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RESUMEN ESPAÑOL

La matemáti
a fuzzy ha 
onstituido un amplio 
ampo en la investiga
ión,

desde que en 1965 L. A. Zadeh introdujo el 
on
epto de 
onjunto fuzzy. En

parti
ular, la 
onstru

ión de una teoría satisfa
toria de espa
ios métri
os

fuzzy ha sido un problema investigado por mu
hos autores. En 1994, George

y Veeramani introdujeron y estudiaron una no
ión de espa
io métri
o fuzzy

que 
onstituía una modi�
a
ión de la anteriormente dada por Kramosil y

Mi
halek. Mu
hos autores han 
ontribuido al estudio de este tipo de métri
as

fuzzy, desde el punto de vista matemáti
o y de sus apli
a
iones. En esta tesis

hemos 
ontribuido al desarrollo del estudio de estas métri
as fuzzy, desde el

punto de vista matemáti
o, y hemos abordado el problema de la medida de

la diferen
ia per
eptual de 
olor utilizando una de estas métri
as.

Las 
ontribu
iones que aportamos en esta tesis a di
ho estudio, se re-

sumen a 
ontinua
ión:

(i) Hemos he
ho un estudio detallado del espa
io métri
o fuzzy (X,M, ·)
dondeM está dada sobre [0,∞[ por la expresiónM(x, y, t) = min{x,y}+t

max{x,y}+t

y de otros espa
ios métri
os fuzzy rela
ionados 
on el. Como 
onse-


uen
ia de este estudio hemos introdu
ido 
in
o 
uestiones en la teoría

de las métri
as fuzzy rela
ionadas 
on 
ontinuidad, extensión, 
ontra
-

tividad y 
ompleta
ión.

(ii) Hemos respondido a una 
uestión abierta 
onstruyendo un espa
io

métri
o fuzzy (X,M, ∗) en el 
ual la asigna
ión f(t) = limnM(an, bn, t),

donde {an} y {bn} son su
esiones M -Cau
hy, no es una fun
ión 
on-

tinua sobre t. La respuesta a esta 
uestión nos ha permitido 
ara
terizar

la 
lase de los espa
ios métri
os fuzzy strong 
ompletables.
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(iii) Hemos introdu
ido y estudiado un 
on
epto más fuerte que el de 
onver-

gen
ia de su
esiones en espa
ios métri
os fuzzy, al que hemos llamado

s-
onvergen
ia. En nuestro estudio hemos 
onseguido una 
ara
teri-

za
ión de aquellos espa
ios métri
os fuzzy en los 
uales toda su
esión


onvergente es s-
onvergente y hemos dado una 
lasi�
a
ión de los es-

pa
ios métri
os fuzzy atendiendo a su 
omportamiento 
on respe
to a

los diferentes tipos de 
onvergen
ia que se da en él.

(iv) Hemos estudiado, en el 
ontexto de los espa
ios métri
os fuzzy, 
uando


iertas familias de bolas abiertas 
entradas en un punto son base lo
al

de este punto.

(v) Hemos respondido a dos 
uestiones abiertas rela
ionadas 
on la 
on-

vergen
ia standard, un 
on
epto más fuerte que el de 
onvergen
ia de

su
esiones en espa
ios métri
os fuzzy, introdu
ido de forma natural a

partir del 
on
epto de su
esión de Cau
hy standard (introdu
ido en

[74℄). Estas respuestas nos han llevado a estable
er unas 
ondi
iones

bajo las 
uales un 
on
epto rela
ionado 
on el 
on
epto de su
esión

de Cau
hy y un 
on
epto rela
ionado 
on el de 
onvergen
ia deberían

satisfa
er para ser 
onsideradas 
ompatibles.

(vi) Como apli
a
ión prá
ti
a, hemos mostrado que una 
ierta métri
a fuzzy

es útil para medir diferen
ia per
eptual de 
olor entre muestras de 
olor.
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RESUMEN VALENCIANO

La matemàti
a fuzzy ha 
onstituït un ampli 
amp en la investiga
ió, des

que el 1965 L. A. Zadeh va introduir el 
on
epte de 
onjunt fuzzy. En par-

ti
ular, la 
onstru

ió d'una teoria satisfa
tòria d'espais mètri
s fuzzy ha

estat un problema investigat per molts autors. El 1994, George i Veeramani

introduiren i estudiaren una no
ió d'espai mètri
 fuzzy que 
onstituïa una

modi�
a
ió de la donada per Kramosil i Mi
halek anteriorment. Molts autors

han 
ontribuït a l'estudi d'aquest tipus de mètriques fuzzy, des del punt de

vista matemàti
 i de les seves apli
a
ions. En aquesta tesi hem 
ontribuït

al desenvolupament de l'estudi d'aquestes mètriques fuzzy, des del punt de

vista matemàti
, i hem abordat el problema de la mesura de la diferèn
ia

per
eptiva de 
olor utilitzant aquestes mètriques.

Les 
ontribu
ions que aportem en aquesta tesi a tal estudi es resumeixen

a 
ontinua
ió:

(i) Hem fet un estudi detallat de l'espai mètri
 fuzzy (X,M, ·) on M està

donada sobre [0,∞[ per l'expressió M(x, y, t) = min{x,y}+t
max{x,y}+t i d'altres

espais mètri
s fuzzy rela
ionats amb ell. Com a 
onseqüèn
ia d'aquest

estudi hem introduït 
in
 qüestions en la teoria de les mètriques fuzzy

rela
ionades amb 
ontinuïtat, extensió, 
ontra
tividad i 
ompleta
ió.

(ii) Hem respost a una qüestió oberta 
onstruint un espai mètri
 fuzzy

(X,M, ∗) en el qual l'assigna
ió f(t) = limnM(an, bn, t), on {an} i

{bn} són su

essions M -Cau
hy, no és una fun
ió 
ontínua sobre t. La

resposta a aquesta qüestió ens ha permès 
ara
teritzar la 
lasse dels

espais mètri
s fuzzy strong 
ompletables.

(iii) Hem introduït i estudiat un 
on
epte més fort que el de 
onvergèn-
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ia de su

essions en espais mètri
s fuzzy, al qual hem anomenat s-

Convergèn
ia. En el nostre estudi hem a
onseguit una 
ara
teritza
ió

d'aquells espais mètri
s fuzzy en els quals tota su

essió 
onvergent és

s-
onvergente i hem donat una 
lassi�
a
ió dels espais mètri
s fuzzy

atenent al seu 
omportament respe
te als diferents tipus de 
onvergèn-


ia que es dóna en ell.

(iv) Hem estudiat, en el 
ontext dels espais mètri
s fuzzy, quan 
ertes

famílies de boles obertes 
entrades en un punt són base lo
al d'aquest

punt.

(v) Hem respost a dues qüestions obertes rela
ionades amb la 
onvergèn
ia

estàndard, un 
on
epte més fort que el de 
onvergèn
ia de su

essions

en espais mètri
s fuzzy, introduït de forma natural a partir del 
on-


epte de su

essió de Cau
hy estàndard (introduït en [74℄). Aquestes

respostes ens han portat a establir unes 
ondi
ions sota les quals un


on
epte rela
ionat amb el 
on
epte de su

essió de Cau
hy i un 
on-


epte rela
ionat amb el de 
onvergèn
ia haurien de satisfer per a ser


onsiderats 
ompatibles.

(vi) Com a apli
a
ió prà
ti
a, hem mostrat que una 
erta mètri
a fuzzy

és útil per mesurar la diferèn
ia per
eptiva de 
olor entre mostres de


olor.
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RESUMEN INGLÉS

Fuzzy mathemati
s has 
onstituted a wide �eld of resear
h, sin
e L. A. Zadeh

introdu
ed in 1965 the 
on
ept of fuzzy set. In parti
ular, the problem of


onstru
ting a satisfa
tory theory of fuzzy metri
 spa
es has been investi-

gated by several authors. In 1994, George and Veeramani introdu
ed and

studied a notion of fuzzy metri
 spa
e that 
onstituted a modi�
ation of the

one given by Kramosil and Mi
halek. Several authors have 
ontributed to

the study of this kind of fuzzy metri
s, from the mathemati
al point of view

and for their appli
ations. In this thesis we have 
ontributed to develop the

study of these fuzzy metri
s, from the mathemati
al point of view, and we

approa
hed the problem of measuring per
eptual 
olour-di�eren
e between

samples of 
olour using one of these fuzzy metri
s.

The 
ontributions of the study 
arried out in this thesis is summarized

as follows:

(i) We have made a detailed study of the fuzzy metri
 spa
e (X,M, ·)
where M is given on X = [0,∞[ by M(x, y, t) = min{x,y}+t

max{x,y}+t and others

related to it. As a 
onsequen
e we have introdu
ed �ve questions in

fuzzy metri
s related to 
ontinuity, extension, 
ontra
tivity and 
om-

pletion.

(ii) We have answered an open question 
onstru
ting a fuzzy metri
 spa
e

(X,M, ∗) in whi
h the assignment f(t) = limnM(an, bn, t), where {an}
and {bn} are M -Cau
hy sequen
es in X, is not a 
ontinuous fun
tion

on t. The response to this question has allowed us to 
hara
terize the


lass of 
ompletable strong fuzzy metri
 spa
es.

(iii) We have introdu
ed and studied a stronger 
on
ept than 
onvergen
e
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of sequen
es in fuzzy metri
 spa
es, whi
h we 
all s-
onvergen
e. In our

study, we have gotten a 
hara
terization of those spa
es in whi
h every


onvergent sequen
e is s-
onvergent and we have given a 
lassi�
ation

of fuzzy metri
s attending to the behaviour of the fuzzy metri
 with

respe
t to the di�erent types of 
onvergen
e.

(iv) We have studied, in the 
ontext of fuzzy metri
 spa
es, when 
ertain

families of open balls 
entered at a point are lo
al bases for this point.

(v) We have answered two open questions related to standard 
onver-

gen
e, a stronger 
on
ept than 
onvergen
e of sequen
es in fuzzy metri


spa
es, introdu
ed in a natural way attending to the 
on
ept of stan-

dard Cau
hy sequen
e (introdu
ed in [74℄). These responses have led

us to establish 
onditions under whi
h Cau
hyness and 
onvergen
e

should be 
onsidered 
ompatible.

(vi) As a pra
ti
al appli
ation, we have shown that a 
ertain fuzzy met-

ri
 is useful for measuring per
eptual 
olour-di�eren
es between 
olour

samples.
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Chapter 1

Introdu
tion. Obje
tives

1.1 Ba
kground of study

The fuzzy theory was initiated by Lofti A. Zadeh [95℄ in 1965, who introdu
ed

the 
on
ept of fuzzy set as an assignment of a value in [0, 1] to ea
h element

of a 
lassi
al set. This value represents the degree of membership of the

element to the fuzzy set. Formally, given a non-empty setX, ea
h appli
ation

A : X → [0, 1] is 
alled a fuzzy set on X.

One of the �rst resear
h topi
s that appeared in fuzzy mathemati
s was

fuzzy topology. The �rst work on fuzzy topology was done by C. L. Chang

[7℄ in 1968. A

ording to Chang, a fuzzy topology T in X is a family of

fuzzy sets on X that is 
losed for unions and for �nite interse
tions. This

family also 
ontain the 
onstant fun
tions 0 and 1. There are other 
on
epts

of fuzzy topology. For instan
e, the 
on
ept of fuzzy topology introdu
ed

by R. Lowen [50, 51℄, the 
on
ept given, independently, by U. Höle [40℄ and

5



6 Introdu
tion. Obje
tives

M. Ying [94℄ or the 
on
ept given by A. �ostak [85, 86℄ (redis
overed by

Chattopadhyay, Hazra and Samanta [8℄).

One of the most interesting and most studied problems in fuzzy topology

is obtaining an appropriate notion of fuzzy metri
 spa
e. The study of metri


spa
es is based on the notion of distan
e between points. However, in many

real situations this distan
e 
annot be exa
tly determined. This problem,

that belongs to the fuzzy �eld, was previously approa
hed from the point of

view of the probability theory. Indeed, in 1942 K. Menger [55℄ introdu
ed

the so-
alled probabilisti
 metri
 spa
es. These spa
es have been widely

studied, for instan
e [9, 10, 38, 80℄. In the Menger's theory the 
on
ept of

distan
e is 
onsidered to be statisti
al or probabilisti
, i.e. he proposed to

asso
iate a distribution fun
tion Fxy, to every pair of elements x, y instead

of asso
iating a number, and for any positive number t, interpreted Fxy(t)

as the probability that the distan
e from x to y be less than t.

Kramosil and Mi
halek [48℄ gave a notion of fuzzy metri
 spa
e whi
h


ould be 
onsidered as a reformulation, in the fuzzy 
ontext, of the notion of

probabilisti
 metri
 spa
e due to Menger [55℄. Later, George and Veeramani

[19, 21℄ introdu
ed and studied a notion of fuzzy metri
 spa
e (X,M, ∗),
where ∗ is a 
ontinuous t-norm, whi
h 
onstitutes a modi�
ation of the one

due to Kramosil and Mi
halek. From now on, by fuzzy metri
 we mean a

fuzzy metri
 in the sense of George and Veeramani. We noti
e that many


on
epts and properties stated for fuzzy metri
s 
an be given for KM -fuzzy

metri
s (fuzzy metri
s in the sense of Kramosil and Mi
halek in the original

version [48℄) or in a modern version [19, 23℄. For this reason, sometimes, the

term fuzzy metri
 in a wide sense 
an make referen
e to any of them. Sev-

eral authors have 
ontributed to the development of this theory, for instan
e

[56, 57, 75, 90, 91℄. In parti
ular, it has been proved that the 
lass of topo-

logi
al spa
es whi
h are fuzzy metrizable agrees with the 
lass of metrizable
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topologi
al spa
es [20, 30℄ and then, some 
lassi
al theorems on metri
 
om-

pleteness and metri
 (pre)
ompa
tness have been adapted to the realm of

fuzzy metri
 spa
es [30℄. Nevertheless, the theory of fuzzy metri
 
ompletion

is, in this 
ontext, very di�erent from the 
lassi
al theories of metri
 
om-

pletion and probabilisti
 metri
 
ompletion. In fa
t, there are fuzzy metri


spa
es whi
h are not 
ompletable ([31, Example 2℄, [32, Example 2℄ and [25,

Example 14℄). A 
hara
terization of 
ompletable fuzzy metri
 spa
es was

given in [32, Theorem 1℄.

This type of fuzzy metri
s are interesting for Engineering problems mainly

due to the following two advantages with respe
t to 
lassi
al metri
s: First,

values given by fuzzy metri
s are in the interval ℄0,1℄ regardless the nature

of the distan
e 
on
ept being measured. This implies that it is easy to


ombine di�erent distan
e 
riteria that may originally be in quite di�erent

ranges but fuzzy metri
s take to a 
ommon range. Se
ond, fuzzy metri
s

mat
h perfe
tly with the employment of other fuzzy te
hniques sin
e the

value given by a fuzzy metri
 
an be dire
tly employed or interpreted as a

fuzzy 
ertainty degree. This allows to straightforwardly in
lude fuzzy metri
s

as part of other 
omplex fuzzy systems.

Re
ently, they have been applied to 
olour image �ltering improving some

�lters when repla
ing 
lassi
al metri
s and allowing the design of new �lter-

ing methods [4, 62, 65, 66℄. In fa
t, the use of this type of fuzzy metri
s is

interesting within image �ltering due to three main reasons: (i) The t param-

eter in the fuzzy metri
 allows to in
lude adaptivity to 
ontext and indeed

image pro
essing needs to be adaptive given the variability from one image to

another whi
h may be due not only to image 
ontent but also to a
quisition

pro
ess and devi
e; (ii) fuzzy te
hniques provide an appropriate framework

to develop soft-adaptive solutions to the problem of distinguishing between

noise and image features and some fuzzy metri
s have been found to be more
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appropriate in this 
ontext; and (iii) in the �ltering problem usually di�erent

distan
e 
riteria need to be used simultaneously, for whi
h fuzzy metri
s are

able to provide simple, e�
ient and e�e
tive solutions.

1.2 Obje
tives

The obje
tive of this work is to 
ontinue the develop of the theory of fuzzy

metri
 and to �nd for a 
ertain fuzzy metri
 a pra
ti
al appli
ation. From

the mathemati
al point of view we have studied well known topi
s on this

�eld as 
ontra
tivity, 
onvergen
e, 
ompleteness and 
ompletion.

The organization of the thesis is as follows. It is divided in eight 
hapters.

Next, we explain, brie�y, the 
ontent of ea
h of them.

Chapter 1 des
ribes the general ba
kground and the obje
tives of the

thesis. Further, it 
ontains all the ne
essary preliminaries about fuzzy metri
s

used in this work.

In Chapter 2 we study the fuzzy metri
sM∗
andM0, whereM

∗(x, y, t) =
min{x,y}+t
max{x,y}+t is de�ned on [0,∞[ andM0(x, y, t) =

min{x,y}
max{x,y} is de�ned on ]0,∞[.

Our study is detailed as follows. First, we show that (]0,∞[,M0, ·) is 
om-

plete (Theorem 4). Nevertheless we prove that (]0,∞[,M∗, ·) is not 
omplete

and 
ompletable, and so we have 
onstru
ted its 
ompletion. Then, we study

some aspe
ts of the 
ontinuity ofM0 and the uniform 
ontinuity ofM0, �xed

one 
omponent. Then, we 
onstru
t an extension ofM∗
to R. And �nally, we

see some aspe
ts about 
ontra
tivity with respe
t to M0. These studies 
re-

ate an appropriate 
ontext to introdu
e �ve questions related to 
ontra
tivity

(Problem 5), 
ontinuity (Problem 3), extension (Problem 4) and 
ompletion
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of fuzzy metri
s (Problems 1 and 2). Also, as a pra
ti
al appli
ation we show

that the fuzzy metri
 M∗

an be used to approa
h the problem of measuring

per
eptual 
olour-di�eren
e between 
olour samples.

In Chapter 3 we 
onstru
t a non-
ompletable fuzzy metri
 spa
e (X,M, ∗)
(Proposition 9). For it, we prove that the assignment f(t) = limnM(an, bn, t)

is a well-de�ned fun
tion on ]0,∞[, whi
h is not 
ontinuous for two parti
ular

Cau
hy sequen
es {an} and {bn} of X. We also prove that the 
onstru
ted

fuzzy metri
 spa
e is not strong (non-Ar
himedean).

In Chapter 4 we prove that the 
onditions, in our reformulation (Theorem

6), given by V. Gregori and S. Romaguera 
hara
terizing 
ompletable fuzzy

metri
 spa
es 
onstitute an independent axiomati
 system. For it we use the


onstru
ted non-
ompletable fuzzy metri
 spa
e of Chapter 3 whi
h, at the

same time, leads us to obtain a 
hara
terization of the 
lass of 
ompletable

strong fuzzy metri
 spa
es (Theorem 8).

In Chapter 5 we introdu
e and study a stronger 
on
ept than 
onver-

gen
e of sequen
es 
alled s-
onvergen
e (De�nition 14), and we 
hara
terize

those fuzzy metri
 spa
es in whi
h 
onvergent sequen
es are s-
onvergent

(Corollary 9). In su
h a 
ase M is 
alled an s-fuzzy metri
. On the other

hand, given a fuzzy metri
 spa
e (X,M, ∗), if (NM , ∗) is a fuzzy metri
 on

X where NM (x, y) =
∧{M(x, y, t) : t > 0} then it is proved that the topolo-

gies dedu
ed from M and NM 
oin
ide if and only if M is an s-fuzzy metri


(Theorem 10). A 
lassi�
ation of fuzzy metri
s attending to the behaviour of

fuzzy metri
s with respe
t to the di�erent types of 
onvergen
e and involving

some well-known 
lasses of fuzzy metri
s is given at the end of this 
hapter

(Diagram 5.1).

In Chapter 6 we study when 
ertain families of open balls 
entered at a
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point are lo
al bases at this point. This question is related to the 
on
ept of

s-
onvergen
e and also to the 
on
ept of p-
onvergen
e introdu
ed by Mihet

[57℄. The main results obtained in this 
hapter are Corollaries 12 and 13,

and Theorem 11.

In Chapter 7 we answer two questions posed by S. Morillas and A. Sapena

[On Cau
hy sequen
es in fuzzy metri
 spa
es, Pro
eedings of the Conferen
e

in Applied Topology WiAT'13 101-108℄ related to standard 
onvergen
e (Def-

inition 9). This last 
on
ept was introdu
ed in a natural way by the authors

after that L. Ri
arte and S. Romaguera introdu
ed in [74℄ the 
on
ept of

standard Cau
hy sequen
e in order to extend the 
lassi
al theory of 
ontin-

uous domains to fuzzy setting. In parti
ular, we prove the existen
e of a

standard 
onvergent sequen
e whi
h is not standard Cau
hy (Example 16).

This result leads us to establish what 
onditions should satisfy a 
on
ept

about sequential 
onvergen
e to be 
onsidered 
ompatible with a 
on
ept of

Cau
hyness (De�niton 17).

1.3 Preliminaries

Let us re
all, [79℄, that a t-norm is a binary operation ∗ : [0, 1]× [0, 1] → [0, 1]

su
h that ([0, 1],≤, ∗) is an ordered Abelian topologi
al monoid with unit 1.

De�nition 1. (George and Veeramani [19℄). A fuzzy metri
 spa
e is an

ordered triple (X,M, ∗) su
h that X is a (non-empty) set, ∗ is a 
ontinu-

ous t-norm and M is a fuzzy set on X × X×]0,∞[ satisfying the following


onditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0;
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(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) =M(y, x, t);

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(GV5) M(x, y,_) :]0,∞[→]0, 1] is 
ontinuous.

Some parti
ular 
ontinuous t-norms used in this work are the minimum,

denoted by ∧, the usual produ
t, denoted by ·, and the Lukasievi
z t-norm,

denoted by L (xLy = max{0, x+ y − 1}).

The axiom (GV1) is justi�ed by the authors be
ause in the same way

that a 
lassi
al metri
 does not take the value ∞ then M 
annot take the

value 0. The axiom (GV2) is equivalent to the following:

M(x, x, t) = 1 for all x ∈ X, t > 0 and M(x, y, t) < 1 for all x 6= y, t > 0.

The axiom (GV2) gives the idea that only when x = y the degree of nearness

of x and y is perfe
t, or simply 1, and then M(x, x, t) = 1 for ea
h x ∈ X

and for ea
h t > 0. In this manner the values 0 and ∞ in the 
lassi
al

theory of metri
 spa
es are identi�ed with 1 and 0, respe
tively, in this fuzzy

theory. Axioms (GV3) and (GV4) are a fuzzy version of the symmetry and

the triangular inequality, respe
tively. Finally, in (GV5) the authors only

assume that the variable t behave ni
ely, that is, they assume that for �xed

x and y, the fun
tion t → M(x, y, t) is 
ontinuous without any imposition

for M as t→ ∞.

If (X,M, ∗) is a fuzzy metri
 spa
e, we will say that (M, ∗) is a fuzzy

metri
 on X. Also, if 
onfusion is not possible, we will say that (X,M) is a

fuzzy metri
 spa
e or M is a fuzzy metri
 on X. This terminology will be

also extended along this work in other 
on
epts, as usual, without expli
it

mention.
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Lemma 1. (Grabie
 [23℄) The real fun
tion M(x, y,_) of Axiom (GV5) is

non-de
reasing for all x, y ∈ X.

In the de�nition of Kramosil and Mi
halek, [48℄, M is a fuzzy set on

X ×X × [0,∞[ that satis�es (GV3) and (GV4), and (GV1), (GV2), (GV5)

are repla
ed by (KM1), (KM2), (KM5), respe
tively, below:

(KM1) M(x, y, 0) = 0;

(KM2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(KM5) M(x, y,_) : [0,∞[→ [0, 1] is left 
ontinuous.

We will refer to these fuzzy metri
 spa
es as KM -fuzzy metri
 spa
es. It

is worth nothing that, by de�ning the probabilisti
 metri
 Fxy(t) =M(x, y, t),

everyKM -fuzzy metri
 spa
e (X,M, ∗) be
omes a generalized Menger spa
e,

[73℄, under the 
ontinuous t-norm ∗. On the other hand a fuzzy metri


spa
e 
an be 
onsidered a KM -fuzzy metri
 spa
e if we extend M de�ning

M(x, y, 0) = 0 for all x, y ∈ X.

George and Veeramani proved in [19℄ that every fuzzy metri
 M on X

generates a topology TM on X whi
h has as a base the family of open sets

of the form {BM (x, ǫ, t) : x ∈ X, 0 < ǫ < 1, t > 0}, where BM (x, ǫ, t) = {y ∈
X :M(x, y, t) > 1− ǫ} for all x ∈ X, ǫ ∈]0, 1[ and t > 0.

Let (X, d) be a metri
 spa
e and let Md a fun
tion on X × X×]0,∞[

de�ned by

Md(x, y, t) =
t

t+ d(x, y)

Then (X,Md, ·) is a fuzzy metri
 spa
e [19℄ andMd is 
alled the standard
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fuzzy metri
 indu
ed by d. The topology TMd

oin
ides with the topology

on X dedu
ed from d.

De�nition 2. A fuzzy metri
M on X is said to be stationary [32℄ ifM does

not depend on t, i.e. if for ea
h x, y ∈ X, the fun
tion Mx,y(t) = M(x, y, t)

is 
onstant. In this 
ase we write M(x, y) instead of M(x, y, t).

Proposition 1. (George and Veeramani [19℄). A sequen
e {xn} in a fuzzy

metri
 spa
e (X,M, ∗) 
onverges to x if and only if limnM(xn, x, t) = 1, for

all t > 0.

De�nition 3. (George and Veeramani [19℄), S
hweizer and Sklar [80℄). A

sequen
e {xn} in a fuzzy metri
 spa
e (X,M, ∗) is said to beM-Cau
hy if for

ea
h ǫ ∈]0, 1[ and ea
h t > 0 there is n0 ∈ N su
h thatM(xn, xm, t) > 1−ǫ for
all n,m ≥ n0. Equivalently, {xn} is M -Cau
hy if limn,mM(xn, xm, t) = 1,

where limn,m denotes the double limit as n→ ∞, andm→ ∞. If 
onfusion is

not possible we will say, simply, that {xn} is Cau
hy. X is 
alledM -
omplete

if every Cau
hy sequen
e in X is 
onvergent with respe
t to TM . In su
h a


ase M is also said to be 
omplete.

De�nition 4. (Mihet [57℄). Let (X,M, ∗) be a fuzzy metri
 spa
e. A se-

quen
e {xn} in X is said to be p-
onvergent to x0 if limnM(xn, x0, t0) = 1,

for some t0 > 0.

De�nition 5. (Gregori et al. [25℄). We say that the fuzzy metri
 spa
e

(X,M, ∗) is prin
ipal (or simply, M is prin
ipal) if the family {BM (x, r, t) :

r ∈]0, 1[} is a lo
al base at x ∈ X, for ea
h x ∈ X and ea
h t > 0.

Theorem 1. (Gregori et al. [25℄). A fuzzy metri
 spa
e is prin
ipal if and

only if every p-
onvergent sequen
e is 
onvergent.

De�nition 6. (Gregori and Romaguera [31℄). Let (X,M, ∗) and (Y,N, ⋄)
be two fuzzy metri
 spa
es. A mapping f from X to Y is 
alled an isometry
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if for ea
h x, y ∈ X and t > 0, M(x, y, t) = N(f(x), f(y), t) and, in this 
ase,

if f is a bije
tion, X and Y are 
alled isometri
. A fuzzy metri
 
ompletion

of (X,M, ∗) is a 
omplete fuzzy metri
 spa
e (X̃, M̃ , ∗̃) su
h that (X,M, ∗)
is isometri
 to a dense subspa
e of X̃ . X is 
alled 
ompletable if it admits a

fuzzy metri
 
ompletion.

Proposition 2. (Gregori and Romaguera [31℄). If a fuzzy metri
 spa
e has

a fuzzy metri
 
ompletion then it is unique up to isometry.

In [32℄ is given the following 
hara
terization about 
ompletion of a fuzzy

metri
 spa
e.

Theorem 2. Let (X,M, ∗) be a fuzzy metri
 spa
e, and let {an} and {bn}
be two Cau
hy sequen
es in X. Then (X,M, ∗) is 
ompletable if and only if

it satis�es the following 
onditions:

(C1) The fun
tion t → limnM(an, bn, t) is a 
ontinuous fun
tion on ]0,∞[

with values in ]0, 1].

(C2) If limnM(an, bn, s) = 1 for some s > 0 then limnM(an, bn, t) = 1 for

all t > 0.

Remark 1. Suppose (X̃, M̃ , ∗̃) is a fuzzy metri
 
ompletion of (X,M, ∗).
Attending to the last proposition and the 
onstru
tion of the 
ompletion,

[32℄, we 
an 
onsider that X ⊂ X̃, ∗̃ is ∗, and that M̃ is de�ned on X̃ by

M̃ (x, y, t) = lim
n
M(xn, yn, t)

for all x, y ∈ X̃, t > 0, where {xn} and {yn} are Cau
hy sequen
es in X that


onverge to x and y, respe
tively.

Remark 2. Cau
hy sequen
es are de�ned in the same way in fuzzy metri


spa
es andKM -fuzzy metri
 spa
es. Then it is easy to verify [76℄ that a fuzzy
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metri
 spa
e (X,M, ∗) is 
omplete if and only if the 
orresponding KM -

fuzzy metri
 spa
e is also 
omplete. Further if (X,M, ∗) admits 
ompletion

this 
ompletion agrees with the 
ompletion of the 
orresponding KM -fuzzy

metri
 spa
e. Re
all that every KM -fuzzy metri
 spa
e has a 
ompletion

whi
h is unique up to an isometry, [76, 83℄.

It is not the aim of this work to point out the analogies or di�eren
es

between the results obtained for fuzzy metri
 spa
es and the 
orresponding

ones for KM -fuzzy metri
 spa
es, in the next se
tions.

De�nition 7. Let (X,M, ∗) be a fuzzy metri
 spa
e. The fuzzy metri
 M

(or the fuzzy metri
 spa
e (X,M, ∗)) is said to be strong if it satis�es for

ea
h x, y, z ∈ X and ea
h t > 0

M(x, z, t) ≥M(x, y, t) ∗M(y, z, t) (GV 4′)

Theorem 3. (Gregori et al. [28, Theorem 35℄) Let (X,M, ∗) be a strong

fuzzy metri
 spa
e and suppose that ∗ is integral (i.e. a ∗ b > 0 whenever

a, b ∈]0, 1]). If {xn} and {yn} are Cau
hy sequen
es in X and t > 0 then

{M(xn, yn, t)}n 
onverges in ]0, 1].

Let (X,M, ∗) be a non-stationary fuzzy metri
. De�ne the family of

fun
tions {Mt : t > 0} where, for ea
h t > 0, Mt : X2 →]0, 1] is given

by Mt(x, y) = M(x, y, t). Then (X,M, ∗) is strong if and only if (X,Mt, ∗)
is a stationary fuzzy metri
 for ea
h t > 0. In this 
ase we will say that

{Mt : t > 0} is the family of stationary fuzzy metri
s asso
iated to M .

Clearly, this family 
hara
terizes M in the sense that M(x, y, t) = Mt(x, y)

for all x, y ∈ X, t > 0. If (X,M, ∗) is strong then TM =
∨{TMt : t > 0}.

Moreover, it is easy to verify that the sequen
e {xn} in X is M -Cau
hy if

and only if {xn} is Mt-Cau
hy for ea
h t > 0.
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Proposition 3. (Sapena and Morillas [68℄) Let {(Mt, ∗) : t > 0} be a family

of stationary fuzzy metri
s on X.

(i). The fun
tion M on X2×]0,∞[ de�ned by M(x, y, t) = Mt(x, y) is a

fuzzy metri
 on X when 
onsidering the t-norm ∗, if and only if {Mt :

t > 0} is an in
reasing family (i.e. Mt ≤Mt′ if t < t′) and the fun
tion

Mxy :]0,∞[→]0, 1] is a 
ontinuous fun
tion, for ea
h x, y ∈ X. In su
h


ase:

(ii). (M, ∗) is strong and {(Mt, ∗) : t > 0} is the family of stationary fuzzy

metri
s dedu
ed from M .

Remark 3. (About terminology) If (X,M,∧) is strong then (GV4') be
omes

M(x, z, t) ≥ min{M(x, y, t),M(y, z, t)} (GV 4′′)

and in this 
ase we say that M is a fuzzy ultrametri
 [28℄.

Let d be a metri
 on X. Now, we 
an 
onsider the standard fuzzy metri


Md on X. Further, if d(x, y) < 1 for all x, y ∈ X then we 
an also 
on-

sider the stationary fuzzy metri
 (N,L) on X, where N(x, y) = 1 − d(x, y).

Then d is an ultrametri
 (a non-Ar
himedean metri
) if and only if Md

is a fuzzy ultrametri
, [77℄, if and only if N is a fuzzy ultrametri
 [28℄.

Further, 
ondition (GV4�) is stronger than (GV4) in the same way that

d(x, z) ≤ max{d(x, y), d(y, z)} is stronger than the usual triangular inequal-

ity.

Following terminology of probabilisti
 metri
 spa
es, [24, 43℄, some au-

thors 
all non-Ar
himedean fuzzy metri
s those that also satisfy equation

(GV4'). Noti
e that in this 
ase there is not any 
orresponden
e, in the

above sense, between non-Ar
himedean metri
s and non-Ar
himedean fuzzy
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metri
s sin
e Md always satis�es Md(x, z, t) ≥ Md(x, y, t) ·Md(y, z, t) and

also be
ause all stationary fuzzy metri
s would be non-Ar
himedean. Fur-

ther (GV4') is not stronger than (GV4) and it means that if we repla
e

(GV4) by (GV4') then M 
ould not be a fuzzy metri
 on X. (Indeed,

M(x, y, t) = 1/t
1/t+d(x,y) satis�es (GV1)-(GV3), (GV4') and (GV5) and it does

not satis�es (GV4).)

De�nition 8. (Ri
arte and Romaguera [74℄). A sequen
e {xn} is 
alled

std-Cau
hy if given ǫ ∈]0, 1[ there exists nǫ ∈ N, depending on ǫ, su
h that

M(xn, xm, t) >
t

t+ǫ , for all n,m ≥ nǫ and for all t > 0. X is 
alled std-


omplete if every std-Cau
hy sequen
e in X is 
onvergent.

De�nition 9. (Morillas and Sapena [69℄). A sequen
e {xn} in X is 
alled

std-
onvergent to x0 ∈ X if given ǫ ∈]0, 1[ there exists nǫ ∈ N, depending on

ǫ, su
h that M(xn, x0, t) >
t

t+ǫ , for all n ≥ nǫ and for all t > 0.
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Chapter 2

Some questions in fuzzy metri


spa
es

The material of this 
hapter is an adaptation to the thesis of the 
ontent

of the paper by Valentín Gregori, Juan-José Miñana and Samuel Morillas,

�Some questions in fuzzy metri
 spa
es�, published in the JCR-journal Fuzzy

Sets and Systems 204 (2012) 71-85.

19
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2.1 Introdu
tion

The 
on
ept of fuzzy metri
 in
ludes in its de�nition a parameter, t, that

allows to introdu
e novel (fuzzy metri
) 
on
epts with respe
t to the 
las-

si
al metri
 
on
epts. For instan
e, the 
on
epts of prin
ipal and strong

fuzzy metri
 were motivated by the study of the p-
onvergen
e, [57℄, and the

generalization of non-Ar
himedean fuzzy metri
s, [77℄, respe
tively. More-

over, re
ently, fuzzy metri
s have been applied to 
olour image �ltering

by repla
ing 
lassi
al metri
s and some improvements have been a
hieved

[4, 5, 64, 61, 62, 63, 65, 66℄. In this 
ontext, the presen
e of the t parameter

is indeed a key issue be
ause it allows the fuzzy metri
 to perform adaptively

whi
h is bene�
ial to improve performan
e. In parti
ular, a fuzzy metri
 used

frequently in the above 
ited papers has been the fuzzy metri
 M∗
de�ned

on [0,∞[ (the set of non-negative real numbers) by M∗(x, y, t) = min{x,y}+t
max{x,y}+t .

In this 
hapter, we study some aspe
ts of the fuzzy metri
 M∗
and as

well as the well-known fuzzy metri
 M0 given by M0(x, y) = min{x,y}
max{x,y} on

]0,∞[ (the set of positive real numbers). This study is 
arried out in su
h a

manner (see Remark 4) that it 
reates an appropriate 
ontext to introdu
e

�ve questions in fuzzy metri
 spa
es (relative to 
ompletion, uniform 
onti-

nuity, extension and 
ontra
tivity) whi
h is the se
ond aim of this se
tion.

In spite of the risk of this proposal, [17℄ (Prefa
e), we do hope that these

problems will provide the basis of mu
h future resear
h. Finally, as pra
ti
al

appli
ation, we show that this fuzzy metri
 is useful for measuring per
eptual


olour-di�eren
es between 
olour samples.

So, the stru
ture of the 
hapter is as follows. In Se
tion 2.2 it is proved

that (]0,∞[,M0) is 
omplete and we 
onstru
t the 
ompletion of (]0,∞[,M∗)

where M∗
is given by the above expression. In Se
tion 2.3 we study some
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aspe
ts on the 
ontinuity of M0. In Se
tion 2.4 an extension of M∗
(de�ned

on [0,∞[) to R is 
onstru
ted. In Se
tion 2.5 we study some aspe
ts about


ontra
tivity with respe
t to M0, and, �nally, in Se
tion 2.6 we show a new

appli
ation of these fuzzy metri
s.

2.2 Introdu
ing the examples. On 
ompleteness and


ompletion.

Throughout this 
hapter (]0,∞[,M0, ·) will be the stationary fuzzy metri


spa
e where M0 is de�ned by M0(x, y) =
min{x,y}
max{x,y} , [19℄. It is easy to verify

that TM0
is the usual topology of R restri
ted to ]0,∞[.

Also, ([0,∞[,M∗, ·) will be the fuzzy metri
 spa
e where M∗
is de�ned

by M∗(x, y, t) = min{x,y}+t
max{x,y}+t , [91℄. Its subspa
e (]0,∞[,M∗, ·) will take an

interesting role in this se
tion.

We omit the proof of the next proposition.

Proposition 4. Consider the fuzzy metri
 M∗
on [0,∞[ (respe
tively, on

]0,∞[).

(i) TM∗
is the usual topology of R restri
ted to [0,∞[ (respe
tively, to ]0,∞[).

(ii) M∗
is prin
ipal.

(iii) M∗
is strong.

Sin
e M∗
is strong so we 
an 
onsider its asso
iated family of stationary

fuzzy metri
s {M∗
t : t > 0} de�ned on [0,∞[ (respe
tively, on ]0,∞[), i.e.
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M∗
t (x, y) =M∗(x, y, t), for ea
h t > 0, and by (ii) we have:

(iv) TM∗

t
is the usual topology of R restri
ted to [0,∞[ (respe
tively, to

]0,∞[), for ea
h t > 0.

The in�mum (denoted by ∧) of a family of stationary fuzzy metri
s as-

so
iated to a strong fuzzy metri
 was studied in [28℄. In the 
ase of M∗
we

have the next proposition.

Proposition 5.

(i) Consider M∗
on [0,∞[. Then

∧

t>0M
∗
t is not a fuzzy metri
 on [0,∞[.

(ii) Consider M∗
on ]0,∞[. Then

∧

t>0M
∗
t is the fuzzy metri
 M0.

Proof.

(i) If we take y 6= 0 then

∧

t>0

M∗
t (0, y) = inf

{

t

y + t
: t > 0

}

= 0

and then

∧

t>0M
∗
t is not a fuzzy metri
 on [0,∞[.

(ii) For ea
h x, y, t ∈]0,∞[ we have that

∧

t>0

M∗
t (x, y) = inf

{

min{x, y}+ t

max{x, y}+ t
: t > 0

}

=
min{x, y}
max{x, y} > 0

and so,

∧

t>0M
∗
t is the fuzzy metri
 M0. �

From now on, for simpli
ity, by a 
onvergent sequen
e (in referen
e to

TM∗
or TM0

) we mean that it is 
onvergent with respe
t to the usual topology

of R restri
ted to the 
orresponding domain.
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Taking into a

ount Remark 2 we 
ould obtain the next theorem using

results of KM -fuzzy metri
 spa
es, [73℄, but we 
hoose to prove it, sin
e it

is illustrative within the 
ontext of the 
hapter (see Remark 4).

Theorem 4. (]0,∞[,M0, ·) is 
omplete.

Proof.

Re
all that TM0
is the usual topology of R restri
ted to ]0,∞[. We will


hara
terize the M0-Cau
hy sequen
es.

Firstly, we will see that M0-Cau
hy sequen
es in ]0,∞[ are bounded for the

usual metri
 of R. Indeed, if {an} is a non-bounded sequen
e in ]0,∞[, then

for a given ǫ ∈]0,∞[ and for any n ∈ N we 
an �nd m ∈ N with m > n

su
h that ǫ · am > an and so M0(an, am) = an
am

< ǫ and thus {an} is not

M0-Cau
hy.

Now we will see that if {an} is a sequen
e in ]0,∞[ that 
onverges to

0 then {an} is not M0-Cau
hy. Indeed, if {an} 
onverges to 0 then for a

�xed ǫ ∈]0, 1[ and for any n ∈ N we 
an �nd m ∈ N with m > n su
h that

am < ǫ · an and so M0(an, am) = am
an

< ǫ and then {an} is not M0-Cau
hy.

Finally, we will see that if {an} is an M0-Cau
hy sequen
e in ]0,∞[ then

{an} 
onverges in ]0,∞[. Let {an} an M0-Cau
hy sequen
e in ]0,∞[ and

hen
e, as we have seen above, {an} is bounded. Then there exist a ∈ [0,∞[

and a subsequen
e {ani
}i of {an} su
h that limi ani

= a. Now, {ani
}i is also

an M0-Cau
hy sequen
e and hen
e, for the last paragraph, a > 0. We will

show that {an} 
onverges to a.

If {an} does not 
onverges to a then there exist δ′ > 0 su
h that in�nite

terms of {an} are in (the 
ompa
t of R) I = [0, a− δ′]∪ [a+ δ′,K], where K

is an upper bound of {an}. Then there exist a subsequen
e {an′

j
}j of {an} in

I and b ∈ I su
h that limj an′

j
= b, and, as above, b > 0. Suppose that b < a.
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Let δ > 0 with δ < min
{

b, a−b
3

}

and let ǫ = b+δ
a−δ > 1. Sin
e limi ani

= a and

limj an′

j
= b then there exists p ∈ N su
h that ani

∈]a − δ, a + δ[ for ea
h

i ≥ p and an′

j
∈]b− δ, b + δ[ for ea
h j ≥ p.

Given n ∈ N we 
hoose qn = max{n, p} and then for i, j ≥ qn we have

M0(ani
, an′

j
) < b+δ

a−δ = ǫ and so {an} is not M0-Cau
hy, a 
ontradi
tion.

A similar argument 
an be made if b > a.

In 
onsequen
e {an} is M0-Cau
hy i� {an} 
onverges in ]0,∞[. �

Sin
e a 
ompa
t fuzzy metri
 spa
e is pre
ompa
t and 
omplete, [30℄,

then we have the next 
orollary.

Corollary 1. (]0,∞[,M0, ·) is not pre
ompa
t.

Proposition 6. (]0,∞[,M∗
t , ·) is not 
omplete for ea
h t > 0.

Proof.

Re
all that TM∗

t
is the usual topology of R restri
ted to ]0,∞[, for ea
h t > 0.

Now, the sequen
e { 1
n} is not 
onvergent in ]0,∞[ be
ause 0 /∈]0,∞[, but

it is M∗
t -Cau
hy for ea
h t > 0. Indeed,

lim
m,n

M∗
t

(

1

n
,
1

m

)

= lim
m,n

min{ 1
n ,

1
m}+ t

max{ 1
n ,

1
m}+ t

= 1, for ea
h t > 0.

�
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In the proof of the last proposition we have just obtained that { 1
n} is

Cau
hy in (]0,∞[,M∗, ·) and so the next 
orollary is immediate.

Corollary 2. (]0,∞[,M∗, ·) is not 
omplete.

Lemma 2. Take t > 0 and 
onsider the fuzzy metri
 spa
e (]0,∞[,M∗
t , ·).

Let {xn} be a sequen
e in ]0,∞[. Then {xn} is M∗
t -Cau
hy if and only if

{xn} 
onverges in [0,∞[.

Proof.

Fix t > 0, and let {xn} be an M∗
t -Cau
hy sequen
e in ]0,∞[.

Then limm,nM
∗
t (xn, xm) = limm,n

min{xn,xm}+t
max{xn,xm}+t = 1, but this expression is

equivalent to limm,n
min{xn+t,xm+t}
max{xn+t,xm+t} = 1 and so {xn + t} is an M0-Cau
hy

sequen
e in ]0,∞[, so by Theorem 4 {xn + t} 
onverges in ]0,∞[, then {xn}
is 
onvergent and 
learly {xn} 
onverges in [0,∞[.

Conversely, if {xn} 
onverges in ]0,∞[, then 
learly it is M∗
t -Cau
hy for

ea
h t > 0. Now, suppose {xn} is a sequen
e in ]0,∞[ that 
onverges to 0.

Then, limm,nmin{xn, xm} = limm,nmax{xn, xm} = 0 and therefore, for a

�xed t > 0 we have that limm,nM
∗
t (xn, xm) = limm,n

min{xn,xm}+t
max{xn,xm}+t = 1, and

so {xn} is M∗
t -Cau
hy. �

Sin
e M∗
is strong by the above lemma we have the next 
orollary.

Corollary 3. Consider the fuzzy metri
 spa
e (]0,∞[,M∗, ·). Then a se-

quen
e {xn} in ]0,∞[ is M∗
-Cau
hy if and only if {xn} 
onverges in [0,∞[.

Theorem 5. (]0,∞[,M∗, ·) is 
ompletable.

Proof.
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Let {an} and {bn} be two M∗
-Cau
hy sequen
es in (]0,∞[,M∗, ·). First we

will prove that (C1) of Theorem 2 is satis�ed.

From [68, 28℄ {an} and {bn} are M∗
t -Cau
hy sequen
es in ]0,∞[ for all

t > 0 and so, by the previous lemma, {an} and {bn} 
onverge to a and b,

respe
tively, in [0,∞[.

Suppose, without lost of generality, that a ≤ b. Then, it is an easy

exer
ise to prove that limn(min{an, bn}) = a and limn(max{an, bn}) = b.

Thus, for t > 0 we have that

lim
n
M∗(an, bn, t) = lim

n

min{an, bn}+ t

max{an, bn}+ t
=
a+ t

b+ t
> 0.

We have just obtained that the fun
tion t −→ limnM
∗(an, bn, t) is a 
on-

tinuous fun
tion on ]0,∞[ with values in ]0, 1], and (C1) of Theorem 2 is

satis�ed.

Next we will prove that (C2) of Theorem 2 is also satis�ed.

Suppose that for some t0 > 0 limnM
∗(an, bn, t0) = limn

min{an,bn}+t0
max{an,bn}+t0

=

1. Then, as we have seen in the �rst part of the proof, we 
an assert that

there exist limn(min{an, bn}) and limn(max{an, bn}) and obviously, in this


ase,

limn(min{an, bn}) = limn(max{an, bn}). Consequently

lim
n
M∗(an, bn, t) = lim

n

min{an, bn}+ t

max{an, bn}+ t
= 1, for all t > 0

and (C2) of Theorem 2 is satis�ed. So (]0,∞[,M∗, ·) is 
ompletable. �

The 
ompletion of (]0,∞[,M∗, ·).
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Denote by (X̃, M̃ , ·) the 
ompletion of (]0,∞[,M∗, ·). By Corollary 3

M∗
-Cau
hy sequen
es in ]0,∞[ are the 
onvergent sequen
es in [0,∞[, then

attending to [32℄ we 
an identify the equivalent 
lass ofM∗
-Cau
hy sequen
es

in ]0,∞[ that 
onverge to p ∈ [0,∞[ with p and so X̃ is identi�ed with [0,∞[.

Now, attending to Remark 1 the fuzzy 
ompletion M̃ of M∗
is de�ned in

a su
h manner that if {an} is a 
onvergent sequen
e to 0 and b ∈]0,∞[ then

for t > 0, M̃ (0, b, t) = M̃(b, 0, t) = limn
min{an,b}+t
max{an,b}+t =

t
b+t . On the other hand

M̃(0, 0, t) = 1 for all t > 0 and then M̃ is given by M̃(a, b, t) = min{a,b}+t
max{a,b}+t for

ea
h a, b ∈ [0,∞[, t > 0 and therefore M̃ is the fuzzy metri
 M∗
on [0,∞[

de�ned at the beginning of this se
tion.

From [28℄ Theorem 40, the following 
orollary is immediate.

Corollary 4. ([0,∞[,M∗
t , ·) is the 
ompletion of (]0,∞[,M∗

t , ·) for ea
h t >
0.

Remark 4. Using similar arguments to the above ones in Theorem 4 one 
an

shows that ([0,∞[,M∗, ·) is 
omplete. Now, the mapping i : (]0,∞[,M∗, ·) →
([0,∞[,M∗, ·) given by i(x) = x for ea
h x ∈]0,∞[, is an isometry and by (i)

of Proposition 4 ]0,∞[ is dense in ([0,∞[,TM∗), and sin
e the 
ompletion of

a fuzzy metri
 spa
e is unique, up to isometry [31℄, then ([0,∞[,M∗, ·) is the

ompletion of (]0,∞[,M∗, ·).

For obtaining the 
ompletion of (]0,∞[,M∗, ·) we have preferred the

above 
onstru
tive method be
ause it allows us to introdu
e in its appro-

priate 
ontext the following open question.

Problem 1. To �nd a fuzzy metri
 spa
e (X,M, ∗) where for twoM -Cau
hy
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sequen
es {an} and {bn} in X the assignment f(t) = limnM(an, bn, t) for all

t > 0, does not de�ne a 
ontinuous fun
tion on t.

It is known that the 
ompletion of a strong fuzzy metri
 is strong, [28℄

Lemma 39. On the other hand we have just obtained above that the 
om-

pletion of the prin
ipal fuzzy metri
 spa
e (]0,∞[,M∗, ·) is ([0,∞[,M∗, ·),
whi
h is also prin
ipal. Now, the next is an open question.

Problem 2. If the prin
ipal fuzzy metri
 spa
e (X,M, ∗) admits 
ompletion

(X̃, M̃ , ∗), is it also prin
ipal?

2.3 On 
ontinuity and uniform 
ontinuity

We have just seen above that the fuzzy metri
 M∗
on ]0,∞[ 
an be extended

to [0,∞[ by means of the fuzzy metri
 M̃ in su
h a manner that ]0,∞[ is

dense in ([0,∞[,TM̃ ). Now, this situation is not possible for (]0,∞[,M0) as

shows the next proposition.

Proposition 7. Consider the fuzzy metri
 spa
e (]0,∞[,M0, ·) and let M̃0

an extension of M0 to [0,∞[. Then {0} is TM̃0
-open.

Proof.

]0,∞[ is M̃0-
omplete and then it is TM̃0
-
losed. �

Consequently, we 
annot �nd an extension M̃0 of M0 su
h that TM̃0

o-

in
ides with the usual topology of R restri
ted to [0,∞[.
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Example 1. The fuzzy metri
 M̃0 on [0,∞[ given by

M̃0(y, x) = M̃0(x, y) =



























M0(x, y), x, y ∈]0,∞[
1
2y , x = 0, y ≥ 1
y
2 , x = 0, y < 1

1, x = y = 0

is an extension of M0 to [0,∞[ and {0} is 
learly open of TM̃0
.

From [75℄ we know that M0(x, y) is 
ontinuous on ]0,∞[2 (endowed with

the produ
to topology). Now, the 
ontinuous fun
tion M0 does not admit

any 
ontinuous extension N to [0,∞[2 endowed with the usual topology of

R. Indeed, if N were so, then sin
e { 1
n} and { 1

n2 } 
onverge to 0 it should be

N(0, 0) = limnM0(1/n, 1/n) = 1 and also N(0, 0) = limnM0(1/n, 1/n
2) =

limn
1/n2

1/n = 0, a 
ontradi
tion.

De�nition 10. We will say that the fuzzy metri
s M1 and M2 on X are

uniformly equivalent if the identity mappings i : (X,M1) → (X,M2) and

i : (X,M2) → (X,M1) are uniformly 
ontinuous [20℄. In that 
ase, obviously

{xn} is anM1-Cau
hy sequen
e if and only if {xn} is anM2-Cau
hy sequen
e.

Now the fuzzy metri
s M∗
and M0 on ]0,∞[ are topologi
ally equivalent

on ]0,∞[, i.e. TM∗ = TM0
on ]0,∞[, but they are not uniformly equivalent

on ]0,∞[ be
ause (]0,∞[,M0) is 
omplete but (]0,∞[,M∗) is not 
omplete

(Noti
e that the identity mapping i : (]0,∞[,M0) → (]0,∞[,M∗) is uniformly


ontinuous sin
e M0(x, y) ≤ M∗(x, y, t) for ea
h x, y ∈]0,∞[, t > 0, but

i : (]0,∞[,M∗) → (]0,∞[,M0) is not uniformly 
ontinuous sin
e { 1
n} is a

Cau
hy sequen
e in (]0,∞[,M∗) but it is not M0-Cau
hy).

De�nition 11. (Gregori, Romaguera and Sapena [34℄) Let (X,M, ∗) be a

fuzzy metri
 spa
e. A mapping f : X → R is 
alled R-uniformly 
ontinuous
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if given ǫ > 0 we 
an �nd s > 0, δ ∈]0, 1[ su
h that M(x, y, s) > 1− δ implies

|f(x)− f(y)| < ǫ.

Proposition 8. Consider the fuzzy metri
 spa
e (]0,∞[,M0). For a �xed

y > 0 the mapping My
0 :]0,∞[→]0,∞[ given by My

0 (x) = min{x,y}
max{x,y} for all

x ∈]0,∞[ is R-uniformly 
ontinuous.

Proof.

Let ǫ > 0. We distinguish three 
ases: (a) x, x′ ≤ y, (b) x, x′ ≥ y, (
)

x ≤ y, x′ > y (or x′ ≤ y, x > y).

(a) Choose δ ∈]0, 1[ with δ < ǫ. Suppose that x, x′ ∈]0,∞[ satisfy

M0(x, x
′) > 1 − δ. Without lost of generality we 
an suppose x ≤ x′. Then

we have that

x
x′ > 1− δ and hen
e

|My
0 (x

′)−My
0 (x)| =

x′

y
− x

y
=

1

y
(x′ − x) <

1

y
(x′ − x′(1− δ)) =

x′

y
δ ≤ δ < ǫ

With similar arguments the other 
ases 
an be proved, and then My
0 is R-

uniformly 
ontinuous. �

The next is an open question.

Problem 3. Let (X,N, ∗) be a stationary fuzzy metri
 spa
e. Is the real

fun
tion Ny(x) = N(x, y) for ea
h x ∈ X, R-uniformly 
ontinuous for all

y ∈ X?
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2.4 Extending fuzzy metri
s

2.4.1 A related fuzzy pseudo-metri


Consider the fuzzy set N on R2×]0,∞[ given by

N(x, y, t) =
min{|x|, |y|} + t

max{|x|, |y|} + t
(2.1)

It is easy to verify that N satis�es axioms (GV1),(GV3) and (GV5). Also,

N satis�es the triangular inequality. Indeed, for x, y, z ∈ R, t > 0 we have

N(x, z, t + s) =
min{|x|, |z|} + t+ s

max{|x|, |z|} + t+ s
=M∗(|x|, |z|, t + s) ≥

≥M∗(|x|, |y|, t) ·M∗(|y|, |z|, s) = min{|x|, |y|} + t

max{|x|, |y|} + t
· min{|y|, |z|} + s

max{|y|, |z|} + s
=

= N(x, y, t) ·N(y, z, s)

Also, for x = y we have that N(x, y, t) = 1 for all t > 0 but the 
onverse is,

in general, false sin
e for x 6= 0 we have that N(x,−x, t) = 1 but x 6= −x.
Consequently (R, N, ·) is a fuzzy pseudo-metri
 spa
e, [33℄, but it is not a

fuzzy metri
 spa
e.

The mapping j :] − ∞, 0] → [0,∞[ de�ned by j(x) = −x is a bije
tion

and then (] −∞, 0],M ′, ·) and ([0,∞[,M∗, ·) are two fuzzy isometri
 spa
es

[31℄, where M ′
is given by M ′(x, y, t) =M∗(j(x), j(y), t) =M∗(−x,−y, t) =

M∗(|x|, |y|, t) for all x, y ∈] −∞, 0], t > 0. So M ′
is, obviously, strong and

prin
ipal.

Noti
e that M∗
and M ′


an be de�ned both two in their 
orresponding

domains by the expresion (2.1), i.e. N |[0,∞[ =M∗
and N |]−∞,0] =M ′

.

Remark 5. Se
tion 5.1 admits the following easy generalization. Let (M, ∗)
be a fuzzy metri
 on a set of non-negative real numbers A. Put −A = {x ∈
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R : −x ∈ A}. De�ne N(x, y, t) = M(|x|, |y|, t) for all x, y ∈ −A ∪ A, t > 0.

Then, (N, ∗) is a fuzzy pseudo-metri
 on −A ∪A.

2.4.2 A fuzzy metri
 extension of M∗

We have just seen that the fuzzy pseudometri
 N on R satis�es

N |[0,∞[ =M∗
and N |]−∞,0] =M ′

(2.2)

Now we will 
onstru
t a fuzzy metri
 M̄ on R su
h that M̄ |[0,∞[ = M∗
and

M̄ |]−∞,0] = M ′
. For it we 
onsider the family {M∗

t : t > 0} of stationary

fuzzy metri
s on [0,∞[ asso
iated to M∗
, and the family {M ′

t : t > 0} of

stationary fuzzy metri
s on ]−∞, 0] asso
iated to M ′
.

Then, sin
e ]−∞, 0] ∩ [0,∞[= {0}, from [29℄ Proposition 19 we have for

ea
h �xed t > 0 that the fun
tion

M̄t(x, y) =



























M∗
t (x, y) if x, y ∈ [0,∞[

M ′
t(x, y) if x, y ∈]−∞, 0]

M∗
t (x, 0) ·M ′

t(0, y) if x ∈]0,∞[, y ∈]−∞, 0[

M ′
t(x, 0) ·M∗

t (0, y) if x ∈]−∞, 0[, y ∈]0,∞[

is a stationary fuzzy metri
 on R, su
h that M̄t|]−∞,0] = M ′
t and M̄t|[0,∞[ =

M∗
t .

Attending (2.2), we 
an be written

M̄t(x, y) =







min{|x|,|y|}+t
max{|x|,|y|}+t x, y ∈ [0,∞[ or x, y ∈]−∞, 0]

t
|x|+t · t

|y|+t elsewhere

Obviously {M̄t : t > 0} is an in
reasing family, i.e. t < t′ implies M̄t ≤ M̄t′ .
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Now we de�ne M̄(x, y, t) = M̄t(x, y) for all x, y ∈ R, t > 0. Then,

obviously M̄ satis�es (GV1)-(GV3) and (GV5).

We prove that M̄ satis�es the triangular inequality. Let x, y, z ∈ R,

t, s > 0. Then, sin
e {M̄t : t > 0} is an in
reasing family we have M̄(x, z, t+

s) = M̄t+s(x, z) ≥ M̄t+s(x, y) · M̄t+s(y, z) ≥ M̄t(x, y) · M̄s(y, z) = M̄(x, y, t) ·
M̄(y, z, s) and so (M̄, ·) is a fuzzy metri
 on R whi
h obviously satisfy

M̄ |[0,∞[ =M∗
and M̄ |]−∞,0] =M ′

.

The following is an open question.

Problem 4. Let H and K be two distin
t sets with H∩K 6= ∅. Let (MH , ∗)
and (MK , ∗) be two non-stationary fuzzy metri
s on H and K, respe
tively,

that agree in H ∩ K. Does it exist a fuzzy metri
 M on H ∪ K su
h that

M |H =MH and M |K =MK?

2.5 Contra
tivity in (]0,∞[,M0, ·)

2.5.1 On 
ontra
tivity

Let (X,M) be a fuzzy metri
 spa
e.

In order to obtain satisfa
tory results in the fuzzy setting, related to the


lassi
al Bana
h 
ontra
tion theorem, several 
on
epts ofM -
ontra
tivity on

a mapping f : (X,M) → (X,M) have been given, for instan
e [23, 36, 39,

56, 57, 58, 59, 73, 81, 84, 84, 89, 90℄ among others.

The weaker 
ontra
tivity 
ondition on f whi
h makes sense when M is
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stationary is given by the formula

M(f(x), f(y)) ≥M(x, y) for x, y ∈ X

and in fa
t, it is obtained from the 
on
ept of B-
ontra
tion, [23, 81℄, given

by the expression M(f(x), f(y), kt) ≥ M(x, y, t) for all x, y ∈ X, t > 0

and some �xed k ∈]0, 1[. Now, for stationary fuzzy metri
s this 
on
ept

is not really appropriate (in the same way that the 
ontra
tivity 
ondition

d(f(x), f(y)) ≤ d(x, y) is not appropriate for a metri
 spa
e (X, d)). Indeed,

the identity mapping i : X → X satis�es M(f(x), f(y)) = M(x, y) for all

x, y ∈ X and all points of X are �xed of i. Further, in the 
ase of the

fuzzy metri
 spa
e (]0,∞[,M0, ·) the mapping f :]0,∞[→]0,∞[ given by

f(x) = ax, where a ∈ R+ ∼ {1}, also satis�es M(f(x), f(y)) = M(x, y) for

all x, y ∈]0,∞[ but f has not any �xed point. Then, a stronger 
ontra
tivity


ondition than the above one is needed. So, we adopt the next de�nition.

De�nition 12. Let M be a stationary fuzzy metri
 on X. A mapping

f : X → X is fuzzy M -
ontra
tive (a fuzzy 
ontra
tion) if

M(f(x), f(y)) > M(x, y) for x, y ∈ X,x 6= y (2.3)

This 
on
ept 
omes from the fuzzy Edelstein 
ontra
tives notion stated

by Grabie
 [23℄ as M(f(x), f(y), t) > M(x, y, t) for x, y ∈ X, x 6= y, t > 0,

where M is a fuzzy metri
 on X. The author proved that a fuzzy Edelstein


ontra
tive mapping on a 
ompa
t KM -fuzzy metri
 spa
e has a unique �xed

point.

Noti
e that (2.3) is satis�ed by almost all fuzzy M -
ontra
tive 
on
epts

in the literature when M is stationary.

We 
an get a 
lass of fuzzy M0-
ontra
tive mappings with a unique �xed

point in ]0,∞[ as follows. Consider the 
ontinuous in
reasing fun
tions f :
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[0,∞[→ [0,∞[ with f(0) = 0 su
h that f ′′(x) < 0 for all x ∈]0,∞[ (f ′′

denotes the se
ond derivative of f ). Using arguments from Analysis one 
an

verify that for 0 < x < y it is satis�ed that

f(x)
x > f(y)

y , i.e.

f(x)
f(y) >

x
y and

hen
e f is fuzzy M0-
ontra
tive. It is easy to verify that su
h fun
tions have

at most a unique �xed point in ]0,∞[. Further, f has a (unique) �xed point

if and only if f ′(x) = 1 for some x ∈]0,∞[. Noti
e that ln(1 + x) satis�es

f ′′(x) < 0 for x ∈]0,∞[ but f ′(x) 6= 1 for x ∈]0,∞[, and 
learly ln(1+x) has

not any �xed point in ]0,∞[. The mappings fλ(x) =
√
x+ λ for x ∈]0,∞[,

with a �xed λ > 0, ful�ll all 
onditions of this paragraph and they play an

interesting role in the following.

Mihet [56℄ pointed out that the mapping f(x) = x+a for x ∈]0,∞[, with

a �xed a > 0, is fuzzyM0-
ontra
tive but it has not any �xed point in ]0,∞[.

Then, in order to guarantee the existen
e of �xed points for su
h a mappings

Mihet introdu
ed and studied the next 
on
ept for KM -fuzzy metri
 spa
es

that we rewrite in our 
ontext.

De�nition 13. Let (X,M, ∗) be a fuzzy metri
 spa
e and let ϕ be a de-


reasing 
ontinuous mapping ϕ : [0, 1] → [0, 1] su
h that ϕ(t) > t for all

t ∈]0, 1[. A mapping f : X → X is 
alled ϕ-
ontra
tive if M(f(x), f(y), t) ≥
ϕ(M(x, y, t)) for all x, y ∈ X, t > 0. Obviously in this 
ase f satis�es (2.3).

The author proved, [58℄, that a fuzzy ϕ-
ontra
tive mapping in a strong


omplete fuzzy metri
 spa
e has a unique �xed point.

As a 
onsequen
e, sin
e the above 
ommented mappings f(x) = x +

a and ln(1 + x) satisfy (2.3) and they have not any �xed point in ]0,∞[,

these mappings are fuzzy M0-
ontra
tive but they are not ϕ-
ontra
tive in

(]0,∞[,M0).

We see that the mappings fλ :]0,∞[→]0,∞[, with λ > 0, de�ned by
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fλ(x) =
√
x+ λ are ϕ-
ontra
tive. Indeed, if x < y we haveM(fλ(x), fλ(y)) =√

x+λ√
y+λ

≥
√

x
y = ϕ(M(x, y)) where ϕ(t) =

√
t, independently of λ > 0.

Then ea
h mapping fλ has a unique �xed point aλ ∈]0,∞[.

Now we 
an de�ne the mapping g :]0,∞[→]0,∞[ by g(λ) = aλ. So,

g(λ) = 1+
√
1+4λ
2 and thus g is a 
ontinuous fun
tion on ]0,∞[. Then it arises

the following question.

Problem 5. Let (X,M, ∗) be a strong 
omplete fuzzy metri
 spa
e and let

fλ : X → X be a family of ϕ-
ontra
tive mappings for the same fun
tion

ϕ, for all λ > 0. Suppose that for ea
h x ∈ X the mapping fx :]0,∞[→ X,

where fx(λ) = fλ(x), is 
ontinuous on λ > 0. Write aλ the unique �xed point

of fλ for ea
h λ > 0. Is the mapping g :]0,∞[→ X de�ned by g(λ) = aλ


ontinuous?

Remark 6. This problem has been formulated a

ording to the previous

results but obviously it admits other versions. We noti
e that the analogous

problem formulated in metri
 spa
es has positive answered [78℄. If the 
on-

dition of 
ontinuity of fx on ]0,∞[ is removed the answer to this question is

negative as it has been proved in [92℄.

2.6 Appli
ation of the fuzzy metri
 M0 to measure

per
eptual 
olour di�eren
es

Apart from the interesting theoreti
al properties of the fuzzy metri
s studied

in previous se
tions, it is interesting as well to note that they have appli
ation

in a variety of pra
ti
al problems. Indeed, they have been previously used

to �lter 
olour images and to measure the degree of 
onsisten
y of elements
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in a dataset [5, 64, 61, 67℄.

Here we fo
us on a di�erent appli
ation of the fuzzy metri
 M0 that

takes advantage of the homotetique invariant property that this fuzzy metri


satis�es. Indeed, M0 ful�lls that, for any λ ∈ R:

(I) M0(λx, λy) =M0(x, y)

Also, if z > 0,

(II) M0(x+ z, y + z) > M0(x, y) if x 6= y

As we will see later on, there exist pra
ti
al problems where these prop-

erties are pretty interesting. However, in pra
ti
al appli
ations it is more

appropriate to use the M∗
fuzzy metri
 (whi
h also satis�es (II)), instead

of the M0, be
ause the presen
e of the t parameter makes this fuzzy metri


more adaptive to the parti
ular problem. On the other hand, M0 is in fa
t

M∗
when t = 0. Noti
e that both M0 and M∗

are suitable only for s
alar

values and that for ve
tor values the 
ombination of several fuzzy metri
s

needs to be 
onsidered.

In parti
ular, one appli
ation that mat
hes the behaviour of these two

fuzzy metri
s regards the modeling of the per
eption of physi
al magnitudes

su
h as 
olours, sounds or weights. It is known that the per
eption thresh-

old of 
hanges in these magnitudes in
reases as the magnitudes themselves

in
rease [16, 18, 87℄. That is to say, the per
eived di�eren
e between two

magnitude values x, y is di�erent that for the values x+ k, y + k, whenever

k > 0. In parti
ular, the per
eived di�eren
e will be larger in the former 
ase
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than in the latter, whi
h agrees with (II). This situation 
an be observed

in the 
ase of per
eptual 
olour di�eren
es and, sin
e the M∗
fuzzy metri


behaves a

ordingly to this situation,M∗

an be used to appropriately devise


olour di�eren
e formulas as explained in the following.

A 
olour sample is usually represented as a tern in a parti
ular 
olour

spa
e. Among the di�erent 
olour spa
es, a well-known one, spe
ially in


omputer graphi
s, is the Hue-Chroma-Lightness (HCL) 
olour spa
e [45℄,

where a 
olour sample s is represented as a tern s = (Hs, Cs, Ls). In su
h

a tern: Hue, Hs, is usually represented as an angle in [0◦, 360◦] where 0◦,

90◦, 180◦, and 270◦ 
orrespond to approximately pure red, yellow, green and

blue, respe
tively. Cs ∈ [0, 100] represents the Chroma of the 
olour, where

0 is asso
iated with neutral gray, bla
k or white; and Ls ∈ [0, 100] represents

the Lightness of the sample, where 0 represents no lightness (absolute bla
k


olour) and 100 represents the maximum lightness (absolute white 
olour).

A series of experimental datasets: BFD-P, Leeds, RIT-Dupont, and Witt,

whi
h are 
ombined to form the COM dataset, have been obtained in order to


hara
terize the per
eptual di�eren
e between pairs of 
olour samples [2, 47,

52, 53, 93, 96℄. In these datasets ea
h pair of 
olour samples is asso
iated with

a value ∆V whi
h represents the experimental per
eptual di�eren
e between

them. On the other hand, 
olour di�eren
e formulas are used to obtain, from

two terns representing a pair of 
olour samples, the 
omputed per
eptual

di�eren
e between them, usually denoted by ∆E. Sin
e the obje
tive of


olour di�eren
e formulas is to model human per
eption, all formulas try

to obtain ∆E values as 
lose (or 
orrelated) as possible to the ∆V values.

One well-known 
olour di�eren
e formula is the CIELAB formula [97℄, that


orresponds with the Eu
lidean distan
e in the CIELAB 
olour spa
e.

The performan
e of a 
olour di�eren
e formula is assessed by measuring
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Figure 2.1: Values of STRESS obtained by di�erent 
olour di�eren
e formu-

las for the COM dataset.


olour di�eren
e formula STRESS

CIELAB 0.428

CIE94 0.335

CIEDE2000 0.292

∆EM∗

1
0.347

∆EM∗

1
0.348

how 
lose the ∆E values 
omputed for the experimental datasets are to

the ∆V values. A well established �gure of merit for this 
loseness is the

STRESS 
oe�
ient [54℄, whi
h provides values in the interval [0, 1], where

lower values indi
ate a higher 
loseness. In Table 2.1, we 
an see that the

value of STRESS for the CIELAB formula over the COM dataset is 0.428.

By analysing the experimental datasets, it has been observed that the

sensitivity to di�eren
es in Chroma de
reases as the value of Chroma in-


reases. Noti
e that this fa
t is related to the Weber-Fre
hner and Stevens

observations [16, 18, 87℄. A

ording to this, we propose to use the M∗
fuzzy

metri
 to model the similarity between two Chroma values Cs, Cr as

M∗(Cs, Cr) =
min{(Cs, Cr)}+ kC
max{(Cs, Cr)}+ kC

,

where kC is a parameter to adjust the behaviour as desired.

An analogous observation 
an be made with respe
t to Lightness. So we

propose to measure the similarity between two Lightness values Ls, Lr as

M∗(Ls, Lr) =
min{(Ls, Lr)}+ kL
max{(Ls, Lr)}+ kL

,

where kL is another adjusting parameter.
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Using these two expressions we build a more 
omplex expression to obtain

a new 
olour di�eren
e formula. We want also to take into a

ount the

CIELAB 
olour di�eren
e, ∆E∗
ab, so, we employ the standard fuzzy metri


dedu
ed from ∆E∗
ab. Given that the produ
t of these fuzzy metri
s is as well

a fuzzy metri
, [77℄, we 
an use a produ
tory to join these three 
riteria.

Finally, to obtain a di�eren
e formula we use the involutive negation as

follows:

∆EM∗

1
(s, r) = 1−

(

M∗(Ls, Lr)M
∗(Cs, Cr)

t

t+∆E∗
ab

)

, (2.4)

where kL, kC and t are parameters able to tune the importan
e of ea
h


riterion. However, sin
e ∆E∗
ab also in
ludes Lightness and Chroma di�er-

en
es, alternatively we propose to repla
e ∆E∗
ab in Eq. (4) with ∆H, whi
h

represents only Hue di�eren
es in ∆E∗
ab and is given by

∆H =
√

∆E∗2
ab − |Ls − Lr|2 − |Cs − Cr|2, and so obtaining

∆EM∗

2
(s, r) = 1−

(

M∗(Ls, Lr)M
∗(Cs, Cr)

t

t+∆H

)

, (2.5)

where we have three adjusting parameters, as above.

It is interesting to point out that ∆EM∗

1

an be seen as a modi�
ation of

the ∆E∗
ab using a 
orre
tion term inspired in the Weber-Fe
hner and Stevens

laws whi
h are represented by an appropriate fuzzy metri
. On the other

hand, ∆EM∗

2
is a 
olour di�eren
e formula that 
orresponds with the repre-

sentation of the Weber-Fre
hner and Stevens laws by means of fuzzy metri
s.

We have performed extensive experimental assessments varying the values

of the adjusting parameters kL, kC and t in the range [0, 100] to obtain the
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optimal parameter setting for the formulas proposed in Eq. (4)-(5). With

optimal parameter setting, ∆EM∗

1
is able to obtain a STRESS value for

the COM dataset of 0.347 (with kL = 2, kC = 4, t = 11), whereas ∆EM∗

2

obtained STRESS of 0.348 (with kL = 4, kC = 12, t = 40). Noti
e that,

in both 
ases, a signi�
ative improvement with respe
t to ∆E∗
ab is obtained.

This means thatM∗
has been su

essfully used to take into a

ount the fa
ts

related to the Weber-Fe
hner and Stevens laws. It should be also noted that

whereas ∆E∗
ab does not in
orporate these laws, they are 
onsidered in more

re
ent 
olour di�eren
e formulas su
h as the CIE94 [98℄ and CIEDE2000 [99℄

formulas. We also 
ompare the performan
e of the proposed formulas with

these re
ent ones in Table 2.1, where we 
an see that the performan
e of our

formulas are pretty 
lose to the one of the CIE94.
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Chapter 3

On 
ompletable fuzzy metri


spa
es

The material of this 
hapter is an adaptation to the thesis of the 
ontent of

the paper by Valentín Gregori, Juan-José Miñana and Samuel Morillas, �On


ompletable fuzzy metri
 spa
es�, published in the JCR-journal Fuzzy Sets

and Systems 267 (2015) 133-139.

43
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3.1 Introdu
tion

In this 
hapter we 
ontinue the study of fuzzy metri
 
ompletion initiated by

Gregori and Romaguera [31℄. The theory of fuzzy metri
 
ompletion is, in this


ontext, very di�erent from the 
lassi
al theory of metri
 
ompletion. Indeed,

as it is well-known metri
 and Menger spa
es are 
ompletable. Further,

imitating the Sherwod's proof [83℄ one 
an prove that fuzzy metri
 spa
es

de�ned by Kramosil and Mi
halek are 
ompletable (other di�erent proof


an be found in [6℄). In this sense non-
ompletability is a spe
i�
 feature

of fuzzy metri
 spa
es, sin
e there are fuzzy metri
 spa
es whi
h are not


ompletable [31, 32, 25℄. The following 
hara
terization of 
ompletable fuzzy

metri
 spa
es was given (in a slightly di�erent way) in [32℄:

Theorem 6. A fuzzy metri
 spa
e (X,M, ∗) is 
ompletable if and only if

for ea
h pair of Cau
hy sequen
es {an} and {bn} in X the following three


onditions are ful�lled:

(
1) limnM(an, bn, s) = 1 for some s > 0 implies limnM(an, bn, t) = 1 for

all t > 0.

(
2) limnM(an, bn, t) > 0 for all t > 0.

(
3) The assignment t → limnM(an, bn, t) for ea
h t > 0 is a 
ontinuous

fun
tion on ]0,∞[, provided with the usual topology of R.

In [31℄ and [32℄ two non-
ompletable fuzzy metri
 spa
es were given in

whi
h 
onditions (
2) and (
1), respe
tively, are not satis�ed. Sin
e then

the following is an open question (whi
h was posed formally in Problem 1

of Chapter 2): Does it exist a fuzzy metri
 spa
e in whi
h 
ondition (
3)
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is not satis�ed? In this 
hapter we answer in a positive way this question,


onstru
ting a fuzzy metri
 spa
e (Proposition 9) in whi
h (
3) is not satis�ed

(Example 2). In addition, we also show that this spa
e is an example of a

non-strong fuzzy metri
 spa
e.

3.2 A non-
ompletable fuzzy metri
 spa
e

Next, we attend to the requirement of [27℄ Problem 25, 
onstru
ting a fuzzy

metri
 spa
e (X,M, ∗) in whi
h for two Cau
hy sequen
es {an} and {bn} in

X the assignment f : R+ →]0, 1] given by f(t) = limnM(an, bn, t) for all

t > 0 is a non-
ontinuous fun
tion on R+
, endowed with the usual topology

of R restri
ted to R+
.

We start with the following lemma.

Lemma 3. Let A,B,C, a, b, c ∈ R+
and u, v, w ∈]0, 1[ su
h that A ≥ a,

B ≥ b, C ≥ c, and A ≥ B · C, a ≥ b · c and u ≥ m = max{v,w}. Then

Au+ a(1− u) ≥ (Bv + b(1− v)) · (Cw + c(1− w)). (3.1)

Proof.

The following expressions are satis�ed:

Au+ a(1− u) ≥ Am+ a(1−m). (3.2)

(Indeed, Au+ a(1− u)−Am− a(1−m) = (A− a)(u−m) ≥ 0).

Am+ a(1−m) ≥ (Bm+ b(1−m)) · (Cm+ c(1 −m)) . (3.3)
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(Indeed, Am+ a(1−m) ≥ BCm+ bc(1 −m)− (B − b)(C − c)m(1 −m) =

(Bm+ b(1−m)) · (Cm+ c(1−m))).

Bv + b(1− v) ≤ Bm+ b(1−m). (3.4)

Cw + c(1− w) ≤ Cm+ c(1 −m). (3.5)

(Indeed, Bm+ b(1−m)−Bv− b(1− v) = (B− b)(m− v) ≥ 0. The proof

of (3.5) is similar).

Now, using expressions (3.4), (3.5), (3.3) and (3.2), su

essively, we have

(Bv + b(1− v)) · (Cw + c(1 − w)) ≤ (Bm+ b(1−m)) · (Cm+ c(1−m)) ≤

Am+ a(1−m) ≤ Au+ a(1− u).

�

Lemma 4. Let d be the usual metri
 on R and 
onsider on ]0, 1] the standard

fuzzy metri
 Md indu
ed by d. Then

Md(x, z, t + s) ≥Md(x, y, t) ·Md(y, z, 2s)

for all x, y, z ∈]0, 1], d(y, z) < s ≤ 1 and 0 < t ≤ d(x, y).

Proof.

Let x, y, z ∈]0, 1], d(y, z) < s ≤ 1 and 0 < t ≤ d(x, y). We have

(t+ s)(t+ d(x, y))(2s + d(y, z)) =
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= (t+ s)(2st+ td(y, z) + 2sd(x, y) + d(x, y)d(y, z)) ≥

(t+ s)(2st+ 2sd(x, y) + 2td(y, z)) ≥

≥ 2ts(t+ s+ d(x, y) + d(y, z)) ≥ 2ts(t+ s+ d(x, z)).

So,

Md(x, z, t+s) =
t+s

t+s+d(x,z) ≥ t
t+d(x,y) · 2s

2s+d(y,z) =Md(x, y, t)·Md(y, z, 2s).

�

Proposition 9. Let d be the usual metri
 on R restri
ted to ]0, 1] and 
on-

sider the standard fuzzy metri
 Md indu
ed by d.

We de�ne on ]0, 1]×]0, 1]×]0,∞[ the fun
tion

M(x, y, t) =















Md(x, y, t), 0 < t ≤ d(x, y)

Md(x, y, 2t) · t−d(x,y)
1−d(x,y) +Md(x, y, t) · 1−t

1−d(x,y) , d(x, y) < t ≤ 1

Md(x, y, 2t), t > 1

Then (]0, 1],M, ·) is a fuzzy metri
 spa
e.

Proof.

Before starting the proof and ta
king into a

ount that

t− d(x, y)

1− d(x, y)
+

1− t

1− d(x, y)
= 1

for all t > 0, we noti
e that the following inequalities are satis�ed:

Md(x, y, 2t) ≥Md(x, y, 2t)·
t− d(x, y)

1 − d(x, y)
+Md(x, y, t)·

1− t

1 − d(x, y)
≥Md(x, y, t)

(3.6)
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for all x, y ∈]0, 1] and for all d(x, y) < t ≤ 1.

Clearly, M satis�es (GV 1) and (GV 3).

It is left to the reader to verify that M satis�es (GV 2) and (GV 5).

Now, we will see that M satis�es the triangle inequality

M(x, z, t + s) ≥M(x, y, t) ·M(y, z, s)

for all x, y, z ∈]0, 1] and s, t > 0.

We distinguish three possibilities.

(a) Suppose 0 < t+ s ≤ d(x, z).

In this 
ase M(x, z, t + s) =Md(x, z, t+ s).

Under this possibility we 
an 
onsider the following 
ases.

(a.1) Suppose 0 < t ≤ d(x, y) and 0 < s ≤ d(y, z).

In this 
ase M(x, y, t) =Md(x, y, t) and

M(y, z, s) =Md(y, z, s).

Sin
e

Md(x, z, t+ s) ≥Md(x, y, t) ·Md(y, z, s)

we have

M(x, z, t + s) ≥M(x, y, t) ·M(y, z, s).
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(a.2) Suppose 0 < t ≤ d(x, y) and d(y, z) < s ≤ 1.

In this 
ase M(x, y, t) =Md(x, y, t) and

M(y, z, s) =Md(y, z, 2s) · s−d(y,z)
1−d(y,z) +Md(y, z, s) · 1−s

1−d(y,z) .

By Lemma 4 we have thatMd(x, z, t+s) ≥Md(x, y, t)·Md(y, z, 2s).

Thus, by (3.6) we have that

M(x, z, t + s) ≥M(x, y, t) ·M(y, z, s).

(The 
ase d(x, y) < t ≤ 1 and 0 < s ≤ d(y, z) is proved in a

similar way.)

(b) Suppose now that d(x, z) < t+ s ≤ 1.

In this 
ase

M(x, z, t+ s) =Md(x, z, 2(t+ s)) · t+s−d(x,z)
1−d(x,z) +Md(x, z, t+ s) · 1−(t+s)

1−d(x,z) .

Under this possibility we 
an 
onsider the following 
ases.

(b.1) Suppose 0 < t ≤ d(x, y) and 0 < s ≤ d(y, z). In this 
ase

M(x, y, t) = Md(x, y, t) and M(y, z, s) = Md(y, z, s). By (3.6)

we have that

M(x, z, t + s) ≥Md(x, z, t+ s) ≥Md(x, y, t) ·Md(y, z, s)

and so

M(x, z, t + s) ≥M(x, y, t) ·M(y, z, s).
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(b.2) Suppose 0 < t ≤ d(x, y) and d(y, z) < s ≤ 1.

In this 
ase M(x, y, t) =Md(x, y, t) and

M(y, z, s) =Md(y, z, 2s) · s−d(y,z)
1−d(y,z) +Md(y, z, s) · 1−s

1−d(y,z) .

By (3.6) and Lemma 4 we have

M(x, z, t+ s) ≥Md(x, z, t+ s) ≥Md(x, y, t) ·Md(y, z, 2s)

and so

M(x, z, t + s) ≥M(x, y, t) ·M(y, z, s).

(The 
ase d(x, y) < t ≤ 1 and 0 < s ≤ d(y, z) is proved in a

similar way.)

(b.3) Suppose d(x, y) < t ≤ 1 and d(y, z) < s ≤ 1.

In this 
aseM(x, y, t) =Md(x, y, 2t)· t−d(x,y)
1−d(x,y)+Md(x, y, t)· 1−t

1−d(x,y)

and M(y, z, s) =Md(y, z, 2s) · s−d(y,z)
1−d(y,z) +Md(y, z, s) · 1−s

1−d(y,z) .

Now, it is easy to verify that

t+ s− d(x, z)

1− d(x, z)
≥ max

{

t− d(x, y)

1− d(x, y)
,
s− d(y, z)

1− d(y, z)

}

. (3.7)

Put u = t+s−d(x,z)
1−d(x,z) , v = t−d(x,y)

1−d(x,y) , w = s−d(y,z)
1−d(y,z) , A =Md(x, z, 2(t+

s)), a = Md(x, z, t + s), B = Md(x, y, 2t), b = Md(x, y, t), C =

Md(y, z, 2s) and c =Md(y, z, s).

Obviously u, v, w ∈]0, 1[ and A,B,C, a, b, c ∈ R+
. Now, by (3.7)

and sin
e (Md, ·) is a fuzzy metri
 on R then u, v, w,A,B,C, a, b, c

ful�l the 
onditions of Lemma 3.1. Then

M(x, z, t+ s) = Au+a(1−u) ≥ (Bv+ b(1− v)) · (Cw+ c(1−w))
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and so

M(x, z, t + s) ≥M(x, y, t) ·M(y, z, s).

(
) Suppose t+ s > 1.

In this 
ase M(x, z, t + s) =Md(x, z, 2(t + s)).

Clearly, for all x, y, z ∈]0, 1] and for all s, t > 0 we have that

M(x, y, t) ≤Md(x, y, 2t) and M(y, z, s) ≤Md(y, z, 2s).

Sin
e Md(x, z, 2(t + s)) ≥Md(x, y, 2t) ·Md(y, z, 2s) for ea
h t, s > 0

then

M(x, z, t+ s) ≥M(x, y, t) ·M(y, z, s) for all t, s > 0

Therefore,M satis�es the triangle inequality and hen
e (]0, 1],M, ·) is a fuzzy
metri
 spa
e. �

Proposition 10. The sequen
e {an}, where an = 1
n for all n = 1, 2, . . ., is

a Cau
hy sequen
e in (]0, 1],M, ·).

Proof.

Fix t > 0. We 
an �nd n0 ∈ N su
h that

∣

∣

1
n − 1

m

∣

∣ < t for ea
h m,n ≥ n0.

Then for m,n ≥ n0 we have

M (an, am, t) =











2t
2t+| 1n− 1

m | ·
t−| 1n− 1

m |
1−| 1n− 1

m | +
t

t+| 1n− 1

m | ·
1−t

1−| 1n− 1

m | , 0 < t ≤ 1

2t
2t+| 1n− 1

m | , t > 1
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Hen
e, if 0 < t ≤ 1 we have limn,mM (an, am, t) =
2t
2t · t+ t

t · (1− t) = 1, and

if t > 1 we have limn,mM (an, am, t) =
2t
2t = 1

Then limn,mM (an, am, t) = 1 for all t > 0. So {an} is a Cau
hy sequen
e

in (]0, 1],M, ·). �

Remark 7. It is easy to see that TM ≻ TMd
and then TM is �ner than the

usual topology of R. Then, the sequen
e { 1
n} only 
ould 
onverges to 0 in

TM , but 0 /∈]0, 1] and, in 
onsequen
e, ]0, 1] is not 
omplete.

Example 2. Let (]0, 1],M, ·) the above fuzzy metri
 spa
e. Consider the

Cau
hy sequen
es {an} and {bn} where an = 1
n and bn = 1, for n = 1, 2, . . ..

We will see that the assignment t → limnM(an, bn, t) is a well-de�ned non-


ontinuous fun
tion on ]0,∞[, endowed with the usual topology of R.

Take t ∈]0, 1[. Then there exists n0 ∈ N su
h that

∣

∣1− 1
n

∣

∣ > t for ea
h

n ≥ n0. Hen
e for ea
h n ≥ n0 we have that M (an, bn, t) =
t

t+|1− 1

n |
and so

lim
n
M (an, bn, t) =

t

t+ 1
.

If t = 1, then t >
∣

∣1− 1
n

∣

∣

for all n ∈ N, and so M (an, bn, t) =
2

2+|1− 1

n | ·
1−|1− 1

n |
1−|1− 1

n | +
1

1+|1− 1

n | ·
1−1

1−|1− 1

n | . Therefore

lim
n
M (an, bn, 1) =

2

3

And �nally, take t > 1. Then we have that M (an, bn, t) =
2t

2t+|1− 1

n |
and

so

lim
n
M (an, bn, t) =

2t

2t+ 1
.
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Therefore, we 
an 
onsider the fun
tion f : R+ →]0, 1] de�ned by

f(t) = lim
n
M (an, bn, t)

for ea
h t > 0. Hen
e this fun
tion is given by

f(t) =

{

t
t+1 , 0 < t < 1
2t

2t+1 , t ≥ 1

As one 
an see f is not 
ontinuous at t = 1.

Remark 8. Sin
e M does not satisfy (
3), then by Theorem 6 the fuzzy

metri
 spa
e (]0, 1],M, ·) is not 
ompletable.

Remark 9. The fuzzy metri
 spa
e of Example 2 is not strong. Indeed, if we

take x = 1, y = 1
2 , z = 9

20 ∈]0, 1] and t = 11
20 > 0, after a tedious 
omputation

one 
an verify that M(x, z, t) < M(x, y, t) ·M(y, z, t).
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Chapter 4

Chara
terizing a 
lass of


ompletable fuzzy metri


spa
es

The material of this 
hapter is an adaptation to the thesis of the 
ontent of the

paper by Valentín Gregori, Juan-José Miñana, Samuel Morillas and Alman-

zor Sapena �Chara
terizing a 
lass of 
ompletable fuzzy metri
 spa
es�, whi
h

is a

epted for publi
ation in the JCR-journal Topology and its Appli
ations.
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4.1 Introdu
tion

In this 
hapter we study the 
hara
terization of 
ompletable fuzzy metri


spa
es, in the sense of Geroge and Veeramani, given by Gregori and Roma-

guera 2, whi
h we reformulate, for our 
onvenien
e, in Theorem 6 of Chapter

3.

There were in the literature examples of non-
ompletable strong fuzzy

metri
s that do not satisfy (c1) or (c2) [31, 32℄, and in the last 
hapter we

have 
onstru
ted a non-
ompletable fuzzy metri
 spa
e whi
h does not satisfy

(c3).

In this 
hapter we �rst observe that (c1)−(c3) 
onstitute an independent

axiomati
 system and then we will proof, after several lemmas, that strong

fuzzy metri
s satisfy (c3), or in other words (Theorem 8): A strong fuzzy

metri
 spa
e (X,M, ∗) is 
ompletable if and only if M satis�es (c1) and

(c2). Several 
orollaries 
an be obtained from this theorem, for instan
e a


hara
terization of 
ompletable fuzzy ultrametri
s (Corollary 6) and also we


ould obtain that metri
 spa
es admit a unique 
ompletion, but we do not

insist on it be
ause it is well-known from the properties of the standard fuzzy

metri
. Several examples illustrate our results.

The stru
ture of the 
hapter is as follows. In Se
tion 4.2 we prove that

(c1) − (c3) 
onstitute an independent axiomati
 system. In Se
tion 4.3 we

give a 
hara
terization for the 
lass of 
ompletable strong fuzzy metri
s.
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4.2 Non-
ompletable fuzzy metri
 spa
es

In this se
tion we will show that the axioms (c1) − (c3) 
onstitute an in-

dependent axiomati
 system. To that end, we show three examples of non-


ompletable fuzzy metri
 spa
e, whi
h do not satisfy anyone of these three

axioms but they satisfy the other two.

Example 3. (Gregori and Romaguera [32, Example 2℄.) Let {xn} and {yn}
be two stri
tly in
reasing sequen
es of positive real numbers, whi
h 
on-

verge to 1 with respe
t to the usual topology of R, with A ∩ B = ∅, where
A = {xn : n ∈ N} and B = {yn : n ∈ N}. Put X = A∪B and de�ne a fuzzy

set M on X ×X×]0,∞[ by:

M(xn, xn, t) =M(yn, yn, t) = 1 for all n ∈ N, t > 0,

M(xn, xm, t) = xn ∧ xm for all n,m ∈ N with n 6= m, t > 0,

M(yn, ym, t) = yn ∧ ym for all n,m ∈ N with n 6= m, t > 0,

M(xn, ym, t) =M(ym, xn, t) = xn ∧ ym for all n,m ∈ N, t ≥ 1,

M(xn, ym, t) =M(ym, xn, t) = xn ∧ ym ∧ t for all n,m ∈ N, t ∈]0, 1[.

As pointed out in [32℄, an easy 
omputation shows that (X,M, ∗) is a fuzzy

metri
 spa
e, where ∗ is the minimum t-norm, and it satis�es 
onditions (c2)

and (c3) of Theorem 6. But M does not satisfy 
ondition (c1) of Theorem

6. Indeed, in [32℄ it was observed that {xn} and {yn} are Cau
hy sequen
es

in X su
h that limnM(xn, yn, t) = 1 for all t ≥ 1, but limnM(xn, yn, t) = t

for all t ∈]0, 1[.

Example 4. (Gregori and Romaguera [31, Example 2℄.) Let {xn} and {yn}
be two sequen
es of distin
t points su
h that A ∩ B = ∅, where A = {xn :

n ≥ 3} and B = {yn : n ≥ 3}. Put X = A ∪ B and de�ne a fuzzy set M on

X ×X×]0,∞[ by:
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M(xn, xm, t) =M(yn, ym, t) = 1−
[

1
n∧m − 1

n∨m
]

,

M(xn, ym, t) =M(ym, xn, t) =
1
n + 1

m ,

for all n,m ≥ 3. In [31℄, it was proved that (X,M, ∗) is a fuzzy metri


spa
e, where ∗ is the Lu
kasievi
z t-norm (a ∗ b = max{0, a + b − 1}), for
whi
h both {xn}n≥3 and {yn}n≥3 are Cau
hy sequen
es. Clearly,

lim
n
M(xn, yn, t) = lim

n

(

1

n
+

1

n

)

= 0.

Therefore, M does not satisfy 
ondition (c2).

On the other hand,M is a stationary fuzzy metri
 on X, and so it satis�es


onditions (c1) and (c3), sin
e, obviously, this two 
onditions are satis�ed for

stationary fuzzy metri
s.

Example 5. Let d be the usual metri
 on R restri
ted to ]0, 1] and 
onsider

the standard fuzzy metri
Md indu
ed by d. Put X =]0, 1] and de�ne a fuzzy

set M on X ×X]×]0,∞[ by

M(x, y, t) =















Md(x, y, t), 0 < t ≤ d(x, y)

Md(x, y, 2t) · t−d(x,y)
1−d(x,y) +Md(x, y, t) · 1−t

1−d(x,y) , d(x, y) < t ≤ 1

Md(x, y, 2t), t > 1

In the last 
hapter it is proved that (X,M, ∗) is a fuzzy metri
 spa
e, where ∗
is the usual produ
t. Also, it is obtained that for the Cau
hy sequen
es {an}
and {bn} in X, given by an = 1

n and bn = 1 for all n ∈ N, the assignment

lim
n
M(an, bn, t) =















t
t+1 , 0 < t < 1

2t
2t+1 , t ≥ 1
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is a well-de�ned fun
tion on ]0,∞[ whi
h is not 
ontinuous at t = 1. There-

fore, M does not satisfy 
ondition (c3).

Next, we will see that M satis�es 
onditions (c1) and (c2).

For proving that M satis�es (c1), we suppose that {an} and be {bn} are

two Cau
hy sequen
es in ]0, 1] su
h that limnM(an, bn, s) = 1 for some s > 0.

By Lemma 1, we 
an �nd t0 > 1, with t0 > s, su
h that limnM(an, bn, t0) =

1. Then,

lim
n
M(an, bn, t0) = lim

n
Md(an, bn, 2t0) = lim

n

2t0
2t0 + |an − bn|

= 1

and thus limn |an − bn| = 0.

Let t > 0. We distinguish two 
ases:

(1) If t ∈]0, 1], then there exists n0 ∈ N su
h that |an − bn| < t for all

n ≥ n0, sin
e limn |an − bn| = 0. Then

lim
n
M(an, bn, t) =

= lim
n

(

2t

2t+ |an − bn|
· t− |an − bn|
1− |an − bn|

+
t

t+ |an − bn|
· 1− t

1− |an − bn|

)

=

= t+ 1− t = 1

(2) If t > 1, then

lim
n
M(an, bn, t) = lim

n

2t

2t+ |an − bn|
= 1

Therefore, limnM(an, bn, t) = 1 for all t > 0, and so M satis�es (c1).
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Now, we will prove thatM satis�es (c2). Suppose the 
ontrary, i.e., there

exist two Cau
hy sequen
es {an} and {bn} su
h that limnM(an, bn, s) = 0

for some s > 0. First, we 
laim that M -Cau
hy sequen
es are Cau
hy for the

usual metri
 d of R restri
ted to ]0, 1]. Indeed, if {an} is a Cau
hy sequen
e

in (X,M, ∗), then limn,mM(an, am, t) = 1 for all t > 0. In parti
ular, for

t > 1 we have that limn,mM(an, am, t) = limn,m
2t

2t+|an−am| = 1, and so

limn,m |an − am| = 0, i.e., {an} is Cau
hy in (R, d).

Then, there exist a, b ∈ [0, 1] su
h that {an} and {bn} 
onverge to a and

b, respe
tively, for the usual topology of R restri
ted to [0, 1]. Therefore,

limn |an − bn| = |a− b|.

We distinguish two 
ases:

(1) Suppose that |a− b| = 0. Then for t0 > 1 we have that

lim
n
M(an, bn, t0) = lim

n

2t0
2t0 + |an − bn|

=
2t0

2t0 + |a− b| = 1.

So M(an, bn, t) = 1 for all t > 0, sin
e M satis�es 
ondition (c1), a


ontradi
tion.

(2) Suppose that |a − b| ∈]0, 1]. Taking into a

ount our assumption

and Lemma 1, we 
an �nd 0 < t0 < |a − b|, with t0 < s, su
h

that limnM(an, bn, t0) = 0. Then there exists n0 ∈ N su
h that

|an − bn| > t0 for all n ≥ n0, and so

lim
n
M(an, bn, t0) = lim

n

t0
t0 + |an − bn|

=
t0

t0 + |a− b| > 0,

a 
ontradi
tion.

Therefore, M satis�es (c2).
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Consequently, (c1)− (c3) 
onstitute an independent axiomati
 system.

4.3 Completable strong fuzzy metri
s

In this se
tion we will show that 
ondition (c3) in Theorem 6 
an be omitted

when (X,M, ∗) is a strong fuzzy metri
 spa
e.

We begin this se
tion giving �ve lemmas.

Lemma 5. Let (X,M, ∗) be a strong fuzzy metri
 spa
e and let {an}, {bn}
be two Cau
hy sequen
es in X. For ea
h t > 0, the sequen
e {M(an, bn, t)}n

onverges in [0, 1] with the usual topology of R restri
ted to [0, 1].

Proof.

Fix t > 0. Let {an} and {bn} be two Cau
hy sequen
es in X. Sin
e [0, 1] is


ompa
t the sequen
eM(an, bn, t) ∈ [0, 1] has a subsequen
e {M(ank
, bnk

, t)}k
that 
onverges to some c ∈ [0, 1]. We will see that {M(an, bn, t)}n 
onverges

to c.

Contrary, suppose that {M(an, bn, t)}n does not 
onverge to c. Then,

we 
an �nd a subsequen
e {M(ami
, bmi

, t)}i of {M(an, bn, t)}n 
onverging to

a ∈ [0, 1], with a 6= c.

Now, sin
e M is strong, for ea
h i, k ∈ N we have that

M(ank
, bnk

, t) ≥M(ank
, ami

, t) ∗M(ami
, bmi

, t) ∗M(bmi
, bnk

, t)

and taking limit as i, k → ∞, we have that

lim
k
M(ank

, bnk
, t) ≥ lim

i
M(ami

, bmi
, t).
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With a similar argument, we 
an also obtain

lim
i
M(ami

, bmi
, t) ≥ lim

k
M(ank

, bnk
, t).

So, c = limkM(ank
, bnk

, t) = limiM(ami
, bmi

, t) = a, a 
ontradi
tion.

Therefore, limnM(an, bn, t) = c. �

Lemma 6. Let (X,M, ∗) be a fuzzy metri
 spa
e, let {an} be a Cau
hy

sequen
e in X and let {tn} be a stri
tly in
reasing (de
reasing) sequen
e of

positive real numbers 
onverging to t0 > 0 (for the usual topology of R). Then

limn,mM(an, am, tn) = 1.

Proof.

It is immediate. �

Lemma 7. Let (X,M, ∗) be a strong fuzzy metri
 spa
e. Let {an}, {bn} be

two Cau
hy sequen
es in X and let {tn} be a stri
tly in
reasing (de
reasing)

sequen
e of positive real numbers 
onverging to t0 > 0 (for the usual topology

of R). Then, the sequen
e {M(an, bn, tn)}n 
onverges in [0, 1], with the usual

topology of R restri
ted to [0, 1].

Proof.

Let {an}, {bn} be two Cau
hy sequen
es in X and let {tn} be a stri
tly

in
reasing sequen
e of positive real numbers 
onverging to t0 > 0. Consider

the sequen
e {M(an, bn, tn)}n ⊂ [0, 1]. Sin
e [0, 1] is 
ompa
t then, there

exists a subsequen
e {M(ank
, bnk

, tnk
)}k of {M(an, bn, tn)}n 
onverging to

c ∈ [0, 1].
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Suppose that {M(an, bn, tn)}n does not 
onverge to c. Then, we 
an �nd a
subsequen
e {M(ami

, bmi
, tmi

)}i of {M(an, bn, tn)}n 
onverging to a ∈ [0, 1],

with a 6= c.

Suppose, without loss of generality, that a > c. We will 
onstru
t, by

indu
tion, two subsequen
es {M(ankl
, bnkl

, tnkl
)}l and {M(amij

, bmij
, tmij

)}j
of {M(ank

, bnk
, tnk

)}k and {M(ami
, bmi

, tmi
)}i, respe
tively, as follows.

Take mi1 = m1 ∈ N. We 
an 
hoose nk1 ∈ N su
h that nk1 > mi1 and

tnk1
> tmi1

(sin
e {tnk
} is stri
tly in
reasing). By Lemma 1 and using that

M is strong, we have that

M(ank1
, bnk1

, tnk1
) ≥M(ank1

, bnk1
, tmi1

) ≥

M(ank1
, ami1

, tmi1
) ∗M(ami1

, bmi1
, tmi1

) ∗M(bmi1
, bnk1

, tmi1
).

Now, we 
hoose mi2 ∈ N su
h that mi2 > nk1 . Given mi2 , we 
an 
hoose

nk2 ∈ N su
h that nk2 > mi2 and tnk2
> tmi2

. By Lemma 1 and using that

M is strong, we have that

M(ank2
, bnk2

, tnk2
) ≥M(ank2

, bnk2
, tmi2

) ≥

M(ank2
, ami2

, tmi2
) ∗M(ami2

, bmi2
, tmi2

) ∗M(bmi2
, bnk2

, tmi2
).

Therefore, by indu
tion on j we have that

M(ankj
, bnkj

, tnkj
) ≥

M(ankj
, amij

, tmij
) ∗M(amij

, bmij
, tmij

) ∗M(bmij
, bnkj

, tmij
).

Taking limit as j → ∞, by Lemma 6 we have that.

c = lim
j
M(ankj

, bnkj
, tnkj

) ≥ lim
j
M(amij

, bmij
, tmij

) = a,

a 
ontradi
tion.
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Therefore, limnM(an, bn, tn) = c.

If {tn} is stri
tly de
reasing, it is proved in a similar way. �

Lemma 8. Let (X,M, ∗) be a strong fuzzy metri
 spa
e. Let {an}, {bn}
be two Cau
hy sequen
es in X and let {tn}, {sn} be two stri
tly in
reasing

(de
reasing) sequen
es of positive real numbers 
onverging to t0 > 0 (for the

usual topology of R). Then, limnM(an, bn, tn) = limnM(an, bn, sn).

Proof.

Let {an}, {bn} be two Cau
hy sequen
es in X and let {tn}, {sn} be two

stri
tly in
reasing sequen
e of positive real numbers 
onverging to t0 > 0.

By Lemma 7, there exist a, c ∈ [0, 1] su
h that limnM(an, bn, tn) = a

and limnM(an, bn, sn) = c. Contrary, suppose that limnM(an, bn, tn) 6=
limnM(an, bn, sn). Suppose, without loss of generality, that a < c.

In a similar way that in the proof of the above lemma, we will 
on-

stru
t two subsequen
es {M(ank
, bnk

, tnk
)}k and {M(ami

, bmi
, smi

)}i of the
sequen
es {M(an, bn, tn)}n and {M(an, bn, sn)}n, respe
tively, where tnk

>

smk
for all k ∈ N and we have that

M(ank
, bnk

, tnk
) ≥

M(ank
, amk

, smk
) ∗M(amk

, bmk
, smk

) ∗M(bmk
, bnk

, smk
)

for ea
h k ∈ N.

Taking limit as k → ∞, by Lemma 6 we have that

a = lim
k
M(ank

, bnk
, tnk

) ≥ lim
k
M(amk

, bmk
, smk

) = c,
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a 
ontradi
tion.

Therefore, limnM(an, bn, tn) = limnM(an, bn, sn).

The 
ase in whi
h {tn} and {sn} are stri
tly de
reasing is proved in a

similar way. �

Lemma 9. Let (X,M, ∗) be a strong fuzzy metri
 spa
e. Let {an}, {bn} be

two Cau
hy sequen
es in X and let {tn} be a stri
tly in
reasing (de
reasing)

sequen
e of positive real numbers 
onverging to t0 > 0 (for the usual topology

of R). Then, limnM(an, bn, tn) = limnM(an, bn, t0).

Proof.

Let {an}, {bn} be two Cau
hy sequen
es in X and let {tn} be a stri
tly

in
reasing sequen
e of positive real numbers 
onverging to t0 > 0.

By Lemma 7, there exists a ∈ [0, 1] su
h that limnM(an, bn, tn) = a and

by Lemma 5, there exists c ∈ [0, 1] su
h that limnM(an, bn, t0) = c. Note

that, by Lemma 1, sin
e {tn} is stri
tly in
reasing 
onverging to t0, we have

that for ea
h n ∈ N we have that M(an, bn, tn) ≤M(an, bn, t0) and so a ≤ c.

Sin
e limnM(an, bn, t0) = c, for ea
h ǫ ∈]0, 1[, with ǫ < c, we 
an �nd

nǫ ∈ N su
h that M(anǫ , bnǫ , t0) ∈]c− ǫ/2, c+ ǫ/2[. By axiom (GV 5) we 
an

�nd δnǫ > 0 su
h that M(anǫ , bnǫ , t) ∈]c− ǫ, c+ ǫ[ for ea
h t ∈]t0 − δnǫ , t0[.

Suppose that c > a. Taking into a

ount the last paragraph, we will


onstru
t a sequen
e {M(ank
, bnk

, sk)}k, where {ank
} and {bnk

} are subse-

quen
es of {an} and {bn}, respe
tively, 
onverging to c, as follows.
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Let i1 ∈ N, with 1
i1
< min{c, t0}, then there exist n1 ∈ N and s1 ∈

]t0− 1
i1
, t0[ su
h thatM(an1

, bn1
, s1) > c− 1

i1
. Choose i2 ∈ N, with 1

i2
< t0−s1,

then we 
an �nd n2 ∈ N, with n2 > n1 and s2 ∈]t0 − 1
i2
, t0[, su
h that

M(an2
, bn2

, s2) > c− 1
i2
. Thus, in this way by indu
tion on k, we 
onstru
t the

sequen
e {M(ank
, bnk

, sk)}k, whi
h obviously satis�es limkM(ank
, bnk

, sk) =

c. On the other hand, {sk} is a stri
tly in
reasing sequen
e of positive real

numbers 
onverging to t0. Therefore, by Lemma 8 limkM(ank
, bnk

, rk) = c

for ea
h stri
tly in
reasing sequen
e {rk} of positive real numbers 
onverging
to t0. In parti
ular, if we 
onsider the subsequen
e {tnk

} of {tn}, then

limkM(ank
, bnk

, tnk
) = c, a 
ontradi
tion, sin
e limnM(an, bn, tn) = a < c.

Therefore, limnM(an, bn, tn) = c.

The 
ase of {tn} stri
tly de
reasing is proved in a similar way. �

Theorem 7. Let (X,M, ∗) be a strong fuzzy metri
 spa
e, and let {an}, {bn}
be two Cau
hy sequen
es in X. Then the assignment

t→ lim
n
M(an, bn, t), for ea
h t > 0

is a 
ontinuous fun
tion on ]0,∞[ provided with the usual topology of R.

Proof.

Let {an} and {bn} be two Cau
hy sequen
es in X. By Lemma 5, the assign-

ment t→ limnM(an, bn, t) for ea
h t > 0, is a well-de�ned fun
tion on ]0,∞[

to [0, 1].

Next, we will see that this fun
tion is 
ontinuous. First we see that for

ea
h t > 0 the mentioned fun
tion is left-
ontinuous.
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Fix t0 > 0. By Lemma 5, we have that there exists c ∈ [0, 1] su
h that

limnM(an, bn, t0) = c. We distinguish two 
ases:

(1) Suppose that c = 0. By Lemma 1 and Lemma 5 we have that

limnM(an, bn, s) = 0 for all s ∈]0, t0[.

So, the fun
tion t→ limnM(an, bn, t) is left-
ontinuous at t0.

(2) Suppose that c ∈]0, 1] and suppose 
ontrary that the fun
tion t →
limnM(an, bn, t) is not left-
ontinuous at t0.

Then, there exists ǫ0 ∈]0, 1[ su
h that for ea
h δ ∈]0, t0[ we 
an �nd

tδ ∈]t0 − δ, t0[ su
h that bδ = limnM(an, bn, tδ) /∈]c − ǫ0, c + ǫ0[. Note

that, by Lemma 1, bδ ≤ c and so bδ < c− ǫ0.

On the other hand, given tδ ∈]t0−δ, t0[, sin
e limnM(an, bn, tδ) = bδ <

c − ǫ0, for ǫ0/2 we 
an �nd n(δ) ∈ N su
h that M(an, bn, tδ) ∈]bδ −
ǫ0/2, bδ + ǫ0/2[ for ea
h n ≥ n(δ). Therefore, M(an, bn, tδ) < c − ǫ0/2

for ea
h n ≥ n(δ).

Now, we will 
onstru
t a sequen
e {M(ank
, bnk

, tk)}k, where {ank
} and

{bnk
} are subsequen
es of {an} and {bn}, respe
tively, as follows.

Consider i1 ∈ N, with 1
i1
< t0. We 
an �nd t1 ∈]t0 − 1

i1
, t0[ su
h that

limnM(an, bn, t1) < c − ǫ0. Then, we 
an �nd n(i1) ∈ N su
h that

M(an, bn, t1) < c− ǫ0/2 for ea
h n ≥ n(i1). We 
hoose n1 = n(i1).

Consider now, i2 ∈ N, with 1
i2

∈]t1, t0[. We 
an �nd t2 ∈]t0 − 1
i2
, t0[

su
h that limnM(an, bn, t2) < c− ǫ0. Then, we 
an �nd n(i2) ∈ N su
h

thatM(an, bn, t2) < c−ǫ0/2 for ea
h n ≥ n(i2). We 
hoose n2 ≥ n(i2),

with n2 > n1.

So, by indu
tion on k we 
onstru
t the sequen
e {M(ank
, bnk

, tk)}k,
where {ank

} and {bnk
} are subsequen
es of {an} and {bn}, respe
-

tively, su
h that M(ank
, bnk

, tk) < c − ǫ0/2 for ea
h k ∈ N. Also, {tk}
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is a stri
tly in
reasing sequen
e of positive real numbers 
onverging

to t0. Therefore, by Lemma 9, we have that limkM(ank
, bnk

, tk) =

limkM(ank
, bnk

, t0) = limnM(an, bn, t0) = c, a 
ontradi
tion.

So, the above assignment is a left-
ontinuous fun
tion at t0.

In a similar way it is proved that t → limnM(an, bn, t) is right-
ontinuous

at t0 using a stri
tly de
reasing sequen
e {tn} 
onverging to t0 and thus it is


ontinuous at t0.

Hen
e, the assignment t → limnM(an, bn, t) is a 
ontinuous fun
tion on

]0,∞[. �

Theorem 8. A strong fuzzy metri
 spa
e (X,M, ∗) is 
ompletable if and

only if for ea
h pair of Cau
hy sequen
es {an} and {bn} in X the following


onditions are ful�lled:

(
1) limnM(an, bn, s) = 1 for some s > 0 implies limnM(an, bn, t) = 1 for

all t > 0.

(
2) limnM(an, bn, t) > 0 for all t > 0.

Proof.

The proof is immediate using Theorem 7 and Theorem 6. �

By Theorem 3 and the fa
t that the minimum t-norm is integral, the

following 
orollaries are immediate.
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Corollary 5. Let (X,M, ∗) be a strong fuzzy metri
 spa
e and suppose that

∗ is integral. Then (X,M, ∗) is 
ompletable if and only if for ea
h pair of

Cau
hy sequen
es {an} and {bn} in X the 
ondition (c1) is satis�ed.

Corollary 6. Let (X,M, ∗) be a fuzzy ultrametri
 spa
e. Then (X,M, ∗) is


ompletable if and only if for ea
h pair of Cau
hy sequen
es {an} and {bn}
in X the 
ondition (c1) is satis�ed.

Remark 10. We 
annot remove the 
ondition that ∗ is integral in Corollary

5 as shows Example 4. In addition, the fuzzy metri
 of Example 3 is a

non-
ompletable fuzzy ultrametri
 whi
h does not satisfy (c1).



70 Chara
terizing a 
lass of 
ompletable fuzzy metri
 spa
es



Chapter 5

A note on 
onvergen
e in fuzzy

metri
 spa
es

The material of this 
hapter is an adaptation to the thesis of the 
ontent of

the paper by Valentín Gregori, Juan-José Miñana and Samuel Morillas, �A

note on 
onvergen
e in fuzzy metri
 spa
es�, published in the journal Iranian

Journal of Fuzzy Systems 11 (4) (2014) 75-85.

71
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5.1 Introdu
tion

In this 
hapter we 
ontinue the work started in [25, 57℄, but in the oppo-

site way, that is, we strengthen the 
ondition of 
onvergen
e on t. So, we

introdu
e the following 
on
ept: A sequen
e {xn} in (X,M, ∗) is 
alled s-


onvergent if limnM(xn, x0,
1
n) = 1, for some x0 ∈ X. This 
on
ept is 
lose

to 
onvergen
e, and indeed, s-
onvergen
e implies 
onvergen
e but the 
on-

verse is not true, in general. A fuzzy metri
 spa
e in whi
h every 
onvergent

sequen
e is s-
onvergent will be 
alled s-fuzzy metri
 spa
e. Our �rst goal is

to obtain a 
hara
terization of s-fuzzy metri
 spa
es by means of lo
al bases

similar to the 
ase of prin
ipal fuzzy metri
 spa
es. Indeed, (X,M, ∗) is an
s-fuzzy metri
 spa
e if and only if {⋂t>0B(x, r, t) : r ∈]0, 1[} is a lo
al base

at x, for ea
h x ∈ X (Corollary 9).

The se
ond goal is to 
hara
terize a 
ertain 
lass of fuzzy metri
s by

means of our 
on
ept. Indeed, for those fuzzy metri
s M on X su
h that

NM (x, y) =
∧

t>0M(x, y, t) is a (stationary) fuzzy metri
 on X, we prove

that the topologies on X dedu
ed from M and NM agree if and only if M

is s-fuzzy metri
 (Theorem 10). Appropriate examples illustrate that the

impli
ations

s− 
onvergen
e ⇒ 
onvergen
e ⇒ p− 
onvergen
e,

have only one sense, in general.

Finally, to provide an overview, a 
lassi�
ation of fuzzy metri
s is drawn.

This 
lassi�
ation attends, spe
ially, to the behaviour of fuzzy metri
s with

respe
t to the di�erent types of 
onvergen
e studied and it also involves some

well-known families of fuzzy metri
s used in this 
hapter.

The stru
ture of the 
hapter is as follows. In Se
tion 5.2 we introdu
e
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and study the 
on
ept of s-
onvergen
e, in Se
tion 5.3 we study a 
ertain


lass of s-fuzzy metri
s and in Se
tion 5.4 we 
lassify fuzzy metri
 spa
es in

a

ordan
e with the 
on
epts of p and s-
onvergen
e.

5.2 s-
onvergen
e

De�nition 14. Let (X,M, ∗) be a fuzzy metri
 spa
e. We will say that a

sequen
e {xn} in X is s-
onvergent to x0 ∈ X if limnM(xn, x0,
1
n) = 1.

Equivalently, {xn} is s-
onvergent to x0 if for ea
h r ∈]0, 1[ there exists

n0 ∈ N su
h that M(xn, x0,
1
n) > 1 − r for all n ≥ n0, i.e. xn ∈ B(x0, r,

1
n)

for all n ≥ n0.

Under this terminology the following 
onsequen
es are immediate:

Consequen
es 1.

(i) If M is stationary then 
onvergent sequen
es are s-
onvergent.

(ii) Constant sequen
es are s-
onvergent.

In 
onsequen
e:

(iii) If TM is the dis
rete topology then 
onvergent sequen
es are s-
onvergent.

Proposition 11. Let (X,M, ∗) be a fuzzy metri
 spa
e. Ea
h s-
onvergent

sequen
e in X is 
onvergent.

Proof.

Suppose that {xn} is s-
onvergent to x0. Let t > 0. We 
hoose n0 ∈ N su
h
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that

1
n0
< t. We have that M(xn, x0, t) ≥ M(xn, x0,

1
n) for all n ≥ n0, and

so limnM(xn, x0, t) = 1, for all t > 0 and so {xn} 
onverges to x0. �

Now we will see that the 
onverse of the last proposition is not true, in

general.

Example 6. ([25, 91℄) On [0,∞[ we 
onsider the prin
ipal fuzzy metri
 (M, ·)
where M is de�ned by

M(x, y, t) =
min{x, y}+ t

max{x, y}+ t
, x, y ∈ [0,∞[, t > 0.

Sin
e limnM( 1n , 0, t) = limn
0+t
1

n
+t

= 1 for all t > 0, then
{

1
n

}


onverges to 0,

but it is not s-
onvergent to 0, sin
e limnM( 1n , 0,
1
n) =

0+ 1

n
1

n
+ 1

n

= 1
2 .

Further, if {xn} is a sequen
e that 
onverges to x0 in a fuzzy metri


spa
e (X,M, ∗) we 
annot ensure, in general, that limnM(xn, x0,
1
n) exists.

Indeed, in the 
urrent example, if we 
onsider the sequen
e {xn} given by

xn = 1
n if n is odd and xn = 1

n2 if n is even, then {xn} 
onverges to 0 and it

is easy to see limnM(xn, 0,
1
n) does not exist.

Proposition 12. Let (X,M, ∗) be a fuzzy metri
 spa
e.

(i) Ea
h subsequen
e of an s-
onvergent sequen
e in X is s-
onvergent.

(ii) Ea
h 
onvergent sequen
e in X admits an s-
onvergent subsequen
e.

Proof.
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(i) Suppose that {xn} is an s-
onvergent sequen
e to x0 in X, and 
onsider

a subsequen
e {xnk
} of {xn}. If we take a �x r ∈]0, 1[, by our assump-

tion there exists n0 ∈ N su
h thatM(xn, x0,
1
n) > 1−r for ea
h n ≥ n0.

Now, for all k ∈ N we have that M(xnk
, x0,

1
k ) ≥M(xnk

, x0,
1
nk

), sin
e

{xnk
} is a subsequen
e of {xn}. Thus if we take k0 su
h that nk0 ≥ n0,

then M(xnk
, x0,

1
k ) ≥M(xnk

, x0,
1
nk

) > 1− r for ea
h k ≥ k0.

(ii) Let {xn} be a 
onvergent sequen
e to x0 in X. We will 
onstru
t the

subsequen
e {xnk
} of {xn} as follows:

Sin
e {B(x0,
1
m ,

1
m ) : m ≥ 2} is a lo
al base at x0 and {xn} 
onverges

to x0, then for k = 2 we 
an �nd n2 ∈ N with n2 ≥ 2 su
h that xn2
∈

B(x0,
1
2 ,

1
2). By indu
tion on k (k ≥ 3) we 
hoose xnk

∈ B(x0,
1
k ,

1
k ),

with nk ≥ max{nk−1, k} and so we 
onstru
t the sequen
e {xnk
}. By


onstru
tion {xnk
} is a subsequen
e of {xn}. Finally, we will see that

{xnk
} is s-
onvergent. Let r ∈]0, 1[. We 
an �nd k0 ∈ N su
h that

0 < 1
k0

< r and then for all k ≥ k0 we have that 0 < 1
k < 1

k0
< r.

Thus xnk
∈ B(x0,

1
k ,

1
k ) ⊂ B(x0, r,

1
k ) for all k ≥ k0 and then {xnk

} is

s-
onvergent.

�

De�nition 15. We will say that (X,M, ∗) is an s-fuzzy metri
 spa
e or

simply M is an s-fuzzy metri
 if every 
onvergent sequen
e is s-
onvergent.

By Consequen
e 1 and the last de�nition we have the next 
orollary.

Corollary 7. Let (X,M, ∗) be a fuzzy metri
 spa
e.

(i) If TM is the dis
rete topology then M is an s-fuzzy metri
.
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(ii) If M is stationary then M is an s-fuzzy metri
.

Theorem 9. Let (X,M, ∗) be a fuzzy metri
 spa
e. Take x0 ∈ X and let

{tn} be a sequen
e of positive real numbers that 
onverges to 0 in the usual

topology of R restri
ted to [0,∞[. Then ea
h 
onvergent sequen
e {xn} to

x0 satis�es that limnM(xn, x0, tn) = 1 if and only if

⋂

t>0B(x0, r, t) is a

neighborhood of x0 for ea
h r ∈]0, 1[.

Proof.

Suppose that

⋂

t>0B(x0, r, t) is a neighborhood of x0 for ea
h r ∈]0, 1[
and 
onsider a 
onvergent sequen
e {xn} to x0 in X. Let ǫ ∈]0, 1[. Sin
e

⋂

t>0B(x0, ǫ, t) is a neighborhood of x0 there exists nǫ ∈ N su
h that xn ∈
⋂

t>0B(x0, ǫ, t) for all n ≥ nǫ, i.e. M(x0, xn, t) > 1 − ǫ for all t > 0, and

for all n ≥ nǫ. In parti
ular M(x0, xn, tn) > 1 − ǫ for all n ≥ nǫ. Thus

limnM(x0, xn, tn) = 1.

Conversely, suppose that there exists r0 ∈]0, 1[ su
h that

⋂

t>0B(x0, r0, t)

is not a neighborhood of x0. Equivalently,

⋂

nB(x0, r0, tn) is not a neigh-

borhood of x0. Re
all that {B(x0,
1
n ,

1
n) : n ≥ 2} is a de
reasing lo
al base

at x0. So, for ea
h n ≥ 2 we have that B(x0,
1
n ,

1
n) *

⋂

nB(x0, r0, tn). We


onstru
t a sequen
e {xn} taking xn ∈ B(x0,
1
n ,

1
n) \ (

⋂

nB(x0, r0, tn)) for

all n ≥ 2. This sequen
e {xn} is 
onvergent to x0. (Indeed, let δ ∈]0, 1[
and t > 0, and 
onsider B(x0, δ, t), then there exists n0 ∈ N su
h that

B(x0,
1
n0
, 1
n0
) ⊂ B(x0, δ, t) and so for all n ≥ n0 we have that B(x0,

1
n ,

1
n) ⊂

B(x0, δ, t) and then xn ∈ B(x0, δ, t) for all n ≥ n0). Now, we will see that

limnM(xn, x0, tn) 6= 1, by 
ontradi
tion. Suppose that limnM(xn, x0, tn) =

1. Then for r0 ∈]0, 1[ there exists nr0 ∈ N su
h that M(xn, x0, tn) > 1 − r0

for all n ≥ nr0 and in 
onsequen
e xn ∈ B(x0, r0, tn) for all n ≥ nr0 , a 
on-

tradi
tion. �
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Using the sequen
e { 1
n} as {tn} in the above theorem and taking into

a

ount that for ea
h r ∈]0, 1[ and t > 0 we have that

⋂

s>0B(x0, r, s) ⊂
B(x0, r, t) for ea
h x0 ∈ X, we obtain the next 
orollary.

Corollary 8. Let (X,M, ∗) be a fuzzy metri
 spa
e and let x0 ∈ X. Then

the following are equivalent:

(i) Ea
h sequen
e 
onverging to x0 is s-
onvergent.

(ii)

⋂

t>0B(x0, r, t) is a neighborhood of x0 for ea
h r ∈]0, 1[.

(iii) {⋂t>0B(x0, r, t) : r ∈]0, 1[} is a lo
al base at x0.

From this 
orollary it is immediate to obtain the following 
orollary.

Corollary 9. Let (X,M, ∗) be a fuzzy metri
 spa
e. Then the following are

equivalent:

(i) M is an s-fuzzy metri
.

(ii)

⋂

t>0B(x, r, t) is a neighborhood of x for all x ∈ X, and for all r ∈]0, 1[.

(iii) {⋂t>0B(x, r, t) : r ∈]0, 1[} is a lo
al base at x, for ea
h x ∈ X.

Taking into a

ount Theorem 1 we have the next 
orollary.

Corollary 10. Ea
h p-
onvergent sequen
e {xn} in X is s-
onvergent if and

only if X is a prin
ipal s-fuzzy metri
 spa
e.

Proposition 13. Let (X, d) be a metri
 spa
e. Then (X,Md, ·) is an s-fuzzy
metri
 spa
e if and only if T (d) is the dis
rete topology.
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Proof.

Fix r ∈]0, 1[ and x0 ∈ X. We will see that

⋂

t>0B(x0, r, t) = {x0}. Indeed,
B(x0, r, t) = {y ∈ X : d(x, y) < t·r

1−r} for all t > 0 and so

⋂

t>0B(x0, r, t) =
⋂

t>0{y ∈ X : d(x, y) < t·r
1−r} = {y ∈ X : d(x, y) ≤ 0} = {x0}. Then by

Corollary 9 (X,Md, ·) is an s-fuzzy metri
 spa
e if and only if x0 is isolated,

that is T (d) is the dis
rete topology. �

5.3 On a 
lass of s-fuzzy metri
s

If (X,M, ∗) is a fuzzy metri
 spa
e we de�ne the mapping NM on X2
given

by NM (x, y) =
∧

t>0M(x, y, t) for all x, y ∈ X. In this se
tion we are

interested in studying those non-stationary fuzzy metri
 spa
es (X,M, ∗)
su
h that (NM , ∗) is a (stationary) fuzzy metri
 on X and we establish a

relationship between those fuzzy metri
s and s-fuzzy metri
s. Noti
e that if

X is a set with at least two elements and d is a metri
 on X it is obvious

that

∧

t>0Md(x, y, t) = 0 for x 6= y, and so NMd
is not a fuzzy metri
 on X.

We start with the following lemma (whi
h proof we omit).

Lemma 10. Let (M, ∗) be a fuzzy metri
 on X. Then

(i) (NM , ∗) is a stationary fuzzy metri
 on X if and only if NM (x, y) > 0

for all x, y ∈ X. In su
h a 
ase:

(ii) TNM
≻ TM .

Theorem 10. Let (M, ∗) be a fuzzy metri
 on X su
h that NM (x, y) > 0



A note on 
onvergen
e in fuzzy metri
 spa
es 79

for ea
h x, y ∈ X. Then

TNM
= TM if and only if M is an s-fuzzy metri
.

Proof.

Suppose that TNM
= TM .

Fix x0 ∈ X, r ∈]0, 1[. We will see that

⋂

t>0BM (x0, r, t) is a TM -

neighborhood of x0.

Consider the open ball BNM
(x0, r) relative to NM . Sin
e TM = TNM

we


an �nd r1 ∈]0, 1[, t1 > 0 su
h that BM (x0, r1, t1) ⊂ BNM
(x0, r). We will

see that BNM
(x0, r) ⊂ ⋂

t>0BM (x0, r, t). Indeed, if y ∈ BNM
(x0, r) then

NM (x0, y) > 1−r, i.e. ∧t>0M(x0, y, t) > 1−r and soM(x0, y, t) > 1−r for
all t > 0, i.e. y ∈ BM (x0, r, t) for all t > 0. Then y ∈ ⋂

t>0BM (x0, r, t). Now,

sin
e BM (x0, r1, t1) ⊂ BNM
(x0, r) ⊂

⋂

t>0BM (x0, r, t) then
⋂

t>0BM (x0, r, t)

is a TM -neighborhood of x0, and so by Corollary 9 M is an s-fuzzy metri
.

Conversely, suppose that M is an s-fuzzy metri
. By the last lemma we

have that TNM
≻ TM . Now, we will see that TM ≻ TNM

. Let x0 ∈ X,

r ∈]0, 1[ and 
onsider BNM
(x0, r). We will see that (the TM -neighborhood

of x0)
⋂

t>0BM (x0,
r
2 , t) is 
ontained in BNM

(x0, r). Indeed, if we 
onsider

y ∈ ⋂

t>0BM (x0,
r
2 , t) then y ∈ BM (x0,

r
2 , t) for all t > 0, i.e M(x0, y, t) >

1− r
2 for all t > 0, so

∧

t>0M(x0, y, t) ≥ 1− r
2 , thus NM (x0, y) > 1− r and

so y ∈ BNM
(x0, r). �

An example of s-fuzzy metri
 ful�lling all 
onditions of Theorem 10 is

given later in Example 8. On the other hand the next example shows that

the 
lass of fuzzy metri
s M su
h that NM is a fuzzy metri
 is not 
ontained
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in the 
lass of s-fuzzy metri
s and vi
e-versa.

Example 7. (a) (NM is a fuzzy metri
 and M is not an s-fuzzy metri
)

Let X =]0, 1] be endowed with the usual metri
 d of R. We de�ne

M(x, y, t) =















1− 1
2d(x, y)

t, if 0 < t ≤ 1

1− 1
2d(x, y), if t > 1

It is easy to verify that {(Mt,L) : t > 0} is an in
reasing family of

stationary fuzzy metri
s on ]0, 1], where Mt(x, y) =M(x, y, t) for ea
h

t > 0. Also that TMt is T (d) (the usual topology of R restri
ted to

]0, 1]), for all t > 0. Then from [28, 68℄ one 
an 
on
lude that (X,M,L)

is a fuzzy metri
 spa
e and TM is T (d).

On the other hand, NM (x, y) =
∧

t>0M(x, y, t) > 0 for all x, y ∈]0, 1],
sin
e

NM (x, y) =
∧

t>0

M(x, y, t) =















1, if x = y

1
2 , if x 6= y

By the last lemma we have that (NM ,L) is a fuzzy metri
 on X, and

it is obvious that TNM
is the dis
rete topology. Therefore TNM

6= TM .

(b) (M is an s-fuzzy metri
 but NM is not a fuzzy metri
)

The fuzzy metri
 (M, ·) of Example 9 is an s-fuzzy metri
 on X, but

NM (12 ,
1
π ) =

∧

t>0M(12 ,
1
π , t) =

∧

t>0
2
π · t = 0 and so (NM , ·) is not a

fuzzy metri
 on X.
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5.4 A 
lassi�
ation of fuzzy metri
 spa
es

Let X be a non-empty set. Denote by D the family of fuzzy metri
s that

generate the dis
rete topology on X, and by Ms and S the families of s-

fuzzy metri
s and stationary fuzzy metri
s on X, respe
tively. Attending to

Consequen
es 1 we have that D ⊂ Ms and S ⊂ Ms.

Also, denote the families of prin
ipal fuzzy metri
s and standard fuzzy

metri
s on X by P and Md, respe
tively. From [25℄ we know that S ⊂ P
and Md ⊂ P. Now, from our previous results and the impli
ations

s− convergence⇒ convergence⇒ p− convergence

we 
an 
on
lude the diagram of in
lusions in Figure 5.1.

Figure 5.1: Diagram of in
lusions

Next, we give examples whi
h show that all (non-trivial) in
lusions in the

diagram are stri
t. In some 
ases, appropriate sequen
es with and without

some type of 
onvergen
e are also provided.
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Noti
e that in Example 6 we have seen a prin
ipal non-s-fuzzy metri


spa
e.

Example 8. (A non-stationary prin
ipal s-fuzzy metri
 spa
e).

Let (]0,∞[,M, ·) the fuzzy metri
 spa
e, where M is the fuzzy metri
 of

Example 6. It is known that M is prin
ipal [25℄. Now,

NM (x, y) =
∧

t>0

min{x, y}+ t

max{x, y}+ t
=

min{x, y}
max{x, y} > 0 for ea
h x, y ∈]0,∞[.

Then by Theorem 10 we have that M is an s-fuzzy metri
, sin
e TNM
= TM ,

[27℄.

Remark 11. Sin
e the 
ompletion of the fuzzy metri
 spa
e of Example 8 is

the fuzzy metri
 spa
e of Example 6, [27℄, then the 
ompletion of an s-fuzzy

metri
 spa
e is not ne
essarily an s-fuzzy metri
 spa
e.

Example 9. (A non-stationary non-prin
ipal s-fuzzy metri
 spa
e). Let

X =]0, 1], A = X ∩Q, B = X \ A. De�ne the fun
tion M on X2 × R+
by

M(x, y, t) =







min{x,y}
max{x,y} · t, (x ∈ A, y ∈ B) or (x ∈ B, y ∈ A) , t ∈]0, 1[,
min{x,y}
max{x,y} , elsewhere.

In [25℄ it is proved that (X,M, ·) is a fuzzy metri
 spa
e whi
h is not prin
ipal.

(Noti
e that if we take b ∈ B we have that the sequen
e {1 − b
n} is p-


onvergent, sin
e limnM(1− b
n , 1, 1) = limn

1− b
n

1 = 1, but it is not 
onvergent,

sin
e limnM(1− b
n , 1,

1
2) = limn

1− b
n

1 · 1
2 = 1

2 .)

Now, we will see that M is an s-fuzzy metri
 on X. For it we will prove

that

⋂

t>0B(x, r, t) is a neighborhood of x, for ea
h x ∈ X and ea
h r ∈]0, 1[.

Fix x ∈ X and r ∈]0, 1[. It is easy to verify that for t ∈]0, 1− r]:
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B(x, r, t) =
⋂

t>0

B(x, r, t) =















[

x · (1− r), x
1−r

]

∩A, x ∈ A,

[

x · (1− r), x
1−r

]

∩B, x ∈ B.

On the other hand, if n ≥ 2

B(x,
1

n
,
1

n
) =







]x · (1− 1
n),

x
1− 1

n

[∩A, x ∈ A,

]x · (1− 1
n),

x
1− 1

n

[∩B, x ∈ B.

Therefore if we take n ∈ N su
h that 0 < 1
n < r we have that B(x, 1n ,

1
n) ⊂

⋂

t>0B(x, r, t) and so

⋂

t>0B(x, r, t) is a neighborhood of x and then by

Corollary 9 M is an s-fuzzy metri
.

Example 10. (A non-prin
ipal non-s-fuzzy metri
 spa
e). Let A = R ∩Q,

B = R \ A. Let d be the usual metri
 on R. De�ne the fun
tion M on

R2 × R+
by

M(x, y, t) =

{

t ·Md(x, y, t), (x ∈ A, y ∈ B) or (x ∈ B, y ∈ A) , t ∈]0, 1[,
Md(x, y, t), elsewhere.

We will show that (R,M, ·) is a fuzzy metri
 spa
e.

Obviously, M satis�es (GV 1), (GV 3) and (GV 5).

First, we will see thatM satis�es (GV 2). Suppose thatM(x, y, t) = 1 for

x ∈ A, y ∈ B and t ∈]0, 1[. Then t·Md(x, y, t) = 1, but sin
e t ∈]0, 1[ we have
that Md(x, y, t) > 1, a 
ontradi
tion. Therefore, M(x, y, t) =Md(x, y, t) = 1

and so x = y. The 
onverse is immediate.

Now, we will see that M satis�es (GV 4). Suppose that x, y ∈ A, z ∈ B

and let t, s > 0 su
h that t+ s ∈]0, 1[. Then
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M(x, z, t + s) = (t+ s) ·Md(x, z, t + s) > s ·Md(x, y, t) ·Md(y, z, s) =

M(x, y, t) ·M(y, z, s).

The other 
ases are proved in a similar way.

We will see that M is not prin
ipal and neither an s-fuzzy metri
. For it,

we will give a p-
onvergent sequen
e whi
h is not 
onvergent and a 
onvergent

sequen
e whi
h is not s-
onvergent.

Consider the sequen
e {π
n}. Then limnM(πn , 0, 1) = limn

1
1+π

n

= 1 and

so {π
n} is p-
onvergent, but limnM(πn , 0,

1
2 ) = limn

( 1

2
)
2

1

2
+π

n

= 1
2 and so {π

n} is

not 
onvergent.

Now, 
onsider the sequen
e { 1
n}. For all t > 0,

lim
n
M(

1

n
, 0, t) = lim

n

t

t+ 1
n

= 1,

then { 1
n} is 
onvergent, but limnM( 1n , 0,

1
n) =

1

n
1

n
+ 1

n

= 1
2 and so { 1

n} is not

s-
onvergent.

Example 11. (A non-stationary non-prin
ipal s-fuzzy metri
 whi
h gener-

ates the dis
rete topology). Let X =]0,∞[ and let ϕ : R+ →]0, 1] be a

fun
tion given by

ϕ(t) =

{

t, if t ∈]0, 1[
1, elsewhere

De�ne the fun
tion M on X2 × R+
by

M(x, y, t) =

{

1, x = y
min{x,y}
max{x,y} · ϕ(t), x 6= y
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In [25℄ it is proved that (M, ·) is a non-prin
ipal fuzzy metri
 on X and

that TM is the dis
rete topology, so M is an s-fuzzy metri
. Clearly M is

non-stationary.
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Chapter 6

A note on lo
al bases and


onvergen
e in fuzzy metri


spa
es

The material of this 
hapter is an adaptation to the thesis of the 
ontent of

the paper by Valentín Gregori, Juan-José Miñana and Samuel Morillas, �A

note on lo
al bases and 
onvergen
e in fuzzy metri
 spa
es�, published in the

JCR-journal Topology and its Appli
ations 163 (2014) 142-148.

87
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6.1 Introdu
tion

The 
onvergen
e of a sequen
e to a point x0 in a metri
 spa
e (X, d) involves

some lo
al base 
onstituted by balls 
entered at x0. If ξ is any family of open

balls 
entered at x0 su
h that

⋂

ξ = {x0} and x0 is not isolated in (X, d)

then ξ is a lo
al base at x0. (In this paper

⋂

ξ denotes the interse
tion of

all members of ξ). The purpose of this 
hapter is to study this assertion in

the fuzzy setting. We 
onsider �rst, a general 
ase, and later some families

of open balls that, in a natural way, appear when studying p-
onvergen
e

and s-
onvergen
e. Noti
e that a 
entered ball at x0 in a fuzzy metri
 spa
e

(X,M, ∗) is denoted by B(x0, r, t) where r ∈]0, 1[, t > 0.

We show in this 
hapter that the above assertion is false, in general, for

a fuzzy metri
 spa
e (Example 12). Now, if ξ is 
onstituted by open balls of

the form {B(x0, r, r) : r ∈ J}, where J ⊂]0, 1[, orM is stationary (De�nition

2) then the above assertion holds.

In [25℄ it is proved that any sequen
e p-
onvergent to x0 in (X,M, ∗) is

onvergent if and only if {B(x0, r, t) : r ∈]0, 1[} is a lo
al base at x0, for

ea
h t > 0. Fuzzy metri
 spa
es in whi
h all p-
onvergent sequen
es are


onvergent were 
alled prin
ipal. So it seems natural to study families of

open balls, 
entered at x0, for a �xed t > 0. We show that if B is any of

these families the above assertion is true in prin
ipal fuzzy metri
 spa
es,

but in general it is false.

In Chapter 5 it is proved that any sequen
e 
onvergent to x0 is s-
onvergent

in (X,M, ∗) if and only if

⋂

t>0B(x0, r, t) is a lo
al neighbourhood of x0 in

(X,TM ), for ea
h r ∈]0, 1[. Fuzzy metri
 spa
es in whi
h all 
onvergent se-

quen
es are s-
onvergent were 
alled s-fuzzy metri
 spa
es. So, it is natural
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to study families of open balls 
entered at x0 with a �xed radius r ∈]0, 1[.
If D is any of these families the above assertion is true in 
o-prin
ipal fuzzy

metri
 spa
es (De�nition 16), and a similar result is obtained when (X,TM )

is 
ompa
t (Theorem 11). The answer in a more general 
ontext is an open

problem (Problem 6). Some examples are provided, along the 
hapter, that

illustrate the theory.

The stru
ture of the 
hapter is as follows. In Se
tion 6.2 we study the

question of when a family ξ of open balls 
entered at x0 in a (prin
ipal) fuzzy

metri
 spa
e (X,M, ∗), is a lo
al base at x0 provided that

⋂

ξ = {x0}. The
same question related to s-fuzzy metri
s is studied in Se
tion 6.3.

6.2 Lo
al bases in (prin
ipal) fuzzy metri
 spa
es

If ξ is a family of open sets in a metri
 spa
e that 
onstitutes a lo
al base at

x0 then

⋂

ξ = {x0}. Conversely, if we assume that x0 is not isolated and ξ

is 
onstituted by a family of open balls 
entered at x0 su
h that

⋂

ξ = {x0}
then it 
an be asserted that ξ is a lo
al base at x0. We will see in the next

example that this assertion is false, in general, in fuzzy metri
 spa
es.

Example 12. Consider the fuzzy metri
 spa
e, [25℄, (X,M, ·) where X =

]0, 1], A = X ∩Q, B = X \A and M is given by

M(x, y, t) =







min{x,y}
max{x,y} · t, (x ∈ A, y ∈ B) or (x ∈ B, y ∈ A) , t ∈]0, 1[,
min{x,y}
max{x,y} , elsewhere.

It is easy to see that {1} is not open, and that B(1, r, t) =]1 − r, 1] for all

r ∈]0, 1[ and all t > 1. Consider for (some) t > 1 the family ξ = {B(1, r, t) :

r ∈]0, 1[}. We have that

⋂

ξ = {1} but ξ is not a lo
al base at 1, sin
e
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B(1, 12 ,
1
2) =]12 , 1] ∩ Q and obviously B(1, r, t) * B(1, 12 ,

1
2) for all r ∈]0, 1[,

and all t > 1.

The next proposition shows that the above assertion holds for stationary

fuzzy metri
 spa
es and at least for a parti
ular 
ase in fuzzy metri
 spa
es.

Proposition 14. Let (X,M, ∗) be a (stationary) fuzzy metri
 spa
e and

suppose that x0 is not isolated. Let B = {B(x0, r, r) : r ∈ J} (or B =

{B(x0, r) : r ∈ J} if M is stationary). If

⋂B = {x0} then B is a lo
al base

at x0.

Proof.

Sin
e {x0} is not open then inf J = 0 and the 
on
lusion is obvious. �

Denote by J1 and J2 two non-empty subsets of ]0, 1[ where inf J1 =

inf J2 = 0. The following is an immediate 
orollary.

Corollary 11. Let (X,M, ∗) be a fuzzy metri
 spa
e and suppose that x0 is

not isolated. Let B = {B(x0, r, t) : r ∈ J1, t ∈ J2}. If

⋂B = {x0} then B is

a lo
al base at x0.

This last proposition is false, in general, if we remove the 
ondition that

{x0} is not open, even ifM is stationary, as illustrate the following examples.

Example 13. Consider the fuzzy metri
 spa
e (]0, 1[,M, ·) whereM is given

by

M(x, y, t) =















1, x = y

xyt, x 6= y, t ≤ 1

xy, x 6= y, t > 1
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In [25℄, it is proved that TM is the dis
rete topology.

Let x0 ∈]0, 1[ and 
onsider the family B = {B(x0, r, r) : r ∈] 1
x0+1 , 1[}.

It is easy to verify that B(x0, r, r) = {x0}∪]1−r
rx0

, 1[. We have that

⋂B =

{x0}, but B is not a lo
al base at x0, sin
e B does not 
ontain {x0}.

Example 14. Consider the stationary fuzzy metri
 spa
e ([0,∞[,M, ·), [27℄,
where M is given by

M(y, x) =M(x, y) =



























min{x,y}
max{x,y} , x, y ∈]0,∞[

1
2y , x = 0, y ≥ 1
y
2 , x = 0, y < 1

1, x = y = 0

It is easy to verify that {0} ∈ TM .

For r ∈]12 , 1[ we have that B(0, r) = {0}∪]2(1 − r), 1
2(1−r) [. Consider the

family B = {B(0, r) : r ∈ J}, where J =]12 , 1[. We have that

⋂B = {0} but

B is not a lo
al base at 0.

Remark 12. (On prin
ipal fuzzy metri
 spa
es) In any fuzzy metri
 spa
e

(X,M, ∗) it is easy to verify that for a �xed t0 > 0 it holds that
⋂{B(x0, r, t0) :

r ∈]0, 1[} = {x0}. Then it makes sense to study families of open balls 
en-

tered at x0 with �xed t0. Now, ifM is not prin
ipal then we 
an �nd x0 ∈ X

and t0 > 0 su
h that ξ = {B(x0, r, t0) : r ∈]0, 1[} is not a lo
al base at x0.

So from

⋂

ξ = {x0} we 
annot assert that ξ is a lo
al base at x0, even if x0

is not isolated (indeed, this is the 
ase of Example 12 sin
e the family ξ is

really {B(1, r, 1) : r ∈]0, 1[}). So, our aimed study only has sense in prin
ipal

fuzzy metri
s and the obtained results are the following.

Proposition 15. Let (X,M, ∗) be a fuzzy metri
 spa
e and suppose that x0

is not isolated. For a �xed t0 > 0 
onsider a family ζ = {B(x0, r, t0) : r ∈ J}
su
h that

⋂

ζ = {x0}. They are equivalent:
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(i) ζ is a lo
al base at x0.

(ii) {B(x0, r, t0) : r ∈]0, 1[} is a lo
al base at x0.

(iii) Any sequen
e {xn} in X su
h that limnM(xn, x0, t0) = 1 is 
onvergent

(to x0).

Proof.

By [25℄ Theorem 11 we have that (iii) implies (ii), and with similar

arguments to the ones used in the proof of this theorem it is proved that (ii)

implies (iii). Then (ii) and (iii) are equivalents. Obviously, (i) implies (ii).

We see that (ii) implies (i).

We 
laim that inf J = 0 (in other 
ase, {x0} = B(x0, α, t0) for some

α ∈]0, 1[, a 
ontradi
tion). Now, 
onsider an open ball B(x0, r, t). We 
an

�nd δ ∈]0, 1[ su
h that B(x0, δ, t0) ⊂ B(x0, r, t). Take j ∈ J with j < δ and

then B(x0, j, t0) ⊂ B(x0, δ, t0), so ζ is a lo
al base at x0. �

Corollary 12. Let (X,M, ∗) be a fuzzy metri
 spa
e without isolated points.

For ea
h x ∈ X and ea
h t > 0 put ζtx = {B(x, r, t) : r ∈ J}. Then (X,M, ∗)
is prin
ipal if and only if ζtx is a lo
al base at x, for ea
h x ∈ X and ea
h

t > 0, whenever
⋂

ζtx = {x}.

Remark 13. Noti
e that the 
onverse of this 
orollary is true even if X

has isolated points, sin
e {B(x0, r, t) : r ∈]0, 1[} is a lo
al base at x0 ∈ X,

t > 0. Now, the fuzzy metri
 M of Example 13 is prin
ipal, and the family

B satis�es

⋂B = {x0}, where {x0} is open, and B is not a lo
al base at x0.
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6.3 Lo
al bases in s-fuzzy metri
 spa
es

The study of families of balls 
entered at x0 with �xed radius turns interesting

when studying s-fuzzy metri
s (see Theorem 8). Hen
e, we are interested in

this type of families. Consider a family D = {B(x0, r0, t) : t ∈ J}. In the

next example we will see that from

⋂D = {x0} we 
annot assert that D is

a lo
al base at x0.

Example 15. Let (X,M, ·) the fuzzy metri
 spa
e of Example 13.

Consider the family of open balls D = {B(23 ,
2
3 , t) : t ∈]12 , 1]} 
entered

at x0 = 2
3 with radius r0 = 2

3 . We have that B(23 ,
2
3 , t) = {2

3}∪] 12t , 1] for
t ∈]12 , 1] and then

⋂D = {2
3}. Now, D is not a lo
al base at

2
3 sin
e TM is

the dis
rete topology.

The following is an open question.

Problem 6. Let (X,M, ∗) be a fuzzy metri
 spa
e, and suppose that x0 is

not isolated. Consider for a �xed r0 ∈]0, 1[ the family D = {B(x0, r0, t) : t ∈
J}. If ⋂D = {x0}, is D a lo
al base at x0?

Remark 14. (With respe
t to Problem 6). If x0 is not isolated in (X,M, ∗)
and

⋂{B(x0, r0, t) : t ∈ J} = {x0} then

⋂{B(x0, r0, t) : t > 0} is not a

neighborhood of x0 and thus there exists a 
onvergent sequen
e to x0 whi
h

is not s-
onvergent. So, if (M, ∗) is an s-fuzzy metri
 without isolated points

then

⋂D 6= {x0}, for any r0 ∈]0, 1[.

For giving some partial answer to this problem we introdu
e a dual 
on-


ept to prin
ipal fuzzy metri
s, as follows.

De�nition 16. We will say that the fuzzy metri
 spa
e (X,M, ∗) (or simply,
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M) is 
o-prin
ipal if for ea
h x ∈ X and ea
h r ∈]0, 1[, the family Dr
x =

{B(x, r, t) : t > 0} is a lo
al base at x.

Noti
e that if M is 
o-prin
ipal then M is an s-fuzzy metri
 spa
e if

and only if TM is the dis
rete topology. Clearly, stationary fuzzy metri
s

(ex
epting trivial 
ases) are not 
o-prin
ipal.

Proposition 16. The standard fuzzy metri
 is 
o-prin
ipal.

Proof.

Let (X, d) be a metri
 spa
e and 
onsider the standard fuzzy metri
 spa
e

(X,Md, ·). As usual, Bd(x; δ) denotes the open ball in (X, d) with 
enter x

and radius δ.

Let x ∈ X and r ∈]0, 1[. It is easy to see that BMd
(x, r, t) = Bd(x;

rt
1−r )

for ea
h t > 0. Sin
e the family {Bd(x;
rt
1−r ) : t > 0} is a lo
al base at x for

T (d) and T (d) = TMd
, [19℄, we 
on
lude that the family {BMd

(x, r, t) : t > 0}
is a lo
al base at x for TMd

. �

The proof of the next proposition is obvious.

Proposition 17. Let (X,M, ∗) be a fuzzy metri
 spa
e and suppose that x0

is not isolated. For a �xed r0 ∈]0, 1[ 
onsider a family D = {B(x0, r0, t) :

t ∈ J} su
h that

⋂D = {x0}. Then D is a lo
al base at x0 if and only if

{B(x0, r0, t) : t > 0} is a lo
al base at x0.

Corollary 13. Let (X,M, ∗) be a 
o-prin
ipal fuzzy metri
 spa
e without

isolated points. Let D = {B(x0, r0, t) : t ∈ J}. If

⋂D = {x0} then D is a

lo
al base at x0.



A note on lo
al bases and 
onvergen
e in fms 95

Noti
e that we 
annot formulate last 
orollary as Corollary 12 be
ause

we 
annot assert that

⋂{B(x0, r0, t) : t > 0} is {x0}. The next theorem is a

similar result to Corollary 13 repla
ing 
o-prin
ipal by 
ompa
tness.

Theorem 11. Let (X,M, ∗) be a 
ompa
t fuzzy metri
 spa
e, let δ ∈]0, 1[ and
suppose that x0 is not isolated. Let D = {B(x0, δ, t) : t ∈ J}. If ⋂D = {x0}
then Dǫ is a lo
al base at x0, for ea
h ǫ < δ where Dǫ = {B(x0, ǫ, t) : t ∈ J}.

Proof.

We have that inf J = 0, sin
e we suppose that {x0} is not open. Take ǫ ∈]0, δ[
and 
onsider a sequen
e {tn} ⊂ J 
onvergent to 0. Clearly

⋂

nB(x0, δ, tn) =
⋂

nB(x0, ǫ, tn) = {x0}.

Take ǫ1 ∈]0, 1[ su
h that ǫ < ǫ1 < δ. Sin
e B(x0, ǫ, t) ⊂ B[x0, ǫ1, t] ⊂
B(x0, δ, t) for all t > 0, then

⋂

nB[x0, ǫ1, tn] = {x0}.

Put Vn = B[x0, ǫ1, tn] for n = 1, 2, ... We will see that {Vn : n ≥ 1} is

a lo
al base at x0. Consider an open ball B(x0, r, t) with r ∈]0, 1[, t > 0.

Suppose, 
ontrarily, that for all n ≥ 1, Vn * B(x0, r, t). Then put En =

Vn ∩ (B(x0, r, t))
c 6= ∅, for all n = 1, 2, ...

Sin
e {Vn : n ≥ 1} is a de
reasing family then {En : n ≥ 1} is also

a de
reasing family of 
losed sets with En 6= ∅ for ea
h n ≥ 1. Further,

the interse
tion of �nite elements of that family, En1
, ..., Enk

, is non-empty

(indeed, if i = max{n1, ..., nk}, then
⋂k

j=1Enj
= Ei). So, the family {En :

n ≥ 1} has the �nite interse
tion property. Sin
e X is 
ompa
t then

⋂

En 6=
∅, a 
ontradi
tion (indeed, y ∈ ⋂

nEn implies y ∈ Vn for n ≥ 1 with y 6= x0).

So, there exists m ∈ N su
h that Vm ⊂ B(x0, r, t) and then B(x0, ǫ, tm) ⊂
B[x0, ǫ1, tm] ⊂ B(x0, r, t). Hen
e {B(x0, ǫ, t) : t ∈ J} is a lo
al base at x0.

�
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Chapter 7

std-
onvergen
e in fuzzy metri


spa
es

The material of this 
hapter is an adaptation to the thesis of the 
ontent of

the paper by Valentín Gregori and Juan-José Miñana, �std-Convergen
e in

fuzzy metri
 spa
es�, published in the JCR-journal Fuzzy Sets and Systems

267 (2015) 140-143.
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7.1 Introdu
tion

For establishing relationships between the theory of 
omplete fuzzy metri


spa
es and domain theory, Ri
arte and Romaguera have introdu
ed in [74℄

a stronger 
on
ept than Cau
hy sequen
e, 
alled standard Cau
hy, brie�y

std-Cau
hy. They have proved that the well-known theorem due to Edalat

and He
kmann [13℄ that 
hara
terizes 
omplete metri
 spa
es by means of


ontinuous domains 
an be obtained from their results in fuzzy metri
s ([74℄,

Corollary 1). Furthermore, the theory 
onstru
ted in that 
hapter 
annot

be obtained from the metri
 
ase. Indeed, if M is a non-
omplete stationary

fuzzy metri
 then it is std-
omplete but the uniformity UM indu
ed byM , see

[30℄, is not 
omplete and so all metri
s 
ompatible with UM are not 
omplete

and then 
lassi
al theory 
annot be applied on M .

Inspired in the 
lassi
al 
ase the authors have introdu
ed in [69℄, in a

natural way, the 
on
ept of standard 
onvergen
e, brie�y std-
onvergen
e,

and they have asked the following questions.

Q1 : Is every std-
onvergent sequen
e a std-Cau
hy sequen
e?

Q2 : Let {xn} be a std-Cau
hy and 
onvergent sequen
e. Is {xn} std-

onvergent?

In this 
hapter we give negative response to Q1 in Example 16 and then

we 
on
lude that the 
on
ept of std-
onvergen
e is not appropriate. Then, for

avoiding the proliferation of non-appropriate 
on
epts related to 
onvergen
e

or Cau
hyness, we 
reate a framework in whi
h the study of the relationship

between both 
on
epts to be more useful. So, we establish in De�nition 17

when a 
on
ept of 
onvergen
e is 
ompatible with a 
on
ept of Cau
hyness,

and vi
e-versa. Later, we give a 
on
ept of 
onvergen
e whi
h is 
ompatible
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with std-Cau
hy. Finally, we give a positive answer to Q2.

7.2 Results

The next example gives a negative response to the �rst question Q1.

Example 16. (A std-
onvergent non-std-Cau
hy sequen
e). Let d be the

usual metri
 on R restri
ted to [0,∞[ and 
onsider the standard fuzzy metri


indu
ed by d. Let X = [0,∞[. We de�ne on X ×X×]0,∞[ the fun
tion

M(x, y, t) =

{

1, if x = y

Md(x, 0, t) ·Md(0, y, t), if x 6= y

It is an easy exer
ise to prove that (X,M, ·) is a fuzzy metri
 spa
e.

Now, 
onsider the sequen
e {xn} in X, where xn = 1
n for all n ∈ N. We


laim that {xn} is std-
onvergent to 0. Indeed, take ǫ ∈]0, 1[, then we 
an

�nd nǫ ∈ N su
h that nǫ >
1
ǫ and hen
e M(xn, 0, t) = t

t+ 1

n

> t
t+ǫ , for all

n ≥ nǫ and for all t > 0. So {xn} is std-
onvergent to 0.

We 
laim that {xn} is not std-Cau
hy. Indeed, if we suppose that {xn}
is std-Cau
hy, then for ea
h ǫ ∈]0, 1[ there exists nǫ ∈ N su
h that

M(xn, xm, t) =
t

t+ 1
n

· t

t+ 1
m

>
t

t+ ǫ

for all n,m ≥ nǫ and t > 0. So, t
(t+ 1

nǫ
)(t+ 1

nǫ
)
> 1

t+ǫ , for all t > 0.

Then, limt→0
t

(t+ 1

nǫ
)(t+ 1

nǫ
)
= 0 ≥ limt→0

1
t+ǫ =

1
ǫ , a 
ontradi
tion.

Remark 15. Attending to De�nition 8 it is 
lear that a natural way of

de�ning std-
onvergen
e is the one given by the authors in [69℄ (De�nition
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9). Unfortunately, as shows Example 16, this de�nition should be 
onsidered

not appropriate.

Next we establish 
onditions under whi
h a pair of 
on
epts on 
onver-

gen
e and Cau
hyness, related to sequen
es, are 
onsidered pairwise 
ompat-

ible. These 
onditions have been 
hosen for preserving the natural stru
ture

among the 
on
epts and also, for avoiding the unne
essary appearan
e of


on
epts or inner properties (whi
h, �nally, 
ould distort the next diagrams).

De�nition 17. Suppose it is given a sequential stronger (weaker, respe
-

tively) 
on
ept than Cau
hy, say s-Cau
hy (w-Cau
hy, respe
tively). A 
on-


ept on 
onvergen
e, say s-
onvergen
e (w-
onvergen
e, respe
tively), is said

to be 
ompatible with s-Cau
hy (w-Cau
hy, respe
tively), and vi
e-versa, if

the diagram of impli
ations below on the left (on the right, respe
tively) is

ful�lled

s− convergence → convergence convergence → w − convergence

↓ ↓ ↓ ↓
s− Cauchy → Cauchy Cauchy → w − Cauchy

and there is not any other impli
ation, in general, among these 
on
epts.

So, by Example 16 we 
an assert that the 
on
ept of std-
onvergen
e is

not 
ompatible with std-Cau
hy. After the next remark we give a 
on
ept of


onvergen
e whi
h is 
ompatible with std-Cau
hy.

Remark 16. (Existen
e of pairwise 
ompatible s-
on
epts). Suppose that

a 
on
ept of s-Cau
hyness whi
h is stronger than Cau
hy, is given. Also, sup-

pose that there is not any impli
ation between 
onvergen
e and s-Cau
hyness.

Then, there exists a 
on
ept of s-
onvergen
e 
ompatible with s-Cau
hy if

and only if s-Cau
hy and 
onvergen
e are non-mutually ex
lusive 
on
epts.
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Indeed, in a su
h 
ase we 
an give the next de�nition: A sequen
e {xn}
is 
alled s∗-
onvergent if it is 
onvergent and s-Cau
hy. Obviously, this


on
ept of s∗-
onvergen
e is 
ompatible with s-Cau
hy. Further, any 
on-


ept of s-
onvergen
e whi
h is 
ompatible with s-Cau
hy is stronger than

s∗-
onvergen
e.

Now, sin
e every std-
onvergent sequen
e is 
onvergent, [69℄, then Exam-

ple 16 provides an example of a 
onvergent sequen
e whi
h is not std-Cau
hy.

On the other hand if (X,Md, ·) is a standard fuzzy metri
 then a sequen
e

in X is std-Cau
hy if and only if it is Cau
hy. Hen
e, in a non-
omplete

standard fuzzy metri
 spa
e we 
an �nd std-Cau
hy sequen
es whi
h are not


onvergent. Further, every 
onvergent sequen
e in (X,Md, ·) is std-Cau
hy.
Thus, by the last remark we 
an introdu
e the following de�nition of 
onver-

gen
e whi
h is 
ompatible with std-Cau
hy.

De�nition 18. A sequen
e is 
alled std∗-
onvergent if it is 
onvergent and

std-Cau
hy.

Remark 17. (Existen
e of pairwise 
ompatible w-
on
epts). Suppose that

a 
on
ept of w-
onvergen
e whi
h is weaker than 
onvergen
e is given. Also,

suppose that there is not any impli
ation between w-
onvergen
e and Cau
hy.

Then, we 
an �nd 
on
epts of Cau
hyness 
ompatible with w-
onvergen
e.

Indeed, in a su
h 
ase we 
an give the next de�nition: {xn} is 
alled w∗
-

Cau
hy if {xn} is Cau
hy or w-
onvergent. Clearly, w∗
-Cau
hy is 
ompat-

ible with w-
onvergen
e. Further, any other 
on
ept of w-Cau
hy whi
h is


ompatible with w-
onvergen
e is weaker than w∗
-Cau
hy.

Finally, in the next proposition we response in a positive way to Question

Q2.

Proposition 18. Let (X,M, ∗) be a fuzzy metri
 spa
e and let {xn} be a



102 std-
onvergen
e in fuzzy metri
 spa
es

std-Cau
hy 
onvergent sequen
e. Then {xn} is std-
onvergent.

Proof.

Let {xn} be a std-Cau
hy 
onvergent sequen
e. Fix ǫ ∈]0, 1[ and t > 0.

Suppose that {xn} 
onverges to x0. Sin
e M(x, y,_) is 
ontinuous for all

x, y ∈ X, by Corollary 7.2 of [23℄ (or using Proposition 1 of [75℄) we have

that limmM(xn, xm, t) =M(xn, x0, t) for all n ∈ N.

On the other hand, sin
e {xn} is std-Cau
hy we have that for δ ∈]0, ǫ[
there exists nδ ∈ N su
h that

M(xn, xm, t) >
t

t+ δ
>

t

t+ ǫ
, for all n,m ≥ nδ and all t > 0.

Then

M(xn, x0, t) = lim
m
M(xn, xm, t) ≥

t

t+ δ
>

t

t+ ǫ
, for all n ≥ nδ and all t > 0

and so {xn} is std-
onvergent. �



Chapter 8

Dis
ussion of the obtained

results and 
on
lusions

In Chapter 2 we have made a detailed study, from the mathemati
al point

of view, of the fuzzy metri
s M∗
and M0, where M

∗(x, y, t) = min{x,y}+t
max{x,y}+t is

de�ned on [0,∞[ and M0(x, y, t) =
min{x,y}
max{x,y} is de�ned on ]0,∞[. As a 
onse-

quen
e of our study, we have introdu
ed �ve questions in fuzzy metri
 spa
es

(relative to 
ompletion, uniform 
ontinuity, extension and 
ontra
tivity) that

we think provide the basis of mu
h future resear
h. Further, in this 
hapter,

from the pra
ti
al appli
ation point of view, we have shown that the fuzzy

metri
 M∗
is useful to approa
h the problem of measuring per
eptual 
olour

di�eren
es between 
olour samples.

In Chapter 3, we have answered an open question by 
onstru
ting a par-

ti
ular non-
ompletable fuzzy metri
 spa
e (X,M, ∗). For it, we have seen

that in this fuzzy metri
 spa
e we 
an �nd two Cau
hy sequen
es {an} and

{bn} su
h that the assignment f(t) = limnM(an, bn, t) is not 
ontinuous.

103
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In addition, we have shown that the mentioned fuzzy metri
 spa
e is not

strong. This fa
t arises the question if there exists a strong fuzzy metri


spa
e ful�lling the requirements of the mentioned problem, whi
h has been

answered in a negative way in Chapter 4. As a 
onsequen
e of this result,

we have gotten a 
hara
terization of the 
lass of 
ompletable strong fuzzy

metri
s. Further, in Chapter 4 we have showed that the 
onditions, in our

reformulation (Theorem 6), of the theorem of 
hara
terization of 
ompletable

fuzzy metri
 spa
es 
onstitute an independent system.

On the other hand, we have studied some di�erent 
on
epts related to


onvergen
e of sequen
es in fuzzy metri
 spa
es. A signi�
ant di�eren
e

between fuzzy metri
 and 
lassi
al metri
s is that the �rst one in
ludes a

t parameter in its de�nition. This fa
t allows us to introdu
e some (well-

known) motivated 
on
epts that in the 
lassi
al theory have no sense. For

instan
e, when working on 
ontra
tivity, D. Mihet [57℄ introdu
ed a weaker


on
ept than 
onvergen
e, 
alled p-
onvergen
e. Then, the authors in [25℄


hara
terized those spa
es in whi
h p-
onvergent sequen
es are 
onvergent.

In Chapter 5 we 
ontinue the work started in [25, 57℄, but in the opposite way,

that is, we introdu
e the 
on
ept of s-
onvergen
e, strengthen the 
ondition

of 
onvergen
e on t. In that 
hapter we get a 
hara
terization of those fuzzy

metri
 spa
es in whi
h 
onvergent sequen
es are s-
onvergent, 
alled s-fuzzy

metri
 spa
es, by means of lo
al bases in a similar way to the 
ase of prin
ipal

fuzzy metri
 spa
es. Further, we have obtained the following result. Given

a fuzzy metri
 spa
e (X,M, ∗), if (NM , ∗) is a fuzzy metri
 on X where

NM (x, y) =
∧{M(x, y, t) : t > 0} then the topologies dedu
ed from M and

NM 
oin
ide if and only if M is an s-fuzzy metri
.

We have studied when 
ertain families of open balls 
entered at a point

are a lo
al base. If (X, d) is a metri
 spa
e it is well-known that if ξ is any

family of open balls 
entered at a point x0 su
h that

⋂

ξ = {x0} and x0 is not
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isolated in (X, d) then ξ is a lo
al base at x0 (
⋂

ξ denotes the interse
tion of

all members of ξ). The results obtained in this 
hapter show that the above

assertion is false, in general, for a fuzzy metri
 spa
e (Example 12). Now, if

ξ is 
onstituted by balls of the form {B(x0, r, r) : r ∈ J}, where J ⊂]0, 1[, or

M is stationary (De�nition 2) then the above assertion holds. This study is

related with s-fuzzy metri
 spa
es (spa
es in whi
h 
onvergent sequen
es are

s-
onvergent) and prin
ipal fuzzy metri
 spa
es (spa
es in whi
h p-
onvergent

sequen
es are 
onvergent).

As another 
ontribution to the study of 
on
epts related to 
onvergen
e

of sequen
es appeared in the literature, we have answered two open questions

involving the 
on
epts of standard Cau
hy [74, De�nition 3℄ and standard


onvergent sequen
e [69, De�nition 17℄. As a 
onsequen
e of these responses

we establish 
onditions for whi
h a pair of 
on
epts related to 
onvergen
e

and Cau
hynes, respe
tively, should be ful�l for being 
onsidered 
ompatible.
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