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Abstract

The pattern of some real phenomenona can be described byaconemtal in-series mod-
els. Nevertheless, most of these processes are charadtbgizheir variability, which produces
that the exact values of the model parameters are unceai#tiough they can be bounded by
intervals.

The aim of this paper is to compute tight solution enveloped guarantee the inclusion
of all possible behaviours of such processes. Current rdstteuch as monotonicity analysis,
enable us to obtain guaranteed solution envelopes. HowEtrer model includes non-monotone
compartments or parameters, the computation of solutivalepes may produce a significant
overestimation.

Our proposal consists in performing a change of variablesghich the output is unaltered,
and the model obtained is monotone with respect to the wingrarameters. The monotonicity
of the new system allows us to compute the output bounds éootiginal system without over-
estimation. These model transformations have been dex@fop linear and non-linear systems.
Furthermore, if the conditions are not completely satisfeedovel method to compute tight so-
lution envelopes is proposed. The methods exposed in thisrgeve been applied to compute
tight solution envelopes for two fierent models: a linear system for glucose modelling and a
non-linear system for an epidemiological model.

Keywords: Compartmental models, Uncertainty, Parametric uncesytainterval simulations

1. Introduction

Compartmental systems have been widely used to simulategges from many filerent
real situations emerging from biology, economics, enginge medicine, human sciences and
many other research fields. When studying a real process witatematical system, there is
always some mismatch between the model and reality, casszdibe mathematical models are
usually a simplified version of the actual processes. Furtbes, a common characteristic of any
real phenomenon is variability, leading to parametric utaiety. Therefore, the exact values
for the initial conditions and model parameters are unknosthough they can be bounded
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by intervals. While there is a single possible behaviour fonadel with constant parameters,
parametric uncertainty produces a set d@fatent possible solutions. Hence, the computation of
solution envelopes acquires importance.

Monte Carlo approaches have been used to implement thede dfisystems. They consist
in performing a large number of fierent simulations by the variation of the parameter values
[1]. These methods have been widely used to deal with unogrtdue to their easy computa-
tion. However, the computational cost of Monte Carlo apphes increases proportionally to the
number of simulations executed and, moreover, they nevaragtee that the bounds obtained
include all the possible solutions, independently to theber of simulations [2]. This inclu-
sion guarantee is needed for error-bounded parametritifidation and constraint-satisfaction
problems.

Trajectory-based approaches have been also applied ia sbtation envelopes [3-5]. Com-
pared with Monte Carlo simulations, monotonicity analygisrantees that the actual response
is inside the envelopes. However, if the model analysedided any non-monotone state or pa-
rameter, the computation of solution envelopes may produgignificant overestimation. If the
overestimation is high, it could not be useful from a praditjgoint of view, for instance, in an
insulin therapy for diabetes patients [6].

This work is an extension of the paper [7], which aims to cotapight solution envelopes for
compartmental in-series models under parametric unogytdihe solution envelopes computed
must guarantee the inclusion of all possible solutions aimdmize the overestimation. The
proposal consists in performing a change of variables obtlggnal model to obtain a monotone
system with respect to its states and parameters, and ketm@routput unaltered. As all the
states and parameters of the new model are monotone, ouipniti® can be computed without
overestimation. In [7], these model transformations wermiilated in a lemma for bidirectional
chains. In this work, we propose an additional lemma for weational chains that requires fewer
conditions. Furthermore, when the system does not contypkésfy the lemma conditions, we
propose a new method to compute tight solution envelopastimesists in the application of an
upper and a lower bounding model.

This work has been organised as follows: In Section 2, uatesystems are introduced. In
Section 3, compartmental in-series models are presemeskdtion 4, several new methods are
proposed for the analysis of the system monotonicity witipeet to the parameters. In Section 5,
a novel technique is proposed for near-monotone systemSedtion 6, the proposed methods
are applied to compute the output bounds for linear and m@at models. Finally, Section 7
outlines the conclusions of this study.

2. Uncertain systems

Continuous-time compartmental systems are described bytet-value problem (IVP):

X(t’ p) = f(t’ X, p, U), X(tO) = Xo, (1)
XxeR" teR, peR™ ueR"

wheref is the vector function with components x is the state vectop is the parameter vector,
np is the number of parameters, ands the input vector. The solution of (1) is denoted by

X(t; to, Xo, P, U).



As parametric uncertainty is considered, initial condii@and parameter values are unknown,
but they can be bounded by intervals. Representing inteimdbold, interval vectorp, u and
Xo include all possible values for the parametersfor the input vectoru and for the initial
conditionsxgy of the model, respectively. The set of possible solutiong/ed from parametric
uncertainty is denoted bx(t; to, Xo, p, U):

X(t; to, Xo, P, U) = {X(t; to, X0, P, U) | Xo € X0, P € P, U € U}.

The computation of solution envelopes plays a key role insthulation of systems under
parametric uncertainty. Such a computation can be perfbbyene-step-ahead iteration based
on previous approximations of a set of point-wise trajgemgenerated by the selection of par-
ticular values of the parametepse p, the input vectou € u and the initial conditionsg € Xg
by using heuristics such as a monotonicity analysis of tiseesy [8].

Monotone systems have very robust dynamical charactsjstince they respond to pertur-
bations in a predictable way. The interconnection of monetsystems may be studied in an
analytical way [9], by considering a flow(t) = ¢(Xo,t). A system is monotone with respect to
the states, or simply monotone xi§ < yo = ¢(Xo,t) < ¢(Yo,t) for all t > 0, where< is a given
order relation. Cooperative systems form a class of momotlynamical systems [4] in which

8—f'zo, foralli # j, t>0.
3Xj

An upper bounding model and a lower bounding model are coedptd obtain solution
envelopes for the original model. The cooperative staties tlaeir upper (lower) bound value
in an upper (lower) bounding model, while the monotone buit-oooperative states, known as
competitive states, take their lower (upper) bound valuanrupper (lower) bounding model.
Nevertheless, in both cases non-monotone states have toriprited as intervals that produce a
significant overestimation in the computation of solutiorredopes.

The monotonicity of the system with respect to the paramseatethe model can be analysed
by considering the parameters as system states in an egtemmtiel [3], that is, by performing
a monotonicity analysis of a new system with- n, states given by:

X =t X (1), Xao(1). .. Xa (1), Po(t), P2A1), ..., La (1))

@
Xn(t) fn(t’ Xl(t)a XZ(t)’ ety Xn(t)’ pl(t)’ pZ(t)? ey Un(t))
pit) = 0 Vie{l,...,np}

Thus, a system (1) is monotone with respect to a paramethe iExtended system (2) is
monotone with respect to the corresponding extended metateks

3. Compartmental in-series models

Compartmental systems consist of a finite number of intereoted subsystems called com-
partments. The interactions among compartments are énansf material according to the law
of conservation of mass [10]. The state variables of thesgesys represent the amount of ma-
terial contained in each compartment. For this reason, esmental systems belong to the
broader class afion-negativesystems [11]:

3



Definition 3.1. A non-linear dynamical system(t) = f(x(t)) + G(x(t))u(t) is non-negative if
for every non-negative initial state and non-negative mantector, the solution ), t > 0, is
non-negative.

A general compartmental in-series model composed @mpartments is shown in Figure

Figure 1:Diagram of a compartmental in-series model.

If the fluxes among the compartments of an in-series modebgeard and backward, the
model is called bidirectional. However, if the fluxes justfgovard, the in-series model is named
unidirectional. Bidirectional in-series models are giiwnthe following equations:

Qu(t) = us(t) — (kua() + €1)Qu(t) + ka1 (-)Qa(t)

Qi(t) = Ui(t) + ki1 (VQi1(®) + Kis1i () Qa0 — (Ki-a() + Kiisa() + ) QD)
Qn(t) = Un(t) + Kn-1n()Qn-1(t) = (Knn-1(-) + €)Qn(t)

Q1(0) = Q. Qi(0) = Qi Qn(0) = Qn

fori € {2,..,n— 1}, where the states of the mod®i(t) > O, j € {1,...,n}, are the in-series
compartments. Furthermore(t) > 0, j € {1,...,n}, represent the inputg; > 0, j € {1,...,n},
are parameters that denote the elimination rates for eavipadment, while; ;(-) > 0,1, ] €
{1, ...,n}, are non-negative scalar functions that represent the i the compartmentto the
compartmentj and they may depend on the states of the model and on a paramgtee.,
kii() = kij(Qu(t),...,Qn(t),ai;) = 0, such thal?':—l"J > 0. The system will be linear if the fluxes
among the compartments are constant,k.g4(-) = @ij+1 andki;1i(-) = aivaj, 1 € {1,..,n—1}.
From now on, we consider th@,(t) is the output of the model.

The extended system (including parameters as constaagsisigiven by adding the follow-
ing equation to the previous system (3):

®)

p(t) =0, p(0) = po 4

wherep encompasses the parameters of the modelgi,av, j+1, aj+1j € p, Vie {l,..,n}, Vj e
{1,..,n-1}.



4. Analysis of the system monotonicity

In this section, we analyse compartmental in-series mdmefecusing on the monotonicity
of the dynamical system with respect to the states and ttemers of the model.

Let us consider a non-linear bidirectional in-series sys{8) and its extended system given
by (4). Note that it is not possible to determine the exaat sifithe partial derivative§8:—((?,
i,je{l,...,n},i# . Here we have an example:

dQut) _ _dkia() ka1 ()
0Qx(t)  9Q(t) aQ2(t)

Consequently, some states of the model may be hon-mondkbeecfore, the system mono-
tonicity cannot be analysed with respect to the compartsenthe parameters of the model
through the extension given in (2). We propose to transforseries system (3) by performing
a change of variables, keeping unaltered the output compait This new system is given by:

Qu(t) + ko1 (-) + Qx(t)

Su(t) = £ uj(t) - Z7-1€i(S(1) — Sja(t)) — enSn(®)
Si(t) = 20 uj(0) + ki ()(Si-at) - Sif) — ki1 (NS - Sea®)
"1 i(Sj(t) — Sjea(t)) — enSa(t) ®)
Sa(®) = Un(®) + kn-10()(Sn-1(t) = Sn(®)) ~ (Kan-1() + €)Sn(®)
pt) = 0

fori € {2,...,n -1}, whereS; = ZT:i Qj(t), Vi € {1,...,n}. Itis worth mentioning that all the
fluxesk; j in this new system may depend on the new st&eslue to the fact thak j(-) =
ki (Qu(D). ... Qu(t). i) whereQi(t) = Si(t) - Sisa(t), i € {1,....n = 1} andQn(t) = Sy(t). Now
we have that, fore {2,...,n— 1}:

i) i
3318 =6-1-6§ 2<j=n),

o = ety (Si-1(0) = Sift) ~ T (Sift) — Siea(0) (j<i-1),
sty = ga (Sim®) - Si) - TG SO = Siva®) + ks (),

Tty = 7 (Sia() = Si() - ZEFSIO) - Sia(®) + k1) + (6 - @),

S, kil okij-a(- Do
28 = Sel(Sia) - Si) - FEEASIO) - Sia ) + (61 - &) (j>i+1),
) = T (Sna) - Sa(t) - ZESa(t) (j<n-1),

oS, Okn-1.n(- Onn-1(-
200 = 2ot (S (1) — Sa(t) — F22IS (1) + kn-1n()



Forie{l,...,n}:

h =0 1<j<i),

T = (S-S <0 (<j<n-1),

HSit _
ol =-s,1) <0

S _ o .
Far,® = 0 (i#j2<j<n)

S _ o )
dajja(t) 0 (i+j2<j<n),

S0 _ Kl (g ) —s(0) (= 2),

Oai_1i(t) — Oai—yi(t)

Bl = - Hal(s() - Sa() (2sis<n-1).

daiji(® ~ 7 Baiia(®

St _ _ kana()
aﬂfn.n—l(t) - 3¢Yn,n—i(t) Sn(t)

As p = 0, all the partial derivatives gb are always null. Now, let us look for to ensure the
monotonicity of model (5). For that, the elimination rategldahe fluxes among compartments
must satisfy certain conditions. In addition to the relagp> e;.1, Vj € {1,...,n-1}, among the
{eiimina}tion rates, it is also necessary tﬁ%%) >0 andm‘g—gj(') <0,Vi,j:ie{l,...,n=-1},je

.0 N}

If the above conditions are satisfied, the system is mono#atierespect to all the states of
the model. The system is cooperative with respect to thes$ati € {1, ..., n}, the inputsu;(t),

j € {1,..,n}, and the parametets;j,1, j € {1,...,n— 1}, while the system is competitive with
respect to the elimination rateg j € {1,...,n} and the parametets.j, j € {1,...,n—1}.

If the conditions are satisfied, the computation of the baundall the new system states is
performed without overestimation because the new systenoistone with respect to all the
states (states and parameters in the original model). Tbuse specific values of the parameters
and the initial conditions are used to compute the upper ¢d@md the lower bound, values
that are usually dierent in each bound. Notice that during the combination ofaéqns, the
output compartment remains unchanged bec&yé® = Q,(t). Thus, the output of the original
system has the same value as the output of the new system, ifithensame parameters values
and initial conditions are applied for the original modéle ttcomputation of its output bounds
is performed without overestimation. Therefore, the cosicins obtained by the monotonicity
analysis of system (5) can be applied to original in-seryjstesn (3). Taking into account the
correspondence among the flux derivativedl these relations can be formulated in the following
lemma:




Lemma 4.1. Consider a non-linear in-series model (3) characterized by

(&) The elimination rate for each compartment is greatentbaequal to the elimination rate
for the next compartment, i.e; & ej.1, Vj € {1,..,n-1}.

(b) The forward fluxes among the compartments satlsfy—ﬁgg{— ”K'“() > 0, whereas the

+1i 3k4+ll()
backward fluxes satisfy th% 50,5 <0,Vvi,j:iell,.., },j € {2,...,n}, where
8ki.i+l(') _ aki+1.i(‘) _ 0
Qo ~— 4Q

Then, system (5), with the same output value as (3), satibédsllowing properties:

(i) System (5) is cooperative with respect to the states & {1,...,n}, the inputs yt), j €
{1,...,n}, and the parameters; j.1, j € {1,...,n—1}.

(i) System (5) is competitive with respect to the elimimratiates ¢, j € {1,...,n}, and the
parametersyj,yj, j € {1,..,n— 1}

Let us set the fluxes among compartments to be constantk,i.&:) = aij.1 andki,1i(-) =
ai+1i- This kind of systems is called linear in-series systemghicase, the partial derivatives
of the fluxes are always equal to zero and the conditions ofrherh.1 can be simplified.

Note that, by definition, every linear system is cooperatiitd respect to all its states in the
non-extended system, where the parameters are not casidersystem states. However, the
analysis of the system monotonicity with respect to the ipatars is performed in the extended
system (2). As the parameters are considered as extra, st&es/stem is not linear anymore
and its monotonicity is not proven.

Corollary 4.2. Consider a linear in-series system. If the elimination rimteeach compartment
is greater than or equal to the elimination rate for the nesinpartment, i.e. > €j,1, ¥j €
{1,...,n -1}, then system (5) satisfies the following properties:

(i) System (5) is cooperative with respect to the states & {1,...,n}, the inputs y(t), j €
{1,...,n}, and the parameters;j.1, j € {1,..,n—1}.

(if) System (5) is competitive with respect to the elimimratiates ¢, j € {1,...,n}, and the
parametersyj,yj, j € {1,..,n— 1}

In the particular case of unidirectional linear in-serigstems, wherd ,1(-) = aij+1 and
ki..i() = 0,1 € {1,...,n — 1}, the conditions can be simplified even more. Let us consider a
single-input single-output (SISO) system [12] willit) = 0,i € {2, ..., n}. Its transfer function is
given by:

n-1

1 .
H(S) _ a’l-,l.+l (6)
EhtSi i@ +aiatsS

The transfer function (6) will be maintained unaltered [if3jhe values of the binomial
(@ij+1, &) are exchanged with the values of the binomiaj (., &) fori,j € {1,..,n - 1}.
In consequence, the output value does not change. Theref@@mpartmental model where
€ > & VYj € {1,..,n-1}, can be transformed in a new in-series model, with the saamsfr
function, where the elimination rates satisfy
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€ >ej1, Yje(l,..,n-1).

This new model satisfies the conditions of Corollary 4.2. réfare, the compartments, the
inputsuj(t), j € {1,...,n}, and the parameters ., of the new system are cooperative for all
i €{1,..,n—-1}, while the elimination rates;, j € {1, ..., n}, are competitive parameters. Hence,
the following result is straightforward:

Lemma 4.3. Consider a SISO unidirectional linear in-series model vitithut in the first com-
partment. If the elimination rate for each compartment isager than or equal to the elimination
rate for the output compartment, i.e; & €, Vj € {1,...,n - 1}, then system (5) satisfies the
following properties:

(i) System (5) is cooperative with respect to the states & {1,..., n}, the inputs yt), j €
{1,...,n}, and the parameters; .1, j € {1,...,n—1}.

(if) System (5) is competitive with respect to the elimmatiates ¢, j € {1,...,n}.

5. The computation of near-monotone compartmental in-seds models

We have just seen that by a change of variables, a new systeltamed with the same
output. If Lemma 4.1 or Lemma 4.3 conditions are satisfied nw system is monotone with
respect to the states and the parameters of the model. |egqaersce, the computation of output
bounds for this new system is performed without overestomaand hence, the output bounds
for the original system.

When none of the above lemmas is completely satisfied, the we@tign of output bounds
has to be performed directly for the original system. As thie-monotone states and parameters
have to be considered as intervals, the output bounds willde a significant overestimation.

However, some systems nearly satisfy the lemma conditidimese kinks of systems are
known as near-monotone system [5]. In these cases, basdr dheiory exposed in [14], we
propose a novel method for the computation of a solutionlepeethat consists in obtaining an
upper bounding model and a lower bounding model of the azlgimodel that satisfy the lemma
conditions. Then, the computation of the output bounds fopmed without overestimation.
The area delimited between the lower bound for the lower Bimgnmodel and the upper bound
for the upper bounding model will guarantee the inclusioallgfossible solutions for the original
model, and it will minimize the overestimation.

The conditions for Lemma 4.1 and Lemma 4.3 include speci@@irements on the elim-
ination rates of the compartmental in-series models. Asetimination rates are competitive
parameters, an upper bounding model is obtained at the loaerds for the elimination rates.
Similarly, a lower bounding model is obtained at the upparrats for the elimination rates.

For example, Lemma 4.3 includes the condit®me e,, ¥j € {1,...,n—1}. If our model does
not satisfy this requirement, an upper bounding model carobguted such that the elimination
rates are given bg;"= g, j € {1,...,n - 1}, and€&, = min(ey, ..., &). A lower bounding model
is computed by increasing the elimination rate values;te axe;j,€,), j € {1,...,n—1}, and
& = &, In both models the lemma conditien= &,, Vj € {1,...,n— 1} is satisfied.



6. Examples

In the sequel, we illustrate the results presented in théqus section through two fierent
models. The first example is a linear system for glucose niindelwhile the second one is
a non-linear system for an epidemiological model. Furtlegema death rate is added to the
second example to analyse a near-monotone model. Nameperigm a change of variables
of the non-monotone systems to obtain hew monotone systienvghich output bounds are
easily computed without overestimation. Results obtafoetoth examples are compared with
the computation of output bounds following the traditiomainotonicity approach [9].

6.1. Linear glucose model

Insulin is a hormone secreted by the pancreas with the rotechfcing glucose concentra-
tion in blood. Under normal circumstances, insulin seoretielps to maintain plasma glucose
concentration in blood within a narrow range. A decreaselasmpa glucose concentration is
followed by a decrease in insulin secretion, while insuiorgtion increases when plasma glu-
cose concentration increases, for instance after an inge§the analysis of glucose kinetics is
essential to analyse the insulin secretion by the pancreas.

EGP

Q, ——Qf 1 Qg

k30

Figure 2:Diagram of the linear glucose model developed by Cobelli.et a

Cobelli et al. [15, 16] developed a physiological model to analyse insséioretion. This
model is composed by three compartments that describe thaceessible portion of insulin
system, as seen in Figure 2. The central compartment repsabe insulin concentration of the
accessible pool. It is the output compartment. The massibaland measurement equations are
given by:

Qu(t) = —(Kiz + Ki3)Qu(t) + ko1 Qo(t) + k3 1Qa(t) + EGP
Qa(t) = k2Qu(t) — (K1 + ka0) Q)
Qs(t) = ky.3Qu(t) — (Ka1 + k3,0)Qs(t)

G(t) = 30

whereQq(t) is the accessible pool of the plasma glucadg(t) and Qs(t) illustrate peripheral
compartments in rapid and slow equilibrium with the acdadegpool, respectively, and the output
9
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of the model is given by the plasma glucose concentrdth which depends on the central
compartment;(t). The parameteY, is the volume of plasma in the accessible compartment,
the parametelE G Pdenotes the input, the constant paramekessk; 3, ko1 andks; are the fluxes
among the compartments, while the parametggsandks o stand for the elimination rates of the
peripheral compartments. In this model there is no elinmatate in the accessible pool.

Performing a monotonicity analysis of the correspondintgrested model, it is deduced that
system (7) is cooperative with respect to the compartmehtgthermore, the inpuEGP is
also a cooperative parameter, whilg and the elimination ratels, o andkso are competitive
parameters. However, the system is non-monotone with cespthe fluxek 2, k1 3, ko1 Orks 1,
because the partial derivatives of the compartments wihaet to the fluxes takefterent signs.
For instance:

dQx(1)

dQu() _ _
0Ky 2

Fhan —Qu(t) <0 while

Q) >0

However,Cobelli et al. model (7) can be analysed as two compartmental in-serieglsiod
interconnected, where the central compartment is the bofghoth in-series models. Following
the same idea of the change of variables presented in thedepwe can find a new monotone
model:

Sa(t) = —(Kez + k13)Sa(t) + ko1 (S2(t) — S1(t) + ks1(Ss(t) — S(t)) + EGP
Sa(t) = —ki3S1(t) — K2o(Sa(t) — Sa(t)) + ka.1(Sa(t) — Si(t)) + EGP

Sa(t) = —ku2S1(t) — kao(Sa(t) — Su(t) + ka1 (Sa(t) — Sa(t) + EGP ®)
p(t) = 0
G(t) = 30

whereS; = Q1, Sz = Q1+Q2, S3 = Q1 +Q3, and all the parameters are included in the parameter
vectorp, i.e.,p = [ki2, ki3, ko1, k31, koo, Kz, Vi].
Now, we can study the monotonicity of system (8):

10



950 _ ko1 > 0 951 _ ka1 >0 St _ ~Si() <0

35,(D) 353(0 Akaat)

&0 - s <0 B -sM)-S1020 2 =50 -S,() 20
ey = Gy =0 i =0
%gi%=kz,o—k3,1—k1,3 %ﬂ(&lzo %22((?)=0

il = s =<0 =0 7 =S -S19 2 0
ey = (S-S <0 =0 =0

%i% =kso— ka1 —ki2 Z—i% =ky1 20 ;’kfz‘{ﬁ) =-5() <0

& -0 Sl - s -Si)=0 220 -0

ey =0 b =S -s <0 T =0

As p = 0, the partial derivatives gb are always null. Therefore, system (8) is monotone if
the conditionskyo — ka1 — kiz > 0 andksg — ko1 — k12 > O are satisfied. If these conditions
are satisfied, the system is cooperative with respect ta#bess,, S, andSs. Furthermore, the
input EGP, and the parameteks ; andks; are also cooperative, while the parametarsand
ki 3, the elimination ratek; o andks o, and the volumé&/, are competitive parameters.

The black dashed lines in Figure 3 display the computed otpunds, while the light grey
lines represent several numerical simulations executethéwariation of the parameters and
initial conditions values. First of all, the computationaftput bounds is performed following
the traditional monotonicity approach [9], where systemig/non-monotone with respect to
the parameterg; », ki3, ko1 andks;. The lower (upper) bound is computed by considering
the minimum (maximum) value for the cooperative states ardrpeters, while the maximum
(minimum) value for the competitive states and parametétswever, the values of the non-
monotone parameteks », ki3, ko1 andks; that minimize (maximize)Qy(t), Q(t) and Qa(t),
inside their intervals, are considered to compute the I¢weper) bound:

Q) = —(kiz+kua) - Qut) + ko1 - Qa(t) + ka1 - Qa(t) + EGP
Q) = kiz- Qi) - (ko1 + ko) - Qa(t)
Q) = Kkiz- Qut) - (ka1 +kso) - Qa(t)

Q) = —(kuz+kig) Qult) + ko1 - Qa(t) + ka1 - Qs(t) + EGP
Q) = Kkiz-Qult) - (kea + kao) - Q(t)

Qst) = kus- Qut) - (ks + kao) - Qs(t)

whereA andA represent the lower bound and the upper boundMoAs parameterg », k3,
ko1 andks 1 appear in several flerential equations with fferent dfects, these parameters take
11




different values to minimize (or maximiz€(t), Q(t) and Qs(t). For exampleky, assumes
different values to minimiz&(t) and to minimizeQ,(t). This technique ensures the inclusion
of all the possible solutions, but it may produce an ovemgdtiion in the computation of solution
envelopes, as Figure 3a illustrates.
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Figure 3: Output bounds for the linear glucose model developed by ICa&hel., where Q(0) = 40, Q»(0) = 90,
Q3(0) = 90, EGP = 22, V| = 05, kg = 0.6 and ko = 0.55 under 5% uncertainty, andils = 0.3, ko1 = 0.1,
ki3 = 0.15, k31 = 0.25under 15% uncertainty. (a) Monotonicity approach. (b) Wssystem (8) when the monotonicity
conditions are satisfied.

Nevertheless, if the monotonicity conditions are satisfied system obtained by a change
of variables is monotone with respect to all the states anghpaters of the model, thus none of
them have to be considered as intervals. Therefore, as simokigure 3b, the computation of
output bounds is performed without overestimation:

Si) = —(kiz +Kiz) - Sult) + kea - (Sa(t) - Sa(t) + kaa - (Sa(®) - Sa(V)) + EGP
Sot) = —Kuz- Sult) — koo (Sa(t) — S1(V) + ks - (Sa(t) - Sa(t) + EGP
Sa(t) = —Kiz- Su(t) ~ kao- (Sa(®) -~ S1(V) + ke - (S2(t) - Sa(t) + EGP
S10 = —(kua + kug) - Sult) + e - (Salt) ~ Sa(t) + Koz - (Ss(t) - Su(0)) + EGP
St) = —kiz-Salt) - koo - (Sa(t) - Sa(t) + ka1 - (Sa(t) - Sa(t) + EGP
Sat) = —kiz-Sa(t) — kao - (Sa(t) - Sa(t) + ko - (Sa(t) - Sa(t) + EGP

6.2. Non-linear epidemiological SIS model

Epidemiological models have been widely used to assist #uésibn-making process by
helping to evaluate the consequence of choosing one of thmale strategies available [17].
Furthermore, epidemic systems have also been used in ndicahareas to study processes that
follow an epidemiological behaviour. Here, we have analys8 IS model [18] composed by a
susceptible population, denoted $ft), and an infected population, denotedlif), as shown in
Figure 4. Two diferent cases for th® IS model will be studied depending on whether death by
the disease is considered in the system or not. The dynaribe &rst model are given by the
following equations, in which no disease death rate is carsi:

12



S(t) = y - BSM)I(t) + ! (t) — vS(t)

[(t) = BS)I(t) — al (t) — vI(t)

where the infected populatidrt) is the output of the model. The birth rate of the population
is represented by the parametemwhile the death rate i8. The parameterg8 anda denote the
infection rate and the recuperation rate, respectively.

17

9)

Figure 4:Diagram of the non-linear epidemiological S IS model withdisease death rate.

Performing a monotonicity analysis of the correspondinigreeted model, it is deduced that
system (9) is nhon-monotone with respect to the states, asghef the partial derivativ ,S(tt) =
—BS(t) + @ cannot be determined. Consequently, the system mondipmiith respect to the
parameters cannot be evaluated.

Nevertheless, a change of variables can be performed fteray®) to obtain a monotone
system with the same output, given by:

N(t) = y — vN(t)
) = BN ~ 1O ) - a1 ()~ 10 (10)
pt) =0
whereN(t) = S(t) + I(t), and all the parameters are included in the parameter wectioe.,
p = [v, B, @, v]. As the output is unaltered, the conclusions achieved byctmputation of the
output bounds of (10) can also be applied to system (9). By&l0) is cooperative with respect
to the compartments, the paramegeaind the inputy, while it is competitive with respect te
and the elimination rate.

System (10), with the same monotonicity properties, camtadobtained applying Lemma4.1,
as the lemma conditions are satisfied. The elimination m@fté®th compartments of the orig-
inal model are equal te. Furthermore, the fluxes between the compartments are giveine
functiongl (t) and the constant parameterwhose partial derivatives satisfy th‘%% A

' ! as ~
B-0=p20and;& - 555 =0-0=0=0.
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Figure 5:Improvements on the computation of bounds for the propodfonfected individuals during a 500 days period,
where (0) = 0.01, S(0) = 1-1(0), y = v = 0.012 B8 = 0.15anda = 0.12 under 1% uncertainty. A) Monotonicity

approach. B) Using Lemma 4.1.

Figure 5 shows two diierent computations of the output bounds. The starting peipér-
formed following the traditional monotonicity approachiglire 5a shows that the solution en-
velope grows exponentially, producing a considerableestenation over the numerical simu-

lations. Nevertheless, the overestimation disappearsiwkenma 4.1 is applied, as shown in
Figure 5b. Output bounds are computed without overestimaés all the states and parameters

of the system (10) are monotone.
From now on, a dferentS IS model will be analysed, in which a death by the diseasetrate
is considered. The dynamic of this model is given by the foilhg equations:

S(t) = y - BSM)I () + el (t) — vS(t) 1)
[(t) = BSM)I(t) — al (t) — vI(t) — 61 (t)

Unfortunately Lemma 4.1 cannot be applied to this systernabse the lemma conditions
are not completely satisfied, due to the fact that the elitiinaates of the compartmengt)
and|(t) arev andv + 6, respectively. To overcome this trouble we compute uppdrlawer
bounding models. The upper bounding model is computed hycieg the elimination rate of
I(t) to v, while the lower bounding model is obtained by increasirggdglimination rate o5(t)
tov + 6. Thus, both the upper and the lower bounding models satisfy. émma 4.1 conditions
and guarantee the inclusion of all possible solutions ferstystem (11).
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Figure 6:Improvements on the computation of bounds for the propodfonfected individuals during a 500 days period

considering a death by the disease rate, whé@) + 0.01, S(0) = 1 - 1(0), y = 0.015 v = 0.012 § = 0.001, 8 = 0.15
anda = 0.12 under 1% uncertainty. A) Monotonicity approach. B) Compgi@an upper bounding model and a lower

bounding model, and applying Lemma 4.1 on them.
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Again, the solution envelope computed following the triadial monotonicity approach grows
exponentially, producing a significant overestimations@sn in Figure 6a. The upper bound for
the upper bounding model and the lower bound for the lowendimg model will guarantee the
inclusion of all possible solutions of the system (11) andimize the overestimation, as seenin
Figure 6b.

7. Discussion and Conclusion

The problem of computing tight solution envelopes undeagpeatric uncertainty for ordinary
differential equations has been tackled in the literature applgifferent approaches. Monte
Carlo methods are not considered valid methods because&lthegt guarantee the inclusion of
all possible solutions. The most common method used intir@ture is to perform a monotonic-
ity analysis for a trajectory-based approach. This methlodva us to compute tight solutions
envelopes that guarantee the inclusion of all possibldisolst However, non-monotone states
or parameters have to be computed as intervals, which pecalsignificant overestimation in
the computation of output bounds.

Our proposal consists in performing a combination of theaiqns of the original model to
obtain a new model in which the output compartment is uredtefhis new system is monotone
with respect to all the compartments and parameters of ttdendherefore, the computation
of its output bounds is performed without overestimation.ti#e output of the original model is
preserved in the new model, the computed solutions boumdedaew model can be applied to
the original model. These model transformations were féaed in Lemma 4.1 for bidirectional
non-linear chains in [7]. In this work, we present Lemma 41dinidirectional linear chains, with
more relaxed conditions.

Furthermore, in this work, a novel method to compute tightitdan envelopes when the
lemma conditions are not completely satisfied by the modetsived. This method consists in
computing an upper bounding model and a lower bounding m&aehi that these new models
satisfy the lemma conditions. Thus, the computation ofrteelution envelopes is performed
without overestimation. As the original model is inferiorthe upper bounding model and supe-
rior to the lower bounding model, combining both solutiowedopes a tight solution envelope
is obtained for the original system that guarantees theaignah of all possible solutions, and
minimizes the overestimation.

In this work, our proposal has been compared with the labtigaes in two dferent exam-
ples: a linear system for glucose modelling and a non-lisgatem for &S IS epidemiological
model. In both cases, the solution envelopes have been ¢edthpsing a monotonicity approach,
and applying the ideas and lemmas presented in this papepr@uosed techniques outperform
the previous approaches for the computation of solutiorlepes on compartmental in-series
models, as they compute the output bounds without overagtim Furthermore, if the lemma
conditions are not completely satisfied, we can computd sghution envelopes in which the
overestimation is minimized compared with the most recectiniques.
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