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RESUMEN ESPANOL

La matemaética fuzzy ha constituido un amplio campo en la investigacion,
desde que en 1965 L. A. Zadeh introdujo el concepto de conjunto fuzzy. En
particular, la construccién de una teoria satisfactoria de espacios métricos
fuzzy ha sido un problema investigado por muchos autores. En 1994, George
y Veeramani introdujeron y estudiaron una nocién de espacio métrico fuzzy
que constituia una modificacién de la anteriormente dada por Kramosil y
Michalek. Muchos autores han contribuido al estudio de este tipo de métricas
fuzzy, desde el punto de vista matematico y de sus aplicaciones. En esta tesis
hemos contribuido al desarrollo del estudio de estas métricas fuzzy, desde el
punto de vista matematico, y hemos abordado el problema de la medida de

la diferencia perceptual de color utilizando una de estas métricas.

Las contribuciones que aportamos en esta tesis a dicho estudio, se re-

sumen a continuacion:

(i) Hemos hecho un estudio detallado del espacio métrico fuzzy (X, M, )

min{z,y}+t
max{z,y}+t

y de otros espacios métricos fuzzy relacionados con el. Como conse-

donde M esta dada sobre [0, oo[ por la expresion M (z,y,t) =

cuencia de este estudio hemos introducido cinco cuestiones en la teoria
de las métricas fuzzy relacionadas con continuidad, extension, contrac-

tividad y completacion.

(ii) Hemos respondido a una cuestion abierta construyendo un espacio
meétrico fuzzy (X, M, ) en el cual la asignacion f(t) = lim,, M (ay, by, t),
donde {an} y {bn} son sucesiones M-Cauchy, no es una funcion con-
tinua sobre t. La respuesta a esta cuestion nos ha permitido caracterizar

la clase de los espacios métricos fuzzy strong completables.



(iii)

(vi)

Hemos introducido y estudiado un concepto mas fuerte que el de conver-
gencia de sucesiones en espacios métricos fuzzy, al que hemos llamado
s-convergencia. En nuestro estudio hemos conseguido una caracteri-
zacion de aquellos espacios métricos fuzzy en los cuales toda sucesion
convergente es s-convergente y hemos dado una clasificacion de los es-
pacios métricos fuzzy atendiendo a su comportamiento con respecto a

los diferentes tipos de convergencia que se da en él.

Hemos estudiado, en el contexto de los espacios métricos fuzzy, cuando
ciertas familias de bolas abiertas centradas en un punto son base local

de este punto.

Hemos respondido a dos cuestiones abiertas relacionadas con la con-
vergencia standard, un concepto mas fuerte que el de convergencia de
sucesiones en espacios meétricos fuzzy, introducido de forma natural a
partir del concepto de sucesion de Cauchy standard (introducido en
[74]). Estas respuestas nos han llevado a establecer unas condiciones
bajo las cuales un concepto relacionado con el concepto de sucesion
de Cauchy y un concepto relacionado con el de convergencia deberian

satisfacer para ser consideradas compatibles.

Como aplicacion practica, hemos mostrado que una cierta métrica fuzzy

es util para medir diferencia perceptual de color entre muestras de color.

vi



RESUMEN VALENCIANO

La matematica fuzzy ha constituit un ampli camp en la investigaci6, des
que el 1965 L. A. Zadeh va introduir el concepte de conjunt fuzzy. En par-
ticular, la construccié d’una teoria satisfactoria d’espais meétrics fuzzy ha
estat un problema investigat per molts autors. El 1994, George i Veeramani
introduiren i estudiaren una nocié d’espai métric fuzzy que constituia una
modificacié de la donada per Kramosil i Michalek anteriorment. Molts autors
han contribuit a I’estudi d’aquest tipus de métriques fuzzy, des del punt de
vista matematic i de les seves aplicacions. En aquesta tesi hem contribuit
al desenvolupament de 'estudi d’aquestes meétriques fuzzy, des del punt de
vista matematic, i hem abordat el problema de la mesura de la diferéncia

perceptiva de color utilitzant aquestes métriques.

Les contribucions que aportem en aquesta tesi a tal estudi es resumeixen

a continuacio:

(i) Hem fet un estudi detallat de Iespai meétric fuzzy (X, M,-) on M esta

min{z,y}+t
max{z,y}+t

espais meétrics fuzzy relacionats amb ell. Com a conseqiiéncia d’aquest

donada sobre [0, 00[ per lexpressio M(z,y,t) = i d’altres
estudi hem introduit cinc giiestions en la teoria de les métriques fuzzy

relacionades amb continuitat, extensio, contractividad i completacio.

(ii) Hem respost a una qiiesti6 oberta construint un espai meétric fuzzy
(X, M, %) en el qual l'assignacio f(t) = lim, M(an,bn,t), on {ay} i
{bn} s6n successions M-Cauchy, no és una funci6 continua sobre ¢. La
resposta a aquesta qiiesti6 ens ha permés caracteritzar la classe dels

espais métrics fuzzy strong completables.

(iii) Hem introduit i estudiat un concepte més fort que el de convergen-

vil



(iv)

cia de successions en espais meétrics fuzzy, al qual hem anomenat s-
Convergencia. En el nostre estudi hem aconseguit una caracteritzacio
d’aquells espais meétrics fuzzy en els quals tota successi6 convergent és
s-convergente i hem donat una classificacié dels espais métrics fuzzy
atenent al seu comportament respecte als diferents tipus de convergen-

cia que es dona en ell.

Hem estudiat, en el context dels espais meétrics fuzzy, quan certes
families de boles obertes centrades en un punt sén base local d’aquest

punt.

Hem respost a dues qiliestions obertes relacionades amb la convergencia
estandard, un concepte més fort que el de convergéncia de successions
en espais métrics fuzzy, introduit de forma natural a partir del con-
cepte de successio de Cauchy estandard (introduit en |74]). Aquestes
respostes ens han portat a establir unes condicions sota les quals un
concepte relacionat amb el concepte de successié de Cauchy i un con-
cepte relacionat amb el de convergéncia haurien de satisfer per a ser

considerats compatibles.

Com a aplicacié practica, hem mostrat que una certa meétrica fuzzy

és util per mesurar la diferéncia perceptiva de color entre mostres de

color.
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RESUMEN INGLES

Fuzzy mathematics has constituted a wide field of research, since L. A. Zadeh
introduced in 1965 the concept of fuzzy set. In particular, the problem of
constructing a satisfactory theory of fuzzy metric spaces has been investi-
gated by several authors. In 1994, George and Veeramani introduced and
studied a notion of fuzzy metric space that constituted a modification of the
one given by Kramosil and Michalek. Several authors have contributed to
the study of this kind of fuzzy metrics, from the mathematical point of view
and for their applications. In this thesis we have contributed to develop the
study of these fuzzy metrics, from the mathematical point of view, and we
approached the problem of measuring perceptual colour-difference between

samples of colour using one of these fuzzy metrics.

The contributions of the study carried out in this thesis is summarized

as follows:

(i) We have made a detailed study of the fuzzy metric space (X, M,-)

min{z,y}+t
max{z,y}+t

related to it. As a consequence we have introduced five questions in

where M is given on X = [0,00[ by M (z,y,t) = and others

fuzzy metrics related to continuity, extension, contractivity and com-

pletion.

(ii) We have answered an open question constructing a fuzzy metric space
(X, M, %) in which the assignment f(t) = lim,, M (ay,, b,,t), where {a,}
and {b,} are M-Cauchy sequences in X, is not a continuous function
on t. The response to this question has allowed us to characterize the

class of completable strong fuzzy metric spaces.

(iii) We have introduced and studied a stronger concept than convergence

X



of sequences in fuzzy metric spaces, which we call s-convergence. In our
study, we have gotten a characterization of those spaces in which every
convergent sequence is s-convergent and we have given a classification
of fuzzy metrics attending to the behaviour of the fuzzy metric with

respect to the different types of convergence.

We have studied, in the context of fuzzy metric spaces, when certain

families of open balls centered at a point are local bases for this point.

We have answered two open questions related to standard conver-
gence, a stronger concept than convergence of sequences in fuzzy metric
spaces, introduced in a natural way attending to the concept of stan-
dard Cauchy sequence (introduced in |74]). These responses have led
us to establish conditions under which Cauchyness and convergence

should be considered compatible.

As a practical application, we have shown that a certain fuzzy met-
ric is useful for measuring perceptual colour-differences between colour

samples.
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Chapter 1

Introduction. Objectives

1.1 Background of study

The fuzzy theory was initiated by Lofti A. Zadeh [95] in 1965, who introduced
the concept of fuzzy set as an assignment of a value in [0, 1] to each element
of a classical set. This value represents the degree of membership of the
element to the fuzzy set. Formally, given a non-empty set X, each application
A: X —[0,1] is called a fuzzy set on X.

One of the first research topics that appeared in fuzzy mathematics was
fuzzy topology. The first work on fuzzy topology was done by C. L. Chang
[7] in 1968. According to Chang, a fuzzy topology 7 in X is a family of
fuzzy sets on X that is closed for unions and for finite intersections. This
family also contain the constant functions 0 and 1. There are other concepts
of fuzzy topology. For instance, the concept of fuzzy topology introduced
by R. Lowen [50, 51|, the concept given, independently, by U. Hole [40] and
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M. Ying [94] or the concept given by A. Sostak [85, 86] (rediscovered by
Chattopadhyay, Hazra and Samanta [8]).

One of the most interesting and most studied problems in fuzzy topology
is obtaining an appropriate notion of fuzzy metric space. The study of metric
spaces is based on the notion of distance between points. However, in many
real situations this distance cannot be exactly determined. This problem,
that belongs to the fuzzy field, was previously approached from the point of
view of the probability theory. Indeed, in 1942 K. Menger [55] introduced
the so-called probabilistic metric spaces. These spaces have been widely
studied, for instance |9, 10, 38, 80]. In the Menger’s theory the concept of
distance is considered to be statistical or probabilistic, i.e. he proposed to
associate a distribution function F,, to every pair of elements x,y instead
of associating a number, and for any positive number ¢, interpreted F,(t)

as the probability that the distance from = to y be less than ¢.

Kramosil and Michalek [48] gave a notion of fuzzy metric space which
could be considered as a reformulation, in the fuzzy context, of the notion of
probabilistic metric space due to Menger [55]. Later, George and Veeramani
[19, 21] introduced and studied a notion of fuzzy metric space (X, M, ),
where * is a continuous t-norm, which constitutes a modification of the one
due to Kramosil and Michalek. From now on, by fuzzy metric we mean a
fuzzy metric in the sense of George and Veeramani. We notice that many
concepts and properties stated for fuzzy metrics can be given for K M-fuzzy
metrics (fuzzy metrics in the sense of Kramosil and Michalek in the original
version [48]) or in a modern version [19, 23|. For this reason, sometimes, the
term fuzzy metric in a wide sense can make reference to any of them. Sev-
eral authors have contributed to the development of this theory, for instance
[56, 57, 75, 90, 91]. In particular, it has been proved that the class of topo-

logical spaces which are fuzzy metrizable agrees with the class of metrizable
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topological spaces [20, 30] and then, some classical theorems on metric com-
pleteness and metric (pre)compactness have been adapted to the realm of
fuzzy metric spaces [30]. Nevertheless, the theory of fuzzy metric completion
is, in this context, very different from the classical theories of metric com-
pletion and probabilistic metric completion. In fact, there are fuzzy metric
spaces which are not completable ([31, Example 2|, [32, Example 2| and [25,
Example 14]). A characterization of completable fuzzy metric spaces was

given in |32, Theorem 1].

This type of fuzzy metrics are interesting for Engineering problems mainly
due to the following two advantages with respect to classical metrics: First,
values given by fuzzy metrics are in the interval |0,1] regardless the nature
of the distance concept being measured. This implies that it is easy to
combine different distance criteria that may originally be in quite different
ranges but fuzzy metrics take to a common range. Second, fuzzy metrics
match perfectly with the employment of other fuzzy techniques since the
value given by a fuzzy metric can be directly employed or interpreted as a
fuzzy certainty degree. This allows to straightforwardly include fuzzy metrics

as part of other complex fuzzy systems.

Recently, they have been applied to colour image filtering improving some
filters when replacing classical metrics and allowing the design of new filter-
ing methods [4, 62, 65, 66]. In fact, the use of this type of fuzzy metrics is
interesting within image filtering due to three main reasons: (i) The t param-
eter in the fuzzy metric allows to include adaptivity to context and indeed
image processing needs to be adaptive given the variability from one image to
another which may be due not only to image content but also to acquisition
process and device; (ii) fuzzy techniques provide an appropriate framework
to develop soft-adaptive solutions to the problem of distinguishing between

noise and image features and some fuzzy metrics have been found to be more
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appropriate in this context; and (iii) in the filtering problem usually different
distance criteria need to be used simultaneously, for which fuzzy metrics are

able to provide simple, efficient and effective solutions.

1.2 Objectives

The objective of this work is to continue the develop of the theory of fuzzy
metric and to find for a certain fuzzy metric a practical application. From
the mathematical point of view we have studied well known topics on this

field as contractivity, convergence, completeness and completion.

The organization of the thesis is as follows. It is divided in eight chapters.

Next, we explain, briefly, the content of each of them.

Chapter 1 describes the general background and the objectives of the
thesis. Further, it contains all the necessary preliminaries about fuzzy metrics

used in this work.

In Chapter 2 we study the fuzzy metrics M* and My, where M*(x,y,t) =
% is defined on [0, oo and My(z,y,t) = % is defined on |0, oo|.
Our study is detailed as follows. First, we show that (]0, co[, Mo, ) is com-
plete (Theorem 4). Nevertheless we prove that (]0, oo[, M*,-) is not complete
and completable, and so we have constructed its completion. Then, we study
some aspects of the continuity of My and the uniform continuity of M, fixed
one component. Then, we construct an extension of M* to R. And finally, we
see some aspects about contractivity with respect to M. These studies cre-

ate an appropriate context to introduce five questions related to contractivity

(Problem 5), continuity (Problem 3), extension (Problem 4) and completion
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of fuzzy metrics (Problems 1 and 2). Also, as a practical application we show
that the fuzzy metric M* can be used to approach the problem of measuring

perceptual colour-difference between colour samples.

In Chapter 3 we construct a non-completable fuzzy metric space (X, M, *)
(Proposition 9). For it, we prove that the assignment f(t) = lim,, M (ap, by, t)
is a well-defined function on |0, co[, which is not continuous for two particular
Cauchy sequences {a,} and {b,} of X. We also prove that the constructed

fuzzy metric space is not strong (non-Archimedean).

In Chapter 4 we prove that the conditions, in our reformulation (Theorem
6), given by V. Gregori and S. Romaguera characterizing completable fuzzy
metric spaces constitute an independent axiomatic system. For it we use the
constructed non-completable fuzzy metric space of Chapter 3 which, at the
same time, leads us to obtain a characterization of the class of completable

strong fuzzy metric spaces (Theorem 8).

In Chapter 5 we introduce and study a stronger concept than conver-
gence of sequences called s-convergence (Definition 14), and we characterize
those fuzzy metric spaces in which convergent sequences are s-convergent
(Corollary 9). In such a case M is called an s-fuzzy metric. On the other
hand, given a fuzzy metric space (X, M, x), if (N, *) is a fuzzy metric on
X where Nys(z,y) = N{M(z,y,t) : t > 0} then it is proved that the topolo-
gies deduced from M and Ny coincide if and only if M is an s-fuzzy metric
(Theorem 10). A classification of fuzzy metrics attending to the behaviour of
fuzzy metrics with respect to the different types of convergence and involving
some well-known classes of fuzzy metrics is given at the end of this chapter
(Diagram 5.1).

In Chapter 6 we study when certain families of open balls centered at a
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point are local bases at this point. This question is related to the concept of
s-convergence and also to the concept of p-convergence introduced by Mihet
[57]. The main results obtained in this chapter are Corollaries 12 and 13,
and Theorem 11.

In Chapter 7 we answer two questions posed by S. Morillas and A. Sapena
[On Cauchy sequences in fuzzy metric spaces, Proceedings of the Conference
in Applied Topology WiAT’13 101-108| related to standard convergence (Def-
inition 9). This last concept was introduced in a natural way by the authors
after that L. Ricarte and S. Romaguera introduced in [74] the concept of
standard Cauchy sequence in order to extend the classical theory of contin-
uous domains to fuzzy setting. In particular, we prove the existence of a
standard convergent sequence which is not standard Cauchy (Example 16).
This result leads us to establish what conditions should satisfy a concept
about sequential convergence to be considered compatible with a concept of

Cauchyness (Definiton 17).

1.3 Preliminaries

Let us recall, [79], that a t-norm is a binary operation * : [0,1] x [0, 1] — [0, 1]
such that ([0,1], <, %) is an ordered Abelian topological monoid with unit 1.

Definition 1. (George and Veeramani [19]). A fuzzy metric space is an
ordered triple (X, M,x) such that X is a (non-empty) set, % is a continu-
ous t-norm and M is a fuzzy set on X x X x]0, 0o[ satisfying the following

conditions, for all z,y,2z € X, s,t > O:

(GV1) M(z,y,t) > 0;
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(GV2) M (z,y,t) = 1if and only if x = y;
(GV3) M(z,y,t) = M(y,x,t);
(GV4) M(x,y,t) * M(y,z,s) < M(z,2,t + s);

(GV5) M(z,y, ) :]0,00[—]0,1] is continuous.

Some particular continuous ¢-norms used in this work are the minimum,
denoted by A, the usual product, denoted by -, and the Lukasievicz t-norm,
denoted by £ (x£y = maz{0,x +y — 1}).

The axiom (GV1) is justified by the authors because in the same way
that a classical metric does not take the value co then M cannot take the

value 0. The axiom (GV2) is equivalent to the following:
M(xz,z,t) =1forall x € X,t >0 and M(z,y,t) < 1 for all x # y,t > 0.

The axiom (GV2) gives the idea that only when = = y the degree of nearness
of z and y is perfect, or simply 1, and then M (z,z,t) = 1 for each z € X
and for each ¢ > 0. In this manner the values 0 and oo in the classical
theory of metric spaces are identified with 1 and 0, respectively, in this fuzzy
theory. Axioms (GV3) and (GV4) are a fuzzy version of the symmetry and
the triangular inequality, respectively. Finally, in (GV5) the authors only
assume that the variable ¢ behave nicely, that is, they assume that for fixed
x and y, the function ¢ — M (x,y,t) is continuous without any imposition

for M as t — oco.

If (X, M,x) is a fuzzy metric space, we will say that (M,x) is a fuzzy
metric on X. Also, if confusion is not possible, we will say that (X, M) is a
fuzzy metric space or M is a fuzzy metric on X. This terminology will be
also extended along this work in other concepts, as usual, without explicit

mention.
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Lemma 1. (Grabiec [23]) The real function M(x,y, ) of Aziom (GV5) is

non-decreasing for all x,y € X.

In the definition of Kramosil and Michalek, [48], M is a fuzzy set on
X X X x [0,00][ that satisfies (GV3) and (GV4), and (GV1), (GV2), (GV5)
are replaced by (KM1), (KM2), (KM5), respectively, below:

(KM1) M(z,5,0) = 0;
(KM2) M(x,y,t) =1 for all ¢t > 0 if and only if z = y;

(KM5) M(x,y, ) :[0,00[— [0,1] is left continuous.

We will refer to these fuzzy metric spaces as K M-fuzzy metric spaces. It
is worth nothing that, by defining the probabilistic metric Fy,(t) = M (z,y,t),
every K M-fuzzy metric space (X, M, ) becomes a generalized Menger space,
[73], under the continuous ¢-norm *. On the other hand a fuzzy metric

space can be considered a K M-fuzzy metric space if we extend M defining
M(z,y,0) =0 for all z,y € X.

George and Veeramani proved in [19] that every fuzzy metric M on X
generates a topology 7Tas on X which has as a base the family of open sets
of the form {By(z,¢,t) 1z € X,0 < e < 1,t > 0}, where By(x,¢,t) = {y €
X : M(xz,y,t) >1—¢} forall x € X, e €]0,1] and ¢t > 0.

Let (X,d) be a metric space and let My a function on X x X x]0, 00[
defined by

Mgy(z,y,t) = i1 dz.y)

Then (X, My, ) is a fuzzy metric space [19] and M, is called the standard
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fuzzy metric induced by d. The topology Tar, coincides with the topology
on X deduced from d.

Definition 2. A fuzzy metric M on X is said to be stationary [32] if M does
not depend on ¢, i.e. if for each x,y € X, the function M, ,(t) = M(z,y,t)

is constant. In this case we write M (x,y) instead of M (x,y,t).

Proposition 1. (George and Veeramani [19]). A sequence {x,} in a fuzzy
metric space (X, M, *) converges to x if and only if lim,, M (x,,z,t) =1, for
allt > 0.

Definition 3. (George and Veeramani [19]), Schweizer and Sklar [80]). A
sequence {x,} in a fuzzy metric space (X, M, *) is said to be M-Cauchy if for
each € €]0, 1] and each t > 0 there is ng € N such that M (x,,, ©,,t) > 1—e for
all n,m > ng. Equivalently, {x,} is M-Cauchy if lim,, ,, M (zp, zm,t) = 1,
where lim,, ,,, denotes the double limit as n — 0o, and m — oco. If confusion is
not possible we will say, simply, that {z,,} is Cauchy. X is called M-complete
if every Cauchy sequence in X is convergent with respect to 7as. In such a

case M is also said to be complete.

Definition 4. (Mihet [57]). Let (X, M, *) be a fuzzy metric space. A se-
quence {x,} in X is said to be p-convergent to x¢ if lim,, M (z,, xo,to) = 1,

for some tg > 0.

Definition 5. (Gregori et al. [25]). We say that the fuzzy metric space
(X, M, %) is principal (or simply, M is principal) if the family {Bps(x,r,t) :
r €]0,1[} is a local base at x € X, for each x € X and each ¢ > 0.

Theorem 1. (Gregori et al. [25]). A fuzzy metric space is principal if and

only if every p-convergent sequence is convergent.

Definition 6. (Gregori and Romaguera [31]). Let (X, M, *) and (Y, N,o)

be two fuzzy metric spaces. A mapping f from X to Y is called an isometry
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if for each z,y € X and t > 0, M (z,y,t) = N(f(x), f(y),t) and, in this case,
if f is a bijection, X and Y are called isometric. A fuzzy metric completion
of (X, M, ) is a complete fuzzy metric space (X, M, %) such that (X, M, *)
is isometric to a dense subspace of X. X is called completable if it admits a

fuzzy metric completion.

Proposition 2. (Gregori and Romaguera [31]). If a fuzzy metric space has

a fuzzy metric completion then it is unique up to isometry.

In [32] is given the following characterization about completion of a fuzzy

metric space.

Theorem 2. Let (X, M,x*) be a fuzzy metric space, and let {a,} and {b,}
be two Cauchy sequences in X. Then (X, M, x) is completable if and only if

it satisfies the following conditions:

(C1) The function t — limy, M (an, by, t) is a continuous function on |0, 00|

with values in |0, 1].

(C2) If lim,, M (ay, by, s) = 1 for some s > 0 then lim,, M (ay, by, t) =1 for
all t > 0.

Remark 1. Suppose (X, M, %) is a fuzzy metric completion of (X, M, *).
Attending to the last proposition and the construction of the completion,

[32], we can consider that X C X, % is %, and that M is defined on X by

M (z,y,t) = lim M (2, yn, t)

for all 2,y € X,t > 0, where {z,} and {y,} are Cauchy sequences in X that

converge to x and y, respectively.

Remark 2. Cauchy sequences are defined in the same way in fuzzy metric

spaces and K M-fuzzy metric spaces. Then it is easy to verify [76] that a fuzzy
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metric space (X, M, x) is complete if and only if the corresponding K M-
fuzzy metric space is also complete. Further if (X, M, *) admits completion
this completion agrees with the completion of the corresponding K M -fuzzy
metric space. Recall that every K M-fuzzy metric space has a completion

which is unique up to an isometry, |76, 83].

It is not the aim of this work to point out the analogies or differences
between the results obtained for fuzzy metric spaces and the corresponding

ones for K M-fuzzy metric spaces, in the next sections.

Definition 7. Let (X, M, x) be a fuzzy metric space. The fuzzy metric M
(or the fuzzy metric space (X, M,x)) is said to be strong if it satisfies for
each z,y,z € X and each t > 0

M(z,2,t) > M(x,y,t) « M(y, 2,t) (GVY)

Theorem 3. (Gregori et al. [28, Theorem 35]) Let (X, M, %) be a strong
fuzzy metric space and suppose that x is integral (i.e. a*b > 0 whenever
a,b €]0,1]). If {zn} and {yn} are Cauchy sequences in X and t > 0 then
{M(xy,Yn,t)}n converges in |0, 1].

Let (X, M,x) be a non-stationary fuzzy metric. Define the family of
functions {M; : t > 0} where, for each t > 0, M; : X? —]0,1] is given
by Mi(x,y) = M(x,y,t). Then (X, M,x) is strong if and only if (X, My, *)
is a stationary fuzzy metric for each t > 0. In this case we will say that
{M; : t > 0} is the family of stationary fuzzy metrics associated to M.
Clearly, this family characterizes M in the sense that M (x,y,t) = My(z,y)
for all z,y € X,t > 0. If (X, M,x) is strong then Tpy = \/{Tas, : t > 0}.
Moreover, it is easy to verify that the sequence {z,} in X is M-Cauchy if
and only if {z,} is M;-Cauchy for each ¢ > 0.
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Proposition 3. (Sapena and Morillas [68]) Let {(My,*) : t > 0} be a family

of stationary fuzzy metrics on X.

(i). The function M on X?x]0,00[ defined by M(z,y,t) = Mi(z,y) is a
fuzzy metric on X when considering the t-norm x, if and only if {M; :
t > 0} is an increasing family (i.e. My < My ift < t') and the function
Mgy :]0,00[—]0,1] is a continuous function, for each x,y € X. In such

case.

(11). (M, %) is strong and {(My,*) : t > 0} is the family of stationary fuzzy

metrics deduced from M.

Remark 3. (About terminology) If (X, M, A) is strong then (GV4’) becomes
M(z,z,t) > min{M (z,y,t), M(y,2,t)} (GV4")

and in this case we say that M is a fuzzy ultrametric |28|.

Let d be a metric on X. Now, we can consider the standard fuzzy metric
Mgy on X. Further, if d(z,y) < 1 for all z,y € X then we can also con-
sider the stationary fuzzy metric (N, £) on X, where N(z,y) = 1 — d(x,y).
Then d is an ultrametric (a non-Archimedean metric) if and only if My
is a fuzzy ultrametric, |77], if and only if N is a fuzzy ultrametric |28|.
Further, condition (GV4”) is stronger than (GV4) in the same way that
d(z,z) < max{d(z,y),d(y, z)} is stronger than the usual triangular inequal-

ity.

Following terminology of probabilistic metric spaces, [24, 43|, some au-
thors call non-Archimedean fuzzy metrics those that also satisfy equation
(GV4’). Notice that in this case there is not any correspondence, in the

above sense, between non-Archimedean metrics and non-Archimedean fuzzy
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metrics since My always satisfies My(z, z,t) > My(x,y,t) - My(y, z,t) and
also because all stationary fuzzy metrics would be non-Archimedean. Fur-
ther (GV4’) is not stronger than (GV4) and it means that if we replace
(GV4) by (GV4’) then M could not be a fuzzy metric on X. (Indeed,
M(z,y,t) = W/zx,y) satisfies (GV1)-(GV3), (GV4’) and (GV5) and it does
not satisfies (GV4).)

Definition 8. (Ricarte and Romaguera [74]). A sequence {z,} is called
std-Cauchy if given e €]0, 1 there exists n. € N, depending on €, such that
M(zp, T, t) > HLE, for all n,m > n. and for all ¢ > 0. X is called std-
complete if every std-Cauchy sequence in X is convergent.

Definition 9. (Morillas and Sapena [69]). A sequence {x,} in X is called
std-convergent to z¢ € X if given e €]0, 1] there exists n. € N, depending on

€, such that M (z,, xo,t) > HLE, for all n > n. and for all ¢ > 0.



18

INTRODUCTION. OBJECTIVES




Chapter 2

Some questions in fuzzy metric

spaces

The material of this chapter is an adaptation to the thesis of the content
of the paper by Valentin Gregori, Juan-José Minana and Samuel Morillas,
“Some questions in fuzzy metric spaces”, published in the JCR-journal Fuzzy

Sets and Systems 204 (2012) 71-85.

19
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2.1 Introduction

The concept of fuzzy metric includes in its definition a parameter, ¢, that
allows to introduce novel (fuzzy metric) concepts with respect to the clas-
sical metric concepts. For instance, the concepts of principal and strong
fuzzy metric were motivated by the study of the p-convergence, [57], and the
generalization of non-Archimedean fuzzy metrics, [77], respectively. More-
over, recently, fuzzy metrics have been applied to colour image filtering
by replacing classical metrics and some improvements have been achieved
[4, 5, 64, 61, 62, 63, 65, 66]. In this context, the presence of the t parameter
is indeed a key issue because it allows the fuzzy metric to perform adaptively
which is beneficial to improve performance. In particular, a fuzzy metric used

frequently in the above cited papers has been the fuzzy metric M* defined

min{x,y}+t

on [0, 00 (the set of non-negative real numbers) by M*(z,y,t) = e

In this chapter, we study some aspects of the fuzzy metric M* and as

well as the well-known fuzzy metric My given by My(z,y) = %

10, 00[ (the set of positive real numbers). This study is carried out in such a

on

manner (see Remark 4) that it creates an appropriate context to introduce
five questions in fuzzy metric spaces (relative to completion, uniform conti-
nuity, extension and contractivity) which is the second aim of this section.
In spite of the risk of this proposal, [17] (Preface), we do hope that these
problems will provide the basis of much future research. Finally, as practical
application, we show that this fuzzy metric is useful for measuring perceptual

colour-differences between colour samples.

So, the structure of the chapter is as follows. In Section 2.2 it is proved
that (]0, oo[, Mp) is complete and we construct the completion of (]0, oo, M*)

where M™* is given by the above expression. In Section 2.3 we study some
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aspects on the continuity of My. In Section 2.4 an extension of M* (defined
on [0,00[) to R is constructed. In Section 2.5 we study some aspects about
contractivity with respect to My, and, finally, in Section 2.6 we show a new

application of these fuzzy metrics.

2.2 Introducing the examples. On completeness and

completion.

Throughout this chapter (]0, 0o[, Mp,-) will be the stationary fuzzy metric

min{z,y}
maz{z,y}’

space where M is defined by My(z,y) = [19]. It is easy to verify

that 7y, is the usual topology of R restricted to ]0, ool.

Also, ([0, 00[, M*,-) will be the fuzzy metric space where M* is defined

by M*(z,y,t) = %, [91]. Its subspace (]0,o00[, M*,-) will take an

interesting role in this section.

We omit the proof of the next proposition.

Proposition 4. Consider the fuzzy metric M* on [0,00] (respectively, on
0, 00[).

(1) Tar= is the usual topology of R restricted to [0, oo[ (respectively, to]0,00[).
(ii) M* is principal.
(i5i) M* is strong.

Since M* is strong so we can consider its associated family of stationary

fuzzy metrics {M; : t > 0} defined on [0,00] (respectively, on |0,00]), i.e.
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M (x,y) = M*(x,y,t), for each t >0, and by (i1) we have:

(iv) Tuy is the usual topology of R restricted to [0,00[ (respectively, to
10, 00[), for each t > 0.

The infimum (denoted by A) of a family of stationary fuzzy metrics as-
sociated to a strong fuzzy metric was studied in [28]. In the case of M* we

have the next proposition.

Proposition 5.
(i) Consider M* on [0,00[. Then \,ooM; is not a fuzzy metric on [0, 00].
(i) Consider M* on ]0,00[. Then N\, oM} is the fuzzy metric My.

Proof.
(i) If we take y # 0 then
N\ M 0,y) = inf{i St > o} =0
t>0 y+t
and then A, M/ is not a fuzzy metric on [0, oo[.
(71) For each x,y,t €]0, 0c0[ we have that

: y :
/\ M (z,y) = inf min{e,y} +1 t>0p = min{z, y} >0
oY max{z,y} +1t max{z,y}

and so, [\, M is the fuzzy metric M. O

From now on, for simplicity, by a convergent sequence (in reference to
T or Ta,) we mean that it is convergent with respect to the usual topology

of R restricted to the corresponding domain.
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Taking into account Remark 2 we could obtain the next theorem using
results of K M-fuzzy metric spaces, [73], but we choose to prove it, since it

is illustrative within the context of the chapter (see Remark 4).

Theorem 4. (]0, 0], My, -) is complete.

Proof.

Recall that Taz, is the usual topology of R restricted to ]0,00[. We will
characterize the My-Cauchy sequences.

Firstly, we will see that My-Cauchy sequences in |0, oo[ are bounded for the
usual metric of R. Indeed, if {a,} is a non-bounded sequence in ]0, o], then
for a given e €]0,00[ and for any n € N we can find m € N with m > n
such that € - a, > a, and so My(an,an) = g—; < € and thus {a,} is not
Mp-Cauchy.

Now we will see that if {a,} is a sequence in ]0,oc0[ that converges to
0 then {ay} is not My-Cauchy. Indeed, if {a,} converges to 0 then for a
fixed € €]0,1[ and for any n € N we can find m € N with m > n such that

A, < €+ a, and so My(ap, any) = CC”L—’: < € and then {a,} is not My-Cauchy.

Finally, we will see that if {a,} is an My-Cauchy sequence in ]0, co[ then
{an} converges in ]0,00[. Let {a,} an My-Cauchy sequence in ]0, oo and
hence, as we have seen above, {a,} is bounded. Then there exist a € [0, 0]
and a subsequence {ay, }; of {a,} such that lim; a,, = a. Now, {an, }; is also
an My-Cauchy sequence and hence, for the last paragraph, a > 0. We will

show that {a,} converges to a.

If {ay} does not converges to a then there exist ¢’ > 0 such that infinite
terms of {a,} are in (the compact of R) I = [0,a —d§'|U[a+ ¢, K|, where K
is an upper bound of {a,,}. Then there exist a subsequence {ang_ }j of {an} in

I and b € I such that lim; Oy = b, and, as above, b > 0. Suppose that b < a.
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Let § > 0 with § < min {b, “T_b} and let € = Zi_‘; > 1. Since lim; a,,, = @ and
lim; Ay = b then there exists p € N such that a,; €]a — d,a + [ for each
1> pand Ay €]b—8,b+ ¢[ for each j > p.

Given n € N we choose ¢, = max{n,p} and then for i,j > ¢, we have

Mo(an,,a,) < 2% = ¢ and so {a,} is not My-Cauchy, a contradiction.
J

A similar argument can be made if b > a.

In consequence {a,} is My-Cauchy iff {a,} converges in ]0, col. O

Since a compact fuzzy metric space is precompact and complete, [30],

then we have the next corollary.
Corollary 1. (]0, 00, My, -) is not precompact.

Proposition 6. (]0,00[, M}, ") is not complete for each t > 0.

Proof.
Recall that Ty; is the usual topology of R restricted to |0, oo], for each ¢ > 0.

Now, the sequence {1} is not convergent in ]0, co[ because 0 ¢]0, oo, but

it is M;-Cauchy for each ¢ > 0. Indeed,

11 in{1 L1 +¢
lim M | =, — :limwzl, for each ¢ > 0.
mn max{1, L} 41¢
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In the proof of the last proposition we have just obtained that {%} is

Cauchy in (]0, 00[, M*,-) and so the next corollary is immediate.
Corollary 2. (]0,00[, M*,-) is not complete.

Lemma 2. Take t > 0 and consider the fuzzy metric space (]0,00[, M[,-).
Let {z} be a sequence in ]0,00[. Then {z,} is M;-Cauchy if and only if

{zn} converges in [0, o0].

Proof.
Fix ¢ > 0, and let {z,,} be an M;-Cauchy sequence in |0, oo[.

min{zn,rm}+t
max{ZTn,Tm }+t

i n t7 m t 1
Pl rian g = 1 and so {a + 1} is an Mo-Cauchy

sequence in |0, 0co[, so by Theorem 4 {x,, + ¢} converges in |0, oo[, then {z,}

Then lim,, ,, M} (2p, Zm) = limy, , = 1, but this expression is

equivalent to lim,, ,

is convergent and clearly {z,} converges in [0, co].

Conversely, if {x,} converges in ]0,o0[, then clearly it is M;-Cauchy for
each t > 0. Now, suppose {x,} is a sequence in |0, 00| that converges to 0.

Then, lim,, , min{z,,zy} = lim,, , max{z,, 2, } = 0 and therefore, for a

min{z,,rm}+t
max{Tn,tm}+t 1’ and

so {zy} is M[-Cauchy. O

fixed t > 0 we have that lim,, , M/ (2, zy,) = limy, ,

Since M* is strong by the above lemma we have the next corollary.

Corollary 3. Consider the fuzzy metric space (]0,00[, M*,-). Then a se-
quence {xy} in |0, 00[ is M*-Cauchy if and only if {z,} converges in [0, 00l

Theorem 5. (]0,00[, M*,-) is completable.

Proof.
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Let {a,} and {b,} be two M*-Cauchy sequences in (|0, co[, M*,-). First we
will prove that (C1) of Theorem 2 is satisfied.

From [68, 28] {a,} and {b,} are M;-Cauchy sequences in |0, co[ for all
t > 0 and so, by the previous lemma, {a,} and {b,} converge to a and b,

respectively, in [0, ool.

Suppose, without lost of generality, that @ < b. Then, it is an easy

exercise to prove that lim,(min{a,,b,}) = a and lim, (maz{a,, b,}) = b.

Thus, for t > 0 we have that

i b t t
lim M* (ay,, by, t) = lim min{an, bn} + _ o > 0.
n n max{an, by} +t b+t

We have just obtained that the function ¢ — lim,, M*(ay,, by, t) is a con-
tinuous function on ]0, co[ with values in ]0, 1], and (C1) of Theorem 2 is

satisfied.

Next we will prove that (C2) of Theorem 2 is also satisfied.

min{an,bn}+to __
max{an,bn}+to

1. Then, as we have seen in the first part of the proof, we can assert that

Suppose that for some tg > 0 lim,, M*(a,, by, tp) = lim,

there exist lim,(min{a,, b,}) and lim, (max{a,,b,}) and obviously, in this
case,

lim,, (min{ay, b,}) = lim, (max{an, b,}). Consequently

lim M*(ay, by, ) = lim —20n:On} +¢
n n max{an,b,} +1t

and (C2) of Theorem 2 is satisfied. So (]0, 00[, M*,-) is completable. O

=1, forallt >0

The completion of (]0,co[, M*,-).



SOME QUESTIONS IN FUZZY METRIC SPACES 27

Denote by (X, M,-) the completion of (]0,c0[, M*,-). By Corollary 3
M*-Cauchy sequences in ]0, co[ are the convergent sequences in [0, 00|, then
attending to [32] we can identify the equivalent class of M*-Cauchy sequences

in ]0, oo that converge to p € [0, c0[ with p and so X is identified with [0, ool

Now, attending to Remark 1 the fuzzy completion M of M* is defined in
a such manner that if {a,} is a convergent sequence to 0 and b €]0, co| then
fort >0, M(0,b,t) = M(b,0,t) = lim, % = 5L;. On the other hand

M(0,0,t) = 1 for all t > 0 and then M is~given by M(a,b,t) = % for
each a,b € [0,00[, t > 0 and therefore M is the fuzzy metric M* on [0, 00|

defined at the beginning of this section.

From [28] Theorem 40, the following corollary is immediate.

Corollary 4. ([0, 00[, M, ") is the completion of (]0,00[, M/, -) for each t >
0.

Remark 4. Using similar arguments to the above ones in Theorem 4 one can
shows that ([0, oo, M*, ) is complete. Now, the mapping i : (]0,c0[, M*,-) —
([0, 00[, M*,-) given by i(x) = x for each x €]0, 00[, is an isometry and by ()
of Proposition 4 ]0, ool is dense in ([0, 0o, Tas+ ), and since the completion of
a fuzzy metric space is unique, up to isometry [31], then ([0, co[, M*, ) is the

completion of (]0, co[, M*,-).

For obtaining the completion of (]0,o00[, M*, ) we have preferred the
above constructive method because it allows us to introduce in its appro-

priate context the following open question.

Problem 1. To find a fuzzy metric space (X, M, %) where for two M-Cauchy
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sequences {a,} and {b,} in X the assignment f(¢) = lim,, M (ay, by, t) for all

t > 0, does not define a continuous function on t.

It is known that the completion of a strong fuzzy metric is strong, [28]
Lemma 39. On the other hand we have just obtained above that the com-
pletion of the principal fuzzy metric space (]0,o00[, M*,-) is ([0, 00[, M*,"),

which is also principal. Now, the next is an open question.

Problem 2. If the principal fuzzy metric space (X, M, ) admits completion
(X, M, %), is it also principal?

2.3 On continuity and uniform continuity

We have just seen above that the fuzzy metric M* on |0, oo[ can be extended
to [0, 00[ by means of the fuzzy metric M in such a manner that ]0, oo is
dense in ([0, 00[, 7;7). Now, this situation is not possible for (]0, co[, M) as

shows the next proposition.
Proposition 7. Consider the fuzzy metric space (|0,00[, Mo, -) and let My

an extension of My to [0,00[. Then {0} is Ty; -open.

Proof.
10, 00| is Mp-complete and then it is Tiz,-closed. O

Consequently, we cannot find an extension My of My such that TMO co-

incides with the usual topology of R restricted to [0, ool
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Example 1. The fuzzy metric My on [0, oo[ given by

MO(‘Tay)7 z,y 6]07 OO[

1
~ ~ 209 $:07y21
MO(yax) = MO(‘Tay) = iy
bR x:O,y<1
1, r=y=0

is an extension of My to [0, 0o and {0} is clearly open of Ty; .

From [75] we know that My(x,y) is continuous on |0, co[? (endowed with
the producto topology). Now, the continuous function My does not admit
any continuous extension N to [0, 00[? endowed with the usual topology of
R. Indeed, if N were so, then since {1} and {n—lz} converge to 0 it should be
N(0,0) = lim, My(1/n,1/n) = 1 and also N(0,0) = lim,, My(1/n,1/n?) =

2
lim,, 11/% = 0, a contradiction.

Definition 10. We will say that the fuzzy metrics M; and My on X are
uniformly equivalent if the identity mappings 7 : (X, M) — (X, Ms) and
i: (X, M) — (X, M) are uniformly continuous [20]. In that case, obviously

{zy} is an M;-Cauchy sequence if and only if {x, } is an Ms-Cauchy sequence.

Now the fuzzy metrics M* and My on |0, oo[ are topologically equivalent
on |0,00], i.e. Tar= = Tag, on |0, 00[, but they are not uniformly equivalent
on ]0, co[ because (]0, 0c0[, M) is complete but (]0, 00[, M™*) is not complete
(Notice that the identity mapping i : (]0, o[, My) — (]0, oo, M™*) is uniformly
continuous since My(z,y) < M*(xz,y,t) for each x,y €]0,00[, t > 0, but
i ¢ (J0,00[, M*) — (]0,00[, Mp) is not uniformly continuous since {1} is a

Cauchy sequence in (]0, 0o[, M*) but it is not My-Cauchy).

Definition 11. (Gregori, Romaguera and Sapena [34]) Let (X, M, x*) be a

fuzzy metric space. A mapping f : X — R is called R-uniformly continuous
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if given € > 0 we can find s > 0, § €]0, 1] such that M (z,y,s) > 1 —¢ implies
|f(z) = fy) <e.

Proposition 8. Consider the fuzzy metric space (]0,00[, My). For a fized
y > 0 the mapping MY :]0,00[—]0,00[ given by M¥(z) = % for all

x €10, 00[ is R-uniformly continuous.

Proof.
Let € > 0. We distinguish three cases: (a) z,2’ < y, (b) z,2" > y, (c)

x <y, >y (or 2 <y,z>y).

(a) Choose 0 €]0,1[ with § < e. Suppose that z,z’ €]0,00[ satisfy
My (z,2") > 1 — 5. Without lost of generality we can suppose x < /. Then

we have that 7> > 1 — ¢ and hence

/

M) - M) == - 2 < L —wa—ey = T <o
| My (z) — My ()] " y(fE $)<y(<17 z'(1-19)) mELR

<8

With similar arguments the other cases can be proved, and then M] is R-

uniformly continuous. O

The next is an open question.

Problem 3. Let (X, N,%) be a stationary fuzzy metric space. Is the real
function Ny(z) = N(x,y) for each x € X, R-uniformly continuous for all
y e X?
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2.4 Extending fuzzy metrics

2.4.1 A related fuzzy pseudo-metric

Consider the fuzzy set N on R?x]0, oo given by

min{|z|, [y|} +¢
max{lz], ly[} +¢

It is easy to verify that N satisfies axioms (GV1),(GV3) and (GV5). Also,
N satisfies the triangular inequality. Indeed, for z,y,z € R, t > 0 we have

N(z,y,t) = (2.1)

min{|z|, |2|} +1+ s *
|2} = M (fel, [el £ 4 5) >

N(z,z,t+s) = _
(@2t +5) = el 2l £+ s

min{|z, [y[} +¢ min{lyl, [z} +5
max{|z[,[y[} +¢ max{[yl[,[z[} + s
:N(‘Tayat) 'N(y7278)

> M*(|$|7 |y|7t) : M*(|y|7 |Z|,S) =

Also, for z = y we have that N(x,y,t) =1 for all ¢ > 0 but the converse is,
in general, false since for  # 0 we have that N(x,—z,t) = 1 but  # —=x.
Consequently (R, N,-) is a fuzzy pseudo-metric space, [33], but it is not a

fuzzy metric space.

The mapping j :] — 00,0] — [0, 00[ defined by j(z) = —x is a bijection
and then (] — 00, 0], M’,-) and ([0, 0o[, M*,-) are two fuzzy isometric spaces
[31], where M" is given by M'(z,y,t) = M*(j(x),j(y),t) = M*(—x, —y,t) =
M*(|z],|y|,t) for all z,y €] — 00,0], t > 0. So M’ is, obviously, strong and

principal.
Notice that M* and M’ can be defined both two in their corresponding
domains by the expresion (2.1), i.e. Nlj o[ = M* and N|j_o = M".

Remark 5. Section 5.1 admits the following easy generalization. Let (M, )

be a fuzzy metric on a set of non-negative real numbers A. Put —A = {x €
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R : —z € A}. Define N(z,y,t) = M(|z|,|y|,t) for all z,y € —AU A, t > 0.
Then, (N, *) is a fuzzy pseudo-metric on —A U A.

2.4.2 A fuzzy metric extension of M*

We have just seen that the fuzzy pseudometric N on R satisfies
N’[O,oo[ = M* and Nh_oom = M/ (2.2)

Now we will construct a fuzzy metric M on R such that ]\_4][0,00[ = M* and
M||_oo0) = M’. For it we consider the family {M; : ¢ > 0} of stationary
fuzzy metrics on [0, 00| associated to M*, and the family {M/ : ¢ > 0} of

stationary fuzzy metrics on | — oo, 0] associated to M’.

Then, since | — 00,0] N[0, co[= {0}, from [29] Proposition 19 we have for
each fixed ¢t > 0 that the function

M (z,y) if z,y € [0, 00]

My, y) = M (z,y) if 2,y €] — 00, 0]
M (x,0) - M{(0,y) if z €]0,00][,y €] — 00,0]
M(z,0) - Mf(0,y) if z €] —o00,0[,y €]0,00[

is a stationary fuzzy metric on R, such that Mth—oo,o] = M/ and Mt’[o,oo[ =
Mt*-

Attending (2.2), we can be written

min{|zl,|y|}+¢ B
Mi(w,y) = 4wl 9 S [0, 00[ or 2,y €] — 00, 0]
9 ‘ f
BT elsewhere

Obviously {M; : t > 0} is an increasing family, i.e. ¢t < ¢’ implies My < My .
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Now we define M(x,y,t) = M;(z,y) for all z,y € R, t > 0. Then,
obviously M satisfies (GV1)-(GV3) and (GV5).

We prove that M satisfies the triangular inequality. Let x,7,z € R,
t,s > 0. Then, since {M; : t > 0} is an increasing family we have M (z, z,t +
§) = Myys(2,2) > Myys(2,9) - Myis(y, 2) > My(x,y) - My(y, 2) = M(z,y,t) -
M(y,z,s) and so (M,-) is a fuzzy metric on R which obviously satisfy
Mg o) = M* and M|j_sq = M,

The following is an open question.

Problem 4. Let H and K be two distinct sets with HNK # (). Let (M, *)
and (Mg, %) be two non-stationary fuzzy metrics on H and K, respectively,
that agree in H N K. Does it exist a fuzzy metric M on H U K such that
M|g = My and M| = Mg?

2.5 Contractivity in (]0, oo[, My, -)

2.5.1 On contractivity

Let (X, M) be a fuzzy metric space.

In order to obtain satisfactory results in the fuzzy setting, related to the
classical Banach contraction theorem, several concepts of M-contractivity on
a mapping f : (X, M) — (X, M) have been given, for instance |23, 36, 39,
56, 57, 58, 59, 73, 81, 84, 84, 89, 90| among others.

The weaker contractivity condition on f which makes sense when M is
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stationary is given by the formula
M(f(z), f(y)) =2 M(z,y) for z,y € X

and in fact, it is obtained from the concept of B-contraction, |23, 81|, given
by the expression M(f(x), f(y),kt) > M(x,y,t) for all z,y € X, t > 0
and some fixed k €]0,1]. Now, for stationary fuzzy metrics this concept
is not really appropriate (in the same way that the contractivity condition
d(f(z), f(y)) < d(z,y) is not appropriate for a metric space (X,d)). Indeed,
the identity mapping i : X — X satisfies M (f(x), f(y)) = M (x,y) for all
z,y € X and all points of X are fixed of 7. Further, in the case of the
fuzzy metric space (]0,00[, Mp,-) the mapping f :]0,00[—]0,00[ given by
f(z) = ax, where a € RT ~ {1}, also satisfies M (f(z), f(y)) = M(z,y) for
all z,y €]0,00[ but f has not any fixed point. Then, a stronger contractivity

condition than the above one is needed. So, we adopt the next definition.

Definition 12. Let M be a stationary fuzzy metric on X. A mapping

f: X — X is fuzzy M-contractive (a fuzzy contraction) if

M(f(x), f(y)) > M(z,y) for z,y € X,z #y (2.3)

This concept comes from the fuzzy Edelstein contractives notion stated
by Grabiec [23] as M(f(x), f(y),t) > M(z,y,t) for z,y € X, v #y, t > 0,
where M is a fuzzy metric on X. The author proved that a fuzzy Edelstein
contractive mapping on a compact K M-fuzzy metric space has a unique fixed

point.

Notice that (2.3) is satisfied by almost all fuzzy M-contractive concepts

in the literature when M is stationary.

We can get a class of fuzzy My-contractive mappings with a unique fixed

point in ]0, 0o[ as follows. Consider the continuous increasing functions f :
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[0,00[— [0,00[ with f(0) = 0 such that f”(z) < 0 for all z €]0,00[ (f”
denotes the second derivative of f). Using arguments from Analysis one can
verify that for 0 < & < y it is satisfied that @ > %, i.e. % > % and
hence f is fuzzy My-contractive. It is easy to verify that such functions have
at most a unique fixed point in |0, 00[. Further, f has a (unique) fixed point
if and only if f'(x) = 1 for some = €]0,00[. Notice that In(1 + x) satisfies
f"(z) < 0 for z €]0,00[ but f'(x) # 1 for z €]0, 0o, and clearly In(1+ x) has
not any fixed point in ]0,00[. The mappings fi(z) = vz + A for x €]0, o],
with a fixed A > 0, fulfill all conditions of this paragraph and they play an

interesting role in the following.

Mihet [56] pointed out that the mapping f(z) = = +a for z €]0, o[, with
a fixed a > 0, is fuzzy My-contractive but it has not any fixed point in ]0, co|.
Then, in order to guarantee the existence of fixed points for such a mappings
Mihet introduced and studied the next concept for K M-fuzzy metric spaces

that we rewrite in our context.

Definition 13. Let (X, M, *) be a fuzzy metric space and let ¢ be a de-
creasing continuous mapping ¢ : [0,1] — [0,1] such that ¢(t) > t for all
t €]0,1[. A mapping f: X — X is called p-contractive it M (f(x), f(y),t) >
(M (z,y,t)) for all x,y € X, t > 0. Obviously in this case f satisfies (2.3).

The author proved, [58], that a fuzzy -contractive mapping in a strong

complete fuzzy metric space has a unique fixed point.

As a consequence, since the above commented mappings f(z) = z +
a and In(1 + z) satisfy (2.3) and they have not any fixed point in ]0, o],
these mappings are fuzzy Mj-contractive but they are not (-contractive in
(]0, oo, My).

We see that the mappings fy :]0,00[—]0,00[, with A > 0, defined by
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fin(x) = Vo + X are p-contractive. Indeed, if z < y we have M (fy(z), fr(y)) =
\/—Vzii > \/% = (M (z,y)) where ¢(t) = v/t, independently of A > 0.

Then each mapping f) has a unique fixed point ay €]0, col.

Now we can define the mapping g :]0,00[—]0,00[ by g(A\) = ay. So,

g(\) = LA Vzl'w‘ and thus g is a continuous function on ]0, c0[. Then it arises

the following question.

Problem 5. Let (X, M, %) be a strong complete fuzzy metric space and let
fr: X — X be a family of p-contractive mappings for the same function
o, for all A > 0. Suppose that for each € X the mapping f, :]0,c0[— X,
where f,(A) = fi(x), is continuous on A > 0. Write a) the unique fixed point
of fy for each A > 0. Is the mapping g :]0,00[— X defined by g(\) = ay

continuous?

Remark 6. This problem has been formulated according to the previous
results but obviously it admits other versions. We notice that the analogous
problem formulated in metric spaces has positive answered [78]. If the con-
dition of continuity of f, on ]0, 00| is removed the answer to this question is

negative as it has been proved in [92].

2.6 Application of the fuzzy metric M, to measure

perceptual colour differences

Apart from the interesting theoretical properties of the fuzzy metrics studied
in previous sections, it is interesting as well to note that they have application
in a variety of practical problems. Indeed, they have been previously used

to filter colour images and to measure the degree of consistency of elements
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in a dataset [5, 64, 61, 67].

Here we focus on a different application of the fuzzy metric My that
takes advantage of the homotetique invariant property that this fuzzy metric
satisfies. Indeed, My fulfills that, for any A € R:

(I) MO(A$7 )‘y) = Mo(ﬂj‘,y)

Also, if z > 0,

(II) Mo(z + 2,y +2) > Mo(z,y) if  #y

As we will see later on, there exist practical problems where these prop-
erties are pretty interesting. However, in practical applications it is more
appropriate to use the M* fuzzy metric (which also satisfies (I71)), instead
of the My, because the presence of the ¢ parameter makes this fuzzy metric
more adaptive to the particular problem. On the other hand, My is in fact
M* when t = 0. Notice that both My and M™ are suitable only for scalar
values and that for vector values the combination of several fuzzy metrics

needs to be considered.

In particular, one application that matches the behaviour of these two
fuzzy metrics regards the modeling of the perception of physical magnitudes
such as colours, sounds or weights. It is known that the perception thresh-
old of changes in these magnitudes increases as the magnitudes themselves
increase [16, 18, 87]. That is to say, the perceived difference between two
magnitude values x,y is different that for the values x + k,y + k, whenever

k > 0. In particular, the perceived difference will be larger in the former case
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than in the latter, which agrees with (I7). This situation can be observed
in the case of perceptual colour differences and, since the M* fuzzy metric
behaves accordingly to this situation, M* can be used to appropriately devise

colour difference formulas as explained in the following.

A colour sample is usually represented as a tern in a particular colour
space. Among the different colour spaces, a well-known one, specially in
computer graphics, is the Hue-Chroma-Lightness (HCL) colour space [45],
where a colour sample s is represented as a tern s = (Hg,Cs, Lg). In such
a tern: Hue, Hy, is usually represented as an angle in [0°,360°] where 0°,
90°, 180°, and 270° correspond to approximately pure red, yellow, green and
blue, respectively. Cy € [0,100] represents the Chroma of the colour, where
0 is associated with neutral gray, black or white; and Ly € [0, 100] represents
the Lightness of the sample, where 0 represents no lightness (absolute black

colour) and 100 represents the maximum lightness (absolute white colour).

A series of experimental datasets: BFD-P, Leeds, RIT-Dupont, and Witt,
which are combined to form the COM dataset, have been obtained in order to
characterize the perceptual difference between pairs of colour samples [2, 47,
52,53, 93, 96]. In these datasets each pair of colour samples is associated with
a value AV which represents the experimental perceptual difference between
them. On the other hand, colour difference formulas are used to obtain, from
two terns representing a pair of colour samples, the computed perceptual
difference between them, usually denoted by AFE. Since the objective of
colour difference formulas is to model human perception, all formulas try
to obtain AFE values as close (or correlated) as possible to the AV values.
One well-known colour difference formula is the CIELAB formula [97|, that
corresponds with the Euclidean distance in the CIELAB colour space.

The performance of a colour difference formula is assessed by measuring
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Figure 2.1: Values of STRESS obtained by different colour difference formu-

las for the COM dataset.
colour difference formula | STRESS
CIELAB 0.428
CIE9%4 0.335
CIEDE2000 0.292
AVIVES 0.347
AVVE: 0.348

how close the AE values computed for the experimental datasets are to
the AV values. A well established figure of merit for this closeness is the
STRESS coefficient [54], which provides values in the interval [0, 1], where
lower values indicate a higher closeness. In Table 2.1, we can see that the
value of STRESS for the CIELAB formula over the COM dataset is 0.428.

By analysing the experimental datasets, it has been observed that the
sensitivity to differences in Chroma decreases as the value of Chroma in-
creases. Notice that this fact is related to the Weber-Frechner and Stevens
observations [16, 18, 87]. According to this, we propose to use the M* fuzzy
metric to model the similarity between two Chroma values Cj, C,. as

min{(Cs, Cy)} + k¢
maz{(Cs,Cy)} + k¢’

M*(Cs,Cy) =
where k¢ is a parameter to adjust the behaviour as desired.

An analogous observation can be made with respect to Lightness. So we

propose to measure the similarity between two Lightness values Lg, L, as

min{(Ls, L)} + kr,
max{(Ls, L)} + k'

M*(Ls, L) =

where kg, is another adjusting parameter.
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Using these two expressions we build a more complex expression to obtain
a new colour difference formula. We want also to take into account the
CIELAB colour difference, AE”;  so, we employ the standard fuzzy metric
deduced from AEY,. Given that the product of these fuzzy metrics is as well
a fuzzy metric, [77], we can use a productory to join these three criteria.
Finally, to obtain a difference formula we use the involutive negation as

follows:

AEMl*(S7I') f— 1 - <M*(L87LT)M*(C87CT)H_$> 5 (24:)
ab

where k7, kc and t are parameters able to tune the importance of each
criterion. However, since AE”; also includes Lightness and Chroma differ-
ences, alternatively we propose to replace AE?, in Eq. (4) with AH, which
represents only Hue differences in AE?, and is given by
AH = \/AE;I% — |Ls — L,|? — |Cs — C;|?, and so obtaining

AEMz*(S,I') =1- <M*(L37LT)M*(C37CT)Hﬁ> R (25)

where we have three adjusting parameters, as above.

It is interesting to point out that AFE)sr can be seen as a modification of
the AEY, using a correction term inspired in the Weber-Fechner and Stevens
laws which are represented by an appropriate fuzzy metric. On the other
hand, AEy; is a colour difference formula that corresponds with the repre-

sentation of the Weber-Frechner and Stevens laws by means of fuzzy metrics.

We have performed extensive experimental assessments varying the values

of the adjusting parameters kr,kc and ¢ in the range [0,100] to obtain the
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optimal parameter setting for the formulas proposed in Eq. (4)-(5). With
optimal parameter setting, AE)s+ is able to obtain a STRESS value for
the COM dataset of 0.347 (with kr, = 2,kc = 4,t = 11), whereas AEp;
obtained STRESS of 0.348 (with kp = 4,kc = 12,¢t = 40). Notice that,
in both cases, a significative improvement with respect to AE”; is obtained.
This means that M™* has been successfully used to take into account the facts
related to the Weber-Fechner and Stevens laws. It should be also noted that
whereas AEY, does not incorporate these laws, they are considered in more
recent colour difference formulas such as the CIE94 [98] and CIEDE2000 [99]
formulas. We also compare the performance of the proposed formulas with
these recent ones in Table 2.1, where we can see that the performance of our

formulas are pretty close to the one of the CIE94.
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Chapter 3

On completable fuzzy metric

spaces

The material of this chapter is an adaptation to the thesis of the content of
the paper by Valentin Gregori, Juan-José Minana and Samuel Morillas, “On
completable fuzzy metric spaces”, published in the JCR-journal Fuzzy Sets
and Systems 267 (2015) 133-139.

43



44 ON COMPLETABLE FUZZY METRIC SPACES

3.1 Introduction

In this chapter we continue the study of fuzzy metric completion initiated by
Gregori and Romaguera [31]|. The theory of fuzzy metric completion is, in this
context, very different from the classical theory of metric completion. Indeed,
as it is well-known metric and Menger spaces are completable. Further,
imitating the Sherwod’s proof [83] one can prove that fuzzy metric spaces
defined by Kramosil and Michalek are completable (other different proof
can be found in [6]). In this sense non-completability is a specific feature
of fuzzy metric spaces, since there are fuzzy metric spaces which are not
completable [31, 32, 25]. The following characterization of completable fuzzy

metric spaces was given (in a slightly different way) in [32]:

Theorem 6. A fuzzy metric space (X, M,x) is completable if and only if
for each pair of Cauchy sequences {a,} and {b,} in X the following three

conditions are fulfilled:

(c1) lim, M(an,by,s) =1 for some s > 0 implies lim,, M (a,,by,,t) =1 for
all t > 0.

(c2) limy, M (an,by,t) >0 for all t > 0.

(¢3) The assignment t — lim,, M (a,,by,t) for each t > 0 is a continuous

function on |0, 00[, provided with the usual topology of R.

In [31] and [32] two non-completable fuzzy metric spaces were given in
which conditions (c2) and (cl), respectively, are not satisfied. Since then
the following is an open question (which was posed formally in Problem 1

of Chapter 2): Does it exist a fuzzy metric space in which condition (c3)
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is not satisfied? In this chapter we answer in a positive way this question,
constructing a fuzzy metric space (Proposition 9) in which (c3) is not satisfied
(Example 2). In addition, we also show that this space is an example of a

non-strong fuzzy metric space.

3.2 A non-completable fuzzy metric space

Next, we attend to the requirement of [27] Problem 25, constructing a fuzzy
metric space (X, M, ) in which for two Cauchy sequences {a,} and {b,} in
X the assignment f : RT —]0,1] given by f(t) = lim, M (ay,,by,,t) for all
t > 0 is a non-continuous function on R™, endowed with the usual topology

of R restricted to RT.

We start with the following lemma.

Lemma 3. Let A,B,C,a,b,c € RY and u,v,w €]0,1[ such that A > a,
B>b,C>c,and A>B-C,a>b-cand u>m = max{v,w}. Then

Au+a(l —u) > (Bv+b(1 —v)) - (Cw + ¢(1 —w)). (3.1)
Proof.
The following expressions are satisfied:
Au+a(l —u) > Am+ a(l —m). (3.2)

(Indeed, Au+a(l —u) — Am —a(l —m) = (A —a)(u —m) > 0).

Am+a(l —m) > (Bm+b(1 —m)) - (Cm+ c(1 —m)). (3.3)
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(Indeed, Am + a(l —m) > BCm + be(1 —m) — (B —b)(C —c)m(1l —m) =
(Bm+b(1—m))-(Cm+c(1—m))).

Bv+b(1 —v) < Bm+b(1—m). (3.4)

Cw+c(l —w) < Cm+c(l —m). (3.5)

(Indeed, Bm+b(1 —m) — Bv—0b(1—v) = (B—0b)(m—v) > 0. The proof
of (3.5) is similar).

Now, using expressions (3.4), (3.5), (3.3) and (3.2), successively, we have
(Bv+b(1—v)) - (Cw+c(l—w)) < (Bm+b1l—m)) - (Cm+c(l—m))<

Am+a(l —m) < Au+ a(l — u).

Lemma 4. Let d be the usual metric on R and consider on ]0,1] the standard

fuzzy metric My induced by d. Then
Md($7 Z,t+ S) > Md(ﬂf, Y, t) ' Md(y7 Z, 28)
forall x,y,z €]0,1], d(y,2z) <s <1 and 0 <t <d(z,y).
Proof.
Let z,y,2 €]0,1], d(y,2) < s <1and 0 <t <d(z,y). We have

(t+8)(t + d(z,y))(2s + d(y, 2)) =
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= (t + s)(2st + td(y, z) + 2sd(z,y) + d(z,y)d(y, z)) >
(t+ s)(2st + 2sd(z,y) + 2td(y, z)) >
> 2ts(t+ s+ d(z,y) +d(y, 2)) > 2ts(t + s + d(z, 2)).

So,

— t+ t 2 —
Md(xy Zs t+8) - t+s+dfx,z) > +dz,y) 2s+d?y,z) = Md($a Y, t)'Md(ya 2y 28)'

O

Proposition 9. Let d be the usual metric on R restricted to ]0,1] and con-

sider the standard fuzzy metric My induced by d.

We define on ]0,1]x]0, 1]x]0, 00| the function

Md(‘rayat)a 0<t§d(az,y)
M(z,y,t) = ¢ Mg(z,y,2t)- fi‘fl((ﬁz)) +Ma(2,y,t) - gy dlzy) <t <1
Md(:n,y,Qt), t>1

Then (]0,1], M, ) is a fuzzy metric space.

Proof.

Before starting the proof and tacking into account that

t—d(x,y) 1—t
1— d(l’,y) 1—- d(l’,y) a

for all ¢ > 0, we notice that the following inequalities are satisfied:

t—d(z,y) 1—t

Md(‘ray72t) > Md(x7y7 2t) 1— d(a; y) +Md($,y,t) > Md(l’,y,t)

. 1- d(‘rv y) N
(3.6)
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for all z,y €]0,1] and for all d(z,y) <t < 1.
Clearly, M satisfies (GV'1) and (GV3).
It is left to the reader to verify that M satisfies (GV'2) and (GV'5).

Now, we will see that M satisfies the triangle inequality
M($,Z,t+8) > M($7y7t) : M(y,Z,S)
for all x,y,z €]0,1] and s,t > 0.

We distinguish three possibilities.

(a) Suppose 0 <t+s < d(z, z).

In this case M (x,z,t + s) = My(x, z,t + s).

Under this possibility we can consider the following cases.

(a.1) Suppose 0 <t < d(x,y) and 0 < s < d(y, 2).

In this case M(x,y,t) = My(x,y,t) and
M(y, z,s) = My(y, z, s).

Since

My(z, z,t + s) > My(z,y,t) - My(y, z, s)

we have

M(wa)t—{_S) ZM(ﬂj‘,y,t) 'M(wa)S)‘
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(a.2) Suppose 0 <t < d(x,y) and d(y,z) < s < 1.

In this case M (x,y,t) = My(z,y,t) and

My, 2,5) = Maly, :28) - 983 + Maly, 2,5) - 5.

By Lemima 4 we have that My(z, z,t+s) > Mg(x,y,t)-Ma(y, z,2s).
Thus, by (3.6) we have that

M(z,z,t +5) > M(z,y,t) - M(y,2,s).

(The case d(z,y) <t < 1and 0 < s < d(y,z) is proved in a

similar way.)

(b) Suppose now that d(z,z) <t+s < 1.

In this case

M(z,z,t+s) = My(z,z,2(t+5)) - % + My(z, 2, t+5) - 11__&:;)).

Under this possibility we can consider the following cases.

(b.1) Suppose 0 < t < d(z,y) and 0 < s < d(y,z). In this case
M(ﬂ?,y,t) = Md($7y7t) and M(y7 Z, 8) = Md(y,Z,S). By (36)
we have that

M(z, 2z, t + 5) > Mg(x, z,t + s) > Mg(x,y,t) - Ma(y, 2, s)

and so

M(wa)t—{_S) ZM(ﬂj‘,y,t) 'M(wa)S)‘
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(b.2)

Suppose 0 < t < d(x,y) and d(y,z) < s < 1.

In this case M(x,y,t) = My(x,y,t) and

M(y, z,8) = Ma(y, 2. 25) - 5505 + Ma(y, 2,5) - =iy

By (3.6) and Lemma 4 we have
M($7 z,t+ 8) > Md($7 z,t+ 8) > Md($7y7t) ' Md(y7 2, 28)

and so
M(z,z,t + ) > M(z,y,t) - M(y,2,s).

(The case d(z,y) < t < 1land 0 < s < d(y,z) is proved in a

similar way.)

Suppose d(z,y) <t <1and d(y,z) < s < 1.

In this case M (z,y,t) = My(x,y,2t)- i:fl((zz)) +My(x,y,t)- 1_?;@)

and M(y, 2 s) = May, 2 25) - 59053 + Maly, 2 9) - 1455

Now, it is easy to verify that

t+s—d(zx,z) t—d(z,y) s—d(y,z2)
1—d(z,2) Zmax{l—d(x,y)’ l—d(y,z)}'

(3.7)

t+s—d(z, t—d(z, —d(y,
Put u = S80S gy = O = SO A = My(w, 2, 2(t +
S)), a = Md(wa)t + 8)7 B = Md(gj)y) Zt)a b= Md(ﬂ?,y,t), C =

My(y, z,2s) and ¢ = My(y, 2, s).

Obviously u,v,w €]0,1[ and A, B,C,a,b,c € RT. Now, by (3.7)
and since (My, -) is a fuzzy metric on R then u,v,w, A, B, C,a,b,c

fulfil the conditions of Lemma 3.1. Then

M(z,z,t+3s) = Au+a(l—u) > (Bv+b(1l—v)) - (Cw+c(l —w))
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and so
M(wa)t—i_S) > M(ﬂ?,y,t) 'M(wa)S)‘

(c) Suppose t+ s> 1.
In this case M(x,z,t +s) = My(z, z,2(t + s)).

Clearly, for all x,y, z €]0,1] and for all s, > 0 we have that

M(z,y,t) < My(z,y,2t) and M(y,z,s) < My(y, z,2s).
Since My(x,z,2(t +s)) > My(z,y,2t) - My(y, z,2s) for each ¢,s > 0
then

M(z,z,t+s) > M(x,y,t) - M(y,z,s) for all t,s >0

Therefore, M satisfies the triangle inequality and hence (]0, 1], M, -) is a fuzzy

metric space. O

Proposition 10. The sequence {a,}, where a, = % for allm =1,2,..., is

a Cauchy sequence in (]0,1], M, -).

Proof.
Fix ¢t > 0. We can find ng € N such that ‘% — %| < t for each m,n > nyg.

Then for m,n > ng we have

2t =t~ t 1—t
. + . 0<t<l1
M (ayamyt) = { FHEA] TR T R AT
T t>1

m

2t4|2-L]’
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Hence, if 0 < t < 1 we have limy, ;n M (an, am,t) = 2 -t +L-(1—t) =1, and
2t

if t > 1 we have limy, ;, M (an, am,t) = 5; = 1
Then limy, ,,, M (ap, am,t) =1 forallt > 0. So {a,} is a Cauchy sequence
n (]071]7M7) U

Remark 7. It is easy to see that Tps > Tar, and then Ty is finer than the
usual topology of R. Then, the sequence {%} only could converges to 0 in

Tar, but 0 €]0, 1] and, in consequence, ]0,1] is not complete.

Example 2. Let (]0, 1], M,-) the above fuzzy metric space. Consider the
Cauchy sequences {a,} and {b,} where a,, = 2 and b, =1, forn=1,2,....
We will see that the assignment ¢ — lim,, M (a,, by, t) is a well-defined non-

continuous function on |0, oo[, endowed with the usual topology of R.

Take ¢ €]0,1[. Then there exists ng € N such that ‘1 — %‘ > t for each

n > ng. Hence for each n > ng we have that M (ay, by, t) = t+!1—*’ and so
lim M (ap, by, ) = —
lgLn (a’n7 7 - t+ 1
Ift =1, thent> |1 —2| forall n € N, and so M (an,by,t) = 2+\12—l\ _
1—\1—%\ n
1-[1-1] 1+|1_ [ |1__| Therefore
lim M (an, by, 1) = 3
n
And finally, take ¢ > 1. Then we have that M (ay, by, t) = m and

SO
2t
lim M bp,t) = ——.
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Therefore, we can consider the function f: R* —]0, 1] defined by
f(t) =lm M (ay, by, t)
n

for each ¢t > 0. Hence this function is given by

t
2t
yirry 21

As one can see f is not continuous at ¢t = 1.

Remark 8. Since M does not satisfy (¢3), then by Theorem 6 the fuzzy
metric space (]0, 1], M, -) is not completable.

Remark 9. The fuzzy metric space of Example 2 is not strong. Indeed, if we
take z =1,y = %,z = % €]0,1] and t = ;—(1] > 0, after a tedious computation
one can verify that M(x, z,t) < M(x,y,t) - M(y, z,t).
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Chapter 4

Characterizing a class of
completable fuzzy metric

spaces

The material of this chapter is an adaptation to the thesis of the content of the
paper by Valentin Gregori, Juan-José Minana, Samuel Morillas and Alman-
zor Sapena “Characterizing o class of completable fuzzy metric spaces”, which

is accepted for publication in the JCR-journal Topology and its Applications.

29
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4.1 Introduction

In this chapter we study the characterization of completable fuzzy metric
spaces, in the sense of Geroge and Veeramani, given by Gregori and Roma-
guera 2, which we reformulate, for our convenience, in Theorem 6 of Chapter
3.

There were in the literature examples of non-completable strong fuzzy
metrics that do not satisfy (c1) or (¢2) [31, 32|, and in the last chapter we

have constructed a non-completable fuzzy metric space which does not satisfy

(c3).

In this chapter we first observe that (¢1) —(¢3) constitute an independent
axiomatic system and then we will proof, after several lemmas, that strong
fuzzy metrics satisty (¢3), or in other words (Theorem 8): A strong fuzzy
metric space (X, M, x*) is completable if and only if M satisfies (c1) and
(c2). Several corollaries can be obtained from this theorem, for instance a
characterization of completable fuzzy ultrametrics (Corollary 6) and also we
could obtain that metric spaces admit a unique completion, but we do not
insist on it because it is well-known from the properties of the standard fuzzy

metric. Several examples illustrate our results.

The structure of the chapter is as follows. In Section 4.2 we prove that
(c1) — (¢3) constitute an independent axiomatic system. In Section 4.3 we

give a characterization for the class of completable strong fuzzy metrics.
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4.2 Non-completable fuzzy metric spaces

In this section we will show that the axioms (cl) — (¢3) constitute an in-
dependent axiomatic system. To that end, we show three examples of non-
completable fuzzy metric space, which do not satisfy anyone of these three

axioms but they satisfy the other two.

Example 3. (Gregori and Romaguera [32, Example 2|.) Let {z,,} and {y,}
be two strictly increasing sequences of positive real numbers, which con-
verge to 1 with respect to the usual topology of R, with AN B = (), where
A ={z,:neN}and B={y, :neN}. Put X = AU B and define a fuzzy
set M on X x X x]0, o0[ by:

Mz, xn,t) = M (Yyn, yn,t) = 1 for all n € N, ¢ > 0,

M(xp, Ty, t) = xp A Ty, for all ny,m € N with n # m,t > 0,

M (Y, Ym»t) = Yn A Y for all n,m € N with n # m,t > 0,

M( = M (Ym, Tn,t) = Ty A Y, for all n,m € Nt > 1,

M( = M (Ym, Tn,t) = Tn AN Ym At for all n,m € N, ¢ €]0, 1.

As pointed out in [32], an easy computation shows that (X, M, *) is a fuzzy
metric space, where * is the minimum ¢-norm, and it satisfies conditions (¢2)
and (¢3) of Theorem 6. But M does not satisfy condition (c1) of Theorem
6. Indeed, in [32] it was observed that {z,} and {y,} are Cauchy sequences
in X such that lim,, M(x,,y,,t) = 1 for all ¢t > 1, but lim,, M (2, y,,t) =t
for all ¢ €]0,1].

Example 4. (Gregori and Romaguera [31, Example 2|.) Let {z,} and {y,}
be two sequences of distinct points such that AN B = (), where A = {x,, :
n >3} and B = {y, : n > 3}. Put X = AU B and define a fuzzy set M on
X x X x]0,00[ by:
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M (2, Ty ) = MYy Yo t) = 1 — [ — L]

M(xnaymat) = M(ymaxmt) = % + %7
for all n,m > 3. In [31], it was proved that (X, M,x) is a fuzzy metric
space, where x is the Luckasievicz t-norm (a * b = max{0,a + b — 1}), for

which both {z,},>3 and {yn}n>3 are Cauchy sequences. Clearly,

1 1
lim M (2, Yn, t) = lim (— + —) =0.
n n n n

Therefore, M does not satisty condition (c2).

On the other hand, M is a stationary fuzzy metric on X, and so it satisfies
conditions (c1) and (¢3), since, obviously, this two conditions are satisfied for

stationary fuzzy metrics.

Example 5. Let d be the usual metric on R restricted to ]0, 1] and consider
the standard fuzzy metric My induced by d. Put X =]0, 1] and define a fuzzy
set M on X x X]x]0, 0] by

Md(‘rayat)a 0<t§d(az,y)
M(z,y,t) = § Ma(w,y,2t) - =950 + My(z,y,1) - =y, d(@y) <t <1
Md($7y72t)7 t>1

In the last chapter it is proved that (X, M, %) is a fuzzy metric space, where x*
is the usual product. Also, it is obtained that for the Cauchy sequences {a, }
and {b,} in X, given by a,, = % and b, =1 for all n € N, the assignment

t
. 0<t<1

lim M (ay, by, t) =

2t
2t+1° t>1
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is a well-defined function on |0, oo[ which is not continuous at ¢ = 1. There-

fore, M does not satisfy condition (¢3).
Next, we will see that M satisfies conditions (c1) and (¢2).

For proving that M satisfies (c1), we suppose that {a,} and be {b,} are
two Cauchy sequences in ]0, 1] such that lim,, M (ay, by, s) = 1 for some s > 0.
By Lemma 1, we can find ¢y > 1, with ¢ty > s, such that lim,, M (a,,, by, to) =
1. Then,

. . ) 2to
llglM(anybnytO) - hglMd((ln,bn,ZtO) B héﬂm =1

and thus lim, |a, — b,| = 0.
Let ¢t > 0. We distinguish two cases:
(1) If t €]0,1], then there exists ng € N such that |a, — b,| < t for all

n > ng, since lim, |a, — b,| = 0. Then

lim M (ay,, by, t) =

, < 2t t— |an — by t 1—t )
= lim . + . —
2t + |ap —bp| 1—lan —bp|  t+lan — byl 1—la, — by

—trl—t=1
(2) Ift > 1, then
. . 2t
hyrln M(an,bn,t) = hyrln m =1

Therefore, lim,, M (a,,by,,t) = 1 for all ¢ > 0, and so M satisfies (c1).
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Now, we will prove that M satisfies (¢2). Suppose the contrary, i.e., there
exist two Cauchy sequences {a,} and {b,} such that lim, M (a,,b,,s) =0
for some s > 0. First, we claim that M-Cauchy sequences are Cauchy for the
usual metric d of R restricted to ]0,1]. Indeed, if {a,} is a Cauchy sequence

in (X, M,x), then limy, , M(an,am,t) = 1 for all ¢ > 0. In particular, for

2t

e 1, and so

t > 1 we have that lim, ,, M (ap,am,t) = limy, pT

limy, 1, |an, — am| = 0, i.e., {a,} is Cauchy in (R, d).

Then, there exist a,b € [0,1] such that {a,} and {b,} converge to a and
b, respectively, for the usual topology of R restricted to [0,1]. Therefore,

lim,, |a, — b,| = |a — b].

We distinguish two cases:

(1) Suppose that |a —b| = 0. Then for ¢ty > 1 we have that

1.

. . 2t9 2to
1 M ,b ,t :l = =
im M{an, bn, to) = lim 2tg + |an — bn|  2to +|a — b

So M(an,by,t) = 1 for all t > 0, since M satisfies condition (cl), a

contradiction.

(2) Suppose that |a — b| €]0,1]. Taking into account our assumption
and Lemma 1, we can find 0 < ¢ty < |a — b|, with tg < s, such
that lim, M (an,bn,tog) = 0. Then there exists ng € N such that
|ay, — by| > to for all n > ng, and so

. . to to
lim M (ay, by, to) = 1 - >
M (@n, by to) = B 3 =

0,

a contradiction.

Therefore, M satisfies (¢2).
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Consequently, (c1) — (¢3) constitute an independent axiomatic system.

4.3 Completable strong fuzzy metrics

In this section we will show that condition (¢3) in Theorem 6 can be omitted

when (X, M, x) is a strong fuzzy metric space.

We begin this section giving five lemmas.

Lemma 5. Let (X, M, x) be a strong fuzzy metric space and let {a,}, {bn}
be two Cauchy sequences in X. For each t > 0, the sequence {M (an,bn,t)}n
converges in [0, 1] with the usual topology of R restricted to [0, 1].

Proof.
Fix t > 0. Let {a,} and {b,} be two Cauchy sequences in X. Since [0, 1] is
compact the sequence M (ay, by, t) € [0, 1] has a subsequence { M (ap, , bn, . t) }i
that converges to some ¢ € [0,1]. We will see that {M(ay, by, t)}, converges

to c.

Contrary, suppose that {M(ay,by,,t)}, does not converge to c¢. Then,
we can find a subsequence {M (@, , bm,,t)}i of {M(an, by, t)}, converging to
a € [0,1], with a # c.

Now, since M is strong, for each ¢,k € N we have that
M(an,,bn,,t) > M(an,, Gm;,t) * M(am,;,bm,;,t) * M (b, bn, 1)
and taking limit as ¢,k — oo, we have that

lilrgn M(an,,bn,,t) > im M(am,, bm,,t).
(2
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With a similar argument, we can also obtain

lim M (am,, b, t) > lilrgn M (an, ,bn,,1t).

7

So, ¢ = limy M (ay, , by, ,t) = lim; M (an,, by,,t) = a, a contradiction.

Therefore, lim,, M (a,, by, t) = c. O

Lemma 6. Let (X, M,*) be a fuzzy metric space, let {a,} be a Cauchy
sequence in X and let {t,} be a strictly increasing (decreasing) sequence of
positive real numbers converging to to > 0 (for the usual topology of R). Then

limy, 1, M (ap, @, tn) = 1.

Proof.

It is immediate. (]

Lemma 7. Let (X, M,x) be a strong fuzzy metric space. Let {a,}, {b,} be
two Cauchy sequences in X and let {t,} be a strictly increasing (decreasing)
sequence of positive real numbers converging to to > 0 (for the usual topology
of R). Then, the sequence { M (ay, by, tn)}n converges in [0,1], with the usual
topology of R restricted to [0, 1].

Proof.
Let {an}, {bn} be two Cauchy sequences in X and let {t,} be a strictly
increasing sequence of positive real numbers converging to ty > 0. Consider
the sequence {M (an,bpn,tn)}n C [0,1]. Since [0, 1] is compact then, there
exists a subsequence {M (an,,bn,,tn, )}k of {M(ay,by,tn)}n converging to
ce0,1].
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Suppose that { M (ay, by, ty)}n does not converge to c. Then, we can find a
subsequence {M (@, bm;, tm;)}i of {M (an, by, tn)}n converging to a € [0,1],
with a # c.

Suppose, without loss of generality, that a > ¢. We will construct, by
induction, two subsequences {M (an,, , bny, , tny, )} and {M (amij b s b, )}

of {M(an,,bn,,tn, )}k and {M (am,, bm,,tm,;)}i, respectively, as follows.

Take m;, = m; € N. We can choose ny, € N such that ng, > m;, and
tng, > tm,, (since {t,, } is strictly increasing). By Lemma 1 and using that

M is strong, we have that
M(ankl 9 bnkl 9 tnkl ) 2 M(ankl ) b”kl b tmzl) Z

M (any,, s @y, sty ) % M(am 3 Omg, s tng ) % M (b by 5ty )-

Now, we choose m;, € N such that m;, > ny,. Given m,,, we can choose
ng, € N such that ng, > m;, and tnk2 >t - By Lemma 1 and using that

M is strong, we have that
M(ankz s bnk2 s tnk2) > M(ank2 5 bnk2 5 tmi2) >

M(ankz ’ amiz ’ tmig ) * M(amiz ’ bmiz ’ tmig ) * M(bmlz ’ bnkg ’ tmig )

Therefore, by induction on j we have that

M(ankj ) bnkj ) tnkj ) >

M(ankj s amij g ) * M(amij 5 bmij s tmij ) * M(bmlj 5 bnkj - )

J J
Taking limit as j — 0o, by Lemma 6 we have that.
c=UHm M (apn, ,bn, ,tn, ) > UMM (am,; ,bm, ,tm; ) =a,
7 J J J 7 J J J

a contradiction.
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Therefore, lim,, M (an, by, t,) = c.

If {t,} is strictly decreasing, it is proved in a similar way. O

Lemma 8. Let (X, M,%) be a strong fuzzy metric space. Let {an}, {bn}
be two Cauchy sequences in X and let {t,}, {sn} be two strictly increasing
(decreasing) sequences of positive real numbers converging to to > 0 (for the

usual topology of R). Then, lim,, M (ay,by,t,) = lim, M (an, by, $pn)-

Proof.
Let {an}, {bn} be two Cauchy sequences in X and let {t,}, {s,} be two
strictly increasing sequence of positive real numbers converging to g > 0.
By Lemma 7, there exist a,c¢ € [0,1] such that lim, M(an,by,,t,) = a
and lim, M (an,by,s,) = c. Contrary, suppose that lim, M (an,by,t,) #
lim,, M (ayn, by, $n). Suppose, without loss of generality, that a < c.

In a similar way that in the proof of the above lemma, we will con-
struct two subsequences {M(an, , b, ,tn,) 1k and {M(am,,bm,, sm;)}i of the
sequences {M (an, by, tn)}n and {M(ay, by, Sn)}n, respectively, where ¢, >
Sm,, for all k € N and we have that

M(ank7 bnw tnk) 2

M(ank7amk7 Smk) * M(amk7 bmk7 Smk) * M(bmk7 bnka Smk)

for each k € N.

Taking limit as & — oo, by Lemma 6 we have that

a= thlM(ank’bnk’tnk) 2 liinM(amk,bmk,smk) =
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a contradiction.
Therefore, lim,, M (ay, by, t,) = lim,, M (ay, by, $n).

The case in which {¢,,} and {s,} are strictly decreasing is proved in a

similar way. O

Lemma 9. Let (X, M,x) be a strong fuzzy metric space. Let {a,}, {b,} be
two Cauchy sequences in X and let {t,} be a strictly increasing (decreasing)

sequence of positive real numbers converging to to > 0 (for the usual topology

of R). Then, lim,, M(a,,by,t,) = lim, M(ay,by,to).

Proof.
Let {an}, {bn} be two Cauchy sequences in X and let {t,} be a strictly

increasing sequence of positive real numbers converging to tg > 0.

By Lemma 7, there exists a € [0, 1] such that lim,, M (ay, by, t,) = a and
by Lemma 5, there exists ¢ € [0, 1] such that lim, M(a,,by,ty) = c. Note
that, by Lemma 1, since {t,} is strictly increasing converging to tg, we have

that for each n € N we have that M (ay,, by, tn) < M(an, by, to) and so a < c.

Since lim,, M (an, b,,tg) = ¢, for each € €]0, 1], with € < ¢, we can find
ne € N such that M (ay,, by, to) €]c —€/2,c+€/2]. By axiom (GV'5) we can
find 0, > 0 such that M (ay,, by, ,t) €]c —€,c+ €] for each t €]ty — ., to[.

Suppose that ¢ > a. Taking into account the last paragraph, we will
construct a sequence {M (an,,bn,,Sk)}x, where {a, } and {b,,} are subse-

quences of {a,} and {b,}, respectively, converging to ¢, as follows.



66 CHARACTERIZING A CLASS OF COMPLETABLE FUZZY METRIC SPACES

Let 41 € N, with % < min{e, o}, then there exist ny € N and s; €
]to—%,to[such that M (an, ,bn,,s1) > c—%. Choose i € N, with % < to—s1,
then we can find ny € N, with ng > ny and s9 €]ty — %,to[, such that
M(an,,bn,, S2) > c— % Thus, in this way by induction on k, we construct the
sequence {M (an, , bn, , sk)}k, which obviously satisfies limy, M (ay,, , by, , sk) =
c. On the other hand, {s;} is a strictly increasing sequence of positive real
numbers converging to tg. Therefore, by Lemma 8 limy M (ay, , by, , %) = ¢
for each strictly increasing sequence {ry} of positive real numbers converging

to tp. In particular, if we consider the subsequence {t, } of {t,}, then

limy M (ay, , b, ,tn,) = ¢, a contradiction, since lim,, M (an, by, t,) = a < c.
Therefore, lim,, M (a,, by, t,) = c.

The case of {t,} strictly decreasing is proved in a similar way. O

Theorem 7. Let (X, M, x) be a strong fuzzy metric space, and let {a,}, {bn}

be two Cauchy sequences in X. Then the assignment
t — lim M (ay,, by, t), for each t >0
n

is a continuous function on |0, 00] provided with the usual topology of R.

Proof.
Let {an} and {b,} be two Cauchy sequences in X. By Lemma 5, the assign-
ment ¢t — lim,, M (ay, by, t) for each t > 0, is a well-defined function on |0, o[
to [0,1].

Next, we will see that this function is continuous. First we see that for

each ¢t > 0 the mentioned function is left-continuous.
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Fix typ > 0. By Lemma 5, we have that there exists ¢ € [0, 1] such that

lim,, M (ayn, by, tg) = c. We distinguish two cases:

(1)

Suppose that ¢ = 0. By Lemma 1 and Lemma 5 we have that
lim,, M (an, by, s) = 0 for all s €]0, to].

So, the function ¢t — lim,, M (a,, by, t) is left-continuous at ¢y.

Suppose that ¢ €]0,1] and suppose contrary that the function ¢ —

lim,, M (ay, by, t) is not left-continuous at tg.

Then, there exists €y €]0,1[ such that for each ¢ €]0, o[ we can find
ts €]ty — 0,to[ such that by = lim,, M (ay,, by, ts) ¢]c — €g,c + €. Note
that, by Lemma 1, bs < ¢ and so bs < ¢ — €p.

On the other hand, given t5 €]tg— 0, to[, since lim,, M (a,, by, ts) = bs <
¢ — €, for €/2 we can find n(d) € N such that M(ay,by,,ts) €]bs —
€0/2,bs + €9/2[ for each n > n(d). Therefore, M (ay, by, t5) < ¢ — €y/2
for each n > n(J).

Now, we will construct a sequence {M (an, , by, , tk) }1, where {a,, } and

{bn, } are subsequences of {a,} and {b,}, respectively, as follows.

Consider 71 € N, with % < to. We can find t; €]ty — %,to[ such that
lim,, M (an,bp,t1) < ¢ — 9. Then, we can find n(i;) € N such that
M(ay, by, t1) < ¢ — €y/2 for each n > n(i;). We choose ny = n(iy).

Consider now, is € N, with % €]t1,to]. We can find ty €]ty — %,to[
such that lim,, M (ay,, by, t2) < c—¢€p. Then, we can find n(iz) € N such
that M (ap, by, t2) < c—e€p/2 for each n > n(iz). We choose ng > n(ia),
with ng > nq.

So, by induction on k we construct the sequence {M(an,, by, ,tx)}k,

where {an, } and {by, } are subsequences of {a,} and {b,}, respec-

tively, such that M(ay, ,bn,,tr) < ¢ — €p/2 for each k € N. Also, {t;}
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is a strictly increasing sequence of positive real numbers converging
to to. Therefore, by Lemma 9, we have that limy M(an,, by, tk) =

limy, M (an, , by, ,to) = lim, M (ay,b,,ty) = ¢, a contradiction.

So, the above assignment is a left-continuous function at tg.

In a similar way it is proved that t — lim,, M (ay, by, t) is right-continuous
at to using a strictly decreasing sequence {t,,} converging to to and thus it is

continuous at tg.

Hence, the assignment ¢ — lim,, M (a,, by, t) is a continuous function on
10, ool. O

Theorem 8. A strong fuzzy metric space (X, M, x) is completable if and
only if for each pair of Cauchy sequences {an} and {b,} in X the following

conditions are fulfilled:

(c¢1) lim, M(ap,by,s) =1 for some s > 0 implies lim,, M (ap,by,t) =1 for
all t > 0.

(¢2) limy, M(an,by,t) >0 for all t > 0.

Proof.

The proof is immediate using Theorem 7 and Theorem 6. U

By Theorem 3 and the fact that the minimum t-norm is integral, the

following corollaries are immediate.



CHARACTERIZING A CLASS OF COMPLETABLE FUZZY METRIC SPACES 69

Corollary 5. Let (X, M, *) be a strong fuzzy metric space and suppose that
« 1s integral. Then (X, M, x) is completable if and only if for each pair of
Cauchy sequences {a,} and {b,} in X the condition (cl) is satisfied.

Corollary 6. Let (X, M,*) be a fuzzy ultrametric space. Then (X, M, x) is
completable if and only if for each pair of Cauchy sequences {a,} and {b,}
in X the condition (cl) is satisfied.

Remark 10. We cannot remove the condition that * is integral in Corollary
5 as shows Example 4. In addition, the fuzzy metric of Example 3 is a

non-completable fuzzy ultrametric which does not satisfy (c1).
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Chapter 5

A note on convergence in fuzzy

metric spaces

The material of this chapter is an adaptation to the thesis of the content of
the paper by Valentin Gregori, Juan-José Minana and Samuel Morillas, “A

note on convergence in fuzzy metric spaces”, published in the journal Iranian

Journal of Fuzzy Systems 11 (4) (2014) 75-85.
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5.1 Introduction

In this chapter we continue the work started in [25, 57|, but in the oppo-
site way, that is, we strengthen the condition of convergence on t. So, we
introduce the following concept: A sequence {z,} in (X, M,x) is called s-
convergent if lim,, M (x,, =g, %) =1, for some zop € X. This concept is close
to convergence, and indeed, s-convergence implies convergence but the con-
verse is not true, in general. A fuzzy metric space in which every convergent
sequence is s-convergent will be called s-fuzzy metric space. Our first goal is
to obtain a characterization of s-fuzzy metric spaces by means of local bases
similar to the case of principal fuzzy metric spaces. Indeed, (X, M, ) is an
s-fuzzy metric space if and only if {(\,o o B(z,r,t) : r €]0,1[} is a local base
at x, for each x € X (Corollary 9).

The second goal is to characterize a certain class of fuzzy metrics by
means of our concept. Indeed, for those fuzzy metrics M on X such that
Nuy(z,y) = Npso M(x,y,t) is a (stationary) fuzzy metric on X, we prove
that the topologies on X deduced from M and Ny agree if and only if M
is s-fuzzy metric (Theorem 10). Appropriate examples illustrate that the

implications
§ — convergence = convergence = p — convergence,

have only one sense, in general.
Finally, to provide an overview, a classification of fuzzy metrics is drawn.
This classification attends, specially, to the behaviour of fuzzy metrics with

respect to the different types of convergence studied and it also involves some

well-known families of fuzzy metrics used in this chapter.

The structure of the chapter is as follows. In Section 5.2 we introduce
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and study the concept of s-convergence, in Section 5.3 we study a certain
class of s-fuzzy metrics and in Section 5.4 we classify fuzzy metric spaces in

accordance with the concepts of p and s-convergence.

5.2 s-convergence

Definition 14. Let (X, M, *) be a fuzzy metric space. We will say that a

sequence {z,} in X is s-convergent to xg € X if lim,, M (x,, o, %) =1.

Equivalently, {x,} is s-convergent to xq if for each r €]0, 1 there exists

ng € N such that M(z,,xo, %) > 1 —r for all n > ng, i.e. 2, € B(xg,r, 1)

n

for all n > ng.

Under this terminology the following consequences are immediate:
Consequences 1.
(i) If M is stationary then convergent sequences are s-convergent.

(ii) Constant sequences are s-convergent.
In consequence:

(iii) If Tas is the discrete topology then convergent sequences are s-convergent.

Proposition 11. Let (X, M, *) be a fuzzy metric space. Each s-convergent

sequence 1n X s convergent.

Proof.
Suppose that {x,} is s-convergent to zg. Let t > 0. We choose ng € N such
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that nio < t. We have that M (z,,xo,t) > M(xy, o, %) for all n > ng, and

so lim,, M (xy,zg,t) =1, for all t > 0 and so {x,} converges to x. O

Now we will see that the converse of the last proposition is not true, in

general.

Example 6. (|25, 91]) On [0, co[ we consider the principal fuzzy metric (M, -)
where M is defined by

min{z,y} +1¢

M t) =
(z,y,1) S

x,y € [0,00[,t > 0.

Since lim, M(2,0,t) = lim,, $£ =1 for all ¢ > 0, then {2} converges to 0,

1
o+t
but it is not t to 0, since lim, M(L,0,1) = X _ 1
ut it is not s-convergent to 0, since lim, M(;,0, =) = T =5
n n

Further, if {z,,} is a sequence that converges to zp in a fuzzy metric
space (X, M, *) we cannot ensure, in general, that lim,, M (x,, g, %) exists.

Indeed, in the current example, if we consider the sequence {z,} given by

Ty = % if n is odd and z,, = n—12 if n is even, then {z,,} converges to 0 and it

is easy to see lim,, M (zy,0, %) does not exist.

Proposition 12. Let (X, M, x) be a fuzzy metric space.

(i) Each subsequence of an s-convergent sequence in X is s-convergent.

(i) Each convergent sequence in X admits an s-convergent subsequence.

Proof.
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(i)

(i)

Suppose that {x, } is an s-convergent sequence to xg in X, and consider
a subsequence {x,, } of {z,}. If we take a fix  €]0, 1], by our assump-
tion there exists ng € N such that M (z,, xo, %) > 1—r for each n > ny.
Now, for all k£ € N we have that M (x,, , zo, %) > M (zp,, zo, n—lk), since
{xn, } is a subsequence of {x,}. Thus if we take ko such that ny, > ny,
then M (2, , o, £) > M (2n,, 20, =) > 1 —r for each k > ko.

n
Let {z,,} be a convergent sequence to zo in X. We will construct the

subsequence {x,, } of {z,} as follows:

Since {B(zg, L, L) :m > 2} is a local base at o and {z,} converges

to xg, then for k = 2 we can find ny € N with ng > 2 such that z,, €
B(z¢, 3, 3). By induction on k (k > 3) we choose z,, € B(zo, 7, 1),
with ny > max{ny_1,k} and so we construct the sequence {z,, }. By
construction {x,, } is a subsequence of {z,}. Finally, we will see that
{xn,} is s-convergent. Let r €]0,1[. We can find ky € N such that
0 < %<randthenforall/<;2kowehavethat0<%< %<r.
Thus @, € B(zo, t,7) C B(wo,r, 1) for all k > kg and then {z,, } is

s-convergent.

Definition 15. We will say that (X, M,x) is an s-fuzzy metric space or

simply M is an s-fuzzy metric if every convergent sequence is s-convergent.

By Consequence 1 and the last definition we have the next corollary.

Corollary 7. Let (X, M,x) be a fuzzy metric space.

(i) If Tas is the discrete topology then M is an s-fuzzy metric.
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(ii) If M is stationary then M is an s-fuzzy metric.

Theorem 9. Let (X, M, %) be a fuzzy metric space. Take xg € X and let
{tn} be a sequence of positive real numbers that converges to 0 in the usual
topology of R restricted to [0,00[. Then each convergent sequence {x,} to
xg satisfies that lim, M(zy,x0,t,) = 1 if and only if (),~o B(zo,7,t) is a
neighborhood of xq for each r €0, 1].

Proof.
Suppose that (7,5, B(zo,7,t) is a neighborhood of z¢ for each r €]0,1]
and consider a convergent sequence {z,} to xo in X. Let ¢ €]0,1[. Since
>0 B(o, €,t) is a neighborhood of xg there exists n. € N such that z, €
Niso B(xo, €,t) for all n > ne, ie. M(xo,Tn,t) > 1 — € for all t > 0, and
for all n > n.. In particular M(xg,xp,t,) > 1 — € for all n > n.. Thus
lim,, M (zq, 2y, ty) = 1.

Conversely, suppose that there exists 7o €]0, 1 such that (1, B(xo,70,t)
is not a neighborhood of zy. Equivalently, (), B(xo,70,tn) is not a neigh-
borhood of xy. Recall that {B(zg, %, %) :n > 2} is a decreasing local base
at xg. So, for each n > 2 we have that B(xq, %, %) Z N, B(zo,70,tn). We
construct a sequence {z,} taking z, € B(zo,%,2)\ (N, B(zo,r0,ty)) for
all n > 2. This sequence {x,} is convergent to zo. (Indeed, let § €]0,1]
and t > 0, and consider B(z,d,t), then there exists ng € N such that
B(xy, nio, nio) C B(z,6,t) and so for all n > ng we have that B(zo, 2, 2) C
B(xg,0,t) and then x,, € B(xg,d,t) for all n > ng). Now, we will see that
lim,, M (zy, xo,tn) # 1, by contradiction. Suppose that lim,, M (z,, xo,t,) =
1. Then for ro €]0, 1] there exists n,, € N such that M (x,,zo,t,) > 1 — 19
for all n > n,, and in consequence x,, € B(xo, 10, ty) for all n > n,,, a con-

tradiction. O
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Using the sequence {2} as {t,} in the above theorem and taking into

account that for each r €]0,1[ and ¢t > 0 we have that (., B(zo,7,5) C

B(xg,r,t) for each xy € X, we obtain the next corollary.

Corollary 8. Let (X, M,x) be a fuzzy metric space and let xo € X. Then

the following are equivalent:

(i) Each sequence converging to xg is s-convergent.
(ii) (Vo B(xo,7,t) is a neighborhood of xo for each r €]0,1].

(iii) {Ny>o B(zo,7,t) : v €]0,1[} is a local base at xg.

From this corollary it is immediate to obtain the following corollary.

Corollary 9. Let (X, M,x) be a fuzzy metric space. Then the following are

equivalent:

(i) M is an s-fuzzy metric.
(ii) (Vo B(z,r,t) is a neighborhood of x for allx € X, and for allr €]0, 1[.

(iii) {Nyso B(z,r,t) : v €]0,1[} is a local base at , for each x € X.

Taking into account Theorem 1 we have the next corollary.

Corollary 10. Each p-convergent sequence {x,} in X is s-convergent if and

only if X is a principal s-fuzzy metric space.

Proposition 13. Let (X,d) be a metric space. Then (X, My, -) is an s-fuzzy
metric space if and only if T (d) is the discrete topology.
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Proof.
Fix r €]0,1] and z9p € X. We will see that (., B(wo,7,t) = {zo}. Indeed,
B(zg,r,t) ={y € X : d(z,y) < =} for all t > 0 and so (oo B(wo,7,t) =
Nisofy € X : d(z,y) < ££} = {y € X : d(z,y) < 0} = {x¢}. Then by
Corollary 9 (X, My, -) is an s-fuzzy metric space if and only if z is isolated,
that is 7 (d) is the discrete topology. O

5.3 On a class of s-fuzzy metrics

If (X, M, %) is a fuzzy metric space we define the mapping Ny; on X2 given
by Nar(z,y) = NesoM(z,y,t) for all z,y € X. In this section we are
interested in studying those non-stationary fuzzy metric spaces (X, M, x*)
such that (Njz,*) is a (stationary) fuzzy metric on X and we establish a
relationship between those fuzzy metrics and s-fuzzy metrics. Notice that if
X is a set with at least two elements and d is a metric on X it is obvious

that Ao Ma(z,y,t) =0 for  # y, and so Ny, is not a fuzzy metric on X.

We start with the following lemma (which proof we omit).

Lemma 10. Let (M, x) be a fuzzy metric on X. Then

(i) (N, *) is a stationary fuzzy metric on X if and only if Na(z,y) >0
forall z,y € X. In such a case:

(ii) TNy = Tum-

Theorem 10. Let (M, x) be a fuzzy metric on X such that Ny (z,y) > 0
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for each z,y € X. Then

TNy = Tar if and only if M is an s-fuzzy metric.

Proof.
Suppose that Tn,, = Tm.

Fix o € X, r €]0,1[. We will see that (-, Bu(wo,r,t) is a Tu-
neighborhood of xzg.

Consider the open ball By;,, (zo,7) relative to Njs. Since Ty = Tn,, we
can find r €]0,1[, t1 > 0 such that Bas(xo,r1,t1) C Bn,, (x0,7). We will
see that By,,(20,7) C (V=0 Bm(zo,r,t). Indeed, if y € By, (xo,7) then
Ny(zo,y) > 1—r,ie. N\uoM(20,y,t) > 1—7and so M(xg,y,t) > 1—r for
allt > 0,1.e. y € By(xo,r,t) forallt > 0. Theny € (oo Bu(zo,7,t). Now,
since By (zo,71,t1) C By, (20,7) C (>0 By (zo,7,t) then (5o Bas(zo, 7, 1)
is a Tar-neighborhood of z¢, and so by Corollary 9 M is an s-fuzzy metric.

Conversely, suppose that M is an s-fuzzy metric. By the last lemma we
have that Ty,, > Tm. Now, we will see that Ty > Tn,,. Let 2o € X,
r €]0,1[ and consider By, (zg,r). We will see that (the Tps-neighborhood
of xg) (>0 Bm (2o, 5,t) is contained in By, (zo,7). Indeed, if we consider
Y € (Vs Bu (o, §5,t) then y € Byy(wo, 5,t) for all t > 0, i.e M(xg,y,t) >
1 —Zforallt>0,s0 \,ogM(z0,y,t) >1— 5, thus Nps(zo,y) >1—r and
so y € By,,(zo,7). O

An example of s-fuzzy metric fulfilling all conditions of Theorem 10 is
given later in Example 8. On the other hand the next example shows that

the class of fuzzy metrics M such that Ny, is a fuzzy metric is not contained
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in the class of s-fuzzy metrics and vice-versa.

Example 7. (a) (Njs is a fuzzy metric and M is not an s-fuzzy metric)

Let X =|0,1] be endowed with the usual metric d of R. We define

1—3d(z,y)t, if0<t<1
M(z,y,t) =
1—%d(:17,y), ift>1

It is easy to verify that {(M;, £) : t > 0} is an increasing family of
stationary fuzzy metrics on |0, 1], where My(x,y) = M (x,y,t) for each
t > 0. Also that Ty, is T(d) (the usual topology of R restricted to
10,1]), for all t > 0. Then from |28, 68| one can conclude that (X, M, £)

is a fuzzy metric space and Ty is T (d).

On the other hand, Ny (2,y) = Ayoo M (z,y,t) > 0 for all z,y €]0,1],

since

1, ifz=y

Na(z,y) = \ M(,y,t) =
>0 %, ifx#y

By the last lemma we have that (Njys, £) is a fuzzy metric on X, and

it is obvious that 7y, is the discrete topology. Therefore Tn,, # Ta.

(M is an s-fuzzy metric but Ny is not a fuzzy metric)

The fuzzy metric (M, -) of Example 9 is an s-fuzzy metric on X, but
Nu(3.2) = AisoM(3.2,¢) = Aiag 2t = 0 and so (N, -) is not a

27 207

fuzzy metric on X.
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5.4 A classification of fuzzy metric spaces

Let X be a non-empty set. Denote by D the family of fuzzy metrics that
generate the discrete topology on X, and by My and S the families of s-
fuzzy metrics and stationary fuzzy metrics on X, respectively. Attending to

Consequences 1 we have that D C M, and S € M.

Also, denote the families of principal fuzzy metrics and standard fuzzy
metrics on X by P and Mg, respectively. From [25] we know that S C P

and My C P. Now, from our previous results and the implications
s — convergence = convergence = p — cOnvergence

we can conclude the diagram of inclusions in Figure 5.1.

tuzzy metrics

L M,

o |
2 e

Figure 5.1: Diagram of inclusions

Next, we give examples which show that all (non-trivial) inclusions in the
diagram are strict. In some cases, appropriate sequences with and without

some type of convergence are also provided.
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Notice that in Example 6 we have seen a principal non-s-fuzzy metric

space.

Example 8. (A non-stationary principal s-fuzzy metric space).
Let (]0,00[, M,-) the fuzzy metric space, where M is the fuzzy metric of
Example 6. It is known that M is principal [25]. Now,

min{z,y} +¢t  min{z,y}
max{z,y} +t max{z, y}

NM(x7y) = /\

t>0

> 0 for each z,y €]0, o0l

Then by Theorem 10 we have that M is an s-fuzzy metric, since Tn,, = T,
[27].

Remark 11. Since the completion of the fuzzy metric space of Example 8 is
the fuzzy metric space of Example 6, |27|, then the completion of an s-fuzzy

metric space is not necessarily an s-fuzzy metric space.

Example 9. (A non-stationary non-principal s-fuzzy metric space). Let
X =]0,1], A= XNQ, B= X\ A. Define the function M on X? x RT by

minfrvl ot (e AyeB
(T ; ,y € B) or (xe€B,yeA),tel01],
M(x,y,t) = mm{{x’vg}}

ma{zy ] elsewhere.
b

In [25] it is proved that (X, M, ) is a fuzzy metric space which is not principal.

(Notice that if we take b € B we have that the sequence {1 — %} is p-
_b

convergent, since lim,, M (1—%, 1,1) = lim, 1T" = 1, but it is not convergent,

bll 1

_b
since lim,, M (1 — o 75) = lim,, 1Tn i = %)

Now, we will see that M is an s-fuzzy metric on X. For it we will prove

that [~ B(z,r,t) is a neighborhood of z, for each € X and each r €]0, 1[.

Fix x € X and r €]0,1[. It is easy to verify that for ¢ €]0,1 — r|:
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=

'

[:1:-(1—7"), x]ﬂA, x €A,
B(z,r,t) = mB(:E,r,t) =
>0 [az-(l—r),i]ﬂB, x € B.

'

On the other hand, if n > 2

Therefore if we take n € N such that 0 < % < r we have that B(z, %, %) C
(>0 B(z,7,t) and so (5o B(z,r,t) is a neighborhood of z and then by

Corollary 9 M is an s-fuzzy metric.

Example 10. (A non-principal non-s-fuzzy metric space). Let A =RNQ,
B = R\ A. Let d be the usual metric on R. Define the function M on
R? x R* by

t-Ma(z,y,t), (z€AyeB)or (veByecA),tel0l]
My(z,y,t), elsewhere.

M($7yvt) :{

We will show that (R, M, -) is a fuzzy metric space.
Obviously, M satisfies (GV'1), (GV3) and (GV'5).

First, we will see that M satisfies (GV'2). Suppose that M (z,y,t) = 1 for
x €A,y € Bandt €]0,1[. Then t-My(x,y,t) = 1, but since ¢ €]0, 1] we have
that My(z,y,t) > 1, a contradiction. Therefore, M (x,y,t) = My(x,y,t) =1

and so x = y. The converse is immediate.

Now, we will see that M satisfies (GV'4). Suppose that z,y € A, z € B
and let t,s > 0 such that ¢ + s €]0,1[. Then
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M(z,z,t+s)=(t+s) Mg(z,z,t+s)>s- Mg(x,y,t)- My(y,z,s) =
M($7 Y, t) : M(y) Z, 8)‘
The other cases are proved in a similar way.

We will see that M is not principal and neither an s-fuzzy metric. For it,
we will give a p-convergent sequence which is not convergent and a convergent

sequence which is not s-convergent.

Consider the sequence {Z}. Then lim, M(Z,0,

so {Z} is p-convergent, but lim, M(Z,0, ) = lim,

not convergent.

Now, consider the sequence {%} For all ¢t > 0,

1
lim M (—,0,t) = lim T
n n n t+ﬁ

then {2} is convergent, but lim, M(%,0,2) = 2+ = 1 and so {2} is not

s-convergent.

Example 11. (A non-stationary non-principal s-fuzzy metric which gener-

ates the discrete topology). Let X =]0,00[ and let ¢ : Rt —]0,1] be a

oft) = { t, ift €]o,1]

1, elsewhere

function given by

Define the function M on X? x Rt by

1, =1y

M(‘T’y’t) = { min{x
max{{x’i’j o), x#y
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In [25] it is proved that (M, -) is a non-principal fuzzy metric on X and
that Tjs is the discrete topology, so M is an s-fuzzy metric. Clearly M is

non-stationary.
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Chapter 6

A note on local bases and
convergence in fuzzy metric

spaces

The material of this chapter is an adaptation to the thesis of the content of
the paper by Valentin Gregori, Juan-José Minana and Samuel Morillas, “A
note on local bases and convergence in fuzzy metric spaces”, published in the

JCR-journal Topology and its Applications 168 (2014) 142-148.
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6.1 Introduction

The convergence of a sequence to a point xg in a metric space (X, d) involves
some local base constituted by balls centered at xg. If £ is any family of open
balls centered at xo such that (& = {zo} and z( is not isolated in (X,d)
then £ is a local base at xg. (In this paper [ denotes the intersection of
all members of £). The purpose of this chapter is to study this assertion in
the fuzzy setting. We consider first, a general case, and later some families
of open balls that, in a natural way, appear when studying p-convergence
and s-convergence. Notice that a centered ball at x( in a fuzzy metric space
(X, M, %) is denoted by B(xg,r,t) where r €]0,1[, t > 0.

We show in this chapter that the above assertion is false, in general, for
a fuzzy metric space (Example 12). Now, if £ is constituted by open balls of
the form {B(xq,r,7) : r € J}, where J CJ0, 1[, or M is stationary (Definition

2) then the above assertion holds.

In [25] it is proved that any sequence p-convergent to zg in (X, M, ) is
convergent if and only if {B(x,r,t) : r €]0,1[} is a local base at x¢, for
each ¢ > 0. Fuzzy metric spaces in which all p-convergent sequences are
convergent were called principal. So it seems natural to study families of
open balls, centered at xg, for a fixed t > 0. We show that if B is any of
these families the above assertion is true in principal fuzzy metric spaces,

but in general it is false.

In Chapter 5 it is proved that any sequence convergent to x is s-convergent
in (X, M, ) if and only if (,o( B(xo,,t) is a local neighbourhood of g in
(X, Twm), for each r €]0,1[. Fuzzy metric spaces in which all convergent se-

quences are s-convergent were called s-fuzzy metric spaces. So, it is natural
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to study families of open balls centered at z¢ with a fixed radius r €]0, 1].
If D is any of these families the above assertion is true in co-principal fuzzy
metric spaces (Definition 16), and a similar result is obtained when (X, Tas)
is compact (Theorem 11). The answer in a more general context is an open
problem (Problem 6). Some examples are provided, along the chapter, that

illustrate the theory.

The structure of the chapter is as follows. In Section 6.2 we study the
question of when a family £ of open balls centered at x¢ in a (principal) fuzzy
metric space (X, M, %), is a local base at xg provided that (£ = {xo}. The

same question related to s-fuzzy metrics is studied in Section 6.3.

6.2 Local bases in (principal) fuzzy metric spaces

If £ is a family of open sets in a metric space that constitutes a local base at
xo then (& = {zo}. Conversely, if we assume that z( is not isolated and &
is constituted by a family of open balls centered at xy such that (& = {zo}
then it can be asserted that ¢ is a local base at xg. We will see in the next

example that this assertion is false, in general, in fuzzy metric spaces.

Example 12. Consider the fuzzy metric space, [25], (X, M,-) where X =
10,1, A=XNQ, B=X\ A and M is given by

min{z,y} ot ($ cA
— -t ,YyEB) or (xe€B,ye A),t€]0,1],
M(z,y,t) = mini{x:;j;

Ty} elsewhere.

It is easy to see that {1} is not open, and that B(1,rt) =]1 — r, 1] for all
r €]0,1[ and all ¢ > 1. Consider for (some) ¢t > 1 the family £ = {B(1,r,t) :
r €]0,1[}. We have that (1§ = {1} but £ is not a local base at 1, since
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B(1,3,3) =|3,1] N Q and obviously B(1,r,t) ¢ B(1,3,3) for all r €]0,1],
and all £ > 1.

The next proposition shows that the above assertion holds for stationary

fuzzy metric spaces and at least for a particular case in fuzzy metric spaces.

Proposition 14. Let (X, M,*) be a (stationary) fuzzy metric space and
suppose that xo is not isolated. Let B = {B(xg,r,r) : v € J} (or B =
{B(xg,7) : v € J} if M is stationary). If (\B = {xo} then B is a local base

at xg-

Proof.

Since {zo} is not open then inf J = 0 and the conclusion is obvious. (]

Denote by J; and Jy two non-empty subsets of ]0,1[ where inf J; =

inf Jo = 0. The following is an immediate corollary.

Corollary 11. Let (X, M, %) be a fuzzy metric space and suppose that xq is
not isolated. Let B = {B(xg,r,t) : v € Ji,t € Jo}. If B = {xo} then B is

a local base at xg.

This last proposition is false, in general, if we remove the condition that

{zo} is not open, even if M is stationary, as illustrate the following examples.

Example 13. Consider the fuzzy metric space (]0, 1[, M, -) where M is given
by
1, rT=y
M(xz,y,t) =< ayt, v#yt<1
xy, THyt>1
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In [25], it is proved that Tjs is the discrete topology.

Let o €]0,1[ and consider the family B = {B(zg,r,7) : r E]ﬁ, 1[}.

It is easy to verify that B(zg,r,7) = {zo}U]:=L, 1[. We have that (B =

IO

{zo}, but B is not a local base at z, since B does not contain {xg}.

Example 14. Consider the stationary fuzzy metric space ([0, oo[, M, -), [27],
where M is given by

mintea) oy €0, oof

1

5o, r=0y>1
M(yv‘r) = M(‘Tvy) = zy

o z=0y<1

1, z=y=0

It is easy to verify that {0} € Tas.

For r €]%,1[ we have that B(0,7) = {0}U]2(1 — ), ﬁ[ Consider the
family B = {B(0,r) : r € J}, where J =]3,1[. We have that (1B = {0} but

B is not a local base at 0.

Remark 12. (On principal fuzzy metric spaces) In any fuzzy metric space
(X, M, %) it is easy to verify that for a fixed to > 0 it holds that ({B(zo, 7, t0) :
r €]0,1[} = {xo}. Then it makes sense to study families of open balls cen-
tered at xo with fixed ¢g. Now, if M is not principal then we can find 9 € X
and tg > 0 such that £ = {B(xg,7,t0) : r €]0,1[} is not a local base at xg.
So from (& = {xo} we cannot assert that £ is a local base at xg, even if xg
is not isolated (indeed, this is the case of Example 12 since the family £ is
really {B(1,r,1) :  €]0,1[}). So, our aimed study only has sense in principal
fuzzy metrics and the obtained results are the following.

Proposition 15. Let (X, M, ) be a fuzzy metric space and suppose that xg

is not isolated. For a fized to > 0 consider a family ¢ = {B(xo,r,t0) : 7 € J}
such that (¢ = {xo}. They are equivalent:
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(i) C is a local base at xg.
(i1) {B(zo,7,to) : 7 €]0,1[} is a local base at xg.

(iii) Any sequence {x,} in X such that lim,, M (x,,xq,to) = 1 is convergent
(tO xo).

Proof.

By [25] Theorem 11 we have that (i7i) implies (ii), and with similar
arguments to the ones used in the proof of this theorem it is proved that (i)
implies (i47). Then (i7) and (iii) are equivalents. Obviously, (i) implies (7).

We see that (i7) implies (7).

We claim that infJ = 0 (in other case, {zo} = B(zo,a,tp) for some
a €]0, 1[, a contradiction). Now, consider an open ball B(zg,r,t). We can
find § €]0, 1] such that B(xo,d,ty) C B(zo,r,t). Take j € J with j < ¢ and
then B(zg, j,tg) C B(xo,d,tp), so € is a local base at zg. O

Corollary 12. Let (X, M, x) be a fuzzy metric space without isolated points.
For each x € X and each t > 0 put ¢t = {B(x,r,t) : 7 € J}. Then (X, M, x)
is principal if and only if ¢ is a local base at z, for each x € X and each
t > 0, whenever (L = {z}.

Remark 13. Notice that the converse of this corollary is true even if X
has isolated points, since {B(zg,r,t) : r €]0,1[} is a local base at xg € X,
t > 0. Now, the fuzzy metric M of Example 13 is principal, and the family

B satisfies (1B = {xo}, where {z(} is open, and B is not a local base at .
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6.3 Local bases in s-fuzzy metric spaces

The study of families of balls centered at zy with fixed radius turns interesting
when studying s-fuzzy metrics (see Theorem 8). Hence, we are interested in
this type of families. Consider a family D = {B(zg,ro,t) : t € J}. In the
next example we will see that from (D = {x¢} we cannot assert that D is

a local base at x.

Example 15. Let (X, M, ) the fuzzy metric space of Example 13.

Consider the family of open balls D = {B(2,2,t) : t €]3,1]} centered
at zo = 2 with radius ro = 2. We have that B(3,%,t) = {3}U]4,1] for
t €]3,1] and then D = {Z}. Now, D is not a local base at 3 since Ty is

the discrete topology.

The following is an open question.

Problem 6. Let (X, M, ) be a fuzzy metric space, and suppose that z is
not isolated. Consider for a fixed r¢ €]0, 1] the family D = {B(zg,ro,t) : t €
J}. I D ={xp}, is D alocal base at x(?

Remark 14. (With respect to Problem 6). If z¢ is not isolated in (X, M, )
and {B(xo,r0,t) : t € J} = {zo} then N{B(zo,70,t) : t > 0} is not a
neighborhood of zg and thus there exists a convergent sequence to xg which

is not s-convergent. So, if (M, ) is an s-fuzzy metric without isolated points
then D # {zo}, for any r¢ €]0,1[.

For giving some partial answer to this problem we introduce a dual con-

cept to principal fuzzy metrics, as follows.

Definition 16. We will say that the fuzzy metric space (X, M, *) (or simply,
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M) is co-principal if for each x € X and each r €]0,1[, the family D] =
{B(x,r,t) : t > 0} is a local base at .

Notice that if M is co-principal then M is an s-fuzzy metric space if
and only if Ts is the discrete topology. Clearly, stationary fuzzy metrics

(excepting trivial cases) are not co-principal.

Proposition 16. The standard fuzzy metric is co-principal.

Proof.
Let (X,d) be a metric space and consider the standard fuzzy metric space
(X, My,-). As usual, By(z;9) denotes the open ball in (X, d) with center

and radius 6.

Let € X and r €]0,1[. It is easy to see that By, (z,7,t) = Ba(z; %)
for each ¢ > 0. Since the family {Bg(z; %) : t > 0} is a local base at z for

T (d) and T (d) = Ta,, [19], we conclude that the family { By, (z,r,t) : t > 0}

is a local base at z for Tay,. O

The proof of the next proposition is obvious.

Proposition 17. Let (X, M, x) be a fuzzy metric space and suppose that xg
is not isolated. For a fized ro €]0,1[ consider a family D = {B(xg,r0,t) :
t € J} such that (D = {xo}. Then D is a local base at xo if and only if
{B(xg,70,t) : t > 0} is a local base at .

Corollary 13. Let (X, M, x*) be a co-principal fuzzy metric space without
isolated points. Let D = {B(xo,70,t) : t € J}. If D = {xo} then D is a

local base at xg.
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Notice that we cannot formulate last corollary as Corollary 12 because
we cannot assert that ({B(xg,70,t) : t > 0} is {zo}. The next theorem is a

similar result to Corollary 13 replacing co-principal by compactness.

Theorem 11. Let (X, M, *) be a compact fuzzy metric space, let § €]0,1[ and
suppose that xq is not isolated. Let D = {B(xzo,0,t) : t € J}. If D = {zo}
then D¢ is a local base at xg, for each € < & where D, = {B(xg,¢€,t) : t € J}.

Proof.
We have that inf J = 0, since we suppose that {z(} is not open. Take e €]0, J]
and consider a sequence {t,,} C J convergent to 0. Clearly (", B(xo,0,t,) =

M, B(xo, €, tn) = {zo}-

Take €; €]0,1] such that € < ¢; < J. Since B(zg,€,t) C Blzg,€1,t] C
B(xg,6,t) for all t > 0, then (), Blzo, €1,ts] = {20}

Put V,, = Blxg,€1,t,] for n = 1,2,... We will see that {V,, : n > 1} is
a local base at xg. Consider an open ball B(xg,r,t) with r €]0,1], ¢ > 0.
Suppose, contrarily, that for all n > 1, V,, € B(xo,r,t). Then put E, =
Vo N (B(xg,7,t))¢ # 0, for all n = 1,2, ...

Since {V,, : n > 1} is a decreasing family then {E, : n > 1} is also
a decreasing family of closed sets with E, # () for each n > 1. Further,
the intersection of finite elements of that family, F,,,..., E,,, is non-empty
(indeed, if i« = max{ni,...,n;}, then ﬂ;?:l E,; = E;). So, the family {E, :
n > 1} has the finite intersection property. Since X is compact then () E,, #
0, a contradiction (indeed, y € (N, By, implies y € V,, for n > 1 with y # o).

So, there exists m € N such that V,,, C B(xo,r,t) and then B(zg,€,t,,) C
Blzg, €1,tm] C B(xo,r,t). Hence {B(zg,€,t) : t € J} is a local base at xo.
U
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Chapter 7

std-convergence 1n fuzzy metric

spaces

The material of this chapter is an adaptation to the thesis of the content of
the paper by Valentin Gregori and Juan-José Minana, “std-Convergence in

fuzzy metric spaces”, published in the JCR-journal Fuzzy Sets and Systems

267 (2015) 140-143.
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7.1 Introduction

For establishing relationships between the theory of complete fuzzy metric
spaces and domain theory, Ricarte and Romaguera have introduced in [74]
a stronger concept than Cauchy sequence, called standard Cauchy, briefly
std-Cauchy. They have proved that the well-known theorem due to Edalat
and Heckmann [13] that characterizes complete metric spaces by means of
continuous domains can be obtained from their results in fuzzy metrics ([74],
Corollary 1). Furthermore, the theory constructed in that chapter cannot
be obtained from the metric case. Indeed, if M is a non-complete stationary
fuzzy metric then it is std-complete but the uniformity Uy, induced by M, see
[30], is not complete and so all metrics compatible with s are not complete

and then classical theory cannot be applied on M.

Inspired in the classical case the authors have introduced in [69], in a
natural way, the concept of standard convergence, briefly std-convergence,

and they have asked the following questions.
Q1 : Is every std-convergent sequence a std-Cauchy sequence?

Q2 : Let {z,,} be a std-Cauchy and convergent sequence. Is {z,} std-

convergent?

In this chapter we give negative response to Q1 in Example 16 and then
we conclude that the concept of std-convergence is not appropriate. Then, for
avoiding the proliferation of non-appropriate concepts related to convergence
or Cauchyness, we create a framework in which the study of the relationship
between both concepts to be more useful. So, we establish in Definition 17
when a concept of convergence is compatible with a concept of Cauchyness,

and vice-versa. Later, we give a concept of convergence which is compatible
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with std-Cauchy. Finally, we give a positive answer to (2.

7.2 Results

The next example gives a negative response to the first question Q1.

Example 16. (A std-convergent non-std-Cauchy sequence). Let d be the
usual metric on R restricted to [0, co[ and consider the standard fuzzy metric

induced by d. Let X = [0, 00[. We define on X x X x]0, oo the function

M( H 1, ife=y
z,y,t) =
Md(x707t) : Md(ovyvt)v if x 7£ Y

It is an easy exercise to prove that (X, M, -) is a fuzzy metric space.

Now, consider the sequence {z,} in X, where x,, = % for all n € N. We
claim that {z,} is std-convergent to 0. Indeed, take e €]0,1[, then we can
find n. € N such that n. > % and hence M (z,,0,t) = #%— > HLG, for all
n > n, and for all t > 0. So {z,} is std-convergent to 0.

We claim that {x,} is not std-Cauchy. Indeed, if we suppose that {x,}
is std-Cauchy, then for each € €]0, 1] there exists n. € N such that

t t t

M(zp, xm,t) = . >
(@n, &m, 1) t+1 t+ L7 tte

n

for all n,m >n. and ¢ > 0. So, Wt@”i) > H%, for all £ > 0.

Ne

1

Pl

Then, lim; g

=0 > lim;_yo HLE = =, a contradiction.

t
(t+7-) ()
Remark 15. Attending to Definition 8 it is clear that a natural way of

defining std-convergence is the one given by the authors in [69] (Definition
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9). Unfortunately, as shows Example 16, this definition should be considered

not appropriate.

Next we establish conditions under which a pair of concepts on conver-
gence and Cauchyness, related to sequences, are considered pairwise compat-
ible. These conditions have been chosen for preserving the natural structure
among the concepts and also, for avoiding the unnecessary appearance of

concepts or inner properties (which, finally, could distort the next diagrams).

Definition 17. Suppose it is given a sequential stronger (weaker, respec-
tively) concept than Cauchy, say s-Cauchy (w-Cauchy, respectively). A con-
cept on convergence, say s-convergence (w-convergence, respectively), is said
to be compatible with s-Cauchy (w-Cauchy, respectively), and vice-versa, if
the diagram of implications below on the left (on the right, respectively) is
fulfilled

S — convergence — convergence convergence — W — CONvVeErgence

3 3 1 1
s — Cauchy — Cauchy Cauchy — w — Cauchy

and there is not any other implication, in general, among these concepts.

So, by Example 16 we can assert that the concept of std-convergence is
not compatible with std-Cauchy. After the next remark we give a concept of

convergence which is compatible with std-Cauchy.

Remark 16. (Existence of pairwise compatible s-concepts). Suppose that
a concept of s-Cauchyness which is stronger than Cauchy, is given. Also, sup-
pose that there is not any implication between convergence and s-Cauchyness.
Then, there exists a concept of s-convergence compatible with s-Cauchy if

and only if s-Cauchy and convergence are non-mutually exclusive concepts.
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Indeed, in a such case we can give the next definition: A sequence {x,}
is called s*-convergent if it is convergent and s-Cauchy. Obviously, this
concept of s*-convergence is compatible with s-Cauchy. Further, any con-
cept of s-convergence which is compatible with s-Cauchy is stronger than

s*-convergence.

Now, since every std-convergent sequence is convergent, [69], then Exam-
ple 16 provides an example of a convergent sequence which is not std-Cauchy.
On the other hand if (X, My, ) is a standard fuzzy metric then a sequence
in X is std-Cauchy if and only if it is Cauchy. Hence, in a non-complete
standard fuzzy metric space we can find std-Cauchy sequences which are not
convergent. Further, every convergent sequence in (X, My, -) is std-Cauchy.
Thus, by the last remark we can introduce the following definition of conver-

gence which is compatible with std-Cauchy.

Definition 18. A sequence is called std*-convergent if it is convergent and
std-Cauchy.

Remark 17. (Existence of pairwise compatible w-concepts). Suppose that
a concept of w-convergence which is weaker than convergence is given. Also,
suppose that there is not any implication between w-convergence and Cauchy.
Then, we can find concepts of Cauchyness compatible with w-convergence.
Indeed, in a such case we can give the next definition: {z,} is called w*-
Cauchy if {x,} is Cauchy or w-convergent. Clearly, w*-Cauchy is compat-
ible with w-convergence. Further, any other concept of w-Cauchy which is

compatible with w-convergence is weaker than w*-Cauchy.

Finally, in the next proposition we response in a positive way to Question

Q2.

Proposition 18. Let (X, M,x*) be a fuzzy metric space and let {x,} be a
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std-Cauchy convergent sequence. Then {x,} is std-convergent.

Proof.

Let {z,} be a std-Cauchy convergent sequence. Fix ¢ €]0,1[ and ¢ > 0.
Suppose that {z,} converges to zp. Since M (x,y, ) is continuous for all
xz,y € X, by Corollary 7.2 of |23] (or using Proposition 1 of [75]) we have
that lim,, M (z, Zm,t) = M(zy,x0,t) for all n € N.

On the other hand, since {x,} is std-Cauchy we have that for ¢ €]0,¢]
there exists ng € N such that

M(wn,xm,t)>L>L,for all n,m > ngs and all ¢t > 0.
t+6 t+e€
Then
Mz, x0,t) = lim M (z, x 15)>L>L for all n > ng and all t > 0
ny L0,y o nyLm, _t+5 t+€, i 7)

and so {z,} is std-convergent. O



Chapter 8

Discussion of the obtained

results and conclusions

In Chapter 2 we have made a detailed study, from the mathematical point

of view, of the fuzzy metrics M* and. My, where M*(x,y,t) = % is
defined on [0, co[ and My(z,y,t) = rﬁiﬁ% is defined on ]0, 00[. As a conse-

quence of our study, we have introduced five questions in fuzzy metric spaces
(relative to completion, uniform continuity, extension and contractivity) that
we think provide the basis of much future research. Further, in this chapter,
from the practical application point of view, we have shown that the fuzzy
metric M* is useful to approach the problem of measuring perceptual colour

differences between colour samples.

In Chapter 3, we have answered an open question by constructing a par-
ticular non-completable fuzzy metric space (X, M, ). For it, we have seen
that in this fuzzy metric space we can find two Cauchy sequences {a,,} and

{b,} such that the assignment f(t) = lim,, M(ay,,b,,t) is not continuous.

103
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In addition, we have shown that the mentioned fuzzy metric space is not
strong. This fact arises the question if there exists a strong fuzzy metric
space fulfilling the requirements of the mentioned problem, which has been
answered in a negative way in Chapter 4. As a consequence of this result,
we have gotten a characterization of the class of completable strong fuzzy
metrics. Further, in Chapter 4 we have showed that the conditions, in our
reformulation (Theorem 6), of the theorem of characterization of completable

fuzzy metric spaces constitute an independent system.

On the other hand, we have studied some different concepts related to
convergence of sequences in fuzzy metric spaces. A significant difference
between fuzzy metric and classical metrics is that the first one includes a
t parameter in its definition. This fact allows us to introduce some (well-
known) motivated concepts that in the classical theory have no sense. For
instance, when working on contractivity, D. Mihet [57] introduced a weaker
concept than convergence, called p-convergence. Then, the authors in [25]
characterized those spaces in which p-convergent sequences are convergent.
In Chapter 5 we continue the work started in [25, 57|, but in the opposite way,
that is, we introduce the concept of s-convergence, strengthen the condition
of convergence on t. In that chapter we get a characterization of those fuzzy
metric spaces in which convergent sequences are s-convergent, called s-fuzzy
metric spaces, by means of local bases in a similar way to the case of principal
fuzzy metric spaces. Further, we have obtained the following result. Given
a fuzzy metric space (X, M,x), if (Nps,*) is a fuzzy metric on X where
Ny(x,y) = AN{M(x,y,t) : t > 0} then the topologies deduced from M and

Ny coincide if and only if M is an s-fuzzy metric.

We have studied when certain families of open balls centered at a point
are a local base. If (X, d) is a metric space it is well-known that if £ is any

family of open balls centered at a point xy such that (1§ = {x¢} and z¢ is not
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isolated in (X, d) then £ is a local base at xg ([ £ denotes the intersection of
all members of £). The results obtained in this chapter show that the above
assertion is false, in general, for a fuzzy metric space (Example 12). Now, if
¢ is constituted by balls of the form {B(xg,r,7) : r € J}, where J CJ0, 1], or
M is stationary (Definition 2) then the above assertion holds. This study is
related with s-fuzzy metric spaces (spaces in which convergent sequences are
s-convergent) and principal fuzzy metric spaces (spaces in which p-convergent

sequences are convergent).

As another contribution to the study of concepts related to convergence
of sequences appeared in the literature, we have answered two open questions
involving the concepts of standard Cauchy [74, Definition 3| and standard
convergent sequence [69, Definition 17]. As a consequence of these responses
we establish conditions for which a pair of concepts related to convergence

and Cauchynes, respectively, should be fulfil for being considered compatible.
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