases gradually without reflecting

back, the amplitude of a wave increases due to the energy conservation.

This result will be important later on.

Single circular region or cluster

To calculate the energy flux of a circular region it is common to define the

contour Ω as the boundary of a circle of radius rΩ > Rα (see Fig. 1.16b).

In this case, the normal vector to the contour coincides with the radial

vector, then n = r. From Eq. (1.4.2) we know that the background field

produced by a single scattered is W =
∑

q Wq where

Wq =
[

A(J)
q Jq(kr) + A(I)

q Iq(kr) + B(H)
q Hq(kr) + B(K)

q Kq(kr)
]

eiqθ.

(1.8.4)

Then, by applying it to Eq. (1.8.1) we obtain the energy flux as

Φ =
ωD

2

∫ 2π

0

IrdΩ, (1.8.5)

where

Ir = ℑ
[

∑

q

Wq ×
∑

s

∂∆W ∗
s

∂r

]

+ ℑ
[

∑

q

∂Wq

∂r
×
∑

s

∆W ∗
s

]

, (1.8.6)

which can be further simplified with the following considerations

1. To obtain the energy flux [Eq. (1.8.5)], I is integrated from 0 to

2π. In this case, only the terms s = q are different from zero.

2. If the arguments of the Bessel functions are real, then the com-

plex conjugate of the radial functions can be eliminated. Notice

that H = J + iY . Additionally, the Wronskian identity defined in

Appendix A for both regular and modified Bessel functions can be

used.
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3. Notice also from Eq. (1.8.6) that only the pure imaginary terms

are needed.

4. The following properties apply to complex numbers ZZ∗ = |Z|,
Z + Z∗ = 2ℜ[Z] and Z − Z∗ = 2ℑ[Z].

Finally, the energy flux is defined as

Φ = 4ωDk2
∑

q

[

|B(H)
q |2 + ℜ

(

(A(J)
q )∗B(H)

q

)

+
π

2
ℑ
(

(A(I)
q )∗B(K)

q

)

]

.

(1.8.7)

As stated previously, the normal to the surface coincides with the

radial vector (towards infinity). As a consequence, if Φ > 0 then inside

the region there is a source of energy. If Φ < 0 the inside region is

absorptive. Finally, if Φ = 0 then there is a balance between the energy

amount entering and leaving the region enclosed by Ω. This method

has been used through out this work to test if the T-matrix has been

calculated correctly.



Chapter 2

Elastic Lenses

This chapter reports several gradient index lenses for flexural waves in

thin plates. The method for its realization is explained in the theoret-

ical introduction. Unlike the previous approaches in acoustics, based

on phononic crystals, the present method is based on the thickness-

dependence of the dispersion relation of flexural waves, which is used

to create gradient index devices by means of local variations of the plate

thickness. Numerical simulations of known circularly symmetrical gra-

dient index lenses have been performed and the results are presented in

later sections.
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2.1 Introduction

The equation of motion describing flexural waves in thin plates is modeled

using the Kirchhoff-Love plate equation (1.3.12), in which the vertical

displacement W of the plate is obtained from

∇4W − k4W = 0, (2.1.1)

where ω is the angular velocity and the wave number k is given by a

quadratic dispersion relation of the form

k =
4

√

ω2hρ

D
, (2.1.2)

being ρ the mass density, h the thickness of the plate, D = Eh3/12(1−ν2)

the flexural rigidity, E the Young Modulus and ν the Poisson ratio.

It is seen that both the phase and group velocities of the waves are

function of the plate’s thickness. It is straightforward to obtain the re-

fractive index as a function of the position-dependent h

n(r, θ) =
cb
c
=

√

hb

h(r, θ)
, (2.1.3)

where hb is the background’s thickness and h(r, θ) the variation of the

thickness in polar coordinates. If all the other elastic properties of the

plate remains unchanged, then Eq. (2.1.3) describes how the refractive

index increases with decreasing thickness. It is important to notice that,

despite of being an intrinsically dispersive medium, the refractive index

does not depend on the frequency of the wave.

2.2 Design of elastic lenses

A set of refractive index lenses with circular symmetry have been stud-

ied. Table 2.2.1 shows the list of these lenses, corresponding to several

solutions of the Luneburg problem with their respective variation of the
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Table 2.2.1: Normalized refractive index of several solutions of the Luneb-

urg problem (first four lenses). Additionally, a concentrator lens (last

lens) obtained by mapping the electromagnetic regime in the elastic one.

Lens Name Refractive Index (n)

Luneburg n =
√
2− r2

Maxwell Fish-Eye n = 2/(1 + r2)

90◦ Rotating rn4 − 2n+ r = 0

Eaton n =
√

2/r − 1

Concentrator n = 1/r

refractive index. Any Luneburg lens is a spherically symmetric gradient-

index lens with a typical refractive index n decreasing radially from the

center to the outer surface [16, 44]. The last device corresponds to the

elastic analogue of the optical concentrator studied for electromagnetic

waves by Narimanov and Kildishev [52]. Note that all these lenses have

been defined for optical waves, however, since they are obtained using the

geometrical optics approximation, we assume that the solutions are also

valid for flexural waves. This assumption has been successfully applied

previously for acoustics in Part I Chapter 2, where the mapping with the

electromagnetic waves is well supported.

Figure 2.1: Scheme of a circular flexural lens with radius Rs with a radial

dependent thickness h(r) to achieve the desired refractive index n(r).

Figure 2.1 shows a schematic view of the five gradient index lenses
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presented in this chapter. All the lenses are defined by a circular region

r ≤ Rs in which the thickness h(r) of the plate is a function of the

radial coordinate. This gradual variation of the plate’s thickness can be

modeled to match the gradual variation of the refractive index of the

desired lenses.

Figure 2.2: Ray tracing for several solutions of the Luneburg problem:

Luneburg, Maxwell’s fish eye, 90◦ rotating and Eaton lens. The last one,

corresponds to a concentrator lens obtained by mapping the electromag-

netic regime in the elastic one.

Figure 2.2 shows the ray tracing of the five lenses. In the case of

the Luneburg lens, (a), each point on the surface is the focal point for

parallel radiation incident on the opposite side. Therefore a plane wave

impinging the lens is focused in a point. This effect can be reversed, so a

point source located on the surface will be transformed in a plane wave.

The Maxwell’s fish eye lens, (b), focuses each point on its surface to the

opposite point on the same surface. Within the lens, the paths of the

rays are arcs of circles, creating the pattern that gives name to the lens.
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The 90◦ rotating lens (c), as its named implies, bends the trajectory of

the waves 90 degrees. Notice that a plane wave impinging the whole

surface of the wave will be divided in two. The wave that hits the upper

part of the lens while bend downwards, while the one that hits the lower

part while bend upwards. The Eaton lens, (d), completely bends the

impinging wave backwards. Finally, the concentrator lens, (e), focuses

the wave towards the center of the lens.
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Figure 2.3: Variation of (a) the refractive index and (b) the thickness of

the studied lenses in function of the normalized distance.

Figure 2.3(a) shows the variation of the refractive index along the

propagation axis for each one of the lenses described in Table 2.2.1. Fig-

ure 2.3(b) shows the corresponding solution for the radius-dependent

plate thickness h(r, θ)/hb obtained using Eq. (2.1.3). Notice that all the

proposed flexural lenses present a refractive index larger than that of the

background, therefore the height will always be smaller than that of the

plate. In other words, all these lenses can be done by gradually decrease

the plate’s thickness.

A homogeneous infinite aluminum plate with E = 78.97 Gpa, ρ =

2700 kg/m3 and ν = 0.33 has been considered. The normalized thickness

of the plate is hb/Rs = 0.0167. It is important to note in Fig. 2.3(a) that

in some cases the thickness tends to zero as we approach the center of
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the lens. To avoid this singularity a minimum thickness is established as

hmin(r)/hb = 0.2·10−3 which is small enough to not affect the simulations.

2.3 Numerical simulations

The simulations have been performed using the one dimensional mul-

tilayer scattering method, described in section 1.6, where the continu-

ous refractive index of each lens has been discretized in a number N of

cylindrical symmetric layers. As the method describes, the vertical dis-

placement in each layer Wn satisfies the Kirchhoff-Love plate equation

and, by applying boundary conditions at each layer, the total scatter-

ing displacement of the whole system can be calculated. Each lens was

discretized in N = 100 and the simulations demonstrate that this is a

good approximation to the ideal continuous device for the wavelengths

of interest.

Figure 2.4 shows the real part of the displacement W (r, θ) for the

different type of lenses listed in Table 2.2.1 when a field with kRs = 8.3π

(λ/Rs = 0.24) is excited on the plate. Panel (a) shows a Luneburg Lens

in which a plane wave is focused at the border of the device. Panel (b)

shows a Maxwell Fish-Eye, where, in this case, a point source is excited

at the border of the lens and it is focused at the opposite point. Panel (c)

shows a 90◦ Rotating lens, where the incident plane wave is symmetrically

redirected along the perpendicular direction of propagation, similarly as

the Eaton lens shown in panel (d), where the wave is directed backwards

this time. The concentrator lens shown in panel (e) is identical to the

photonic black hole [52] which was also studied for acoustic waves in

Part I Chapter 3. As expected, the elastic counterpart presents a similar

behavior.

Broadband performance

As a parameter used to prove the broadband efficiency of the method to

control the refractive index with the thickness, we have used the scatter-
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Figure 2.4: Real part of the displacement W (r, θ) produced by a plane

(a,c,d,e) or cylindrical (b) wave impinging a (a) Luneburg, (b) Maxwell,

(c) 90◦ Rotating, (d) Eaton and (e) Concentrator lens at kRs = 8.3π.

Color scale is the same as in Fig. 2.6.

ing cross section (SCS) defined at as [see section 1.7]

σ(k, θ) ≡ lim
r→∞

∣

∣

√
rWsc(r, θ)

∣

∣ , (2.3.1)

where Wsc(rθ) is the displacement of the scattered wave. The SCS has

been calculated from θ ∈ [−π, π] and for a wide range of normalized

wave-numbers (kRs ∈ [5, 40]). Fig. 2.5 (a), on one hand, shows σ for

the 90◦ Rotating Lens. Note how it increases in the near of θ = ±π/2

and becomes narrow when the normalized wave-number increases. By

the other hand, Fig. 2.5(b) shows σ for the Eaton Lens. In this case,

it increases in the near of θ = ±π and also narrows with increasing

normalized wave-number.
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Figure 2.5: Scattering cross-section produced by (a) the 90◦ Rotating

Lens and (b) the Eaton Lens.
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Figure 2.6: Real part of the displacement W (r, θ) produced by a plane

wave impinging a Luneburg Lens. Simulations done with a commercial

FEM simulator using the 3D Elastic Theory (a) and a the 1D Multilayer

simulator (b).
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Finally, in order to test the flexural wave approximation, a numerical

experiment employing the full 3D elastic equations, has been realized

with a commercial finite element (FEM) simulator. Figure 2.6 shows

the real part of the displacement W (r, θ) resulting when a plane wave

impinges the Luneburg lens. Fig 2.6(a) shows the result given by the nu-

merical simulator based on the Kirchhoff-Love plate equation and Figure

2.6(b) the results obtained from the commercial simulator. Both results

are very similar and show the expected behavior produced by a Luneb-

urg lens. Note that the result obtained by the commercial simulator are

slightly distorted due to the difficulty of achieving zero reflectance on the

boundary of the elastic plate. Moreover it is a full 3D elastic simulation.
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Chapter 3

Insulating Device

This chapter reports a gradient index device for insulating from vibra-

tions a circular area of a thin plate. The device is made to mimic the

attractive and repulsive potentials of a well-like structure. The waves fo-

cused at its bottom are dissipated by means of an absorptive layer placed

on top of the plate. First an introduction is given, then the design of the

device is presented and finally numerical simulations are discussed.
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3.1 Introduction

As explained in the chapter 2 the refractive index of a plate can be

tailored by changing the thickness of the plate as

n(r, ) =

√

hb

h(r, θ)
, (2.1.3 revisited)

where hb is the backgrounds thickness and h(r, θ) the variation of the

thickness in polar coordinates.

Using this method, we have designed a thickness-inhomogeneous re-

gion which will attract and dissipate vibrations on the plate, accom-

plishing then a double objective. From one side, the central region will

be properly isolated, from the other one, the device will dissipate the

vibrations on the plate.

Figure 3.1: Schematic view of the structure studied in the present work.

The central circular region is surrounded by a thickness-varying shell so

that it is isolated from the propagation of flexural waves on the plate.

Figure 3.1 shows a schematic view of the gradient index device. It

consist of a circularly symmetric region in which the thickness of the

plate is gradually changed according to the desired functionality. In this

case, a well-like profile is drilled surrounding a central area, which is

the region to be isolated from external vibrations. Following the results

obtained in chapter 2, the objective of the decreasing height (increasing

refractive index) region is to act as an “attractive” potential, so that
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it tends to concentrate vibrations, while the inner region of increasing

height (decreasing refractive index) will act as a “repulsive” potential,

isolating in this way the central region. All waves traveling around this

device will be concentrated at the bottom of the well where they will be

dissipated.

The dissipation is obtained by placing an absorptive material in con-

tact with the plate in the region between the attractive and the repulsive

potential. As explained in section 1.8, when the thickness of the plate

decreases, the amplitude of the wave increases. Thus, the ideal place

to place the absorptive layer is at the bottom of the well. The plate-

absorptive system can be described as an effective metamaterial making

use of the Ross-Kerwin-Ungar (RKU) model.

3.1.1 RKU absorbing layer model

Using the Ross-Kerwin-Ungar (RKU) model [64] it is possible to describe

the system plate-absorptive material as a single composite.

Figure 3.2: Scheme of a binary system composed of an absorbing layer

(thickness δ) placed on the top a the plate (thickness ha). Each layer has

its own elastic parameters that combine to produce a composite material

(thickness hc), with new elastic parameters.

Lets us suppose a plate composed of two perfectly bonded layers made

of different isotropic materials. The lower material has a thickness of ha,

while the upper one is an absorptive materials of thickness δ, as shown

in Fig. 3.2. Each material is characterized by the Young’s modulus Ei,
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the mass density ρi and the Poisson’s ratio νi. Absorption is introduced

in the model by adding a complex part in the Young modulus called the

loss factor η, such that Ê = E(1 + iη). The sub-indices a and ℓ stands

for the parameters of the plate and absorbing layer, respectively.

The RKU model states that the binary system can be described as a

single layer with a given Young modulus Ec, thickness hc, Poisson ration

νc and mass density ρc. Then, the wavenumber of the composite material

is defined as

kc =

(

12ω2ρa(1− ν2
a)

Eah2
a

[

1 + ρrhr

(1− iηa) + (1− iηℓ)hrErα

])
1
4

, (3.1.1)

where ρr = ρℓ/ρa, hr = δ/ha, Er = Eℓ/Ea and α = 3 + 6hr + 4h2
r.

The thickness of the composite is simply the total thickness of the

two layers

hc = ha + δ, (3.1.2)

while its density is the volume average of the densities of the two materials

ρc =
ρaha + ρℓδ

hc

. (3.1.3)

It is assumed that the Poisson ration of the composite is the same as

that of the plate,

νc = νa. (3.1.4)

From Eqs.(3.1.1)-(3.1.4), the flexural stiffness is cast as

Dc =
ω2ρchc

k4
c

=
h3
a

12(1− ν2
a)
Ea [(1 + hrErα)− i(ηa + ηℓhrErα)] . (3.1.5)

Finally, knowing that Ec = Dc12(1 − ν2
c )/h

3
c , the Young modulus of

the composite is obtained and its loss factor is found as
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ηc =
ℑ{Ec}
ℜ{Ec}

=
ηa + ηℓhrErα

1 + hrErα
. (3.1.6)

Notice that neither the mass density nor the Poisson’s ratio affect the

composite loss factor.

RKU model tests
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Figure 3.3: Variation of the composite loss factor ηc with the normalized

Young’s Modulus Er = Eℓ/Ea, for different values of the loss factor of

the absorptive layer ηℓ. (ha = 0.5 mm and δ = 0.5 mm)

To better understand the behavior of the loss factor given by Eq.

(3.1.6), some numerical experiments where conducted. Figure 3.3 shows

the variation of the composite loss factor with Er for different values of ηℓ.

The thickness of the aluminum plate is ha = 0.5 mm and the thickness of

the layer is δ = 0.5 mm. It is observed that ηc approaches the loss factor

of the absorptive layer ηℓ as the normalized Young’s Modulus Er >> 0.5,

as expected from Eq. (3.1.6). Figure 3.4 shows how the composite loss

factor changes with the ha and δ. Note that when the thickness of the
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Figure 3.4: Variation of the composite loss factor ηc with the thickness

of the layer δ for different plate thickness ha.

plate decreases, a minor change in the thickness of the layer changes the

loss factor greatly.

3.2 Design and Optimization

The insulating device is designed and optimized to obtain maximum

transmission between each region, so the geometric and elastic properties

are given and the optimization process is described.

The insulating device consists of five regions shown in Fig. 3.5a, i.e.

the background (gray), the attractive potential (blue), the absorptive

(red), the repulsive potential (green) and, finally, the core region (yellow).

Figure 3.5b shows the variation of the thickness of the plate according

to the following function
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Figure 3.5: (a) Schematic view of the different regions defined in the

insulating device and (b) variation of the thickness of the plate. The

core is defined by r < Rc (yellow) and corresponds to the area to be

isolated from vibrations. Region Rc < r ≤ Rrp is the repulsive potential

shell (green), region Rrp < r ≤ Rab is the absorbing shell (red) and region

Rab < r ≤ Rap is the attractive potential shell (blue). The gray region

(r > Rap) corresponds to the background and it extents towards infinity.

h(r) =































h = hb r ≤ Rc

h = hb−hmin

(Rc−Rrp)2
(r −Rrp)

2 + hmin Rc < r ≤ Rrp

h = hmin Rrp < r ≤ Rab

h = hb−hmin

(Rap−Rab)2
(r −Rab)

2 + hmin Rab < r ≤ Rap

h = hb Rap < r

(3.2.1)

where hb = 10mm is the thickness of the plate in the background, hmin =

0.5mm is the minimum thickness of the plate (prior to the optimization

process), Rc = 15cm is the radius of the core, Rrp = 30cm is the radius of

the “repulsive potential” shell, Rab = 45cm is the radius of the absorptive
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shell and Rap = 60cm is the radius of the “attractive potential” shell.

Notice that the normalized thickness of the plate is hb/Rap = 0.0167, so

the variation in thickness is very smooth.

Table 3.2.1: Elastic parameters of the binary systems materials

Aluminum Molded Polyester

Young modulus E 78.97 Gpa 7.8 Gp

Mass density ρ 2700 kg/m3 1400 kg/m3

Poisson ratio ν 0.33 0.34

Loss factor η 0.0001 0.1

The background plate is made of aluminum while the absorbing layer

is made of molded Polystyrene. The elastic parameters are reported

in Table 3.2.1, whose values were obtained from [6]. Given that the

thickness of both the absorptive layer and the plate can be tailored, their

values are optimized in order to maximize the device’s efficiency.

To maximize the energy transfer through all the layers, the system

requires a good matching between each interface, so that the reflections

of incoming waves be minimum. As explained in chapter 1, the bound-

ary conditions are continuity of the displacement W , its radial derivative

∂rW , the conservation of the bending moment and the generalized Kirch-

hoff stress, as given by Eqs. (1.3.19). These equations are functions of

the flexural stiffness D(r) and the wavenumber k(r) (ν does not change),

so that, in order to minimize reflections when changing from one region

to the other one, these values have to be continuous.

Although the thickness values given from Eq. (3.2.1) provides this

continuity, once the effect of the absorbing layer is added, a mismatch

between the layers surrounding the absorptive shell occurs. An optimiza-

tion process solves this problem. Two parameters have been optimized,

the thickness of the absorbing layer (δ) and the thickness of the absorb-

ing plate (ha ≤ hmin). Figure 3.5b shows, in the absorption region, the

original value hmin (dashed line), the new thickness value ha < hmin

(continuous line) and, finally, and the total thickness after adding the



3.3 Numerical simulations 143

absorbing layer ha+ δ (dash-dotted line). The goal is to obtain a relative

error lower than 0.1% for the flexural stiffness and the wavenumber, i.e.

ǫD(r) = |D(r)target −D(r)|/D(r)target (3.2.2a)

ǫk(r) = |k(r)target − k(r)|/k(r)target (3.2.2b)

of less than 0.1%. After the optimization, the values for the new thick-

ness of the plate and the layer are ha = 0.44hmin and δ = 0.55mm,

respectively. Also, the composite loss factor achieved was ηc ≈ 0.1.

3.3 Numerical simulations
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Figure 3.6: Thickness variation as a function of the distance r for the

three structures studied in this work. The region wanted to be free of

vibration is r ≤ Rap/4. (a) Attractive potential with the absorptive layer.

(b) Attractive and repulsive potentials without the absorptive layer. (c)

Full isolating device.

Using this design, numerically simulations were conducted by means

of the multiple layer scattering method, described in chapter 1.6. This
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method requires the application of the proper boundary conditions at

each layer, for which it is necessary to know their physical properties.

Note that the only parameter that changes from layer to layer is the

plate’s thickness, except at the bottom of the well, where a dissipative

material is placed. Each region has been discretized into N = 100 layers,

which has been shown to be a good approximation to the ideal continuous

device for the wavelengths of interest.

For comparison purposes, the three configurations shown in Fig. 3.6

have been studied. The first one is a device with the same geometrical

characteristics as the designed one, but without the repulsive potential

(Fig. 3.6a); the second one is a device with the same geometrical char-

acteristics as the designed one, but without the absorptive layer and

the optimization (Fig. 3.6b); and the third one is the designed device

(Fig.3.6c).

To further understand what is occurring inside the three configura-

tions, let us consider the displacement fields illustrated in Fig. 3.7. They

show the modulus of the displacement in the z-direction when a plane

wave with wavenumbers kRap = 15 (upper panels) and kRap = 35 (lower

panels), impinges the devices under study. The white circles represent

the boundaries defined by Eq. (3.2.1). Plots (a) represent the displace-

ment without the repulsive potential. Notice that, although the system

presents absorption, the wave is focused into the core and a high ampli-

tude is achieved. Panels (b) are for the device without the absorptive

layer, but adding the repulsive potential shell. It is observed that the

wave is expelled from the core and the amplitude decreases in compar-

ison to the previous panels, even though it does not have absorption.

Finally, plots (c) correspond to the designed optimum device. By intro-

ducing the absorptive layer, the wave amplitude in the core is further

reduced. Notice that the panel in the second row has the same pattern

as the one in the third row but without the attenuation.

For comparison purposes we have introduced the vibration average in

the region i defined as
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Figure 3.7: Modulus of the displacement in the z-direction when a plane

wave with wavenumber kRap = 15 (upper panels) and kRap = 35 (lower

panels) impinges on the three devices tested in this work. Displacement

produced by (a) the device without the repulsive potential, (b) by the

device without absorption and (c) by the designed device.

< |W |2 >i=
1

Si

∫∫

Si

|W ( r, θ)|2dS, (3.3.1)

where Si is the area defined by Ri < r < Ri+1, with Ri ∈ [∞, Rap, Rab,

Rrp, Rc, 0].

The plots a,b,c and d in Fig 3.8 show the vibration average produced

in the four regions defining the device: the attractive potential shell, the

absorbing shell, the repulsive shell and the core, respectively. Each figure

shows the values of the vibration average for the designed device (con-

tinuous line), the device without absorption shell (dashed line) and the

device without the repulsive potential shell (dotted line). Notice that in

general, the vibration average decreases with increasing frequency, due
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to the frequency response of the absorptive layer. Some peaks are ob-

served in the device without the absorption shell due to resonances of the

structure, which disappear once dissipation is introduced in the device.

Overall, the designed device has the minimum vibration average in all

the regions, which shows its efficiency not only for dissipating vibration

energy but also for isolating a given region from these vibrations.

10
−2

10
0

10
2

<
|W

|2 >

 

 

 

 

5 10 15 20 25 30 35
10

−2

10
0

10
2

<
|W

|2 >

 

 

kR
ap

5 10 15 20 25 30 35
kR

ap

 

 

CoreRepulsive Shell

Attractive Shell Absorptive Shell

(d)

(b)

(c)

(a)

Figure 3.8: Vibration average in (a) the attractive potential shell, (b)

the absorptive shell, (c) the repulsive shell and (d) the core. The lines

correspond to the designed device (continuous line), the device without

absorption (dashed line) and the device without repulsive potential shell

(dotted line).



Chapter 4

Flexural resonator

This chapter describes the mathematical analysis of an in-plane flexural

resonator. First the problem is described and solved, giving informa-

tion on how to couple the Euler-Bernoulli beam and the Kirchhoff-Love

plate equation of motions. Here the T-matrix is obtained through an

impedance method instead of that described in chapter 1. Then, numer-

ical simulations are presented and the results prove the efficiency of the

method.
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4.1 Introduction

Figure 4.1: 3D Scheme (a) and 2D scheme (b) of a thin plate with a hole

(cylindrical boundary Ω) traversed by a beam (oriented at angle of θb)

connected to the plate at two anchor points (Ψi; i = 1, 2)

Figure 4.1 shows a 3D scheme (a) and a 2D scheme (b) of the system

here analyzed. A flexural wave with linear wavefront is incident in an

arbitrary direction on a hole (cylindrical boundary Ω) in the thin plate.

Inside, there is a beam connected to the plate at two anchor points (Ψi;

i = 1, 2). The beam is inclined an angle of θb. The motion of the flexural

wave W interacts with the motion of the beam V and creates a scattered

wave.

4.1.1 Coupling Boundary Conditions

To couple the two equations of motion we make use of the boundary con-

ditions. From Eq. (1.3.23), the boundary conditions for a hole in a thin

plate are Mr = 0 and Vr = 0 at the boundary Ω. For the problem con-

sidered, the beam introduces additional conditions at the anchor points

in Ψi requiring that the displacement and the slope are continuous and

the sum of the moments and the sum of the stresses are zero. Then, from

chapter 1, the displacement W of the plate can be expressed as
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W =
∑

q

Wq(r)e
iqθ =

∑

q

[

W inc
q (r) +W scat

q (r)
]

eiqθ

=
∑

q

[

A(J)
q Jq(kbr) + A(I)

q Iq(kbr) +B(H)
q Hq(kbr) + B(K)

q Kq(kbr)
]

eiqθ,

(4.1.1)

and the displacement V of the beam can be expressed as

V (x) = CIe+ikbx + CIIe−ikbx +DIe+kbx +DIIe−kbx (4.1.2)

Along this chapter, both displacements are positive in the positive ẑ-

axis. Also, a positive slope is represented as an inclined black line. The

moments in a 3D figure are represented using the double-headed arrow

notation and the right-hand grip rule. In the case of a 2D figure, ⊗ and

⊙ represent an ingoing and outgoing double arrow, respectively. Finally,

the shear stresses are defined with a single-headed arrow.
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Figure 4.2: Scheme of the direction of all the moments and shear stresses

defined by the Kirchhoff-Love plate theory. Notice that M ′
ij = Mij +

(∂Mij/∂xi)dxi and Q′
ij = Qij + (∂Qij/∂xi)dxi

Figure 4.2 shows all the moments and shear stresses defined for the

Kirchhoff-Love plate theory. Notice that M ′
ij = Mij + (∂Mij/∂xi)dxi
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Figure 4.3: Scheme of the direction of all the moments and shear stresses

defined by the Euler-Bernoulli beam theory. Notice that M ′
x = Mx +

(∂Mx/∂x)dx and Q′
x = Qx + (∂Qx/∂x)dx

Figure 4.4: Scheme of the boundary conditions, displacements (W , V ),

slopes (W ′
r, V

′
r ), moments (Mr, Mx) and shear stresses (Vr, Qx), between

the plate and the beam at the two anchor points Ψ1 and Ψ2.

and Q′
ij = Qij + (∂Qij/∂xi)dxi. In a similar way, Fig. 4.3 displays

the direction of the moments and shear stresses defined for the Euler-

Bernoulli beam theory. Notice that M ′
x = Mx + (∂Mx/∂x)dx and Q′

x =

Qx + (∂Qx/∂x)dx.

Finally, Fig. 4.4 shows the plate and the beam together. Ψ1 is the

right anchor point at (r, θ) = (R, 0) and (x) = (+R); and Ψ2 is the left

anchor point at (r, θ) = (R, π) and (x) = (−R). The upper panel shows

the displacements and the slopes and the lower panel shows the moments
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and the shear stresses. Notice that the Kirchhoff Stress is defined as

Vr = Qr − (1/r)∂Mrθ/∂θ so its direction is the same as Qr.

The boundary conditions require that at the anchor points Ψi the

displacement and the slope are continuous and the sum of the moments

and the sum of the stresses are zero. Looking at the two panels shown

in Fig. 4.4 it is easy to obtain them as

W (R, 0) = V (R) and W (R, π) = V (−R), (4.1.3a)

∂W

∂r

∣

∣

∣

∣

r=R
θ=0

=
∂V

∂x

∣

∣

∣

∣

x=R

and
∂W

∂r

∣

∣

∣

∣

r=R
θ=π

= − ∂V

∂x

∣

∣

∣

∣

x=−R

, (4.1.3b)

Mr|r=R
θ=0

=
Mx

R

∣

∣

∣

∣

x=R

and Mr|r=R
θ=π

=
Mx

R

∣

∣

∣

∣

x=−R

, (4.1.3c)

Vr|r=R
θ=0

=
Qx

R

∣

∣

∣

∣

x=R

and Vr|r=R
θ=π

= − Qx

R

∣

∣

∣

∣

x=−R

. (4.1.3d)

Notice that the moments and the shear stresses of the beam are divided

by the radius R of the hole. It is useful to take into account the dimension

of each term. The moment of the plate, Mr, has dimensions of [N ] while

the moment of the beam, Mx, has dimensions of [Nm]. At the same time,

the Kirchhoff Stress, Vr, has dimension of [N/m] and the shear stress,

Qx, has dimensions of [N ]. Therefore, if we integrate over a differential

element ǫ

∫ 0+ǫ

0−ǫ

Mr(θ)Rdθ = Mx, (4.1.4a)

∫ 0+ǫ

0−ǫ

Vr(θ)Rdθ = Qx, (4.1.4b)

we see that an additional term 1/R has to be added to the moments and

the shear stresses of the beam.

4.1.2 T-Matrix Solution: Impedance Method

Once the boundary conditions are known both equations of motion can be

coupled. Instead of using the approximation explained in chapter 1, here
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an impedance method for flexural waves that is analogous to the one

described for acoustic waves by Bobrovnitskii in [7] is here developed.

The method consists in obtaining the T-matrix of an interface as the

combination of three impedance matrices. Two of them describe the

background and the third one describes the internal media.

The T-Matrix is defined as B = TA, relating the incident wave am-

plitudes to the scattered amplitudes. Using Einstein notation it becomes

Bq = TqsAs where

As =

[

A
(J)
s

A
(I)
s

]

; Bq =

[

B
(H)
q

B
(K)
q

]

; Tqs =

[

T11 T12

T21 T22

]

(4.1.5)

.

In [7] the impedance matrices were defined by the relation between

the pressure P and the particle velocity v at the boundary Ω. Notice,

that the boundary condition for a fluid-rigid interface is v = 0 and for a

fluid-vacuum interface is P = 0. In the case of a thin plate, the boundary

conditions for a plate-clamped interface are W = W ′
r = 0 and for a plate-

fluid interface are Mr = Vr = 0. By analogy, we can define a new set of

impedance matrices as

[

Mr

Vr

](inc)

q

= −Z(inc)
qs

[

W

W ′
r

](inc)

s

, at Ω

(4.1.6a)
[

Mr

Vr

](scat)

q

= Z(scat)
qs

[

W

W ′
r

](scat)

s

, at Ω

(4.1.6b)




[

Mr

Vr

](inc)

q

+

[

Mr

Vr

](scat)

q



 = −Zqs





[

W

W ′
r

](inc)

s

+

[

W

W ′
r

](scat)

s



 . at Ω

(4.1.6c)

where Zinc
qs , Z

scat
qs , and Zqs are the impedances for the incoming, scat-

tered and internal wave, respectively. Notice that they are defined at
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the boundary Ω. Solving from Equations (4.1.6) we obtain the following

relationship

[

W

W ′
r

](scat)

q

= T̃qs

[

W

W ′
r

](inc)

s

, (4.1.7)

where

T̃qs = [Zscat
qs + Zqs]

−1[Zinc
qs − Zqs]. (4.1.8)

It is noticed that T̃ relates the displacement and the slope of the

incoming and scattered wave at the boundary between the two media.

In the case of a circular region in a plate, these are given by

[

W

W ′
r

](inc)

q

=

[

Jq(kpR) Iq(kpR)

kpJ
′
q(kpR) kpI

′
q(kpR)

][

A
(J)
q

A
(I)
q

]

eiqθ =

[

Ã
(J)
q

Ã
(I)
q

]

eiqθ,

(4.1.9a)
[

W

W ′
r

](scat)

q

=

[

Hq(kpR) Kq(kpR)

kpH
′
q(kpR) kpK

′
q(kpR)

][

B
(H)
q

B
(K)
q

]

eiqθ =

[

B̃J
q

B̃
(I)
q

]

eiqθ.

(4.1.9b)

Notice that B̃ = T̃Ã, from which it is easy to obtain the matrix T as a

function of T̃,

Tqs = [MHK
qq (kp)]

−1 [Zscat
qs + Zqs]

−1[Zinc
qs − Zqs] [MJI

ss (kp)], (4.1.10)

where M is a quasi-diagonal matrix defined as

MΥΦ
qq (ki) =

[

Υq(kiR) Φq(kiR)

kiΥ
′
q(kiR) kiΦ

′
q(kiR)

]

. (4.1.11)
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Background Impedances

Based on the definitions of Eq. (4.1.6a) and (4.1.6b), the background

impedances are obtained as

Z(inc)
qq = −NJI

qq (kp) [M
JI
qq (kp)]

−1, (4.1.12a)

Z(scat)
qq = NHK

qq (kp) [M
HK
qq (kp)]

−1, (4.1.12b)

where

NΥΦ
qq (ki) =







SΥ
q (ki) SΦ

q (ki)

T Υ
q (ki) TΦ

q (ki)






, (4.1.13)

and Sξ
q (ki) ≡ Sξ

q (kr, R) and T ξ
q (ki) ≡ T ξ

q (kr, R) are defined in Eq. (1.4.9)

and (1.4.10), respectively.

Internal Impedance

The following procedure is used to obtain the third impedance matrix

required for the solution, which is associated with the internal beam. On

the circular boundary Ω we have, (Mr = 0, Vr = 0) ∀θ except for (θ = 0,

θ = π), hence the two boundary conditions (4.1.3c) and (4.1.3d) can be

rewritten as

Mr(θ)|r=R ≡Mx(θ) =
1

R
[Mx(R)δ(θ − θΨ1) +Mx(−R)δ(θ − θΨ2)] ,

(4.1.14a)

Vr(θ)|r=R ≡Qx(θ) =
1

R
[Qx(R)δ(θ − θΨ1)−Qx(−R)δ(θ − θΨ2)] .

(4.1.14b)

Knowing that θΨ1 = θb and θΨ2 = θb + π and expanding Eqs. (4.1.14a)

and (4.1.14b) in azimuthal orders, using δ(θ − θi) = 1
2π

∑

q e
iq(θ−θi), we

obtain
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Mx(θ) =
∑

q

Mqe
iqθ =

1

2πR

∑

q

[

Mx(R) + (−1)qMx(−R)
]

eiq(θ−θb),

(4.1.15a)

Qx(θ) =
∑

q

Qqe
iqθ =

1

2πR

∑

q

[

Qx(R)− (−1)qQx(−R)
]

eiq(θ−θb).

(4.1.15b)

These equations can be combined and rewritten in matrix form as

[

Mx

Qx

]

q

=
e−iqθb

2πR

([

MR

QR

]

+ (−1)q

[

M−R

−Q−R

])

. (4.1.16)

The two unused boundary condition, state that the displacement and

the slope have to be continuous in the anchor points, so it is necessary

to express the moment and shear forces in the anchor points as a combi-

nation of the displacements and the slopes at both sides of the beam.

From the definition of the displacement of the beam, Eq. (4.1.2), we

can write the following matrix











V (x)

V ′(x)

V ′′(x)

V ′′′(x)











=





(ikb)
0eikbx (−ikb)

0e−ikbx (kb)
0ekbx (−kb)

0e−kbx

(ikb)
1eikbx (−ikb)

1e−ikbx (kb)
1ekbx (−kb)

1e−kbx

(ikb)
2eikbx (−ikb)

2e−ikbx (kb)
2ekbx (−kb)

2e−kbx

(ikb)
3eikbx (−ikb)

3e−ikbx (kb)
3ekbx (−kb)

3e−kbx















CI

CII

DI

DII











. (4.1.17)

Evaluating this at the end points x = ±R, simplifying and ordering terms

we obtain











V (−R)

V ′(−R)

V (R)

V ′(R)











= L1











CI

CII

DI

DII











and











V ′′(−R)

V ′′′(−R)

V ′′(R)

V ′′′(R)











= k2
bL2











CI

CII

DI

DII











, (4.1.18)

where
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L1 =











e−ikbR eikbR e−kbR ekbR

ikbe
−ikbR −ikbe

ikbR kbe
−kbR −kbe

kbR

eikbR e−ikbR ekbR e−kbR

ikbe
ikbR −ikbe

−ikbR kbe
kbR −kbe

−kbR











, (4.1.19a)

L2 =











−e−ikbR −eikbR e−kbR ekbR

−ikbe
−ikbR ikbe

ikbR kbe
−kbR −kbe

kbR

−eikbR −e−ikbR ekbR e−kbR

−ikbe
ikbR ikbe

−ikbR kbe
kbR −kbe

−kbR.











(4.1.19b)

Taking into account the required boundary conditions Eqs. (4.1.3), the

sign of some rows has to change. Therefore

L′
1 =











1

−1

1

1











L1 ; L′
2 =











1

−1

1

1











L2. (4.1.20)

By combining the three previous equations, we obtain the moment

and the shear stress as function of the displacement and the slope as











M−R

−Q−R

MR

QR











= −EIk2
b [L

′
2][L

′
1]

−1











V−R

−V ′
−R

VR

V ′
R











= K











V−R

−V ′
−R

VR

V ′
R











(4.1.21)

where the 4 × 4 Stiffness Matrix K is simplified and has the following

final form
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K =







K1 K2

K2 K1






=

−EIk2
b

1− cch
×











−ssh k−1
b (sch − csh) ch − c −k−1

b (sh − s)

−kb(csh + sch) ssh kb(s+ sh) c− ch

ch − c −k−1
b (sh − s) −ssh k−1

b (sch − csh)

kb(s+ sh) c− ch −kb(csh + sch) ssh











,

(4.1.22)

with c = cos(2kbR), s = sin(2kbR), ch = cosh(2kbR) and sh = sinh(2kbR).

For the purpose of this work it is useful to rewrite Eq. (4.1.21) as two

separate relations

[

M−R

−Q−R

]

= K1

[

V−R

−V ′
−R

]

+K2

[

VR

V ′
R

]

, (4.1.23a)

[

MR

QR

]

= K2

[

V−R

−V ′
−R

]

+K1

[

VR

V ′
R

]

. (4.1.23b)

Combining Eqs. (4.1.16) and (4.1.23) yields the following result

[

Mx

Qx

]

q

=
e−iqθb

2πR

[

K1 + (−1)qK2

]

(

[

VR

V ′
R

]

+ (−1)q

[

V−R

−V ′
−R

]

)

. (4.1.24)

The two remaining boundary conditions (4.1.3a) and (4.1.3b) may be

written in terms of Fourier coefficients as

[

VR

V ′
R

]

=
∑

s

[

WR

W ′
R

]

s

eisθb ,

[

V−R

−V ′
−R

]

=
∑

s

(−1)s

[

WR

W ′
R

]

s

eisθb . (4.1.25)

Combining these boundary conditions with Eq. (4.1.24) we obtain
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[

Mr

Vr

]

q

= −
∑

s

Zqs

[

WR

W ′
R

]

s

, (4.1.26)

where the 2× 2 blocks of the internal impedance matrix are given by

Zqs = −ei(s−q)θb

2πR

(

1 + (−1)q+s
)[

K1 + (−1)qK2

]

(4.1.27)

4.2 Scattering and internal coefficients

The results of the previous section are summarized here. This provides

in one place simple formulas for the coefficients of the incoming, the

scattered and the beam solution.

Incident Wave Coefficients

While the general solution can handle arbitrary incidence here we focus

on plane wave or a point source, which will be used in the numerical

examples later. The coefficients of an incoming wave, which where de-

scribed in Chapter 1, for these two possible cases are as follows

Aq =

[

iq

0

]

e−iqθs for a plane wave in direction θs, (4.2.1a)

Aq =

[

Hq(kpRs)
2i
π
Kq(kpRs)

]

e−iqθs for a point source at (Rs, θs). (4.2.1b)

Scattered Coefficients

The coefficients defining the scattered wave are obtained from Bq =

TqsAs where the T-matrix has 2× 2 block elements

Tqs = [MHK
qq (kp)]

−1 [Zscat
qs + Zqs]

−1[Zinc
qs − Zqs] [MJI

ss (kp)],

((4.1.10) revisited)
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with

Z(inc)
qq =−NJI

qq (kp)M
JI
qq (kp)

−1, ((4.1.12a) revisited)

Z(scat)
qq =NHK

qq (kp)M
HK
qq (kp)

−1, ((4.1.12b) revisited)

Zqs =− ei(s−q)θb

2πR

(

1 + (−1)q+s
)[

K1 + (−1)qK2

]

((4.1.27) revisited)

where Eqs. (4.1.11), (4.1.13) and (4.1.22) were used in simplifying terms.

Beam Coefficients

The coefficients for the flexural waves in the internal beam are, see Eq.

(4.1.2),











CI

CII

DI

DII











= [L′
1]

−1
∑

q







(−1)qMJI
qq (kp) (−1)qMHK

qq (kp)

MJI
qq (kp) MHK

qq (kp)

















A
(J)
q

A
(I)
q

B
(H)
q

B
(K)
q











eiqθb .

(4.2.2)

These follow from Eqs. (4.1.9) and (4.1.18).

4.3 Numerical simulations

In this section the theory developed previously is tested to prove its

efficiency. Conservation of energy is used as one measure of the accuracy

of the method. The results are visually compared against a commercial

finite element method (FEM) simulator and the SCS obtained by the

analytical simulator are presented over a wide bandwidth.

4.3.1 Energy Flux

The principle of conservation of energy has to be met, so if the system

is not capable of absorbing or creating waves, the result of calculating
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the energy flux crossing a circle around the system has to be zero. The

energy conservation relation is known from a previous result in Chapter

1 as

ω
D

2
ℑ
∮

Ω

(

W
∂

∂r
∆W ∗ −∆W ∗∂W

∂r

)

Rdθ = 0. (4.3.1)

Applying this result to our work yields the following relationship which

has to be fulfilled by the coefficients Aq and Bq if there is no absorption

in the medium:

4ωDk2
p

∑

q

(

|B(H)
q |2 + ℜ

{

(A(J)
q )∗B(H)

q

}

+
π

2
ℑ
{

(A(I)
q )∗B(K)

q

} )

= 0.

(4.3.2)

Equation (4.3.2) was used to verify all of the numerical calculations.

4.3.2 Commercial FEM Simulator

A commercial finite element simulator has been used to calculate the

behavior of the system. This simulator solves the full elastic equation

(including longitudinal, shear vertical and shear horizontal waves) to cal-

culate the displacement field in a 3D model of the system. As incoming

wave we have selected a plane wave (θs = 0) at three values of the non-

dimensional frequency, kpR = [π, 2π, 5π]. The system is also considered

for three possible orientations of the internal beam: θb = [0◦,−45◦,−90◦],

see Fig. 4.1. The data is subsequently exported and compared visually

against the analytical simulator coded using the theory described in the

previous section.

The FEM simulator runs in an Intel Core i7-3930K @ 3.2Ghz machine

with 32GB of RAM. Each simulation shown in Figs. 4.5 and 4.6 required

192.000 free tetrahedral elements to mesh the whole 3D volume and took

approximately one hour to finish. The ones in Fig. 4.7 took 7 hours to

be completed due to the huge number of elements needed (over 1 million)

to perform an accurate calculation.
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Figure 4.5: Absolute value of the displacement field produced when a

plane wave (θs = 0) with a reduced frequency kpR = π impinges on

the system for three different beam orientations θb = [0◦,−45◦,−90◦].

The upper panels shows the results obtained by the analytical simulator

and the lower panels show the ones obtained from the commercial finite

element simulator.

Figure 4.5 shows the absolute value of the displacement obtained

from the analytical simulator (left panels) and the FEM simulator (right

panels) when a plane wave (θs = 0) of non-dimensional frequency kpR =

π impinges on the system. In a similar way, Fig. 4.6 and Fig. 4.7 show the

results obtained from the analytical simulator (left panels) and the FEM

simulator (right panels) for a non-dimensional frequency of kpR = 2π and

kpR = 5π, respectively. Notice that the scattering pattern created by the

two simulator are very similar for all combinations of frequency and beam

angle considered. Note particularly the case when the beam is tilted at

θb = −45◦ where the discontinuities of the non-symmetric scattering

pattern has been perfectly reproduced by the analytical simulator. It



162 Flexural resonator
y/

R
a

−2

−1

0

1

2

y/
R

a

 

 

x/R
a

−2 −1 0 1 2

−2

−1

0

1

2

 

 

x/R
a

−2 −1 0 1 2

 

 






















x/R
a

 

 

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Figure 4.6: The same as for Fig. 4.5 except that the non-dimensional

frequency is kpR = 2π.

is evident from the three simulations that the flexural wavelength in

the internal beam are the same in both simulations, although the FEM

simulator shows some 2D wave effects within the beam that are not

modeled by the 1D beam theory.

From the comparison shown in Figs. 4.5-4.7 we can conclude that

our semi-analytical modeling is stable and accurate in a broad band of

frequencies, at least until kpR = 5π which is the maximum value consid-

ered here. We note that there are clearly some restrictions to our model:

(i) it has the same limitations implicit in the Kirchhoff-Love and Euler-

Bernoulli theories, which have been employed in the modeling; and (ii)

the present analysis only applies to objects with axial symmetry. Re-

striction (i) could be relaxed using higher order plate and beam theo-

ries, although the analysis and matrix algebra will be more complicated.

Regarding (ii), more general shapes could be considered following the

methods described in [73].
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Figure 4.7: The same as for Fig. 4.5 except that the non-dimensional

frequency is kpR = 5π.

4.3.3 Scattering Cross Section

The amplitude of the scattering cross section (SCS) of a flexural waves

is calculated as explained in Chapter 1

σsc(kp, θ) =

∣

∣

∣

∣

∣

√

2

πkp

∑

q

(−i)qB(H)
q eiqθ

∣

∣

∣

∣

∣

. (4.3.3)

Figure 4.8 shows the SCS produced when a plane wave (θs = 0)

with non-dimensional frequencies ranging from kpR = 0.5π to kpR = 5π

impinges on the system. Figure 4.8a is the SCS produced by a hole in the

plate. Notice that for the beam oriented at θb = 0◦ (Fig. 4.8b) the SCS

around θ = π is lower than on Fig. 4.8a because the wave can enter the

beam easily and propagate across it. On the other hand, in the position

at θb = −90◦ (Fig. 4.8d), the wave encounters a hole and so it is reflected

producing more back-scattering. In the case of the position at θb = −45◦
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Figure 4.8: SCS produced when a plane wave (θs = 0) with reduced

frequencies ranging from kpR = 0.5π to kpR = 5π impinges a hole in a

plate (a) and a hole with a crossing beam at three different orientations:

θb = 0◦ (b), θb = −45◦ (c) and θb = −90◦ (d).

(Fig. 4.8c) there less back-scattering in [0, π] than in [π, 2π] because the

entrance to the beam is located at θb + π = 3π/4.
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Conclusions

Throughout this manuscript new theoretical and experimental results

have been reported for acoustic and flexural metamaterials. This man-

uscript was splited in two major parts. One covered the experimental

demonstrations of two acoustic refractive devices based on sonic crys-

tals, while the other presented three theoretical contributions showing

the potential application of flexural metamaterials known as “platonic

crystals”.

Part I: Sound Waves

In Chapter 2, the focusing properties of a 2D GRIN sonic lens made

of aluminum rods was presented. This lens proved to obtain good focal

spot and broadband performance below the homogenization limit. Addi-

tionally, an analytical model to predict the focal spot position has been

fully explained and can be replicated with other gradient index profiles.

This types of devices are feasible and reliable for possible applications not

only in the audible range, but also for ultrasonics and even for acoustic

surface waves.

Chapter 3 reported the design, fabrication, and characterization of

the acoustic analogue of the photonic black-hole. The structure consists

of an outer shell that guides acoustic energy to the core center that dis-

sipates the incoming energy by friction. Both parts were designed using

metamaterials based on sonic crystals. Experimental results proved that

the constructed sample acts like a broadband omnidirectional acoustic

absorber. Structures like the one studied here are potentially applica-

ble as acoustic invisibility devices based on total absorption as well as

practical structures to attenuate environmental noise.

Part II: Vibrations

In Chapter 2, a method to locally modify the refractive index by ad-

justing the plate’s thickness was reported. Five different refractive lenses

for flexural waves in thin plates were studied. Numerical simulations,

based on a multilayer scattering algorithm, confirmed the expected be-

havior of the five lenses analyzed and support the refractive index model
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employed. It has also been demonstrated their broadband performance.

This method provides the tools to obtain quasi-continuous variation of

the refractive index, which obviously cannot be done with discrete lat-

tices.

Chapter 3 showed the theoretical demonstration of an omnidirectional

and broadband isolating device, used to stop the propagation of flexural

waves in a given circular region of a thin plate. It is based on a circular

gradient index lens that guides flexural waves to an annular region where

the vibrations are dissipated via an absorptive lamina placed on top

of the plate. The gradient index is also achieved by locally modifying

the plate thickness. Finally, we presented numerical simulations done

with a multilayer scattering algorithm, to proof its efficiency. Since the

properties of the employed materials are existent in nature, the proposed

device is feasible and, then, an experimental verification is expected in

the near future.

In Chapter 4, we presented an analytical solution to obtain the T-

Matrix of a thin plate with a hole traversed by a beam. The theoretical

model is based on an impedance method developed for acoustic waves.

We fully explained the coupling of the Kirchhoff-Love and the Euler-

Bernoulli theories and the solution has been given in isolated parts that

can be replaced easily. To verify the theory the principle of conservation

of energy has been used. Additionally, an analytical simulator has been

developed and the results have been tested against a commercial finite

element simulator. Finally, the far-field behavior of the system has been

presented for a wide bandwidth and different beam orientations, indicat-

ing a strong variability in the scattered field depending on the relative

alignment of the beam with the incident wave.



169

Future Work

The present work concentrated on two research topics: acoustic and flex-

ural metamaterials. Further, for both of them, major contributions were

made there is room for improvement. Additionally, the results detailed

in the previous chapters, opened new research topics. Listed below as

future work.

An analytical model was used to predict the focal spot position of the

gradient index lens as a function of the dimension of the lens. The equa-

tion was derived using a ray trajectory approximation, Fermat’s principe

and Snell’s law. These are commonly theorema used in optics, but they

provided good results predicting the propagation of acoustic waves. How-

ever, it could be possible to refine these results by using Chapman’s law,

which is more suitable for sound propagation in fluids [23].

In the case of the acoustic black hole, the energy is dissipated by

friction. The sound wave is forced to propagate through a sonic crystal

with a high filing fraction. To further understand this mechanism, the

multiple scattering method could be improved to take into account a

viscous medium by introducing the simplified version of the Navier-Stokes

equation. Thus, we could not only tune the acoustic properties of the

metamaterial, but also its absorption.

Both the flexural lenses and the isolation device have been theoret-

ically studied, but not experimental demonstrated. The measuring sys-

tem needed for this purpose is still under development in our group. It

consists of a Doppler laser vibrometer mounted on a 2D moving plat-

form that measures the vertical displacement of a thin plate excited by

a piezoelectric. The whole system is controlled by LabView and signal

processing tools are used to process the measured signal. We expect to

obtain results soon.

The analytical model used to describe the behavior of a thin plate

with a hole crossed by a beam is itself an achievement, but it is not

the final goal. The idea behind the theoretical model is to reproduce

the theoretical elastic graphene proposed by Torrent et al. [75]. In this
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work Torrent used punctual resonators, so a direct implementation is not

feasible. Thus, it is necessary to model and design “actual” resonators

to recreate the results in an experiment. In 2014, Andreassen et al.

[2], proposed an in-plate resonator which consisted of a circular hole

with a centered circular island connected by two beams to the plate.

Based on this design and the theory developed in this manuscript we

expect to numerically and experimentally demonstrate the predictions

from Torrent et al [75] who used punctual resonators.
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Appendix A

Bessel functions

A.1 Bessel’s differential equation

The Helmholtz equation in polar coordinates (r, θ) is

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+ k2

)

Ψ(r, θ) = 0, (A.1.1)

and has the solution

Ψ(r, θ) =
∑

q

Υq(kr)e
iqθ, (A.1.2)

where q is an integer, k is the wave number and the function Υq(kr) has

to satisfy the Bessel differential equation

r2
d2Υ

dr2
+ r

dΥ

dr
+ ((kr)2 − q2)Υ = 0, (A.1.3)

being z = kr a complex number. Because this is a second-order differ-

ential equation, there must be two linearly independent solutions. The

two different families of functions are called the Bessel functions of the

first and second kind.

The Bessel functions of the first kind, denoted as Jq(z), are finite at

the origin (z = 0) and oscillate towards infinity with a decay proportion-
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Figure A.1: Bessel functions of (a) the first and (b) second kind.

ally of 1/
√
z, see Fig. A.1(a). The function can be defined by its Taylor

series expansion as

Jq(z) =
∑

n

(−1)n

n!(n+ q)!

(z

2

)q+2n

q > 0. (A.1.4)

The Bessel functions of the second kind, denoted as Yq(z), have a

singularity around (z = 0) that tends towards negative infinite values.

For increasing values of |z|, the functions oscillate towards infinity with

a decay, see Fig. A.1(b). Being α a real number, then the functions are

defined as

Yq(z) = lim
α→q

Jα(z) cos(απ)− J−α(z)

sin(αz)
. (A.1.5)

There exist a third solution to Bessel’s differential equation, which

is a linear combination of the two previous ones. They are know as the

Hankel functions H
(1)
q (z) and H

(2)
q (z), defined as

H(1)
q (z) = Jq(z) + iYq(z), (A.1.6a)

H(s)
q (z) = Jq(z)− iYq(z), (A.1.6b)
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where i is the imaginary unit. The importance of Hankel functions lies

more in theoretical development rather than in application. These forms

of linear combination satisfy numerous simple-looking properties, like

asymptotic behavior or integral representations. For time harmonic so-

lution of the form e−iωt, they are useful to express outgoing (H(1)) and

incoming (H(2)) propagating cylindrical waves (or vice versa, for solutions

of the form eiωt).

A.1.1 Properties

For integer values of q, the solution of the Bessel’s differential equation are

entire and derivable functions. To simplify the notation, lets introduce

the following relationship

∂Υq(kr)

∂r
≡ kΥ′

q(kr), (A.1.7)

where Υ = J, Y,H. Then the solutions of the Bessel’s differential equa-

tions satisfy the following relations and properties

Υ−q(kr) = (−1)qΥq(kr), (A.1.8a)

2q

kr
Υq(kr) = Υq−1(kr) + Υq+1(kr), (A.1.8b)

2kΥ′
q(kr) = Υq−1(kr)−Υq+1(kr). (A.1.8c)

The Wronskian identities are

k [Jq(kr)Y
′
q(kr)− J ′

q(kr)Yq(kr)] =
2k

πr
, (A.1.9a)

k [Jq(kr)H
′
q(kr)− J ′

q(kr)Hq(kr)] =
2ik

πr
. (A.1.9b)

A.1.2 Asymptotic Forms

When x → 1, being x a real value,
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Jq(x) ≈
√

2

πx
cos
(

x− qπ

2
− π

4

)

(A.1.10a)

Yq(x) ≈
√

2

πx
sin
(

x− qπ

2
− π

4

)

(A.1.10b)

Hq(x) ≈
√

2

πx
(−i)qe−iπ/4eix (A.1.10c)

A.2 Modified Bessel’s differential equation

The Helmholtz modified equation in polar coordinates (r, θ) is

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
− k2

)

Ψ(r, θ) = 0, (A.2.1)

and has the solution

Ψ(r, θ) =
∑

q

Υq(kr)e
iqθ, (A.2.2)

where q is an integer, k is the wave number and the function Υq(kr) has

to satisfy the modified Bessel differential equation

r2
d2Υ

dr2
+ r

dΥ

dr
− ((kr)2 + q2)Υ = 0. (A.2.3)

being z = kr a complex number. This differential equation appears dur-

ing the resolution of the equation of motion of thin plates. As in the

case of Bessel’s differential equation, this is also a second-order differ-

ential equation, and therefore there must be two linearly independent

solutions. The two different families of functions are called the modified

Bessel functions of the first and second kind.

The modified Bessel functions of the first kind, denoted as Iq(z),

grow exponentially with increasing argument |z|, see Fig. A.2(a). They

are useful to describe evanescent waves coming towards the origin. The

function is defined in terms of Bessel function of the first kind as
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Figure A.2: Modified Bessel functions of (a) the first and (b) second kind.

Iq(z) = (−i)qJq(iz). (A.2.4)

The modified Bessel functions of the second kind, denoted as Kq(z),

decay exponentially with increasing argument |z|, see Fig. A.1(b). They
are use to describe evanescent scattering waves. Being α a real number,

then the functions are defined as

Kq(z) = lim
α→q

π

2

I−α(z)− Iα(z)

sin(απ)
. (A.2.5)

A.2.1 Properties

For integer values of q, the solution of the modified Bessel’s differential

equation are entire and derivable functions. To simplify the notation,

lets introduce the following relationship

∂Υq(kr)

∂r
≡ kΥ′

q(kr), (A.2.6)

where Υ = I,K. Then the solutions of the modified Bessel’s differential

equations satisfy the following relations and properties
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Υ−q(kr) = Υq(kr), (A.2.7)

for Υ = I,K and

2q

kr
Υq(kr) = Υq−1(kr)−Υq+1(kr), (A.2.8a)

2kΥ′
q(kr) = Υq−1(kr) + Υq+1(kr), (A.2.8b)

for Υ = I, (−1)qK. Finally, the Wronskian identity is

k [Iq(kr)K
′
q(kr)− I ′q(kr)Kq(kr)] = −k

r
. (A.2.9)

A.2.2 Asymptotic Forms

When x → 1, being x a real value,

Iq(x) ≈
ex√
2πx

(

1 +
∑

n=1

(−1)n
∏n

i1
(4q2 − (2i− 1)2)

n!(8x)n

)

, (A.2.10a)

Kq(x) ≈
πe−x

√
2x

(

1 +
∑

n=1

∏n
i1
(4q2 − (2i− 1)2)

n!(8x)n

)

→ 0. (A.2.10b)

A.3 Graf’s addition theorem

Graf’s addition theorem for Bessel functions is given in Abramowitz and

Stegun Handbook of Mathematical Functions [52]. It is a special case

of Neumann’s addition theorem. Let’s consider the vectors and angles

shown in Fig. A.3, then the theorem can be expressed in the following

form, for the solutions of Bessel’s differential equations,

Υr(w)e
irθwu =

∑

s

Υr+s(u)Js(v)e
isθuv v < u, (A.3.1)

where Υ = J, Y,H; or, for the solutions of the modified Bessel’s differen-

tial equations,
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Figure A.3: Variables of Graf’s addition theorem.

Υr(w)e
irθwu =

∑

s

Υr+s(u)Is(v)e
isθuv v < u, (A.3.2)

where Υ = I,K. Notice that the condition v < u gives two possible ways

of applying it.

Throught out thiw work, Graf’s addition theorem has been applied

to change the reference frame in three different situations:

1. Expressing an incoming wave or point source in a different frame.

2. Expressing the scattering field produced by the β-cylinder as a wave

centered into the α-cylinder.

3. Expressing the total scattering field of a cluster as an effective field

scattered by one cylinder.

Here, to illustrate the process, the second case used during the demon-

stration of the multiple scattering method is presented. A similar ap-
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Figure A.4: Example of application of Graf’s addition theorem.

proach is used to solve the other cases. The objective is to express the

quantity [see Eq. (1.3.3)]

Hr(kbrβ)e
irθβ (A.3.3)

in the reference frame of the α-cylinder. Let’s consider the system de-

scribed in Fig. A.4. We want to express rβ in the α frame, so w = rβ
and v = rα.Then the angles are

w = rβ, θwu = Φβα − θβ,

v = rα, θuv = (2π − Φαβ) + θα,

u = Rαβ, Φβα = Φαβ − π.

Then, Eq. (A.3.1) is rewritten as
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Hr(kbrβ)e
irΦαβe−irπe−irθβ =

∑

s

Hr+s(kbRαβ)Js(kbrα)e
is2πe−isΦαβeisθα .

(A.3.4)

Simplifying and reorganizing terms

Hr(kbrβ)(−1)−re−irθβ =
∑

s

[

Hr+s(kbRαβ)e
i(−s−r)Φαβ

]

Js(kbrα)e
isθα ,

(A.3.5)

then, by changing r → −r,

H−r(kbrβ)(−1)reirθβ =
∑

s

[

Hs−r(kbRαβ)e
i(r−s)Φαβ

]

Js(kbrα)e
isθα ,

(A.3.6)

and by applying the Bessel property of Eq. (A.1.8a) we obtain the final

form

Hr(kbrβ)e
irθβ =

∑

s

[

Hs−r(kbRαβ)e
i(r−s)Φαβ

]

Js(kbrα)e
isθα . (A.3.7)
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Appendix B

Four microphones method

To obtain the complex acoustic properties of materials, several methods

have been proposed in the literature. Salissou and Panneton made a full

review on this topic in [66]. The method that is here described is the

four microphone method developed for impedance tubes by Song and

Bolton [69].

������

��� �� �� ��

�

��

�� ��

��

Figure B.1: Scheme of the impedance tube

Lets consider the impedance tube shown in Fig. B.1. The sample of

length d is place between four microphones located at the points xi. The

first cut-off frequency of the tube established the range that this method

is valid for. It is calculated as
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fc = η
cb
πD

, (B.0.1)

where η is the first root of J ′
1(η) = 0, D is the inner diameter of the tube

and cb is the speed of the fluid inside the tube. Then, in case of mono

mode propagation, the acoustic pressure wave P (x) inside the tube can

be expressed as

P (x) =

{

Aejkbx +Be−jkbx for x ≤ 0

Cejkbx +De−jkbx for x ≥ d
, (B.0.2)

where kb = ω/cb is the wavenumber and A,B,C,D are constants to be

determined using the measurements done with the microphones in the

points xi.

Once the pressure wave is determined, the complex wavenumber and

the acoustic impedance of the sample can be obtained from

k =
1

d
cos−1(T11), (B.0.3)

Z =

√

T12

T21

, (B.0.4)

where

T11 = T22 =
P (d)v(d) + P (0)v(0)

P (0)v(d) + P (d)v(0)
, (B.0.5)

T12 =
P (0)2 − P (d)2

P (0)v(d) + P (d)v(0)
, (B.0.6)

T21 =
v(0)2 − v(d)2

P (0)v(d) + P (d)v(0)
, (B.0.7)

where v is the particle velocity calculated from the pressure using Eq.

(1.1.5). Notice that the wavenumber k in Eq. (B.0.3) is calculated with

the inverse-cosine function. As it is known the cosine function is non-

bijective, because it is not cyclic. Therefore the resulting wavenumber is

not linear and continuous. To solve this issue the procedure followed by

Baccigalupi [4] has been applied.
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Delta Parameter

Figure C.1 and Table C.0.1 show the behavior of the Delta Parameter

(∆) in function of the filling fraction (ff), for the case of rigid cylinders

arranged in any type of lattice. Although ∆(ff) ≈ 1, it is important

to remark that at high filling fractions, not considering the parameter

affects the effective parameters greatly.
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Figure C.1: Delta Parameter (∆) in function of the filling fraction (ff).
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Table C.0.1: Delta Parameter ∆ as a function of the filling fraction (ff).

ff ∆ ff ∆ ff ∆ ff ∆

0.01 1.0020 0.24 1.0020 0.47 1.0012 0.70 0.9930

0.02 1.0020 0.25 1.0020 0.48 1.0011 0.71 0.9922

0.03 1.0020 0.26 1.0020 0.49 1.0010 0.72 0.9913

0.04 1.0020 0.27 1.0020 0.50 1.0008 0.73 0.9903

0.05 1.0020 0.28 1.0020 0.51 1.0007 0.74 0.9893

0.06 1.0020 0.29 1.0020 0.52 1.0005 0.75 0.9881

0.07 1.0020 0.30 1.0019 0.53 1.0003 0.76 0.9869

0.08 1.0020 0.31 1.0019 0.54 1.0001 0.77 0.9856

0.09 1.0020 0.32 1.0019 0.55 0.9999 0.78 0.9841

0.10 1.0020 0.33 1.0019 0.56 0.9997 0.79 0.9825

0.11 1.0020 0.34 1.0019 0.57 0.9994 0.80 0.9807

0.12 1.0020 0.35 1.0019 0.58 0.9991 0.81 0.9788

0.13 1.0020 0.36 1.0018 0.59 0.9988 0.82 0.9766

0.14 1.0020 0.37 1.0018 0.60 0.9985 0.83 0.9743

0.15 1.0020 0.38 1.0018 0.61 0.9981 0.84 0.9716

0.16 1.0020 0.39 1.0017 0.62 0.9977 0.85 0.9686

0.17 1.0020 0.40 1.0017 0.63 0.9973 0.86 0.9652

0.18 1.0020 0.41 1.0016 0.64 0.9968 0.87 0.9613

0.19 1.0020 0.42 1.0016 0.65 0.9963 0.88 0.9568

0.20 1.0020 0.43 1.0015 0.66 0.9957 0.89 0.9514

0.21 1.0020 0.44 1.0015 0.67 0.9951 0.90 0.9449

0.22 1.0020 0.45 1.0014 0.68 0.9945

0.23 1.0020 0.46 1.0013 0.69 0.9938



Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions.

Dover Publications, 1965.

[2] E. Andreassen, K. Manktelow, and M. Ruzzene. Directional bending

wave propagation in periodically perforated plates. Journal of Sound

and Vibration, 335:187 – 203, 2015.

[3] O. Atak. Phd Thesis: Wave based modeling method for acoustic in-

clusion and multiple scattering problems in the mid-frequency range.

ku Leuven Unv., 2014.

[4] A. Baccigalupi. Adc testing methods. Measurement, 26(3):199–205,

1999.

[5] M. Badreddine Assouar, M. Senesi, M. Oudich, M. Ruzzene,

and Z. Hou. Broadband plate-type acoustic metamaterial

for low-frequency sound attenuation. Applied Physics Letters,

101(17):173505, 2012.

[6] D. Bies and C. Hansen. Engineering Noise Control: Theory and

Practice. Taylor & Francis, 2009.

[7] Y. Bobrovnitskii. Impedance theory of sound scattering: General

relations. Acoustical Physics, 52(5):513–517, 2006.

[8] M. Born and E. Wolf. Principles of optics: electromagnetic theory of

propagation, interference and diffraction of light. Pergamon Press,

1970.



190 BIBLIOGRAPHY

[9] S. Bramhavar, C. Prada, A. A. Maznev, A. G. Every, T. B. Norris,

and T. W. Murray. Negative refraction and focusing of elastic lamb

waves at an interface. Physical Review B, 83(1):014106, 2011.

[10] F. Casadei, M. Ruzzene, L. Dozio, and K. A. Cunefare. Broadband

vibration control through periodic arrays of resonant shunts: ex-

perimental investigation on plates. Smart materials and structures,

19(1):015002, 2010.

[11] F. Cervera, L. Sanchis, J. Sanchez-Perez, R. Martinez-Sala, C. Ru-
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