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Abstract. Context-sensitive rewriting (CSR) is a variant of rewriting
where only selected arguments of function symbols can be rewritten.
Consequently, the subterm positions of a term are classified as either
active, i.e., positions of subterms that can be rewritten; or frozen, i.e.,
positions that cannot. Frozen positions can be used to denote subexpres-
sions whose evaluation is delayed or just forbidden. A typical example
is the if-then-else operator whose second and third arguments are not
evaluated until the evaluation of the first argument yields either true
or false. Imposing replacement restrictions can improve the termination
behavior of rewriting-based computational systems. Termination of CSR
has been investigated by several authors and a number of automatic
tools are able to prove it. In this paper, we analyze how frozen subterms
affect termination of CSR. This analysis helps us to improve our Context-
Sensitive Dependency Pair (CS-DP) framework for automatically prov-
ing termination of CSR. We have implemented these improvements in our
tool mu-term. The experiments show the power of the improvements in
practice.
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1 Introduction

During the 4th International Workshop on Rewriting Logic and its Applications,
WRLA 2002, a tutorial by the second author entitled Context-Sensitive Rewrit-
ing Techniques for Programs With Strategy Annotations was the starting point
of a friendly cooperation with José Meseguer leading to multiple exchanges of
students and people from the UIUC and the UPV, and to the development of
fruitful joint work on Rewriting Logic, Maude, and, in general, the analysis,
verification, and optimization of declarative programming languages.

? Partially supported by the EU (FEDER), MINECO project TIN 2013-45732-C4-1-
P, and GV project PROMETEO/2011/052. Salvador Lucas’ research was developed
during a sabbatical year at the CS Dept. of the UIUC and was also partially sup-
ported by NSF grant CNS 13-19109. Raúl Gutiérrez is also partially supported by
a Juan de la Cierva Fellowship from the Spanish MINECO, ref. JCI-2012-13528.
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Actually, the idea of strategy annotation (where the list of arguments whose
evaluation is allowed is explicitly given for each function symbol) originally intro-
duced by José and other colleagues as part of the design of OBJ2 [11] anticipated
the main ideas underlying the development of Context-Sensitive Rewriting for a
rather different purpose1. On the basis of previous work in [23, 24], in the afore-
mentioned tutorial Context-Sensitive Rewriting (CSR, [22]) was shown useful to
model rewriting-based programming languages like CafeOBJ [12], ELAN [8], OBJ
[15], and Maude [9] that are able to use such kind of strategies.

In CSR, we start with a pair (R, µ) (often called a CS-TRS) consisting of
a Term Rewriting System (TRS) R and a replacement map µ, i.e., a mapping
from a signature F into natural numbers that satisfies µ(f) ⊆ {1, . . . , ar(f)} for
each function symbol f in the signature F , where ar(f) is the arity of f . Here,
µ is used to discriminate the argument positions on which the rewrite steps are
allowed. In this way, we can avoid undesired computations and (in many cases)
obtain a terminating behavior for the TRS (with respect to the context-sensitive
rewrite relation). Strategy annotations are still used in CafeOBJ and Maude. In
Maude, actually, frozen arguments have been recently introduced as a powerful
mechanism to avoid undesired reductions. Frozen arguments are even closer to
CSR, as they are just the complement of the replacing arguments specified by a
replacement map µ: the i-th argument of f is frozen iff i /∈ µ(f).

Using CSR, we can easily model the evaluation of expressions which avoid
or delay the evaluation of some of their arguments. Paramount examples are if-
then-else expressions, some boolean operators (and/or) and lazy cons operators
for list construction.

Example 1. The following TRSR [28] provides a definition of factorial

0+x→ x (1) zero(0)→ true (6)
s(x)+y → s(x+y) (2) zero(s(x))→ false (7)
p(s(x))→ x (3) fact(x)→ if(zero(x), s(0), x∗fact(p(x))) (8)

if(true, x, y)→ x (4) 0∗x→ 0 (9)
if(false, x, y)→ y (5) s(x)∗y → y+(x∗y) (10)

With µ(if) = {1} and µ(f) = {1, . . . , k} for any other k-ary symbol f (i.e., the
only function symbol which is restricted by µ is if), we can advantageously use
CSR for handling the if-then-else operator: the second and third arguments of
an expression if(b, s, t) are not evaluated until the guard b is evaluated to true or
false. Without the replacement map, R is nonterminating because fact(x) calls
fact(p(x)), which then calls fact(p(p(x))) and so on. Thanks to the replacement
restrictions, though, we can evaluate fact(sn(0)) to obtain the factorial sn!(0) of
a number n (encoded as sn(0)) by using CSR as follows:

fact(sn(0)) ↪→(8),µ if(zero(sn(0)), s(0), sn(0)∗fact(p(sn(0)))) ↪→(7),µ · · ·

1 The notion context-sensitive rewriting was developed as part of Lucas’ Master Thesis
(1994) to implement concurrent programming languages that, like the π-calculus,
forbid reductions on some arguments of its operations.
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This can be formally proved (see [22, 26] and also [19] for an account of the
algebraic semantics of context-sensitive specifications). Note that zero(sn(0)) is
forced to be reduced first to either true or false before evaluating the ‘then’
or ‘else’ expression, thus avoiding undesired reductions until the guard is fully
evaluated.

Direct techniques and frameworks for proving termination of CSR have been
developed [1, 3, 17]. But, in practice, proving termination of some CS-TRSs with
certain lazy structures as the if-then-else in the example can be difficult. In
fact, finding an automatic proof of Example 1, and other examples like [13,
Example 1] or [10, Example 3.2.14] are open problems since 1997, 2003 or 2008,
respectively. The reason why these problems cannot be proved terminating by
existing termination tools lies in the lack of sufficiently precise models of how
the evaluation of expressions is delayed in context-sensitive computations. In
this paper, we revisit this problem to obtain easier and mechanizable proofs of
termination.

After some preliminaries in Section 2, Section 3 analyzes the role of frozen
subterms in infinite µ-rewrite sequences, Section 4 models the activation of de-
layed subexpressions. Section 5 revises the characterization of the termination
of CSR. Sections 6 proposes a new notion of CS usable rules, the extended basic
CS usables, that allows us to simplify termination proofs if the application con-
ditions are satisfied, Section 7 shows the experimental evaluation and Section 8
concludes.

2 Preliminaries

See [7] and [22] for basics on term rewriting and CSR, respectively. Throughout
the paper, X denotes a countable set of variables and F denotes a signature, i.e.,
a set of function symbols each having a fixed arity given by a mapping ar : F →
N. The set of terms built from F and X is T (F ,X ). Terms are viewed as labeled
trees in the usual way. The symbol labeling the root of the term s is denoted as
root(s). Positions p, q, . . . are represented by chains of positive natural numbers
used to address subterms of s. Given positions p, q, we denote their concatenation
as p.q. We denote the empty chain by Λ. Positions are ordered by the standard
prefix ordering: p ≤ q if ∃q′ such that q = p.q′. The set of positions of a term
s is Pos(s). If p is a position, and Q is a set of positions, p.Q = {p.q | q ∈ Q}.
For a replacement map µ, the set of active positions Posµ(s) of s ∈ T (F ,X ) is:
Posµ(s) = {Λ}, if s ∈ X and Posµ(s) = {Λ} ∪

⋃
i∈µ(root(s)) i.Pos

µ(s|i), if s 6∈ X .

We write sD t, t is a subterm of s, if there is p ∈ Pos(s) such that t = s|p and
s B t, t is a proper subterm of s, if s D t and s 6= t. Given a replacement map
µ, we write s Dµ t, t is a µ-replacing subterm of s, if there is p ∈ Posµ(s) such
that t = s|p and s Bµ t, t is a proper µ-replacing subterm of s, if s Dµ t and
s 6= t. Moreover, we write sB

�µ
t, t is a non-µ-replacing subterm of s, if there is a

frozen position p, i.e. p ∈ Pos�µ(s) where Pos�µ(s) = Pos(s)−Posµ(s), such that
t = s|p. Let Var(s) = {x ∈ X | ∃p ∈ Pos(s), s|p = x}, Varµ(s) = {x ∈ Var(s) |
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∃p ∈ Posµ(s), s|p = x} and Var�µ(s) = {x ∈ Var(s) | sB
�µ
x}. A context is a term

C ∈ T (F ∪ {�},X ) with zero or more ‘holes’ � (a fresh constant symbol). We
write C[ ]p to denote that there is a (usually single) hole � at position p of C.
Generally, we write C[ ] to denote an arbitrary context (where the number and
location of the holes is clarified ‘in situ’) and C[t1, . . . , tn] to denote the term
obtained by filling the holes of a context C[ ] with terms t1, . . . , tn. C[ ] = � is
called the empty context.

A rewrite rule is an ordered pair (`, r), written ` → r, with `, r ∈ T (F ,X ),
` /∈ X and Var(r) ⊆ Var(`). A TRS is a pair R = (F , R) where R is a set of
rewrite rules. GivenR = (F , R), we consider F as the disjoint union F = C]D of
symbols c ∈ C, called constructors and symbols f ∈ D, called defined functions,
where D = {root(`) | ` → r ∈ R} and C = F − D. Given a CS-TRS (R, µ), we

have s ↪→R,µ t (alternatively s
p
↪→R,µ t if we want to make the position explicit)

if there are ` → r ∈ R, p ∈ Posµ(s) and a substitution σ with s|p = `σ and
t = s[rσ]p. A CS-TRS (R, µ) is terminating if ↪→R,µ is well-founded.

3 Minimal Non-µ-Terminating Terms at Frozen Positions

In this section we investigate how frozen subterms affect termination of CSR.
Our analysis is used in Section 4 to obtain a more precise model of termination
of CSR using Context-Sensitive Dependency Pairs (CS-DPs, [3]). If a TRS R
is nonterminating, then terms are either terminating or nonterminating. The
subset T∞ of minimal nonterminating terms consists of nonterminating terms
whose proper subterms are all terminating. And the following observations are
in order [20, 21]: (1) every nonterminating term s contains a subterm t ∈ T∞,
(2) root(t) is a defined symbol of R, and (3) minimality is preserved under inner
rewritings:

Lemma 1. Let R be a TRS. For every term s ∈ T∞, if s
>Λ−→R t and t is

nonterminating then t ∈ T∞.

In CSR, if a CS-TRS (R, µ) is nonterminating, among non-µ-terminating terms
we distinguish the subset T∞,µ of strongly minimal non-µ-terminating terms,
whose proper subterms are all µ-terminating. But unlike minimality for rewrit-
ing, strong minimality is not preserved under inner µ-rewritings.

Example 2. Consider the following TRS R [3, Example 3]:

a→ c(f(a)) (11) f(c(x))→ x (12)

together with µ(c) = ∅ and µ(f) = {1}, and the term f(a) ∈ T∞,µ. If we apply
(11) to the proper subterm a, we obtain f(c(f(a))) /∈ T∞,µ because f(a) is a
subterm of f(c(f(a))).

Unfortunately, strong minimality does not distinguish active and frozen positions
and a result as Lemma 1 is not possible for strongly minimal terms. The set of
minimal non-µ-terminating termsM∞,µ consists of all non-µ-terminating terms
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whose proper subterms at active positions are all µ-terminating. Minimal non-
µ-terminating terms are preserved under inner µ-rewritings, as we show in the
following lemma.

Lemma 2. [3, Lemma 4] Let (R, µ) be a CS-TRS. For all s ∈M∞,µ, if s
>Λ
↪→R,µ t

and t is non-µ-terminating, then t ∈M∞,µ.

Furthermore, T∞,µ ⊆ M∞,µ. And now, f(c(f(a))) in Example 2 is minimal:
f(c(f(a))) ∈ M∞,µ. The following result establishes that, given a minimal non-
µ-terminating term, there are only two ways for an infinite µ-rewrite sequence
to proceed.

Proposition 1. [3, Proposition 5] Let (R, µ) be a CS-TRS. For all s ∈M∞,µ,
there exist a rewrite rule `→ r ∈ R, a substitution σ and a term u ∈M∞,µ such

that s >Λ↪−→∗R,µ `σ
Λ
↪→`→r,µ rσDµ t and either (1) there is a nonvariable subterm u

at an active position of r such that t = uσ, or (2) there is x ∈ Varµ(r)−Varµ(`)
such that xσ Dµ t.

What Proposition 1 says is that minimal non-µ-terminating terms at frozen
positions (as f(a) in f(c(f(a)))) show up at active positions by means of migrating
variables (a variable x is migrating in a rule `→ r if x ∈ Varµ(r)−Varµ(`), as x
in rule (12)). If (1) happens, information about the shape of t is provided because
it is partially introduced by an active subterm of r. This information is crucial
to efficiently mechanize proofs of termination. But if (2) happens, information
about the shape of t is hidden below a binding xσ of the matching substitution
σ. The frozen occurrence of x in the left-hand side ` of the rule is responsible for
this information showing up later in the sequence. In the following, we analyze
how minimal non-µ-terminating terms appear at frozen positions in infinite µ-
rewrite sequences and how they evolve until getting activated by a migrating
variable. Without loss of generality, in the following all the considered infinite
µ-rewrite sequences start from strongly minimal non-µ-terminating terms.

Example 3. Consider the following non-µ-terminating TRS R [1, modified (I)]:

a→ f(g(b)) (13)

f(x)→ h(c(x)) (14)

h(x)→ x (15)

b→ a (16)

with µ(g) = µ(c) = {1} and µ(f) = ∅ for all f ∈ F − {g, c}. Subexpressions
at frozen positions are identified using the overbar. And consider the following
infinite µ-rewrite sequence (Figure 1 shows it graphically, where shaded triangles
are minimal non-µ-terminating terms2):

a ↪→(13),µ f(g(b)) ↪→(14),µ h(c(g(b))) ↪→(15),µ c(g(b)) ↪→(16),µ c(g(a)) ↪→(13),µ · · ·

2 Note that minimal non-µ-terminating terms may contain minimal non-µ-terminating
terms (at frozen positions, though). We use darker shades for such nested minimal
non-µ-terminating terms.
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As we can see in the sequence, a ∈ T∞,µ, and the first µ-rewriting step introduces
the minimal non-µ-terminating term b at a frozen position by using rule (13)
which introduces the context g(�) where b is located. Afterwards, the context
c(�) is inserted above term g(b) which is “pushed down” by the right-hand side
of rule (14). Finally, the migrating variable x in rule (15) is instantiated (in the
third step) to c(g(b)). The application of rule (15) finally activates b, which is
now active inside c(g(b)).

a ↪→(13),µ

g(�)

b ↪→(14),µ

c(g(�))

b ↪→(15),µ

c(g(�))

b ↪→(16),µ · · ·

Fig. 1. Infinite µ-rewrite sequence in Example 3

Example 3 shows how minimal non-µ-terminating terms are partially “intro-
duced” in an infinite µ-rewrite sequence: there is a rule `→ r (in this case (13)),
a subterm u of r at a frozen position (b) and a possible context with a hole at
an active position (g(�)).

As discussed above, the context surrounding those “hidden” minimal non-
µ-terminating terms t can be “increased”, i.e., t can be “pushed down” into a
bigger context. Furthermore, the context can be “decreased” as well, as we can
see in the following example.

Example 4. Consider the following TRS R [1, modified (II)]:

a→ f(g(c(g(b)))) (17)

f(g(x))→ h(x) (18)

h(c(x))→ x (19)

b→ a (20)

with µ(g) = µ(c) = {1} and µ(f) = ∅ for all f ∈ F − {g, c}, and:

a ↪→(17),µ f(g(c(g(b)))) ↪→(18),µ h(c(g(b))) ↪→(19),µ g(b) ↪→(20),µ g(a) ↪→(17),µ · · ·

Figure 2 shows it graphically. Once again, the first µ-rewriting step introduces
the minimal non-µ-terminating term b at a frozen position by using rule (17)
which introduces the context g(c(g(�))). But, in the second µ-rewriting step,
part of the active context g(c(g(�))) which is frozen at s2 = f(g(c(g(b)))), i.e.
g(�), is removed from s2 due to pattern matching with the left-hand side of rule
(18). Finally, in the same way, part of the active context c(g(�)) which is frozen
at s3 = h(c(g(b))), i.e. c(�), is removed from s3 in the third µ-rewriting step
by pattern matching with rule (19) and, furthermore, the migrating variable x
is instantiated to g(b).
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a ↪→(17),µ

g(c(g(�)))

b ↪→(18),µ

c(g(�))

b ↪→(19),µ

g(�)

b ↪→(20),µ · · ·

Fig. 2. Infinite µ-rewrite sequence in Example 4

We describe these “incoming” and “outcoming” contexts surrounding frozen
subterms. First, we notice that, when examining the rules (14), (18) and (19)
(which are responsible for the introduction and removal of contexts discussed in
Example 3 and Example 4) they all share the following features:

– if a rule ` → r adds a context Ci, then there is a term s = Ci[x]p such
that r = D[s]q, being q a frozen position of r and p an active position of s.
Furthermore, if ` → r is applied in a minimal non-µ-terminating sequence,
the variable x cannot occur at active positions, i.e., x ∈ (Var�µ(`)∩Var�µ(r))−
(Varµ(`) ∪ Varµ(r)) (if not, minimality is violated); and,

– if a rule ` → r removes a context Co, then there is a term s = Co[x]p such
that ` = D[s]q, being q a frozen position of ` and p an active position of s.
Furthermore, if ` → r is applied in a minimal non-µ-terminating sequence,
the variable x cannot occur at active positions, i.e., x ∈ (Var�µ(`)∩Var�µ(r))−
(Varµ(`) ∪ Varµ(r)) or `|q.p is migrating (in this case, we are in the second
case of Proposition 1, where the minimal non-µ-terminating term shows up
and is the responsible of continuing the sequence).

Rules involving these incoming and outcoming contexts can be applied several
times and in different orders.

Example 5. Consider the following TRS R [1, modified (III)]:

a→ f(g(b)) (21)

f(x)→ h(g(c(c(x)))) (22)

h(g(x))→ h(x) (23)

h(c(x))→ x (24)

b→ a (25)

with µ(g) = µ(c) = {1} and µ(f) = ∅ for all f ∈ F − {g, c}. And consider the
following infinite µ-rewrite sequence (graphically in Figure 3):

a ↪→(21),µ f(g(b)) ↪→(22),µ h(g(c(c(g(b))))) ↪→(23),µ h(c(c(g(b)))) ↪→(24),µ c(g(b)) · · ·

Note that the migrating variable x is instantiated to term xσ = C[u] = c(g(b))
where u = b is minimal non-µ-terminating and the context C[�] = c(g(�)) with
a hole at an active position is a combination of fragments of contexts added at
frozen positions by rewrite rules.
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a ↪→(21),µ

g(�)

b ↪→(22),µ

g(c(c(g(�))))

b ↪→(23),µ

c(c(g(�)))

b ↪→(24),µ

c(g(�))

b · · ·

Fig. 3. Infinite µ-rewrite sequence in Example 5

4 Modeling the Unhiding Process using Rules

Recapitulating Section 3, if we consider an infinite sequence starting from s1 ∈
T∞,µ, following Proposition 1 we extract an infinite sequence of the form:

s1
>Λ
↪−→∗R,µ `1σ

Λ
↪→`1→r1,µ r1σ Dµ s2

>Λ
↪−→∗R,µ `2σ

Λ
↪→`2→r2,µ r2σ Dµ · · ·

where si ∈ M∞,µ, for all i > 0. If Proposition 1(2) is applied on step j, j > 0,
we know that: (a) previously in the chain there is a rule (like (13), (17) and (21))
that introduces the minimal non-µ-terminating term in the sequence together
with an active context, (b) there are rules that modify this active context (like
(14), (18), (22) and (23)) and, finally, (c) rule `j → rj (like (15), (19) and (24))
shows up the minimal non-µ-terminating by means of a migrating variable x
together with part of its active context, xσ = C[u]. In this section, we use the
knowledge of the previous section to define a TRS that can be used to extract
u from C[u] by using a minimum set of rules. Furthermore, we introduce the
new notion of unhidable. All this prepares the introduction of a new notion of
minimality which is the basis of our new characterization of termination of CSR.

Following the observations in the previous section, we can get the patterns
which introduce the minimal non-µ-terminating term at a frozen position in
a µ-rewrite sequence together with its active context, as g(b) in rule (13) in
Example 3 and in rule (21) in Example 5 and g(c(b)) in rule (17) in Example 4.

Definition 1. Let R = (F , R) = (C ] D, R) be a TRS, ` → r ∈ R and µ a
replacement map on F . We say that s = C[t]p is a raw hidden term of `→ r if

r = D[C[t]p]q, q ∈ Pos�µ(r), p ∈ Posµ(C[t]p), root(t) ∈ D and q.p is minimal in r

(i.e., there is no q′.p′ such that r = D′[C ′[t]p′ ]q′ , q
′ ∈ Pos�µ(r), p′ ∈ Posµ(C ′[t]p′)

and p′ < p). Let Hraw(R, µ) be the set of all raw hidden terms from rules in
(R, µ).

Example 6. In Example 1, we have Hraw(R, µ) = {x∗fact(p(x))}; in Example 3,
we have Hraw(R, µ) = {g(b)}; in Example 4, we have Hraw(R, µ) = {g(c(g(b)))};
and, in Example 5, we have Hraw(R, µ) = {g(b))}.

We identify the shape of the patterns that increase or decrease the active context
attached to delayed subexpressions.
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Definition 2. Let u ∈ T (F ,X ) and µ a replacement map on F . We say that s =
C[�]p is a maximal active hiding context in u if u = D[C[x]p]q, q ∈ Pos�µ(u),
p ∈ Posµ(C[x]p) and q.p is minimal in u.

Example 7. In rule (14), c(�) is a maximal active hiding contex of the right-hand
side, in rule (18), g(�) is an maximal active hiding context of the left-hand side
and in rule (19), c(�) is a maximal active hiding context of the left-hand side.

And we clasify the different maximal active hiding contexts existing in a CS-
TRS.

Definition 3. Let R = (F , R) be a TRS, ` → r ∈ R, µ a replacement map on
F , D[�]q a context with a hole at a frozen position q, C[�]p a context with a
hole at an active position and x ∈ X . We say that s = C[�]p is either:

1. An incoming context of ` → r if s is a maximal active hiding contex of r,
r = D[C[x]p]q, and x ∈ (Var�µ(`) ∩ Var�µ(r))− (Varµ(`) ∪ Varµ(r)).

2. An outcoming context of `→ r if s is a maximal active hiding contex of `,
` = D[C[x]p]q, and x ∈ (Var�µ(`) ∩ Var�µ(r))− (Varµ(`) ∪ Varµ(r)).

3. A terminal outcoming context of ` → r if s is a maximal active hiding
context of `, ` = D[C[x]p]q, and x ∈ Varµ(r)− Varµ(`).

Let Ci(R, µ)/Co(R, µ)/Ct(R, µ) be the set of all incoming / outcoming / terminal
outcoming contexts from rules in (R, µ).

Example 8. In rule (14), c(�) is an incoming contex of the right-hand side, in
rule (18), g(�) is an outcoming context of the left-hand side and in rule (19),
c(�) is a terminal outcoming context of the left-hand side.

In Example 1, we have Ci(R, µ) = Co(R, µ) = Ct(R, µ) = ∅; in Example 3,
we have Ci(R, µ) = {c(�)}, and Co(R, µ) = Ct(R, µ) = ∅; in Example 4, we have
Ci(R, µ) = ∅, Co(R, µ) = {g(�)}, and Ct(R, µ) = {c(�)}; and, in Example 5, we
have Ci(R, µ) = {g(c(c(�)))}, Co(R, µ) = {g(�)}, and Ct(R, µ) = {c(�)}.

Outcoming contexts represent the fragments of active contexts which can be
removed by a rule. Incoming contexts represent the active contexts that can be
added. The following fixed-point definition obtains any combination of added/re-
moved contexts (this will allow us to model the contexts that appear in the
infinite µ-rewrite sequence in Example 5).

Definition 4. Let R = (F , R) be a TRS and µ ∈ MF . The set XCi(R, µ) and
XCo(R, µ) are the least sets satisfying:

1. Ci(R, µ) ⊆ XCi(R, µ), Co(R, µ) ⊆ XCo(R, µ) and Ct(R, µ) ⊆ XCt(R, µ).
2. If Ci[�] ∈ XCi(R, µ), Co[�] ∈ XCo(R, µ), and there exist θ = mgu(Ci[x],

Co[y]) (rename variables if necessary) where x and y are fresh variables,
such that yθ /∈ X and yθ = C ′i[x], then C ′i[�] ∈ XCi(R, µ).

3. If Co[�] ∈ XCo(R, µ), Ci[�] ∈ XCi(R, µ), and there exist θ = mgu(Co[x],
Ci[y]) (rename variables if necessary) where x and y are fresh variables, such
that yθ /∈ X and yθ = C ′o[x], then C ′o[�] ∈ XCo(R, µ).
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4. If Ct[�] ∈ XCt(R, µ), Ci[�] ∈ XCi(R, µ), and there exist θ = mgu(Ct[x],
Ci[y]) (rename variables if necessary) where x and y are fresh variables,
such that yθ /∈ X and yθ = C ′t[x], then C ′t[�] ∈ XCt(R, µ).

Note that, when the most general unifier (mgu) is computed, terms do not
share variables, so a variable renaming is applied if necessary. The computation
of XCi(R, µ), XCo(R, µ) and XCt(R, µ) terminates (in each step, the resulting
context is a instantiated fragment of one of the contexts that are unified).

Example 9. In Examples 1, 3 and 4, we have XCi(R, µ) = Ci(R, µ), XCo(R, µ) =
XCo(R, µ) and XCt(R, µ) = Ct(R, µ). In Example 5, we have Co(R, µ) = XCo(R, µ),
Ct(R, µ) = XCt(R, µ), but XCi(R, µ) = {g(c(c(�))), c(c(�))}. The context c(c(�))
represents a fragment of the active incoming context that remains after applying
rule (22) and rule (23).

Terminal outcoming contexts can only be applied just before the minimal non-µ-
terminating term shows up at an active position. Therefore, FXCi(R, µ) extends
XCi(R, µ) obtaining the fragments of contexts obtained after removing the the
terminal outcoming context.

Definition 5. Let R = (F , R) be a TRS and µ ∈ MF . The set FXCi(R, µ)
satisfies:

1. XCi(R, µ) ⊆ FXCi(R, µ).
2. If Ci[�] ∈ XCi(R, µ), Ct[�] ∈ XCt(R, µ), and there exist θ = mgu(Ci[x],

Ct[y]) (rename variables if necessary) where x and y are fresh variables,
such that yθ /∈ X and yθ = C[x], then C[�] ∈ FXCi(R, µ).

Example 10. In Examples 1, 3 and 4, we have FXCi(R, µ) = XCi(R, µ) = Ci(R, µ).
In Example 5, FXCi(R, µ) = {g(c(c(�))), c(c(�)), c(�)}. The context c(�) repre-
sents a final fragment of the active incoming context that remains after applying
rule (24) (when the minimal non-µ-terminating term shows up at an active po-
sition).

In the same way, we apply the outcoming contexts to the raw hidden terms
to obtain the possible shape of those terms when they show up by means of
migrating variables.

Definition 6. The set XHraw is the least set satisfying (1) Hraw ⊆ XHraw, and
(2) if Ci[t] ∈ XHraw, Co[�] ∈ XCo(R, µ) and there exist θ = mgu(Ci[t], Co[x])
where x is a fresh variable, such that xθ = C[tθ], then C[tθ] ∈ XHraw.

The set FXHraw satisfies (1) XHraw ⊆ FXHraw, and (1) if Ci[t] ∈ XHraw,
Ct[�] ∈ XCt(R, µ) and there exist θ = mgu(Ci[t], Ct[x]) where x is a fresh
variable, such that xθ = C[tθ], then C[tθ] ∈ FXHraw.

Example 11. In Examples 1 and 3, FXHraw(R, µ) = XHraw(R, µ) = XHraw(R, µ);
in Example 4, we have XHraw(R, µ) = {g(c(g(b))), c(g(b))} and FXHraw(R, µ) =
{g(c(g(b))), c(g(b)), g(b)}; and, in Example 5, XHraw(R, µ) = FXHraw(R, µ) =
{g(b), b}.
Previous definitions will be helpful in the next section to obtain a notion of
minimality that gives us more information about non-µ-terminating terms at
frozen positions.
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4.1 A new notion of minimal non-µ-terminating term

The following notion of unhidable prepares a notion of minimality that provides
more information about minimal non-µ-terminating terms at frozen positions.

Definition 7. Let R = (F , R) and S = (F , S0 ] S1) be TRSs, and µ ∈ MF .

Let s, t ∈ T (F ,X ). We say that s unhides t using S if s
Λ→
∗
S0
◦ Λ→S1 t. We say

that a term u is unhidable using S if for every subterm v ∈ M∞,µ such that

u = D[C[v]p]q, q ∈ Pos�µ(u), p ∈ Posµ(C[v]p), q.p minimal, C[v]p unhides v
using S and v is unhidable using S.

Setting S0 = FXCRi(R, µ) and S1 = FXHRraw(R, µ) in Definition 7, where we
define FXCRi(R, µ) = {Ci[x] → x | Ci[�] ∈ FXCi(R, µ)} and FXHRraw(R, µ) =
{Ci[s]p → s | Ci[s]p ∈ FXHraw(R, µ), p ∈ Posµ(Ci[s]p), s ∈ D}, we obtain the
following properties.

Proposition 2. Let R = (F , R) be a TRS, µ ∈ MF , S0 = FXCRi(R, µ), S1 =
FXHRraw(R, µ), S = (F , S0]S1), σ be a substitution and u, v be terms such that
u unhides v using S. Then,

1. S0 ∩ S1 = ∅.
2. If Co[�] ∈ XCo(R, µ) ∪ XCt(R, µ), and u = Coσ[C[v]] then C[v] unhides v

using S.
3. If Ci[�] ∈ XCi(R, µ), then Ciσ[u] unhides v using S.

Proof. Item 1 is true by construction, since for all s→ t ∈ S0, t ∈ X and for all

s→ t ∈ S1, t /∈ X . Since u unhides v using S, we can write u
Λ→
∗
S0
◦ Λ→S1 v. We

prove Item 2 by induction on the length i of
Λ→
i

S0
, we have:

1. If i = 0, we have u
Λ→s→t v, where s→ t ∈ S1. If u = Coσ[C[v]], there exist

θ = mgu(s, Co[x]), xθ Dµ tθ and v = tθσ′. By Definition 6, xθ → tθ ∈ S1

and C[v]
Λ→xθ→tθ v, i.e. C[v] unhides v using S.

2. If i > 0, we have u
Λ→s→t w

Λ→
i−1

S0
◦ Λ→S1

v, where s→ t ∈ S0 and s = Ci[x].
If u = Coσ[C[v]], there exist θ = mgu(Ci[x], Co[y]). We consider two cases:
(a) If xθ = C ′o[y], then by Definition 4, if Co[�] ∈ XCo(R, µ) then C ′o[�] ∈

XCo(R, µ) and if Co[�] ∈ XCt(R, µ) then C ′o[�] ∈ XCt(R, µ), w =
C ′oσ[C[v]] and, by the induction hypothesis, C[v] unhides v using S.

(b) If yθ = C ′i[x], then by Definition 4, C ′i[�] ∈ XCi(R, µ), C ′i[x] → x ∈ S0,

C[v] = C ′iσ
′[w], and C ′iσ

′[w]
Λ→Ci[x]→x w

Λ→
i−1

S0
◦ Λ→S1

v, i.e. C[v] unhides
v using S.

Item 3 is trivial.

The following lemma is an auxiliary result to prove Proposition 3.

Lemma 3. Let R = (F , R) be a TRS, µ ∈ MF , S0 = FXCRi(R, µ), S1 =
FXHRraw(R, µ), S = (F , S0 ] S1), σ be a substitution and s is µ-terminating. If
s is unhidable using S and s ↪→R,µ t and t is µ-terminating then t is unhidable
using S.
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Proof. First of all, note that if t has no subterm u such that tB
�µ
u and u ∈M∞,µ

then the proposition is vacuously true. By induction on the position of s
p
↪→`→r,µ

t. If p = Λ then s = `σ and t = rσ and rσ is µ-terminating. If rσ = D[C[u]p]q,

q ∈ Pos�µ(rσ), p ∈ Posµ(C[u]p), q.p is minimal and u ∈ M∞,µ we have two
possibilities:

– if there is no variable x ∈ Var(r) such that xσ D u then r = D′[C ′[u′]p]q
and C[u]p = C ′σ[u′σ]p. Therefore, C ′[u′] ∈ Hraw(R, µ), C ′[u′] → u′ ∈
FXHRraw(R, µ) and C[u] unhides u using S (C ′[u′]→ u′ ∈ S1);

– if there is a variable x ∈ Var(r) such that xσ D u, we have `σ B
�µ
u. Let

`σ = D′[C ′[u]p′ ]q′ , q ∈ Pos�µ(`σ), p ∈ Posµ(C ′[u]p′) and q′.p′ minimal.

• If q′ /∈ Pos�µ(`) then we have ` = D′′[x]q′′ , q
′′ < q′, q′ = q′′.q′′′,

xσ = D′′′[C ′[u]p′ ]q′′′ , q
′′′ ∈ Pos�µ(xσ) and, by definition, C ′[u]p′ un-

hides u using S. Therefore, r = D′′′′[x]q′′′′ , rσ = D′′′′[D′′′[C ′[u]p′ ]q′′′ ]q′′′′ ,
q′′′′.q′′′ = q, p′ = p, C ′[�] = C[�] and C[u] unhides u using S.

• If q′ ∈ Pos�µ(`) then we have ` = D′′[C ′′[x]p′′ ]q′ , D
′′σ[�]q′ = D′[�]q′ ,

C ′′[�]p′′ ∈ XCo(R, µ) and C ′[u]p′ = C ′′σ[C ′′′[u]p′′′ ]p′′ . Applying Proposi-
tion 2(2), C ′′′[u]p′′′ unhides u using S. Therefore, r = D′′′[C ′′′′[x]p′′′′ ]q′′′ ,
q′′′ = q,D′′′σ[�]q′′′ = D[�]q, C

′′′′[�]p′′′′ ∈ XCi(R, µ) and, hence, C[u]p =
C ′′′′σ[C ′′′[u]p′′′ ]p′′′′ . By Proposition 2(3), C ′′′′σ[C ′′′[u]p′′′ ]p′′′′ unhides u
using S.

If p 6= Λ then s = f(s1, . . . , si, . . . , sn), t = f(s1, . . . , ti, . . . , tn and si ↪→`→r,µ ti
where 1 ≤ i ≤ n. By definition, sj is unhidable using S for all 1 ≤ j ≤ n and
applying the induction hypothesis ti and t are unhidable using S. ut

We are ready now to introduce our new notion of minimality.

Definition 8 (Unhidable minimal term). Let R = (F , R) be a TRS, µ ∈
MF , S0 = FXCRi(R, µ), S1 = FXHRraw(R, µ) and S = (F , S0 ] S1). We define
the set of unhidable minimal non-µ-terminating terms M∗∞,µ as follows: s ∈
M∗∞,µ iff s ∈M∞,µ and s is unhidable using S.

The following result improves Proposition 1 by using then new notion of minimal
non-µ-terminating term.

Proposition 3. Let R = (F , R) = (C ] D, R) be a TRS, µ ∈ MF , S0 =
FXCRi(R, µ), S1 = FXHRraw(R, µ) and S = (F , S0]S1). Then for all t ∈M∗∞,µ,
there exist ` → r ∈ R, a substitution σ and a term u ∈ M∗∞,µ such that

t >Λ↪−→∗R,µ `σ
Λ
↪→ rσ Dµ u and either:

1. There is a nonvariable active subterm s of r, r Dµ s, such that root(s) ∈ D
and u = sσ, or

2. There is x ∈ Varµ(r) − Varµ(`) such that xσ = C[u] for a possibly empty
context C[�] with a hole at an active position and C[u] unhides u using S.
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Proof. Consider an infinite µ-rewrite sequence starting from t. By definition of
M∗∞,µ, all proper active subterms of t are µ-terminating, and for all maximal
terms s such that t B

�µ
s, s Dµ u and u ∈ M∗∞,µ then s unhides u using S.

Therefore, t has an inner reduction to an instance `σ of the left-hand side of

a rule l → r of R: t >Λ↪−→∗R,µ `σ
Λ
↪→ rσ and rσ is not µ-terminating. Thus,

we can write t = f(t1, . . . , tk) and `σ = f(`1, . . . , `k) for some k-ary defined
symbol f , and ti ↪→∗ `iσ for all i, 1 ≤ i ≤ k. Since t is unhidable using S
all ti, where i ∈ µ(f), are unhidable using S. Since all ti are µ-terminating for
i ∈ µ(f), by [3, Lemma 1] and Lemma 3, `iσ and all its active subterms are also
µ-terminating, and `iσ is unhidable using S. In particular, yσ is µ-terminating
for all active variables y in `: y ∈ Varµ(`). Since rσ is non-µ-terminating, by [3,
Proposition 5], it contains an active subterm u ∈M∞,µ: rσDµ u, i.e., there is a
position p ∈ Posµ(rσ) such that rσ|p = u. We consider two cases:

1. If p ∈ Pos(r) is a nonvariable position of r, then there is an active nonvariable
subterm s of r (i.e., p ∈ Posµ(r) and s = r|p /∈ X ), such that u = sσ.

If there exist v ∈M∞,µ such that uB
�µ
v, reasoning in an analogous way to

Lemma 3, we obtain that u is unhidable using S, i.e., u ∈M∗∞,µ.

2. If p /∈∈ Pos(r), then there is a variable at an active position q ∈ Posµ(r)
such that q ≤ p. Let x ∈ Varµ(r) be such that r|q = x. Then, xσ = C[u]p,
and xσ is not µ-terminating: since u ∈ M∞,µ is not µ-terminating, by
[3, Lemma 1], xσ is not µ-terminating. Since yσ is µ-terminating for all
y ∈ Varµ(`), we get that x ∈ Varµ(r)−Varµ(`). Let `σ = D′[C ′[u]p′ ]q′ , q

′ ∈
Pos�µ(`σ), p′ ∈ Posµ(C ′[u]p′) and q′.p′ minimal. We have ` = D′′[C ′′[x]p′′ ]q′ ,
D′′σ[�]q′ = D′[�]q′ , C

′′[�]p′′ ∈ XCt(R, µ) and C ′[u]p′ = C ′′σ[C[u]p]p′′ . Ap-
plying Proposition 2(2), C[u]p unhides u using S. If there exist v ∈ M∞,µ
such that uB

�µ
v, reasoning in an analogous way to Lemma 3, we obtain that

u is unhidable using S, i.e., u ∈M∗∞,µ.

ut

5 From Minimal Terms to the CS-DP Framework

Dependency pairs [6] describe the propagation of minimal non-µ-terminating
terms in non-terminating rewrite sequences. The notion of CS-DP is a con-
sequence of Proposition 1. The notation f ] for a given symbol f means that
f is marked. For s = f(s1, . . . , sn), we write s] to denote the marked term
f ](s1, . . . , sn). We often capitalize f and use F instead of f ] in our examples.

Definition 9 (Context-Sensitive Dependency Pairs [3]). Given a CS-
TRS (R, µ), let DP(R, µ) = DPF (R, µ) ∪ DPX (R, µ) the set of CS-DPs where
DPF (R, µ) = {`] → s] | ` → r ∈ R, r Dµ s, root(s) ∈ D, ` 7µ s}, and
DPX (R, µ) = {`] → x | ` → r ∈ R, x ∈ Varµ(r) − Varµ(`)}. We extend µ
into µ] by µ](f) = µ(f) if f ∈ F , and µ](f ]) = µ(f) if f ∈ D.
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Example 12. For (R, µ) in Example 1, we obtain the following CS-DPs:

s(x)+]y → x+]y (26) FACT(x)→ ZERO(x) (30)
s(x)∗]y → y+](x∗y) (27) IF(true, x, y)→ x (31)
s(x)∗]y → x∗]y (28) IF(false, x, y)→ y (32)

FACT(x)→ IF(zero(x), s(0), x∗fact(p(x))) (29)

DPs (26)-(30) capture the direct function calls and collapsing DPs (31)-(32)
capture the activation of delayed function calls.

As usual when dealing with DPs, we abstract the notion of chain using generic
TRSs P, R and S. Termination of CS-TRSs is characterized by the absence of
infinite chains of CS-DPs [2, 3].

Definition 10 (Chain of Pairs [17]). Let P, R and S be TRSs and µ a
replacement map where S = SBµ ]S], SBµ are rules of the form s→ t ∈ S such
that sBµ t and S] = S−SBµ . A (P,R,S, µ)-chain is a finite or infinite sequence
of pairs ui → vi ∈ P, together with a substitution σ satisfying that, for all i ≥ 1,

1. If vi /∈ Var(ui)− Varµ(ui), then viσ = wi ↪→∗R,µ ui+1σ, and

2. If vi ∈ Var(ui)− Varµ(ui), then viσ
Λ→
∗
SBµ ◦

Λ→S] wi ↪→∗R,µ ui+1σ.

An infinite (P,R,S, µ)-chain is called minimal if for all i ≥ 1, wi is (R, µ)-
terminating.

In Definition 10, P plays the role of DP(R, µ) and S has two components SBµ and
S] which are useful to model the connection between a collapsing pair to another
pair. The connection between the results obtained in the previous section and
the notion of chain is straightforward, we only have to introduce the marking in
our unhiding rules.

Definition 11 (Unhiding TRS). Let R be a TRS and µ ∈ MR. We define
unh(R, µ) = unhBµ(R, µ) ] unh](R, µ), where unhBµ(R, µ) = FXCRi(R, µ) and
unh](R, µ) = {s→ t] | s→ t ∈ FXHRraw(R, µ)}.

Example 13. The unhiding TRS unh(R, µ) in Example 1 consists of the following
rules:

x∗fact(p(x))→ x∗]fact(p(x)) (33) x∗fact(p(x))→ FACT(p(x)) (34)
x∗fact(p(x))→ P(x) (35)

where FXCi(R, µ) = ∅. In [17], the definition of the unhiding TRS is different.
We would have the following bigger set of rules:

x∗fact(p(x))→ x∗]fact(p(x)) x∗y → y
fact(p(x))→ FACT(p(x)) fact(x)→ x

p(x)→ P(x)

The following result provides a new characterization of termination of CSR.
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Theorem 1. Let R be a TRS and µ ∈ MR. R is µ-terminating if and only if
there is no infinite minimal (DP(R, µ),R, unh(R, µ), µ])-chain.

Proof. Soundness.
By contradiction. If R is not µ-terminating, then there is t ∈ T∞,µ. By

Theorem [17, Theorem 1] and Proposition 3, there are rules `i → ri ∈ R,
matching substitutions σi, and terms ti ∈M∗∞,µ, for i ≥ 1 such that

t = t0
>Λ
↪−→∗R,µ σ1(`1)

Λ
↪→ σ1(r1)Dµ t1

>Λ
↪−→∗R,µ σ2(`2)

Λ
↪→ σ2(r2)Dµ t2

>Λ
↪−→∗R,µ · · ·

where either (D1) ti = siσi for some si such that ri Dµ si or (D2) xiσi = Ci[ti]
for some xi ∈ Varµ(ri) − Varµ(`i) and Ci[ti] unhides ti using FXCRi(R, µ) ]
FXHRraw(R, µ), root(t′i) ∈ D. Furthermore, since ti−1

>Λ↪−→∗R,µ `iσi and ti−1 ∈
M∗∞,µ (in particular, t0 = t ∈ T∞,µ ⊆ M∗∞,µ), `iσi ∈ M∗∞,µ for all i ≥ 1.

Note that, since ti ∈ M∗∞,µ, we have that t]i is µ-terminating (with respect to

R), because all active subterms of ti (hence of t]i as well) are µ-terminating and
root(t]) is not a defined symbol of R.

First, note that DP(R, µ) is a TRS P over the signature G = F∪D] and µ] ∈
MF∪G as required by Definition 10. Furthermore, PG = DPF (R, µ) and PX =
DPX (R, µ). We define an infinite strongly minimal (DP(R, µ),R, unh(R, µ), µ])-

chain using CS-DPs ui → vi for i ≥ 1 (note that if t1 ∈ T∞,µ, then t]1 satisfies
the conditions of the first element in an infinite strongly minimal (DP(R, µ),R,
unh(R, µ), µ])-chain), where ui = `]i and

1. vi = s]i if (D1) holds. Since ti ∈ M∗∞,µ, we have that root(si) ∈ D. Further-
more, if we assume that si is an active subterm of `i (i.e., `i Bµ si), then
`iσi Bµ siσi which (since siσi = ti ∈ M∗∞,µ) contradicts that `iσi ∈ M∗∞,µ.

Thus, `i 6 Bµsi. Hence, ui → vi ∈ DPF (R, µ). Furthermore, t]i = viσi is

µ-terminating. Finally, since ti = siσi
>Λ↪−→∗R,µ `i+1σi+1 and µ] extends µ to

F ∪D] by µ](f ]) = µ(f) for all f ∈ D, we also have that viσi = s]iσi ↪→∗R,µ]
ui+1σi+1.

2. vi = xi if (D2) holds. Clearly, ui → vi ∈ DPX (R, µ). As discussed above, t]i
is µ-terminating. Since xiσi = Ci[ti], we have that viσi = Ci[ti] and Ci[ti] un-

hides ti using unh(R, µ). By Proposition 3, we know that θi(C
′
i)[ti]

Λ→
∗
unh(R,µ)Bµ

◦ Λ→unh(R,µ)] t
]
i . Finally, since ti

>Λ↪−→∗R,µ `i+1σi+1, again we have that t]i ↪→∗R,µ]
ui+1σi+1.

Regarding σ, w.l.o.g. we can assume that Var(`i)∩Var(`j) = ∅ for all i 6= j, and
therefore Var(ui)∩Var(uj) = ∅ as well. Then, σ is given by xσ = xσi whenever
x ∈ Var(ui) for i ≥ 1. From the discussion in points (1) and (2) above, we
conclude that the CS-DPs ui → vi for i ≥ 1 together with σ define an infinite
strongly minimal (DP(R, µ),R, unh(R, µ), µ])-chain which contradicts our initial
assumption.
Completeness.
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By contradiction. If there is an infinite strongly minimal (DP(R, µ),R,
unh(R, µ), µ])-chain, then there is a substitution σ and dependency pairs ui →
vi ∈ DP(R, µ) such that

1. viσ ↪→∗R,µ] ui+1σ, if ui → vi ∈ DPF (R, µ), and

2. if ui → vi = ui → xi ∈ DPX (R, µ), then viσ
Λ→
∗
unh(R,µ)Bµ

◦ Λ→unh(R,µ)]

si ↪→∗R,µ ui+1σ.

for i ≥ 1. Now, consider the first dependency pair u1 → v1 in the sequence:

1. If u1 → v1 ∈ DPF (R, µ), then v\1 is an active subterm of the right-hand-

side r1 of a rule l1 → r1 in R. Therefore, r1 = C1[v\1]p1 for some p1 ∈
Posµ(r1) and we can perform the µ-rewriting step t1 = u1σ ↪→R,µ r1σ =

C1σ[v\1σ]p1 = s1, where (v\1σ)] = v1σ ↪→∗R,µ] u2σ and u2σ initiates an infinite

(DP(R, µ),R, unh(R, µ), µ])-chain. Note that p1 ∈ Posµ(s1).

2. If u1 → x ∈ DPX (R, µ), then there is a rule `1 → r1 in R such that u1 = `]1,
and x ∈ Varµ(r1) − Varµ(`1), i.e., r1 = C1[x]q1 for some q1 ∈ Posµ(r1).

Furthermore, if viσ
Λ→
∗
unh(R,µ)Bµ

◦ Λ→unh(R,µ)] si, this means that viσ unhides

s\i using unh(R, µ). Hence, viσ Dµ s
\
1, s1 ↪→∗R,µ] u2σ and u2σ initiates an

infinite (DP(R, µ),R, unh(R, µ), µ])-chain. Note that p1 = q1.p
′
1 ∈ Pos

µ(s1)
where p′1 is the position of the hole in C1[�]p′1 .

Since µ](f ]) = µ(f), and p1 ∈ Posµ(s1), we have that s1 ↪→∗R,µ t2[u2σ]p1 = t2
and p1 ∈ Posµ(t2). Therefore, we can build in that way an infinite µ-rewrite
sequence

t1 ↪→R,µ s1 ↪→∗R,µ t2 ↪→R,µ · · ·

which contradicts the µ-termination of R. ut

Example 14. For (R, µ) in Example 3, we obtain the following CS-DPs:

A→ F(g(b)) (36)

F(x)→ F(c(x)) (37)

F(x)→ x (38)

B→ A (39)

The infinite sequence in Example 3 is captured by the following (P,R,S, µ])-
chain, where P = DP(R, µ) and S = unh(R, µ):

A→(36) F(g(b))→(37) F(c(g(b)))→(38) c(g(b))
Λ→SBµ g(b)

Λ→S] B→(39) A→(36) · · ·

5.1 Context-Sensitive Dependency Pair Framework

In the DP framework [14], the focus is on the so-called termination problems
involving two TRSs P and R instead of just the ‘target’ TRS R. In our setting
we start with the following definition (see also [1, 3]).



Function Calls at Frozen Positions in Termination of CSR 17

Definition 12 (CS problem and processor). A CS problem τ is a tuple
τ = (P,R,S, µ), where P, R and S are TRSs, and µ is a replacement map on
the signatures of R, P and S. The CS problem (P,R,S, µ) is finite if there is
no infinite minimal (P,R,S, µ)-chain.

A CS processor Proc is a mapping from CS problems into sets of CS problems.
A CS-processor Proc is sound if for all CS problems τ , τ is finite whenever
∀τ ′ ∈ Proc(τ), τ ′ is finite3.

In order to prove the µ-termination of a TRS R, we adapt the result from [14]
to CSR.

Theorem 2 (CS-DP Framework [3]). Let R be a TRS and µ a replacement
map on the signature of R. We construct a tree whose nodes are labeled with CS
problems or “yes”, and whose root is labeled with (DP(R, µ),R, unh(R, µ), µ]).
For every inner node labeled with τ , there is a sound processor Proc satisfying
one of the following conditions:

1. Proc(τ) = ∅ and the node has just one child, labeled with “yes”.
2. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with the

CS problems in Proc(τ).

If all leaves of the tree are labeled with “yes”, then R is µ-terminating.

6 Usable Rules in the CS-DP Framework

One of the most powerful CS processors to deal with CS problems is the µ-
reduction pair processor, a processor that discards pairs that can be strictly
oriented using orderings. A µ-reduction pair (&,A) consists of a stable and µ-
monotonic4 quasi-ordering &, and a well-founded stable relation A on terms in
T (F ,X ) which are compatible, i.e., & ◦ A ⊆ A or A ◦ & ⊆ A [2]. Given a CS
problem τ = (P,R,S, µ), if there is a µ-reduction pair such that P ∪S ⊆& ∪ A
and R ⊆& then (P,R,S, µ) is finite if (P − PA,R,S − SA, µ) is finite, where
PA and SA represent the set of rules from P and S oriented using A. The µ-
reduction pair processor can be improved using the notion of usable rule [5].
Usable rules, initially connected to innermost termination, allow us to discard
those rules from R that are not directly involved in (possible) infinite minimal
(P,R,S, µ)-chains. In rewriting (and also in CSR), the notion of usable rule is
connected with Cε-termination [16, 27]. A TRS R = (F , R) is Cε-terminating if
R ] Cε is terminating, where Cε = {c(x, y) → x, c(x, y) → y} (with c /∈ F).
The idea behind the usable rules is that for every infinite minimal (P,R,S, µ)-
chain we can construct an infinite sequence where rewrite steps using R can be
simulated by rewrite steps using Uτ (R) and Cε, where Uτ (R) is the set of usable
rules of τ . So, instead of R ⊆&, we only need to satisfy Uτ (R) ] Cε ⊆&.

3 In order to keep our presentation simple, we do not introduce here the notions related
with completeness of processors, needed for nontermination proofs.

4 A binary relation R on terms is µ-monotonic if for all terms s, t, t1, . . . , tm, and m-ary
symbols f , whenever sR t and i ∈ µ(f) we have f(. . . , ti−1, s, . . .)Rf(. . . , ti−1, t, . . .).
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In [18], the notion of CS usable rule was given for chains of pairs. This
notion is different from the one given in unrestricted rewriting. For example, if
we consider the following CS problem τ1 = ({(29), (31), (32)},R, {(33), (34)}, µ])
obtained from Example 13, the set of CS usable rules in τ1 is R. This is caused
by the presence of migrating variables. In the presence of migrating variables,
every rule headed by a symbol appeared at a frozen positions in the right-hand
side of a rule in R must be considered usable (in this case ∗, fact and p, and by
transitivity +, if and zero).

But, if we look closely at the µ-rewrite sequence from Example 1 and its
translation into a (DP(R, µ),R, unh(R, µ), µ])-chain:

FACT(sn(x))→(29) IF(zero(sn(x)), s(0), sn(x)∗fact(p(sn(x)))) ↪→(7),µ

IF(false, s(0), sn(x)∗fact(p(sn(x))))→(32) s
n(x)∗fact(p(sn(x)))

Λ→(34)

FACT(p(sn(x))) ↪→(3),µ · · ·

we notice that x in FACT(p(sn(x))) appears at an active position, but x comes
from the initial term FACT(sn(x)) where it was also at an active position, i.e.,
x does not behave as a migrating variable in the (DP(R, µ),R, unh(R, µ), µ])-
chain. Intuitively, this is equivalent to consider a pair FACT(x) → FACT(p(x))
and remove the intermediate steps. This “conservative” behavior allows us to
ensure that only the rules defining zero and p are usable and, hence, obtain a
smaller set of usable rules. Therefore, we have to find the general conditions that
allow us to use this suitable set of usable rules in the µ-reduction pair processor.

6.1 Strongly Minimal Terms

The first stumbling rock in our goal comes when we try to control the shape of
infinite terms (minimal non-µ-terminating terms in infinite µ-rewrite sequences)
that appear at frozen positions. In the analysis of infinite µ-rewrite sequences,
we obtain this control by imposing strong minimality on the initial term of the
sequence, but this notion is lost in the notion of chain. Therefore, our first step
is to introduce the notion of strongly minimal (P,R,S, µ)-chain. This notion
ensures that the initial term of an infinite (P,R,S, µ)-chain does not contain
any subterm that can generate an infinite (P,R,S, µ)-chain.

Definition 13. An infinite (P,R,S, µ)-chain u1 → v1, u2 → v2, . . . is strongly
minimal if it is minimal and there is no rule s → t ∈ S] and substitutions σ, θ
such that u1σ B sθ and tθ starts an infinite minimal (P,R,S, µ)-chain.

But the absence of infinite strongly minimal (P,R,S, µ)-chain do not character-
ize the finiteness of CS problems. For example, if S] = {a→ F(a)}, P = {F(x)→
x}, R = ∅ and µ(f) = ∅ for all f in the signature, we have the infinite minimal

(P,R,S, µ)-chain F(a) →P a
Λ→S F(a) →P · · · which is not strongly minimal.

Furthermore, there is no infinite strongly minimal (P,R,S, µ)-chain. The fol-
lowing result allows us to use strongly minimal chains in the CS-DP framework



Function Calls at Frozen Positions in Termination of CSR 19

by imposing an structural condition on rules in S]. Rules in unh](R, µ) always
satisfy the condition imposed on S] in Theorem 3.

Theorem 3. Let τ = (P,R,S, µ) be a CS problem such that for every s →
t ∈ S], s = f(s1, . . . , sm) and t = g(s1, . . . , sm). Then, τ is finite if there is no
infinite strongly minimal (P,R,S, µ)-chain.

Proof. If τ is not finite, then there is an infinite minimal (P,R,S, µ)-chain of
pairs u1 → v1, u2 → v2, . . . together with a substitution σ. By structural induc-
tion on u1σ:

1. If there is no u′1, rule s→ t ∈ S] and substitution θ such that u1σ B u′1 and
u′1 = sθ, then the infinite minimal (P,R,S, µ)-chain is strongly minimal.

2. If there is u′1, rule s → t ∈ S] and substitution θ such that u1σ B u′1 and
u′1 = sθ, then without loss of generality we can choose u′1 to be minimal (i.e.,
u′1 has no subterm satisfying the previous conditions) and there is an infinite
minimal (P,R,S, µ)-chain starting from tθ, by Definition 13. The obtained
infinite minimal (P,R,S, µ)-chain is strongly minimal, if not there is u′′1 such
that tθBu′′1 . But, by hypothesis, sθBu′′1 contradicting the minimality of u′1.

6.2 Left-Linearity and µ-Conservativity

The second stumbling rock in our goal comes when we want to ensure that
any term occurring at a frozen position does not show up at an active position
by means of a variable instantiation after pair or rule applications. We will
make use of left-linearity and conservativity conditions. Left-linearity allow us
to discard rules which left-hand side variables are at the same time at frozen and
active positions, because we impose its unicity. A rule `→ r is µ-conservative if
Varµ(r) ⊆ Varµ(`), i.e., there is no migrating variable. Collapsing pairs are not
conservative, but if we ensure that when we introduce a possible infinite term
at a frozen position in the chain (as fact(p(x)) in rule (7) or pair rule (29)) it
remains unaltered until it shows up by means of a S] rule application (in this
case, rule (34)), we only need to pay attention to the rule or pair ` → r that
introduce the possible infinite term u in the chain at a frozen position, r B

�µ
u,

(i.e., rule (7) or pair rule (29)) and check that ` → u (i.e. fact(x) → fact(p(x))
and FACT(x)→ fact(p(x))) is conservative. If so, we say that the CS problem is
conservative with respect to S.

Definition 14 (Conditions for S). Let τ = (P,R,S, µ) be a CS problem. We
say that τ is conservative with respect to S if S is conservative and the following
conditions hold:

– for all s→ t ∈ S], s = f(s1, . . . , sm) and t = g(s1, . . . , sm); and,
– for each s → t ∈ S] and for each u → v ∈ P ∪ R, if there is a nonvariable

subterm v′ of v at a frozen position such that θ = mgu(v′, s), then v′ = s up
to renaming of variables and u→ v′ must be conservative.

These conditions always hold if S] ⊆ unh](R, µ).
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6.3 Extended Basic CS Usable Rules

We define our set of usable rule in the usual way. Let Funµ(s) be the set of
symbols at active positions in a term s ∈ T (F ,X ), Funµ(s) = {f | ∃p ∈
Posµ(s), f = root(s|p)}. and Fun�µ(s) the set of symbols at frozen positions in

a term s ∈ T (F ,X ), Fun�µ(s) = {f | ∃p ∈ Pos(s)−Posµ(s), f = root(s|p)}. Let
RlsR(f) = {`→ r ∈ R | root(`) = f}.

Definition 15 (Extended Basic µ-Dependency). Given a TRS (F , R) and
a replacement map µ, we say that f ∈ F has an extended basic µ-dependency
on h ∈ F , written f .R,µ h, if f = h or there is a function symbol g with g .R,µ h

and a rule `→ r ∈ RlsR(f) with g ∈ Fun�µ(`) ∪ Funµ(r).

Definition 16 (Extended Basic CS Usable Rules). Let τ = (P,R,S, µ) be
a CS problem. The set U.τ (R) of extended basic context-sensitive usable rules
of τ is

U.τ (R) =
⋃

u→v∈P∪S,f∈Fun�µ(u)∪Funµ(v),f.R,µg

RlsR(g)

We obtain the processor ProcUR. The pairs P in a CS problem (P,R,S, µ),
where P is a TRS over the signature G, are partitioned as follows: PX = {u →
v ∈ P | v ∈ Var(u)− Varµ(u)} and PG = P − PX .

Theorem 4. Let τ = (P,R,S, µ) be a CS problem such that (a) PG ∪ U.τ (R) ∪
SBµ is left-linear and conservative, and (b) whenever PX 6= ∅ we have that PX
is left-linear and τ is conservative with respect to S. Let (&,A) be a µ-reduction
pair such that (1) P ⊆ & ∪ A, U.τ (R) ] Cε ⊆ &, (2) whenever PX 6= ∅ we have
that S ⊆& ∪ A. Let PA = {u→ v ∈ P | u A v} and SA = {s→ t ∈ S | s A t}.
Then, the processor ProcUR given by

ProcUR(τ) =

{
{(P − PA,R,S − SA, µ)} if (1) and (2) hold
{(P,R,S, µ)} otherwise

is sound.

The proof is at the end of the section, we introduce now the partial results needed
to obtain it. We use the interpretation given in [18, Definition 11] to define the
new interpretation.

Definition 17 (Basic µ-Interpretation [18]). Let (R, µ) be a CS-TRS over
the signature F and ∆ ⊆ F . Let > be an arbitrary total ordering on terms
in T (F ∪ {⊥, c},X ) where ⊥ is a fresh constant symbol and c is a fresh binary
symbol. The basic µ-interpretation I0,∆,µ is a mapping from µ-terminating terms
in T (F ,X ) to terms in T (F ∪ {⊥, c},X ) defined as follows:

I0,∆,µ(t) =


t if t ∈ X
f(I0,∆,µ,f,1(t1), . . . , I0,∆,µ,f,n(tk)) if t = f(t1, . . . , tk)

and f ∈ ∆
c(f(I0,∆,µ,f,1(t1), . . . , I0,∆,µ,f,n(tk)), t′) if t = f(t1, . . . , tk)

and f /∈ ∆
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where I0,∆,µ,f,i(t) =

{
I0,∆,µ(t) if i ∈ µ(f)

t if i /∈ µ(f)

t′ = order ({I0,∆,µ(u) | t ↪→R,µ u})

order(T ) =

{
⊥, if T = ∅
c(t, order(T − {t})) if t is minimal in T w.r.t. >

Lemma 4. [18] Let (R, µ) be a CS-TRS over the signature F and t in T (F ,X ).
If t is µ-terminating then I0,∆,µ is well-defined.

But, in order to deal with collapsing pairs, we allow that at frozen positions we
can have terms that are interpreted (or partially interpreted). Then, to have a
unique interpretation for each term we have to parametrize it with respect to an
infinite strongly minimal (P,R,S, µ)-chain.

Definition 18 (Extended Basic µ-Interpretation). Let (P,R,S, µ) be a CS
problem where R is a TRS over the signature F and ∆ ⊆ F . Let A be an infinite
strongly minimal (P,R,S, µ)-chain of the form u1 → v1, u2 → v2, · · · Let I∆,µ,A
be an interpretation that satisfies:

– I∆,µ,A(u1σ) = I0,∆,µ(u1σ), and
– if there is a pair ui → vi ∈ P and a variable x ∈ V ar(ui) ∩ Var(vi),
I∆,µ,A(xσ) has the same interpretation in ui and vi.

– if there is a rule `i → ri ∈ R and a variable x ∈ V ar(`i) ∩ Var(ri),
I∆,µ,A(xσ) has the same interpretation in `i and ri.

Definition 19. Let (P,R,S, µ) be a CS problem where R is a TRS over the
signature F and ∆ ⊆ F . Let A be an infinite strongly minimal (P,R,S, µ)-chain.
We denote by σI∆,µ,A a substitution that replaces occurrences of x ∈ Var(t) by
I∆,µ,A(xσ).

Lemma 5. Let (P,R,S, µ) be a CS problem where R is a TRS over the sig-
nature F and ∆ ⊆ F . Let A be an infinite strongly minimal (P,R,S, µ)-chain.
Let t be a linear term and σ be a substitution. If all subterms t′ of t at frozen
positions are from T (∆,X ) and tσ is (R, µ)-terminating, then I∆,µ,A(tσ) ↪→∗Cε,µ
σI∆,µ,A(t). If t only contain ∆-symbols at active positions, then we have
I∆,µ,A(tσ) = σI∆,µ,A(t).

Proof. By structural induction on t:

– If t is a variable then I∆,µ,A(tσ) = σI∆,µ,A(t).
– If t = f(t′1, . . . , t

′
k) then

• If f ∈ ∆ then I∆,µ,A(tσ) = f(t′′1 , . . . , t
′′
k). Terms t′iσ are µ-terminating for

i ∈ µ(f). By induction hypothesis, for all terms t′i s.t. i ∈ µ(f), we have
t′′i = I∆,µ,A(t′iσ) ↪→∗Cε,µ σI∆,µ,A(t′i). And for all t′i s.t. i /∈ µ(f), we have
that t′i only contains ∆ symbols, then t′′i = I∆,µ,A(t′iσ) = σI∆,µ,A(t′i).
This implies f(t′′1 , . . . , t

′′
k) ↪→∗Cε,µ σI∆,µ,A(t).

• If f /∈ ∆, I∆,µ,A(tσ) = c(f(t′′1 , . . . , t
′′
k), t′) for some t′. Applying a Cε

step to this term, we obtain again the term f(t′′1 , . . . , t
′′
k), and using the

previous item result, we get f(t′′1 , . . . , t
′′
k) ↪→∗Cε,µ σI∆,µ,A(t).
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Then we conclude I∆,µ,A(tσ) ↪→∗Cε,µ σI∆,µ,A(t).
The second part of the lemma is proved similarly. If t is a variable then

I∆,µ,A(tσ) = σI∆,µ,A(t). Now let t = f(t1, . . . , tk). Since f ∈ ∆, I∆,µ,A(tσ) =
I∆,µ,A(f(t′1σ, . . . , t

′
kσ)) = f(t′′1 , . . . , t

′′
k). For i ∈ µ(f), we have I∆,µ,A(t′iσ) =

σI∆,µ,A(t′i) by the induction hypothesis. For i /∈ µ(f), we have I∆,µ,A(t′iσ) =
σI∆,µ,A(t′i). This implies that f(t′′1 , . . . , t

′′
k) = σI∆,µ,A(t).

Lemma 6. Let τ = (P,R,S, µ) be a CS problem where P and R are TRSs over
the signatures G and F respectively and ∆ ⊆ F . Let A be an infinite strongly min-
imal (P,R,S, µ)-chain. Let PG ∪U.τ (R) be conservative and left-linear, PX left-
linear and conservative with respect to S, and ∆ = {root(`) | ` → r ∈ U.τ (R)}.
If s and t are (R, µ)-terminating and s ↪→R,µ t then I∆,µ,A(s) ↪→+

U.τ (R)]Cε,µ
I∆,µ,A(t).

Proof. We proceed by induction on the position p of the redex in s ↪→{`→r},µ t.
First assume that root(s) ∈ ∆ and p = Λ (and therefore `→ r ∈ U.τ (R)). So we

have s = `σ
Λ→{`→r},µ rσ = t for some substitution σ. Moreover, for all subterms

r′ at active positions of r, root(r′) ∈ ∆ and for all subterms `′ at frozen positions
of `, root(`′) ∈ ∆ by definition of ∆. We know that ` → r is conservative and
left-linear. We have:

I∆,µ,A(s) = I∆,µ,A(`σ)
↪→∗Cε,µ σI∆,µ,A(`) by Lemma 5

→{`→r} σI∆,µ,A(r) = I∆,µ,A(rσ) = I∆,µ,A(t)

Note that, by conservativity, every variable at an active position in r is at an
active position in `. Now consider the case where root(s) ∈ ∆ and p 6= Λ. Hence,
s = f(s′1, . . . , s

′
i, . . . , s

′
n), t = f(s′1, . . . , t

′
i, . . . , s

′
n), i ∈ µ(f), and s′i ↪→{`→r},µ t′i.

The induction hypothesis implies I∆,µ,A(s′i) ↪→
+
{`→r}]Cε,µ I∆,µ,A(t′i) and hence,

I∆,µ,A(s) ↪→+
{`→r}]Cε,µ I∆,µ,A(t). Finally, we consider the case root(s) /∈ ∆.

In this case, I∆,µ,A(s) ∈ order ({I∆,µ,A(u) | s ↪→R,µ u}) because s ↪→R,µ t. By
applying Cε rules, we get I∆,µ,A(s) ↪→+

Cε,µ I∆,µ,A(t).

Proof (Theorem 4). Regarding soundness, we proceed by contradiction. By The-
orem 3, assume that there is an infinite strongly minimal (P,R,S, µ)-chain A,
but there is no infinite strongly minimal (P − PA,R,S − SA, µ)-chain. Due to
the finiteness of P and S, we can assume that there are subsets Q ⊆ P and
T ⊆ S such that A has a tail B

u1σ

 →QG
→QX ◦

Λ→
∗

TBµ
◦ Λ→T]

 t
′
1 ↪→

∗
R,µ u2σ

 →QG
→QX ◦

Λ→
∗

TBµ
◦ Λ→T]

 · · ·
for some substitution σ, where all pairs in Q and all rules in T are infinitely
often used (note that, if T 6= ∅, then T] 6= ∅ and QX 6= ∅), and, for all i ≥ 1,
(1) if ui → vi ∈ QG , then t′i = viσ and (2) if ui → vi = ui → xi ∈ QX , then

xiσ
Λ→
∗
TBµ ◦

Λ→T] t′i. Moreover, all t′i are (R, µ)-terminating.
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We know that P∪U.τ (R)∪SBµ is conservative and left-linear. We apply I∆,µ,A
in Definition 18 to the initial term. To ease readability, we let I = I∆,µ,A. By def-
inition, we know that I(u1σ) = I0,∆,µ(u1σ). Let ∆ = {root(`) | `→ r ∈ U.τ (R)}.
Note that the application of I0,∆,µ is always possible since active subterms are
(R, µ)-terminating due to the minimality of the chain. Using Lemma 6, we ob-
tain I(viσ) ↪→∗U.τ (R)]Cε,µ I(ui+1σ) for all i ≥ 1. Moreover, by the definition of

U.τ (R), for all nonvariable active subterms v′i of vi, we have root(v′i) ∈ ∆. By
Lemma 6, we have viσI = I(viσ) and I(ui+1σ) ↪→∗Cε,µ ui+1σI . Since ui (& ∪ A)vi
for all ui → vi ∈ Q ⊆ P, by stability of & and A, we have uiσI (& ∪ A) viσI for
all i ≥ 1.

No pair u → v ∈ Q satisfies that u A v. Otherwise, we get a contradiction
by considering the following two cases:

1. If ui → vi ∈ QF , then viσI ↪→∗U.τ (R)]Cε,µ ui+1σ and (by compatibility of

& with the rules in U.τ (R) ] Cε) viσI & ui+1σI . For all active subterms v′i
of r, root(v′i) ∈ ∆. Then I(ui) ↪→∗Cε,µ uiσI and viσI = I(vi) (we use the
fact that P is conservative and left-linear). Since uiσI (& ∪ A) viσI , by
using transitivity of & and compatibility between & and A, we conclude
that uiσI (& ∪ A) ui+1σI .

2. If ui → vi = ui → xi ∈ QX (which is not empty whenever T is not empty),
then viσI = xiσI ↪→∗TBµ]Cε,µ I(si), as in Lemma 6. Let `i → ri ∈ T]. For

all subterms r′i at active positions of ri, root(r′i) ∈ ∆. If `i is not linear,
we know that u1 7 `iσ and there is a rule u → v ∈ P ∪ R such that
uσ 7 `iσ and vσ B

�µ
`iσ and we know that u is left-linear and v = `i up to

renaming of variables, so σI is unique. Since `(& ∪ A)r for all `→ r ∈ T , we
have viσI = xiσI(& ∪ A)I(si)(& ∪ A)riσI = I(ti). Hence, by transitivity
of & (and compatibility of & and A), we have viσ = xiσ (& ∪ A) ti. Since
I(ti) ↪→∗R,µ ui+1σI , we also have that, for all i ≥ 1, I(ti) & ui+1σI . Therefore,
again by transitivity of & and compatibility of & and A, we conclude that
uiσI(& ∪ A) I(ti) & ui+1σI and hence uiσI (& ∪ A) ui+1σI .

Since u → v occurs infinitely often in B, there is an infinite set I ⊆ N of
pairs such that uiσI A ui+1σI for all i ∈ I. Thus, by using the compatibility
conditions of the µ-reduction pair, we obtain an infinite decreasing A-sequence
which contradicts well-foundedness of A. Therefore, B is an infinite minimal
(P − PA,R,S − SA, µ)-chain, thus leading to a contradiction.

Example 15. In Example 1, we start with the CS problem τ0 = (DP(R, µ),R,
unh(R, µ), µ]). Applying the well-known SCC processor [17] to τ0, ProcSCC (τ0),
we get the new set of CS problems ProcSCC (τ0) = {τ1, τ2, τ3} using the com-
puted CS dependency graph from Figure 4, where τ1 = ({(26)},R, ∅, µ), τ2 =
({(28)},R, ∅, µ) and τ3 = ({(29), (31), (32)},R, {(34)}, µ). Applying the well-
known µ-subterm processor [17] to CS problems τ1 and τ2 we get Procsub(τ1) = τ4
and Procsub(τ2) = τ4, where τ4 = (∅,R, ∅, µ) and, hence, we can conclude that
τ1 and τ2 are finite.

But, until now, CS problem τ3 could not be handled by any automatic tool.
By Definition 16, the set of extended basic CS usable rules U.τ (R) is:
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Fig. 4. CS Dependency Graph for Example 1

zero(0)→ true zero(s(x))→ false p(s(x))→ x

when in the previous approach all the rules are usable. We can use the extended
basic CS usable rules instead of R because the CS problem satisfies the restric-
tions in Theorem 4 and the following polynomial interpretation [25] allows us to
remove pair (32):

[fact](x) = 2x [∗](x, y) = 1
2xy + 2

[p](x) = 1
2x [zero] = 1

2x
2

[0] = 2 [s](x) = 2x+ 1
[false] = 1

2 [true] = 2
[FACT](x) = 2x2 + 2 [IF](x, y, z) = 1

2xy + 1
2x+ z

The new CS problem τ5 = ({(29), (31)},R, {(34)}, µ) can be handled again using
Theorem 4. The following polynomial interpretation removes pair (31):

[fact](x) = 1 [∗](x, y) = 2x+ 2
[0] = 0 [s](x) = 2x
[p](x) = 2x+ 1 [zero] = 2x+ 1
[false] = 1 [true] = 1
[FACT](x) = 2 [IF](x, y, z) = y + 1

and we obtain a finite CS problem by applying ProcSCC to the resulting CS
problem.

7 Experimental Evaluation

We have performed an experimental evaluation of the new improvements intro-
duced by these new results presented in the paper in our tool for proving termina-
tion properties, mu-term [4]. We compared our new version, we call it mu-term
5.1, with respect to the previous version, mu-term 5.08 [17]. The experiments
have been performed on an Intel Core 2 Duo at 2.4GHz with 8GB of RAM, run-
ning OS X 10.9.1 using a 120 seconds timeout. We used the last version of the ter-
mination problem database, TPDB 8.0.75, context-sensitive category. Results are
in http://zenon.dsic.upv.es/muterm/benchmarks/lrc15-csr/benchmarks.

html and summarized in Table 1. mu-term 5.1 also participated in the CSR cat-
egory in the 2014 termination competition (http://termination-portal.org/
wiki/Termination_Competition_2014) and the same results were confirmed.

5 See http://termcomp.uibk.ac.at/termcomp/
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Tool Version Proved Total time (Av. time)

mu-term 5.1 102/109 1.62s

mu-term 5.08 99/109 2.23s
Table 1. mu-term 5.1 vs. mu-term 5.08 comparison

The practical improvements revealed by the experimental evaluation are
twofold. First, we can prove (now) termination of 102 of the 109 examples, 3
more examples than our previous version, including [28, Example 1], [13, Ex-
ample 1] and [10, Example 3.2.14], whose automatic proofs were open problems
since 1997, 2003 and 2008. To our knowledge, there is no other tool that can
prove more than those 99 examples from this collection of problems. Second, the
new definitions yield a faster implementation; this is witnessed by a speed-up of
1.37 with respect to our previous version.

8 Conclusions

In this paper, we revisit infinite µ-rewrite sequences to obtain a new notion
of minimal non-µ-terminating term and a new set of unhiding rules. Since the
introduction of the CS-DPs in 2006, the constraints introduced by the unhid-
ing process have been a headache for constraint solvers. For example, in the
original approach for each symbol f in the signature and replacing argument
i ∈ µ(f), a projection constraint f(x1, . . . , xn) ≥ xi should be satisfied in order
to find a proof. Subsequent works [1, 17] reduced these projection constraints to
a subset of those for the hidden symbols. Now, in many cases, as in the leading
example of the paper, we can avoid these projection/embedding constraints and
the unhiding rules are a very small set of rules. In the context of the CS-DP
framework, we propose a new notion of chain, the notion of strongly minimal
(P,R,S, µ)-chain and a new set of CS usable rules, the extended basic CS us-
able rules, that allows us to simplify termination proofs on CS problems with
respect to the set of unhiding rules. The new processor leads us to a faster and
more powerful CS-DP framework. We show an example where the technique is
successfully applied [28, Example 1] (included in the TPDB), whose automatic
proof was an open problem since 1997. An implementation and an experimen-
tal evaluation was performed in our tool for proving termination properties,
mu-term [4]. With these improvements, mu-term won the CSR category in the
2014 termination competition.
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