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Abstract

The pattern of some real phenomenona can be described by compartmental in-series mod-
els. Nevertheless, most of these processes are characterized by their variability, which produces
that the exact values of the model parameters are uncertain,although they can be bounded by
intervals.

The aim of this paper is to compute tight solution envelopes that guarantee the inclusion
of all possible behaviours of such processes. Current methods, such as monotonicity analysis,
enable us to obtain guaranteed solution envelopes. However, if the model includes non-monotone
compartments or parameters, the computation of solution envelopes may produce a significant
overestimation.

Our proposal consists in performing a change of variables inwhich the output is unaltered,
and the model obtained is monotone with respect to the uncertain parameters. The monotonicity
of the new system allows us to compute the output bounds for the original system without over-
estimation. These model transformations have been developed for linear and non-linear systems.
Furthermore, if the conditions are not completely satisfied, a novel method to compute tight so-
lution envelopes is proposed. The methods exposed in this paper have been applied to compute
tight solution envelopes for two different models: a linear system for glucose modelling and a
non-linear system for an epidemiological model.

Keywords: Compartmental models, Uncertainty, Parametric uncertainty, Interval simulations

1. Introduction

Compartmental systems have been widely used to simulate processes from many different
real situations emerging from biology, economics, engineering, medicine, human sciences and
many other research fields. When studying a real process with amathematical system, there is
always some mismatch between the model and reality, caused because mathematical models are
usually a simplified version of the actual processes. Furthermore, a common characteristic of any
real phenomenon is variability, leading to parametric uncertainty. Therefore, the exact values
for the initial conditions and model parameters are unknown, although they can be bounded
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by intervals. While there is a single possible behaviour for amodel with constant parameters,
parametric uncertainty produces a set of different possible solutions. Hence, the computation of
solution envelopes acquires importance.

Monte Carlo approaches have been used to implement these kinds of systems. They consist
in performing a large number of different simulations by the variation of the parameter values
[1]. These methods have been widely used to deal with uncertainty due to their easy computa-
tion. However, the computational cost of Monte Carlo approaches increases proportionally to the
number of simulations executed and, moreover, they never guarantee that the bounds obtained
include all the possible solutions, independently to the number of simulations [2]. This inclu-
sion guarantee is needed for error-bounded parametric identification and constraint-satisfaction
problems.

Trajectory-based approaches have been also applied to obtain solution envelopes [3–5]. Com-
pared with Monte Carlo simulations, monotonicity analysisguarantees that the actual response
is inside the envelopes. However, if the model analysed includes any non-monotone state or pa-
rameter, the computation of solution envelopes may producea significant overestimation. If the
overestimation is high, it could not be useful from a practical point of view, for instance, in an
insulin therapy for diabetes patients [6].

This work is an extension of the paper [7], which aims to compute tight solution envelopes for
compartmental in-series models under parametric uncertainty. The solution envelopes computed
must guarantee the inclusion of all possible solutions and minimize the overestimation. The
proposal consists in performing a change of variables of theoriginal model to obtain a monotone
system with respect to its states and parameters, and keeping the output unaltered. As all the
states and parameters of the new model are monotone, output bounds can be computed without
overestimation. In [7], these model transformations were formulated in a lemma for bidirectional
chains. In this work, we propose an additional lemma for unidirectional chains that requires fewer
conditions. Furthermore, when the system does not completely satisfy the lemma conditions, we
propose a new method to compute tight solution envelopes that consists in the application of an
upper and a lower bounding model.

This work has been organised as follows: In Section 2, uncertain systems are introduced. In
Section 3, compartmental in-series models are presented. In Section 4, several new methods are
proposed for the analysis of the system monotonicity with respect to the parameters. In Section 5,
a novel technique is proposed for near-monotone systems. InSection 6, the proposed methods
are applied to compute the output bounds for linear and non-linear models. Finally, Section 7
outlines the conclusions of this study.

2. Uncertain systems

Continuous-time compartmental systems are described by aninitial-value problem (IVP):

ẋ(t, p) = f (t, x, p,u), x(t0) = x0,

x ∈ Rn, t ∈ R, p ∈ Rnp, u ∈ Rn

(1)

where f is the vector function with componentsfi , x is the state vector,p is the parameter vector,
np is the number of parameters, andu is the input vector. The solution of (1) is denoted by
x(t; t0, x0, p,u).
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As parametric uncertainty is considered, initial conditions and parameter values are unknown,
but they can be bounded by intervals. Representing intervals in bold, interval vectorsp, u and
x0 include all possible values for the parametersp, for the input vectoru and for the initial
conditionsx0 of the model, respectively. The set of possible solutions derived from parametric
uncertainty is denoted byx(t; t0, x0,p,u):

x(t; t0, x0,p,u) = {x(t; t0, x0, p,u) | x0 ∈ x0, p ∈ p,u ∈ u}.

The computation of solution envelopes plays a key role in thesimulation of systems under
parametric uncertainty. Such a computation can be performed by one-step-ahead iteration based
on previous approximations of a set of point-wise trajectories generated by the selection of par-
ticular values of the parametersp ∈ p, the input vectoru ∈ u and the initial conditionsx0 ∈ x0

by using heuristics such as a monotonicity analysis of the system [8].
Monotone systems have very robust dynamical characteristics, since they respond to pertur-

bations in a predictable way. The interconnection of monotone systems may be studied in an
analytical way [9], by considering a flowx(t) = φ(x0, t). A system is monotone with respect to
the states, or simply monotone, ifx0 � y0 ⇒ φ(x0, t) � φ(y0, t) for all t ≥ 0, where� is a given
order relation. Cooperative systems form a class of monotone dynamical systems [4] in which

∂ fi
∂x j
≥ 0, for all i , j, t ≥ 0.

An upper bounding model and a lower bounding model are computed to obtain solution
envelopes for the original model. The cooperative states take their upper (lower) bound value
in an upper (lower) bounding model, while the monotone but non-cooperative states, known as
competitive states, take their lower (upper) bound value inan upper (lower) bounding model.
Nevertheless, in both cases non-monotone states have to be computed as intervals that produce a
significant overestimation in the computation of solution envelopes.

The monotonicity of the system with respect to the parameters of the model can be analysed
by considering the parameters as system states in an extended model [3], that is, by performing
a monotonicity analysis of a new system withn+ np states given by:

ẋ1(t) = f1(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...,u1(t))
...

ẋn(t) = fn(t, x1(t), x2(t), ..., xn(t), p1(t), p2(t), ...,un(t))

ṗi(t) = 0 ∀i ∈ {1, . . . ,np}

(2)

Thus, a system (1) is monotone with respect to a parameter if the extended system (2) is
monotone with respect to the corresponding extended model states.

3. Compartmental in-series models

Compartmental systems consist of a finite number of interconnected subsystems called com-
partments. The interactions among compartments are transfers of material according to the law
of conservation of mass [10]. The state variables of these systems represent the amount of ma-
terial contained in each compartment. For this reason, compartmental systems belong to the
broader class ofnon-negativesystems [11]:
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Definition 3.1. A non-linear dynamical systeṁx(t) = f (x(t)) + G(x(t))u(t) is non-negative if
for every non-negative initial state and non-negative control vector, the solution x(t), t ≥ 0, is
non-negative.

A general compartmental in-series model composed ofn compartments is shown in Figure
1.
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Figure 1:Diagram of a compartmental in-series model.

If the fluxes among the compartments of an in-series model go forward and backward, the
model is called bidirectional. However, if the fluxes just goforward, the in-series model is named
unidirectional. Bidirectional in-series models are givenby the following equations:

Q̇1(t) = u1(t) − (k1,2(·) + e1)Q1(t) + k2,1(·)Q2(t)

Q̇i(t) = ui(t) + ki−1,i(·)Qi−1(t) + ki+1,i(·)Qi+1(t) − (ki,i−1(·) + ki,i+1(·) + ei)Qi(t)

Q̇n(t) = un(t) + kn−1,n(·)Qn−1(t) − (kn,n−1(·) + en)Qn(t)

Q1(0) = Q10, Qi(0) = Qi0, Qn(0) = Qn0

(3)

for i ∈ {2, ...,n − 1}, where the states of the modelQ j(t) ≥ 0, j ∈ {1, ...,n}, are the in-series
compartments. Furthermore,u j(t) ≥ 0, j ∈ {1, ...,n}, represent the inputs,ej ≥ 0, j ∈ {1, ...,n},
are parameters that denote the elimination rates for each compartment, whileki, j(·) ≥ 0, i, j ∈
{1, ...,n}, are non-negative scalar functions that represent the flux from the compartmenti to the
compartmentj and they may depend on the states of the model and on a parameter αi, j , i.e.,

ki, j(·) = ki, j(Q1(t), . . . ,Qn(t), αi, j) ≥ 0, such that∂ki, j

∂αi, j
≥ 0. The system will be linear if the fluxes

among the compartments are constant, i.e.ki,i+1(·) = αi,i+1 andki+1,i(·) = αi+1,i , i ∈ {1, ...,n− 1}.
From now on, we consider thatQn(t) is the output of the model.

The extended system (including parameters as constant states) is given by adding the follow-
ing equation to the previous system (3):

ṗ(t) = 0, p(0) = p0 (4)

wherep encompasses the parameters of the model, i.e.,ei , α j, j+1, α j+1, j ∈ p, ∀i ∈ {1, ...,n}, ∀ j ∈
{1, ...,n− 1}.
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4. Analysis of the system monotonicity

In this section, we analyse compartmental in-series modelsby focusing on the monotonicity
of the dynamical system with respect to the states and the parameters of the model.

Let us consider a non-linear bidirectional in-series system (3) and its extended system given
by (4). Note that it is not possible to determine the exact sign of the partial derivatives∂Q̇i (t)

∂Q j (t)
,

i, j ∈ {1, ...,n}, i , j. Here we have an example:

∂Q̇1(t)
∂Q2(t)

= −
∂k1,2(·)
∂Q2(t)

Q1(t) + k2,1(·) +
∂k2,1(·)
∂Q2(t)

Q2(t)

Consequently, some states of the model may be non-monotone.Therefore, the system mono-
tonicity cannot be analysed with respect to the compartments or the parameters of the model
through the extension given in (2). We propose to transform in-series system (3) by performing
a change of variables, keeping unaltered the output compartment. This new system is given by:

Ṡ1(t) =
∑n

j=1 u j(t) −
∑n−1

j=1 ej(S j(t) − S j+1(t)) − enSn(t)

Ṡi(t) =
∑n

j=i u j(t) + ki−1,i(·)(Si−1(t) − Si(t)) − ki,i−1(·)(Si(t) − Si+1(t))

−
∑n−1

j=i ej(S j(t) − S j+1(t)) − enSn(t)

Ṡn(t) = un(t) + kn−1,n(·)(Sn−1(t) − Sn(t)) − (kn,n−1(·) + en)Sn(t)

ṗ(t) = 0

(5)

for i ∈ {2, ...,n − 1}, whereSi =
∑n

j=i Q j(t), ∀i ∈ {1, ...,n}. It is worth mentioning that all the
fluxes ki, j in this new system may depend on the new statesSi , due to the fact thatki, j(·) =
ki, j(Q1(t), . . . ,Qn(t), αi, j) whereQi(t) = Si(t) − Si+1(t), i ∈ {1, ...,n− 1} andQn(t) = Sn(t). Now
we have that, fori ∈ {2, ...,n− 1}:


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


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
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
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
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




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


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
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












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∂Ṡ1(t)
∂S j (t)

= ej−1 − ej (2 ≤ j ≤ n),

∂Ṡi (t)
∂S j (t)

=
∂ki−1,i (·)
∂S j (t)

(Si−1(t) − Si(t)) −
∂ki,i−1(·)
∂S j (t)

(Si(t) − Si+1(t)) ( j < i − 1),

∂Ṡi (t)
∂Si−1(t) =

∂ki−1,i (·)
∂Si−1(t) (Si−1(t) − Si(t)) −

∂ki,i−1(·)
∂Si−1(t) (Si(t) − Si+1(t)) + ki−1,i(·),

∂Ṡi (t)
∂Si+1(t) =

∂ki−1,i (·)
∂Si+1(t) (Si−1(t) − Si(t)) −

∂ki,i−1(·)
∂Si+1(t) (Si(t) − Si+1(t)) + ki,i−1(·) + (ei − ei+1),

∂Ṡi (t)
∂S j (t)

=
∂ki−1,i (·)
∂S j (t)

(Si−1(t) − Si(t)) −
∂ki,i−1(·)
∂S j (t)

(Si(t) − Si+1(t)) + (ej−1 − ej) ( j > i + 1),

∂Ṡn(t)
∂S j (t)

=
∂kn−1,n(·)
∂S j (t)

(Sn−1(t) − Sn(t)) − ∂kn,n−1(·)
∂S j (t)

Sn(t) ( j < n− 1),

∂Ṡn(t)
∂Sn−1(t) =

∂kn−1,n(·)
∂Sn−1(t) (Sn−1(t) − Sn(t)) − ∂kn,n−1(·)

∂Sn−1(t) Sn(t) + kn−1,n(·)
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For i ∈ {1, ...,n}:

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∂Ṡi (t)
∂ej (t)

= 0 (1≤ j < i),

∂Ṡi (t)
∂ej (t)

= −(S j(t) − S j+1(t)) ≤ 0 (i ≤ j ≤ n− 1),

∂Ṡi (t)
∂en(t) = −Sn(t) ≤ 0
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∂Ṡi (t)
∂α j−1, j (t)

= 0 (i , j,2 ≤ j ≤ n),

∂Ṡi (t)
∂α j, j−1(t) = 0 (i , j,2 ≤ j ≤ n),

∂Ṡi (t)
∂αi−1,i (t)

=
∂ki−1,i (·)
∂αi−1,i (t)

(Si−1(t) − Si(t)) (i ≥ 2),

∂Ṡi (t)
∂αi,i−1(t) = −

∂ki,i−1(·)
∂αi,i−1(t) (Si(t) − Si+1(t)) (2 ≤ i ≤ n− 1),

∂Ṡn(t)
∂αn,n−1(t) = −

∂kn,n−1(·)
∂αn,n−1(t) Sn(t)

As ṗ = 0, all the partial derivatives of ˙p are always null. Now, let us look for to ensure the
monotonicity of model (5). For that, the elimination rates and the fluxes among compartments
must satisfy certain conditions. In addition to the relation ej ≥ ej+1, ∀ j ∈ {1, ...,n−1}, among the
elimination rates, it is also necessary that∂ki,i+1(·)

∂S j
≥ 0 and∂ki+1,i (·)

∂S j
≤ 0, ∀i, j : i ∈ {1, ...,n− 1}, j ∈

{1, ...,n}.
If the above conditions are satisfied, the system is monotonewith respect to all the states of

the model. The system is cooperative with respect to the statesSi , i ∈ {1, ...,n}, the inputsu j(t),
j ∈ {1, ...,n}, and the parametersα j, j+1, j ∈ {1, ...,n − 1}, while the system is competitive with
respect to the elimination ratesej , j ∈ {1, ...,n} and the parametersα j+1, j , j ∈ {1, ...,n− 1}.

If the conditions are satisfied, the computation of the bounds for all the new system states is
performed without overestimation because the new system ismonotone with respect to all the
states (states and parameters in the original model). Thus,some specific values of the parameters
and the initial conditions are used to compute the upper bound and the lower bound, values
that are usually different in each bound. Notice that during the combination of equations, the
output compartment remains unchanged becauseSn(t) = Qn(t). Thus, the output of the original
system has the same value as the output of the new system. Then, if the same parameters values
and initial conditions are applied for the original model, the computation of its output bounds
is performed without overestimation. Therefore, the conclusions obtained by the monotonicity
analysis of system (5) can be applied to original in-series system (3). Taking into account the
correspondence among the flux derivatives1, all these relations can be formulated in the following
lemma:

1

∂k(·)
∂S1
=

n
∑

s=1

∂k(·)
∂Qs

∂Qs
∂S1
=
∂k(·)
∂Q1

∂k(·)
∂S j
=

n
∑

s=1

∂k(·)
∂Qs

∂Qs
∂S j
=
∂k(·)
∂Q j
−
∂k(·)
∂Q j−1

∀ j ∈ {2, ..., n}

wherek(·) represents bothki,i+1(·) andki+1,i (·), i ∈ {1, ..., n− 1}.
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Lemma 4.1. Consider a non-linear in-series model (3) characterized by:

(a) The elimination rate for each compartment is greater than or equal to the elimination rate
for the next compartment, i.e. ej ≥ ej+1, ∀ j ∈ {1, ...,n− 1}.

(b) The forward fluxes among the compartments satisfy that∂ki,i+1(·)
∂Q j

−
∂ki,i+1(·)
∂Q j−1

≥ 0, whereas the

backward fluxes satisfy that∂ki+1,i (·)
∂Q j
−
∂ki+1,i (·)
∂Q j−1

≤ 0, ∀i, j : i ∈ {1, ...,n−1}, j ∈ {2, ...,n}, where
∂ki,i+1(·)
∂Q0

=
∂ki+1,i (·)
∂Q0

= 0.

Then, system (5), with the same output value as (3), satisfiesthe following properties:

(i) System (5) is cooperative with respect to the states Si , i ∈ {1, ...,n}, the inputs uj(t), j ∈
{1, ...,n}, and the parametersα j, j+1, j ∈ {1, ...,n− 1}.

(ii) System (5) is competitive with respect to the elimination rates ej , j ∈ {1, ...,n}, and the
parametersα j+1, j , j ∈ {1, ...,n− 1}.

Let us set the fluxes among compartments to be constants, i.e.ki,i+1(·) = αi,i+1 andki+1,i(·) =
αi+1,i . This kind of systems is called linear in-series systems. Inthis case, the partial derivatives
of the fluxes are always equal to zero and the conditions of Lemma 4.1 can be simplified.

Note that, by definition, every linear system is cooperativewith respect to all its states in the
non-extended system, where the parameters are not considered as system states. However, the
analysis of the system monotonicity with respect to the parameters is performed in the extended
system (2). As the parameters are considered as extra states, the system is not linear anymore
and its monotonicity is not proven.

Corollary 4.2. Consider a linear in-series system. If the elimination ratefor each compartment
is greater than or equal to the elimination rate for the next compartment, i.e. ej ≥ ej+1, ∀ j ∈
{1, ...,n− 1}, then system (5) satisfies the following properties:

(i) System (5) is cooperative with respect to the states Si , i ∈ {1, ...,n}, the inputs uj(t), j ∈
{1, ...,n}, and the parametersα j, j+1, j ∈ {1, ...,n− 1}.

(ii) System (5) is competitive with respect to the elimination rates ej , j ∈ {1, ...,n}, and the
parametersα j+1, j , j ∈ {1, ...,n− 1}.

In the particular case of unidirectional linear in-series systems, whereki,i+1(·) = αi,i+1 and
ki+1,i(·) = 0, i ∈ {1, ...,n − 1}, the conditions can be simplified even more. Let us consider a
single-input single-output (SISO) system [12] withui(t) = 0, i ∈ {2, ...,n}. Its transfer function is
given by:

H(s) =
1

en + s

n−1
∏

i=1

αi,i+1

ei + αi,i+1 + s
(6)

The transfer function (6) will be maintained unaltered [13]if the values of the binomial
(αi,i+1, ei) are exchanged with the values of the binomial (α j, j+1, ej) for i, j ∈ {1, ...,n − 1}.
In consequence, the output value does not change. Therefore, a compartmental model where
ej ≥ en ∀ j ∈ {1, ...,n − 1}, can be transformed in a new in-series model, with the same transfer
function, where the elimination rates satisfy
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ej ≥ ej+1, ∀ j ∈ {1, ...,n− 1}.

This new model satisfies the conditions of Corollary 4.2. Therefore, the compartments, the
inputsu j(t), j ∈ {1, ...,n}, and the parametersαi,i+1 of the new system are cooperative for all
i ∈ {1, ...,n− 1}, while the elimination ratesej , j ∈ {1, ...,n}, are competitive parameters. Hence,
the following result is straightforward:

Lemma 4.3. Consider a SISO unidirectional linear in-series model withinput in the first com-
partment. If the elimination rate for each compartment is greater than or equal to the elimination
rate for the output compartment, i.e. ej ≥ en, ∀ j ∈ {1, ...,n − 1}, then system (5) satisfies the
following properties:

(i) System (5) is cooperative with respect to the states Si , i ∈ {1, ...,n}, the inputs uj(t), j ∈
{1, ...,n}, and the parametersα j, j+1, j ∈ {1, ...,n− 1}.

(ii) System (5) is competitive with respect to the elimination rates ej , j ∈ {1, ...,n}.

5. The computation of near-monotone compartmental in-series models

We have just seen that by a change of variables, a new system isobtained with the same
output. If Lemma 4.1 or Lemma 4.3 conditions are satisfied, the new system is monotone with
respect to the states and the parameters of the model. In consequence, the computation of output
bounds for this new system is performed without overestimation and hence, the output bounds
for the original system.

When none of the above lemmas is completely satisfied, the computation of output bounds
has to be performed directly for the original system. As the non-monotone states and parameters
have to be considered as intervals, the output bounds will include a significant overestimation.

However, some systems nearly satisfy the lemma conditions.These kinks of systems are
known as near-monotone system [5]. In these cases, based on the theory exposed in [14], we
propose a novel method for the computation of a solution envelope that consists in obtaining an
upper bounding model and a lower bounding model of the original model that satisfy the lemma
conditions. Then, the computation of the output bounds is performed without overestimation.
The area delimited between the lower bound for the lower bounding model and the upper bound
for the upper bounding model will guarantee the inclusion ofall possible solutions for the original
model, and it will minimize the overestimation.

The conditions for Lemma 4.1 and Lemma 4.3 include special requirements on the elim-
ination rates of the compartmental in-series models. As theelimination rates are competitive
parameters, an upper bounding model is obtained at the lowerbounds for the elimination rates.
Similarly, a lower bounding model is obtained at the upper bounds for the elimination rates.

For example, Lemma 4.3 includes the conditionej ≥ en, ∀ j ∈ {1, ...,n−1}. If our model does
not satisfy this requirement, an upper bounding model can becomputed such that the elimination
rates are given by ˜ej = ej , j ∈ {1, ...,n − 1}, andẽn = min(e1, ...,en). A lower bounding model
is computed by increasing the elimination rate values to ˜ej = max(ej ,en), j ∈ {1, ...,n− 1}, and
ẽn = en. In both models the lemma condition ˜ej ≥ ẽn, ∀ j ∈ {1, ...,n− 1} is satisfied.
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6. Examples

In the sequel, we illustrate the results presented in the previous section through two different
models. The first example is a linear system for glucose modelling, while the second one is
a non-linear system for an epidemiological model. Furthermore, a death rate is added to the
second example to analyse a near-monotone model. Namely, weperform a change of variables
of the non-monotone systems to obtain new monotone systems,in which output bounds are
easily computed without overestimation. Results obtainedfor both examples are compared with
the computation of output bounds following the traditionalmonotonicity approach [9].

6.1. Linear glucose model

Insulin is a hormone secreted by the pancreas with the role ofreducing glucose concentra-
tion in blood. Under normal circumstances, insulin secretion helps to maintain plasma glucose
concentration in blood within a narrow range. A decrease in plasma glucose concentration is
followed by a decrease in insulin secretion, while insulin secretion increases when plasma glu-
cose concentration increases, for instance after an ingestion. The analysis of glucose kinetics is
essential to analyse the insulin secretion by the pancreas.

Q2 

k2,1 

k2,0 

k1,2 

k3,0 

Q3 
Q1 

k3,1 

k1,3 

EGP
 

Figure 2:Diagram of the linear glucose model developed by Cobelli et al.

Cobelli et al. [15, 16] developed a physiological model to analyse insulinsecretion. This
model is composed by three compartments that describe the non-accessible portion of insulin
system, as seen in Figure 2. The central compartment represents the insulin concentration of the
accessible pool. It is the output compartment. The mass balance and measurement equations are
given by:

Q̇1(t) = −(k1,2 + k1,3)Q1(t) + k2,1Q2(t) + k3,1Q3(t) + EGP

Q̇2(t) = k1,2Q1(t) − (k2,1 + k2,0)Q2(t)

Q̇3(t) = k1,3Q1(t) − (k3,1 + k3,0)Q3(t)

G(t) = Q1(t)
VI

(7)

whereQ1(t) is the accessible pool of the plasma glucose,Q2(t) andQ3(t) illustrate peripheral
compartments in rapid and slow equilibrium with the accessible pool, respectively, and the output
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of the model is given by the plasma glucose concentrationG(t), which depends on the central
compartmentQ1(t). The parameterVI is the volume of plasma in the accessible compartment,
the parameterEGPdenotes the input, the constant parametersk1,2, k1,3, k2,1 andk3,1 are the fluxes
among the compartments, while the parametersk2,0 andk3,0 stand for the elimination rates of the
peripheral compartments. In this model there is no elimination rate in the accessible pool.

Performing a monotonicity analysis of the corresponding extended model, it is deduced that
system (7) is cooperative with respect to the compartments.Furthermore, the inputEGP is
also a cooperative parameter, whileVI , and the elimination ratesk2,0 andk3,0 are competitive
parameters. However, the system is non-monotone with respect to the fluxesk1,2, k1,3, k2,1 or k3,1,
because the partial derivatives of the compartments with respect to the fluxes take different signs.
For instance:

∂Q̇1(t)
∂k1,2

= −Q1(t) < 0 while
∂Q̇2(t)
∂k1,2

= Q1(t) > 0

However,Cobelli et al. model (7) can be analysed as two compartmental in-series models
interconnected, where the central compartment is the output of both in-series models. Following
the same idea of the change of variables presented in the lemmas, we can find a new monotone
model:

Ṡ1(t) = −(k1,2 + k1,3)S1(t) + k2,1(S2(t) − S1(t)) + k3,1(S3(t) − S1(t)) + EGP

Ṡ2(t) = −k1,3S1(t) − k2,0(S2(t) − S1(t)) + k3,1(S3(t) − S1(t)) + EGP

Ṡ3(t) = −k1,2S1(t) − k3,0(S3(t) − S1(t)) + k2,1(S2(t) − S1(t)) + EGP

ṗ(t) = 0

G(t) = S1(t)
VI

(8)

whereS1 = Q1, S2 = Q1+Q2, S3 = Q1+Q3, and all the parameters are included in the parameter
vectorp, i.e., p = [k1,2, k1,3, k2,1, k3,1, k2,0, k3,0, VI ].

Now, we can study the monotonicity of system (8):
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∂Ṡ1(t)
∂Ṡ2(t)

= k2,1 ≥ 0 ∂Ṡ1(t)
∂Ṡ3(t)

= k3,1 ≥ 0 ∂Ṡ1(t)
∂k1,2(t) = −S1(t) ≤ 0

∂Ṡ1(t)
∂k1,3(t) = −S1(t) ≤ 0 ∂Ṡ1(t)

∂k2,1(t) = S2(t) − S1(t) ≥ 0 ∂Ṡ1(t)
∂k3,1(t) = S3(t) − S1(t) ≥ 0

∂Ṡ1(t)
∂k2,0(t) = 0 ∂Ṡ1(t)

∂k3,0(t) = 0 ∂Ṡ1(t)
∂VI (t)

= 0

∂Ṡ2(t)
∂Ṡ1(t)

= k2,0 − k3,1 − k1,3
∂Ṡ2(t)
∂Ṡ3(t)

= k3,1 ≥ 0 ∂Ṡ2(t)
∂k1,2(t) = 0

∂Ṡ2(t)
∂k1,3(t) = −S1(t) ≤ 0 ∂Ṡ2(t)

∂k2,1(t) = 0 ∂Ṡ2(t)
∂k3,1(t) = S3(t) − S1(t) ≥ 0

∂Ṡ2(t)
∂k2,0(t) = −(S2(t) − S1(t)) ≤ 0 ∂Ṡ2(t)

∂k3,0(t) = 0 ∂Ṡ2(t)
∂VI (t)

= 0

∂Ṡ3(t)
∂Ṡ1(t)

= k3,0 − k2,1 − k1,2
∂Ṡ3(t)
∂Ṡ2(t)

= k2,1 ≥ 0 ∂Ṡ3(t)
∂k1,2(t) = −S1(t) ≤ 0

∂Ṡ3(t)
∂k1,3(t) = 0 ∂Ṡ3(t)

∂k2,1(t) = S2(t) − S1(t) ≥ 0 ∂Ṡ3(t)
∂k3,1(t) = 0

∂Ṡ3(t)
∂k2,0(t) = 0 ∂Ṡ3(t)

∂k3,0(t) = −(S3(t) − S1(t)) ≤ 0 ∂Ṡ3(t)
∂VI (t)

= 0

As ṗ = 0, the partial derivatives of ˙p are always null. Therefore, system (8) is monotone if
the conditionsk2,0 − k3,1 − k1,3 > 0 andk3,0 − k2,1 − k1,2 > 0 are satisfied. If these conditions
are satisfied, the system is cooperative with respect to the statesS1, S2 andS3. Furthermore, the
input EGP, and the parametersk2,1 andk3,1 are also cooperative, while the parametersk1,2 and
k1,3, the elimination ratesk2,0 andk3,0, and the volumeVI are competitive parameters.

The black dashed lines in Figure 3 display the computed output bounds, while the light grey
lines represent several numerical simulations executed bythe variation of the parameters and
initial conditions values. First of all, the computation ofoutput bounds is performed following
the traditional monotonicity approach [9], where system (7) is non-monotone with respect to
the parametersk1,2, k1,3, k2,1 and k3,1. The lower (upper) bound is computed by considering
the minimum (maximum) value for the cooperative states and parameters, while the maximum
(minimum) value for the competitive states and parameters.However, the values of the non-
monotone parametersk1,2, k1,3, k2,1 andk3,1 that minimize (maximize)Q̇1(t), Q̇2(t) and Q̇3(t),
inside their intervals, are considered to compute the lower(upper) bound:
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Q̇1(t) = −(k1,2 + k1,3) · Q1(t) + k2,1 · Q2(t) + k3,1 · Q3(t) + EGP

Q̇2(t) = k1,2 · Q1(t) − (k2,1 + k2,0) · Q2(t)

Q̇3(t) = k1,3 · Q1(t) − (k3,1 + k3,0) · Q3(t)

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Q̇1(t) = −(k1,2 + k1,3) · Q1(t) + k2,1 · Q2(t) + k3,1 · Q3(t) + EGP

Q̇2(t) = k1,2 · Q1(t) − (k2,1 + k2,0) · Q2(t)

Q̇3(t) = k1,3 · Q1(t) − (k3,1 + k3,0) · Q3(t)

whereA andA represent the lower bound and the upper bound forA. As parametersk1,2, k1,3,
k2,1 andk3,1 appear in several differential equations with different effects, these parameters take
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different values to minimize (or maximize)̇Q1(t), Q̇2(t) and Q̇3(t). For example,k1,2 assumes
different values to minimizėQ1(t) and to minimizeQ̇2(t). This technique ensures the inclusion
of all the possible solutions, but it may produce an overestimation in the computation of solution
envelopes, as Figure 3a illustrates.
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Figure 3: Output bounds for the linear glucose model developed by Cobelli et al., where Q1(0) = 40, Q2(0) = 90,
Q3(0) = 90, EGP = 22, VI = 0.5, k2,0 = 0.6 and k3,0 = 0.55 under 5% uncertainty, and k1,2 = 0.3, k2,1 = 0.1,
k1,3 = 0.15, k3,1 = 0.25under 15% uncertainty. (a) Monotonicity approach. (b) Using system (8) when the monotonicity
conditions are satisfied.

Nevertheless, if the monotonicity conditions are satisfied, the system obtained by a change
of variables is monotone with respect to all the states and parameters of the model, thus none of
them have to be considered as intervals. Therefore, as shownin Figure 3b, the computation of
output bounds is performed without overestimation:
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Ṡ1(t) = −(k1,2 + k1,3) · S1(t) + k2,1 · (S2(t) − S1(t)) + k3,1 · (S3(t) − S1(t)) + EGP

Ṡ2(t) = −k1,3 · S1(t) − k2,0 · (S2(t) − S1(t)) + k3,1 · (S3(t) − S1(t)) + EGP

Ṡ3(t) = −k1,2 · S1(t) − k3,0 · (S3(t) − S1(t)) + k2,1 · (S2(t) − S1(t)) + EGP
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Ṡ1(t) = −(k1,2 + k1,3) · S1(t) + k2,1 · (S2(t) − S1(t)) + k3,1 · (S3(t) − S1(t)) + EGP

Ṡ2(t) = −k1,3 · S1(t) − k2,0 · (S2(t) − S1(t)) + k3,1 · (S3(t) − S1(t)) + EGP

Ṡ3(t) = −k1,2 · S1(t) − k3,0 · (S3(t) − S1(t)) + k2,1 · (S2(t) − S1(t)) + EGP

6.2. Non-linear epidemiological S IS model

Epidemiological models have been widely used to assist the decision-making process by
helping to evaluate the consequence of choosing one of the alternate strategies available [17].
Furthermore, epidemic systems have also been used in non-medical areas to study processes that
follow an epidemiological behaviour. Here, we have analysed aS ISmodel [18] composed by a
susceptible population, denoted byS(t), and an infected population, denoted byI (t), as shown in
Figure 4. Two different cases for theS IS model will be studied depending on whether death by
the disease is considered in the system or not. The dynamics of the first model are given by the
following equations, in which no disease death rate is considered:
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Ṡ(t) = γ − βS(t)I (t) + αI (t) − νS(t)

İ (t) = βS(t)I (t) − αI (t) − νI (t)

(9)

where the infected populationI (t) is the output of the model. The birth rate of the population
is represented by the parameterγ, while the death rate isν. The parametersβ andα denote the
infection rate and the recuperation rate, respectively.

S
 

 I(t)
 

 

I
 

Figure 4:Diagram of the non-linear epidemiological S IS model without disease death rate.

Performing a monotonicity analysis of the corresponding extended model, it is deduced that
system (9) is non-monotone with respect to the states, as thesign of the partial derivative∂Ṡ(t)

∂I (t) =

−βS(t) + α cannot be determined. Consequently, the system monotonicity with respect to the
parameters cannot be evaluated.

Nevertheless, a change of variables can be performed for system (9) to obtain a monotone
system with the same output, given by:

Ṅ(t) = γ − νN(t)

İ (t) = β(N(t) − I (t))I (t) − αI (t) − νI (t)

ṗ(t) = 0

(10)

whereN(t) = S(t) + I (t), and all the parameters are included in the parameter vector p, i.e.,
p = [γ, β, α, ν]. As the output is unaltered, the conclusions achieved by the computation of the
output bounds of (10) can also be applied to system (9). System (10) is cooperative with respect
to the compartments, the parameterβ and the inputγ, while it is competitive with respect toα
and the elimination rateν.

System (10), with the same monotonicity properties, can also be obtained applying Lemma 4.1,
as the lemma conditions are satisfied. The elimination ratesof both compartments of the orig-
inal model are equal toν. Furthermore, the fluxes between the compartments are givenby the
functionβI (t) and the constant parameterα, whose partial derivatives satisfy that∂βI (t)

∂I (t) −
∂βI (t)
∂S(t) =

β − 0 = β ≥ 0 and ∂α
∂I (t) −

∂α
∂S(t) = 0− 0 = 0 ≥ 0.
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Figure 5:Improvements on the computation of bounds for the proportion of infected individuals during a 500 days period,
where I(0) = 0.01, S(0) = 1 − I (0), γ = ν = 0.012, β = 0.15 andα = 0.12 under 1% uncertainty. A) Monotonicity
approach. B) Using Lemma 4.1.

Figure 5 shows two different computations of the output bounds. The starting pointis per-
formed following the traditional monotonicity approach. Figure 5a shows that the solution en-
velope grows exponentially, producing a considerable overestimation over the numerical simu-
lations. Nevertheless, the overestimation disappears when Lemma 4.1 is applied, as shown in
Figure 5b. Output bounds are computed without overestimation, as all the states and parameters
of the system (10) are monotone.

From now on, a differentS ISmodel will be analysed, in which a death by the disease rateθ

is considered. The dynamic of this model is given by the following equations:

Ṡ(t) = γ − βS(t)I (t) + αI (t) − νS(t)

İ (t) = βS(t)I (t) − αI (t) − νI (t) − θI (t)

(11)

Unfortunately Lemma 4.1 cannot be applied to this system, because the lemma conditions
are not completely satisfied, due to the fact that the elimination rates of the compartmentsS(t)
and I (t) areν andν + θ, respectively. To overcome this trouble we compute upper and lower
bounding models. The upper bounding model is computed by reducing the elimination rate of
I (t) to ν, while the lower bounding model is obtained by increasing the elimination rate ofS(t)
to ν + θ. Thus, both the upper and the lower bounding models satisfy the Lemma 4.1 conditions
and guarantee the inclusion of all possible solutions for the system (11).
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Figure 6:Improvements on the computation of bounds for the proportion of infected individuals during a 500 days period
considering a death by the disease rate, where I(0) = 0.01, S(0) = 1− I (0), γ = 0.015, ν = 0.012, θ = 0.001, β = 0.15
andα = 0.12 under 1% uncertainty. A) Monotonicity approach. B) Computing an upper bounding model and a lower
bounding model, and applying Lemma 4.1 on them.
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Again, the solution envelope computed following the traditional monotonicity approach grows
exponentially, producing a significant overestimation, asseen in Figure 6a. The upper bound for
the upper bounding model and the lower bound for the lower bounding model will guarantee the
inclusion of all possible solutions of the system (11) and minimize the overestimation, as seen in
Figure 6b.

7. Discussion and Conclusion

The problem of computing tight solution envelopes under parametric uncertainty for ordinary
differential equations has been tackled in the literature applying different approaches. Monte
Carlo methods are not considered valid methods because theydo not guarantee the inclusion of
all possible solutions. The most common method used in the literature is to perform a monotonic-
ity analysis for a trajectory-based approach. This method allows us to compute tight solutions
envelopes that guarantee the inclusion of all possible solutions. However, non-monotone states
or parameters have to be computed as intervals, which produce a significant overestimation in
the computation of output bounds.

Our proposal consists in performing a combination of the equations of the original model to
obtain a new model in which the output compartment is unaltered. This new system is monotone
with respect to all the compartments and parameters of the model. Therefore, the computation
of its output bounds is performed without overestimation. As the output of the original model is
preserved in the new model, the computed solutions bounds for the new model can be applied to
the original model. These model transformations were formulated in Lemma 4.1 for bidirectional
non-linear chains in [7]. In this work, we present Lemma 4.3 for unidirectional linear chains, with
more relaxed conditions.

Furthermore, in this work, a novel method to compute tight solution envelopes when the
lemma conditions are not completely satisfied by the models involved. This method consists in
computing an upper bounding model and a lower bounding modelsuch that these new models
satisfy the lemma conditions. Thus, the computation of their solution envelopes is performed
without overestimation. As the original model is inferior to the upper bounding model and supe-
rior to the lower bounding model, combining both solution envelopes a tight solution envelope
is obtained for the original system that guarantees the inclusion of all possible solutions, and
minimizes the overestimation.

In this work, our proposal has been compared with the last techniques in two different exam-
ples: a linear system for glucose modelling and a non-linearsystem for aS IS epidemiological
model. In both cases, the solution envelopes have been computed using a monotonicity approach,
and applying the ideas and lemmas presented in this paper. Our proposed techniques outperform
the previous approaches for the computation of solution envelopes on compartmental in-series
models, as they compute the output bounds without overestimation. Furthermore, if the lemma
conditions are not completely satisfied, we can compute tight solution envelopes in which the
overestimation is minimized compared with the most recent techniques.
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