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Abstract Scheduling problems usually obtain the optimal
solutions assuming that the environment is deterministic.
However, actually the environment is dynamic and uncer-
tain. Thus, the initial data could change and the initial sched-
ule obtained might be unfeasible. To overcome this issue,
a proactive approach is presented for scheduling problems
without any previous knowledge about the incidences that
can occur. In this paper, we consider the Berth Allocation
Problem and the Quay Crane Assignment Problem as a rep-
resentative example of scheduling problems where a typi-
cal objective is to minimize the service time. The robustness
is introduced within this problem by means of buffer times
that should be maximized in order to absorb possible inci-
dences or breakdowns. Therefore, this problem becomes a
multi-objective optimization problem with two opposite ob-
jectives: minimizing the total service time and maximizing
the robustness or buffer times.
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1 Introduction

A container terminal is an open system with three distin-
guishable areas (berth, container yard and landside areas)
where there exist different complex optimization problems.
For instance, berthing allocation or stowage planning prob-
lems are related to the berth area [17]; remarshalling prob-
lem or transport optimization to the yard area; and, planning
and scheduling hinterland operations related to trains and
trucks to the landside area [18].

In a container terminal, once a vessel arrives at the port,
it waits at the roadstead until it has permission to moor at
the quay. The locations where mooring can take place are
called berths. These are equipped with giant cranes, known
as Quay Cranes (QC), that are used to load and unload con-
tainers which are transferred to and from the yard by a fleet
of vehicles. These QCs are mounted on the same track (or
rail) and, therefore they cannot pass each other. Two schedul-
ing problems are considered in this paper, the Berth Al-
location Problem (BAP) and the Quay Crane Assignment
Problem (QCAP). The former is a well-known combinato-
rial optimization problem [14], which consists in assigning
berthing positions and mooring times to incoming vessels.
The QCAP deals with assigning a certain number of QCs
to each berthed vessel such that all required movements of
containers can be fulfilled [1].

Nowadays, the point of the view for the scheduling tasks
has changed. Due to the fact that the real world is uncertain,
imprecise and non-deterministic, there might be unknown
information, breakdowns, incidences or changes, which be-
come the initial plans or schedules obtained invalid. Thus,
there are new trends to cope these aspects in the optimization
techniques. This approach is being studied within the Berth
Allocation and the Quay Crane Assignment problems. The
uncertainty within these problems is due to the fact, among
others, that engines of the Quay Cranes might present a fail-
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ure or the movements per time unit are lower than expected.
Due to the introduction of this new objective in the schedul-
ing optimization problem, a multi-objective optimization ap-
proach needs to be taken into consideration.

The overall collaboration goal of our group at the Uni-
versidad Politécnica de Valencia (UPV) with the Valencia
Port Foundation and the maritime container terminal MSC
(Mediterranean Shipping Company S.A.) is to offer assis-
tance and help in the planning and scheduling of tasks such
as the allocation of spaces to outbound containers, to iden-
tify bottlenecks, to determine the consequences of changes,
to provide support in the resolution of incidents, to provide
alternative berthing plans, etc.

A comprehensive survey of BAP and QCAP is given
in [1]. These problems have been mostly considered sepa-
rately, with an interest mainly focused on BAP. An interest-
ing approach for BAP is presented in [12] where a Simulated
Annealing metaheuristic is compared with a mathematical
model. However, there are some studies on the combined
BAP+QCAP considering different characteristics of berths
and cranes ([4], [11], [13], [16], [20]).

All the above studies do not take into consideration the
uncertainty of the real world to obtain a robust schedul-
ing. However, there are some studies that address the robust
scheduling. In [8], a proactive approach for a discrete and
dynamic model of the BAP is presented taking into account
uncertainties in the arrival and handling times given their
probability density functions. They propose a mixed integer
programming model and a Genetic Algorithm (GA) for both
problems: discrete berth allocation and QC assignment. The
objective is to minimize the sum of expected value, the stan-
dard deviation of the service time and the tardiness of the
incoming vessels. In [9], a robust optimization model for
cyclic berthing for a continuous and dynamic BAP is stud-
ied by minimizing the maximal crane capacity over different
arrival scenarios of a bounded uncertainty given by their ar-
rival agreements.

Robust scheduling based on operational buffers has al-
ready been introduced as a proactive approach in the BAP.
An approach to robust BAP is presented in [3]. They pre-
sented a feedback procedure for the BAP that iteratively
improves the robustness of the initial schedule. This feed-
back procedure determines the time buffers for each vessel
by means of adjustment rules.

In [19], another approach to the robust BAP is solved by
a scheduling algorithm that integrates simulated annealing
and branch-and-bound algorithms. This study introduces the
robustness as an objective to maximize and an evaluation is
carried out by varying the weights of these functions. The
robustness is achieved by a constant buffer time assigned to
all vessels.

In [21], the robust BAP problem is studied as a proactive
strategy as a multi-objective optimization problem. They solved

this problem with the Squeaky Wheel Optimization (SWO)
metaheuristic. The first objective is to minimize the late de-
partures and the deviation from the desired position; and,
the second objective is to maximize the robustness of the
schedule. They tackle the robustness measure as a diminish-
ing return, specifically the exponential function, to capture
the decreasing marginal productivity of slacks in a berthing
schedule.

However, some of the above approaches consider dis-
crete berths or previous knowledge about the uncertainty
in arrival or handling times to produce robust schedules,
but usually this knowledge is not available. Furthermore,
other approaches propose how to obtain robust schedules by
means of operational buffer times, but these buffers are set
independently of the handling time of the vessels.

Nevertheless, in this paper we present a formal mixed
integer lineal programming (MILP) for the combined dy-
namic and continuous BAP+QCAP that extends the model
presented in [12]. In order to obtain optimized solutions in
an efficient way, we develop a metaheuristic GA to obtain
near-optimal solutions in competitive computational times
(compared with mathematical solvers). Furthermore, we as-
sume that there is no previous knowledge about incidences,
so both the MILP and the GA approaches have been adapted
to tackle robustness of the BAP+QCAP as a multi-objective
optimization problem by using operational buffers within
the schedule.

The rest of the paper is organized as follows. In the next
section we give a thorough description of the BAP+QCAP.
In Section 3, the robustness is formalized for the BAP+QCAP.
The multi-objective optimization approach to manage the
two objective functions is detailed in Section 4. In Section
5, the mathematical formulation is presented. In Section 6
we give the details of the GA designed for the BAP+QCAP.
Section 7 reports the results of the experimental study. Fi-
nally, in Section 8 we give the main conclusions of this
work.

2 Problem description

The objective in BAP+QCAP is to obtain a schedule of the
incoming vessels with an optimum order of vessels mooring
and a distribution of the docks and QCs for these vessels.
Figure 1(b) shows an example of the graphical space-time
representation of a berth plan with 6 vessels. Each rectangle
represents a vessel, its handling time and length.

Our BAP+QCAP case is classified, according to the clas-
sification given by [1], as:

– Spatial attribute: Continuous layout. We assume that the
quay is a continuous line, so there is no partitioning of
the quay and the vessel can berth at arbitrary positions
within the boundaries of the quay. It must be taken into



A Genetic Algorithm for Robust Berth Allocation and Quay Crane Assignment 3

account that for a continuous layout, berth planning is
more complicated than for a discrete layout, but it better
utilizes the quay space [1].

– Temporal attribute: Dynamic arrival. Fixed arrival times
are given for the vessels, so that vessels cannot berth be-
fore their expected arrival times.

– Handling time attribute: Unknown in advance. The han-
dling time of a vessel depends on the number of assigned
QCs (QCAP) and the moves required.

– Performance measure: wait and handling times The ob-
jective is to minimize the sum of the waiting (wi) and
handling times (hi) of all vessels.

Quay [m℄

Time [hr℄ai
2 4 6 8 10 12 14

L

i
wi

pi
hi

li

ηi

ηi100200300400500600

mi

(a) VesselQuay [m℄

Time [hr℄2 4 6 8 10 12 14

L

100200300400500600 1

2
4 6

53

Handling timevessel 4 h4

Lengthvessel 5
l5

(b) Schedule

Fig. 1 Representation of the BAP+QCAP problem

Let V be the set of incoming vessels. Following, we in-
troduce the notation used for each vessel i∈V (Figure 1(a)).
The data variables are:

– QC : Available QCs in the container terminal. All QCs
carry out the same number of movements per time unit
(movsQC), given by the container terminal.

– L : Total length of the berth in the container terminal.
– H : Planning horizon for this schedule. It is calculated

as the last departure when the FCFS policy is applied to
the incoming vessels.

– ai : Arrival time of the vessel i at port.
– ci : Number of required movements to load and unload

containers of i.
– li : Vessel length.

The decision variables are:

– mi : Mooring time of i. Thus, waiting time (wi) of i is
calculated as (wi = mi−ai).

– pi : Berthing position where i moors.
– qi : Number of assigned QCs to i.
– uik : Indicates whether the QC k works (1) or not (0) on

the vessel i.

The variables derived from the previous ones are:

– hi : Loading and unloading time at quay (handling time)
of vessel i. This time depends on qi and ci, that is :(

ci
qi movsQC

)
.

– tik : Working time of the QC k that is assigned to vessel
i.

– di : Departure time of vessel i (di = mi +hi).
– si, ei : indexes for the first and last QC used in vessel i,

respectively.

In this study, the following assumptions are considered:

– The number of QCs assigned to a vessel do not vary
along the moored time. Once a QC starts a task in a ves-
sel, it must complete it without any pause or shift (non-
preemptive tasks). Thus, all QCs assigned to the same
vessel have the same working time (tik = hi,∀k ∈ QC,uik = 1).

– All the information related to the waiting vessels is known
in advance (arrival, priority, moves and length).

– Every vessel has a draft that is lower than or equal to the
draft of the quay.

– Movements of QCs along the quay as well as berthing
and departure times of vessels are not considered since
it supposes a constant penalty time for all vessels.

– Simultaneous berthing is allowed, subject to the length
of the berth.

And the following constraints must be accomplished:

– Moored time must be at least the same that its arrival
time (mi ≥ ai).
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– It must be enough contiguous space at berth to moor a
vessel of length (li).

– There is a safety distance between two moored ships.
We assume that each vessel has a 2.5% of this length
at each side as a safety distance (ηi) (Figure 1(a)). This
safety distance is added to the length of each vessel i:
li := li +2ηi.

– There must be at least one QC to assign to each ves-
sel. The maximum number of assigned QCs by vessel
i
(
QC+

i

)
depends on its length, since a safety distance

is required between two contiguous QCs (safeQC), and
the maximum number of QCs that the container terminal
allows per vessel (maxQC). Both parameters are given by
the container terminal.

Our objective is to allocate all vessels according to sev-
eral constraints minimizing the total weighted waiting and
handling or processing time, known as the service time, for
all vessels:

Ts = ∑
i∈V

(wi +hi) (1)

3 Robustness in BAP+QCAP

Container terminals are uncertain and non-deterministic sys-
tems in the same way than many other real-world systems.
In the BAP+QCAP problem, the initial obtained schedules
might become invalid due to different reasons: breakdowns
in QCs, late arrivals of the vessels, bad weather, a lower ratio
of movements per QC than expected, etc.

The robustness concept means that, given a schedule,
this initial schedule remains feasible when incidences occur
in its actual scenario.

The usual disruptions to be considered in BAP+QCAP
are the followings:

– The arrival of a vessel is delayed from its expected ar-
rival time (ai) assuming that the order remain unchanged.

– The handling time of a vessel is larger than its expected
handling time (hi).

In case of a delay in the arrival of a vessel, it can be
modeled as the departure time of this vessel is delayed by the
same amount. Therefore, an incidence related to the arrival
of a vessel is represented as a larger handling time for this
vessel.

Given these two disruptions, we consider that a schedule
is robust if a disruption in one vessel does not affect or alter
the mooring times of the other vessels.

In BAP+QCAP, the robustness of a schedule might be
guaranteed through two periods of time:

– The waiting time of vessels (wi). One vessel might be
late wi time units without disrupting the schedule of the
others vessels.

– The buffer times of vessels (bi). The handling time of a
vessel might be delayed bi time units which correspond
to the time between vessel i and each vessel j that shares
the berth and moors just after vessel i (Figure 2).

The schedule could absorb delays or breakdowns that
do not exceed the sum of those two periods (wi+bi). There-
fore, both times should be maximized in order to achieve the
maximum robustness and ensure that there is no need to re-
schedule the vessels. However, it should be kept in mind that
the first objective of the BAP+QCAP is to minimize the total
service time of the incoming vessels (wi+hi). Therefore, we
focus on maximizing only the second period of time, buffer
times (bi), to obtain robust schedules.

The buffer time (bi) for each vessel i is obtained by
Equation 4. We define ϕi as the set of vessels that succeed
vessel i and occupy some berth space of vessel i; and, τi j
is the difference between the departure time of vessel i (di)
and the mooring time of vessel j (m j). As example, Figure 2
shows the buffer times (bi) for each scheduled vessel as an
empty rectangle.

ϕi = { j ∈V, m j ≥ di ∧ [pi, pi + li)∩ [p j, p j + l j) 6=∅}(2)

τi j = m j−di ∀i ∈V, ∀ j ∈ ϕi (3)

bi =

{
+∞ , |ϕi|= 0
min j∈ϕi (τi j) ,otherwise

∀i ∈V (4)

h1

h2

h3

Quay [m℄

Time [hr℄0 2 4 6 8 10 12 14 16 18 20 22 24

L

b1

b3

b4h4

b2

1 3

2 4

Fig. 2 Buffer times bi given an example schedule.

Following the concept of decreasing productivity (di-
minishing returns) of the buffers presented in [21], in this
study it is considered that the more handling time, the more
likely to suffer incidences. Nevertheless, there is no need
to assign a large buffer time to each vessel. For instance,
in Figure 2, Vessel 1 would not need 8 time units of buffer
time (b1) since its handling time is only 3 time units. It is not
likely that this vessel would suffer a delay of that magnitude.
However, Vessel 2, with a handling time of 8 time units, has
only 2 time units of buffer time (b2). In this case, it is high
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likely that this vessel would suffer some breakdown or delay
and so it becomes invalid this schedule.

It is known that the late arrivals may be due to other
factors such as the travel time from its immediately origin.
To simplify this study, we only consider that the magnitude
of the incidence is related to the handling time.

Thus, the robustness measure is related to the buffer time
bi and the average handling time h∗i of each vessel i. There-
fore, it is proposed the following objective function (Equa-
tion 6) as a measure of the robustness of a schedule.

ri = min
(

1,
bi

h∗i

)
, ∀i ∈V (5)

R = ∑
i∈V

ri (6)

where h∗i indicates the handling time when its possible aver-

age number of QCs
(

1+QC+
i

2

)
are assigned.

Let’s see a simple example, Figure 3 shows two differ-
ent schedules given the same set of incoming vessels. Each
vessel is labeled with its vessel’s ID and the assigned QC
number in brackets. On the one hand, Figure 3(a) represents
a robust schedule since almost any incidence over any ves-
sel could be absorbed. On the other hand, Figure 3(b) shows
a schedule with the optimal solution according to the ob-
jective function Ts. The latter schedule will be high likely
unfeasible if any incidence occurs.

From Figure 3(a) and Figure 3(b), it is clear that there
is a trade-off between optimality and robustness. However,
getting a robust schedule is not achieved by extending an
optimal schedule over the time, but getting an optimized al-
location of vessels to achieve the maximum buffer size with
proper distribution among all vessels. Note that the optimal-
ity is not the makespan of the schedule, but the total service
time (waiting and handling times).

4 Multi-objective approach for the BAP+QCAP

Solving the robust BAP+QCAP involves two optimization
objectives: the service time (Ts) and the robustness (R). These
objective functions must be normalized in order to apply the
search process correctly. Equation 9 and Equation 10 define
the normalized service time and the normalized robustness
function, respectively.

Normalizing the service time function into the interval
(0,1) implies to normalize both the waiting time (Equation
7) and the handling time (Equation 8). The handling time
is just a linear normalization since the maximum (h+i ) and
minimum (h−i ) times are known by assigning the minimum
and the maximum number of QCs to vessel i (QC+

i ). Nor-
malizing the waiting time requires to determine a maximum
total waiting time (WF). In this case, (WF) value is the total

(a) Robust schedule.

(b) Optimal schedule according to Ts.

Fig. 3 Two possible schedules given the same incoming vessels.

waiting time of the incoming vessels when a FCFS policy is
applied.
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Tw =
1

WF
∑
i∈V

(mi−ai) (7)

Th =
1
|V | ∑i∈V

(
hi−h−i
h+i −h−i

)
(8)

T̂s =
Tw +Th

2
(9)

R̂ =
R
|V |

(10)

Thereby, the objective function for the robust BAP+QCAP
is to minimize the function F (Equation 11). The coefficient
λ (0≤ λ ≤ 1) assigns different weights to each component
in order to establish an aggregate function.

F = λ T̂s− (1−λ )R̂ (11)

5 Mathematical formulation

In this section, the mathematical formulations for BAP+QCAP
and the robust BAP+QCAP are presented. The first MILP
model (Figure 4) solves the BAP+QCAP by minimizing the
function given by the Equation 1, where M denotes a suffi-
ciently large number, subject to the given constraints.

The given formulation expands the model presented in
[12] by adding the needed constraints to take into consid-
eration QCs. Thereby, the handling time of vessels depends
on the number of QCs and these QCs cannot pass each other
when are relocated.

In the proposed model, there are two auxiliary variables:
zx

i j is a decision variable that indicates if vessel i is located
to the left of vessel j on the berth (zx

i j = 1); and, zy
i j = 1 in-

dicates that vessel i is moored before vessel j in time (see
constraint 32). Moreover, constraint 12 ensures that vessels
must moor once they arrive at the terminal. Constraint 15
guarantees that a moored vessel does not exceed the length
quay. Constraints 13 and 14 establish the waiting and depar-
ture times according to mi. Constraints 16, 17, 18, 19 and
20 assign the number of QCs to the vessel i. Constraint 21
establishes the minimum handling time needed to load and
unload their containers according to the number of assigned
QCs. Constraint 22 assigns the handling time for vessel i.
Constraint 23 ensures that QCs that are not assigned to ves-
sel i have tik = 0. Constraint 24 forces all assigned QCs to
vessel i working the same number of hours. Constraint 25
avoids that one QC is assigned to two different vessels at
the same time. Constraints 26 and 27 force the QCs to be
contiguously assigned (from si up to ei). Constraint 28 takes
into account the safety distance between vessels. Constraint
29 avoids that one vessel uses a QC which should cross
through the others QCs. Constraint 30 avoids that vessel j

mi ≥ ai ∀i ∈V (12)

wi = mi−ai ∀i ∈V (13)

di = mi−hi ∀i ∈V (14)

pi + li ≤ L ∀i ∈V (15)

qi = ∑
k∈QC

uik ∀i ∈V (16)

1≤ qi ≤ QC+
i ∀i ∈V (17)

1≤ si,ei ≤ |QC| ∀i ∈V (18)

si ≥ ei ∀i ∈V (19)

qi = ei− si +1 ∀i ∈V (20)

∑
k∈QC

tik movsQC≥ ci ∀i ∈V (21)

hi = max
k∈QC

tik ∀i ∈V (22)

tik−uikM ≤ 0 ∀i ∈V,∀k ∈ QC (23)

hi−M(1−uik)− tik ≤ 0 ∀i ∈V,∀k ∈ QC (24)

uik +u jk + zx
i j ≤ 2 ∀i, j ∈V,∀k ∈ QC (25)

M(1−uik)+(ei− k)≥ 0 ∀i ∈V,∀k ∈ QC (26)

M(1−uik)+(k− si)≥ 0 ∀i ∈V,∀k ∈ QC (27)

pi + li ≤ p j +M(1− zx
i j) ∀i, j ∈V, i 6= j (28)

ei +1≤ s j +M(1− zx
i j) ∀i, j ∈V, i 6= j (29)

di ≤ m j +M(1− zy
i j) ∀i, j ∈V, i 6= j (30)

zx
i j + zx

ji + zy
i j + zy

ji ≥ 1 ∀i, j ∈V, i 6= j (31)

zx
i j,z

y
i j,uik 0/1 integer ∀i, j ∈V, i 6= j,∀k ∈ QC (32)

Fig. 4 Mathematical model for the BAP+QCAP

moors while the previous vessel i is still at the quay. Finally,
constraint 31 establishes the relationship between each pair
of vessels.

∑
i∈V

(mi−ai)≤WF (33)

zt
i j = zx

i j + zx
ji + zy

i j ∀i, j ∈V, i 6= j (34)

τi j = M ∀i, j ∈V, zt
i j = 0 ∧ i 6= j (35)

di + τi j = m j +M(1− zy
i j) ∀i, j ∈V, i 6= j ∧ zt

i j = 1 (36)

τi j = M ∀i, j ∈V, zt
i j = 2 ∧ i 6= j (37)

bi = min

min
j∈V
i6= j

(τi j), h∗i

 ∀i ∈V (38)

rih∗i = bi ∀i ∈V (39)

0≤ zt
i j ≤ 2 ∀i, j ∈V, i 6= j (40)

Fig. 5 Mathematical model for the robust BAP+QCAP

The robust BAP+QCAP model minimizes the objective
function presented in Equation 11. This model requires the
12-32 constraints presented above and the ones presented in
Figure 5. The decision variable zt

i j (see constraint 40) indi-
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cates if a vessel j moors later than i and, at the same time, the
vessel j intersects with the berth length occupied by vessel i
(zt

i j). Constraint 33 ensures that the total waiting time of the
schedule does not exceed the maximum total waiting time
(WF). Constraints 34-36 assign the time between the depar-
ture time of vessel i and the mooring time of vessel j. For
those vessels j that zt

i j 6= 1, they are assigned M as a value.
Constraints 38 and 39 set the value of the available buffer
time after vessel i and its robustness value, respectively.

These mathematical models have been coded in IBM
ILOG CPLEX Optimization Studio 12.5 as detailed in the
Evaluation Section.

6 Genetic Algorithm

In this section, we describe two implementations of genetic
algorithms to solve the problems: BAP+QCAP (Figure 4)
and robust BAP+QCAP (Figure 5), respectively.

In the first problem, the goal is to minimize the service
time Ts (Equation 1). Thus, the fitness F associated to each
chromosome is the service time (Ts) of that solution.

In the second one, the goal is to find a set of non-dominated
solutions (henceforth efficient set M) that is as close as to the
optimal Pareto front. In this case, two objective functions are
associated to each chromosome: T̂s and R̂ (see Equations 9
and 10, respectively), and the fitness F is computed accord-
ing to the Equation 11. Below, we describe in detail both
approaches.

6.1 A Genetic Algorithm to solve the BAP+QCAP

Algorithm 1 shows the structure of the genetic algorithm
(GA) we have considered herein. The core of this algorithm
is taken from [7,6] and is quite similar to others generational
GAs described in the literature ([10], [5] or [15]). In the first
step, the initial population is generated and evaluated. Then,
the GA iterates over a number of steps or generations. In
each iteration, a new generation is built from the previous
one by applying the genetic operators of selection, reproduc-
tion and replacement. These operators can be implemented
in a variety of ways and, in principle, are independent from
each other. However, in practice all of them should be cho-
sen considering their effect on the remaining ones in order
to get a successful overall algorithm.

The approach taken in this work is the following:

– In the selection phase all chromosomes are grouped into
pairs, and then each one of these pairs is mated or not
in accordance with a crossover probability (Pc) to obtain
two offspring.

– Each offspring, or parent if the parents were not mated,
undergoes mutation in accordance with the mutation prob-
ability (Pm).

– Finally, the replacement is carried out as a tournament
selection (4:2) among each pair of parents and their off-
spring.

We consider that all chromosomes have the same num-
ber of genes N (number of vessels |V |), and all populations
have the same number of chromosomes, popsize.

Algorithm 1 The genetic algorithm

Require: A BAP+QCAP instance P
Ensure: A mooring schedule for instance P

1. Generate the initial population;
2. Evaluate the population;
while No termination criterion is satisfied do

3. Select chromosomes from the current population;
4. Apply the reproduction operators to the chromosomes selected
at step 3 to generate new ones;
5. Evaluate the chromosomes generated at step 4;
6. Apply the replacement criterion to the set of chromosomes se-
lected at step 3 together with the chromosomes generated at step
4;

end while
return The schedule from the best chromosome evaluated so far;

The coding schema is based on permutations of vessels,
each one with a given number of QCs. So a gene is a pair (i,
qi), 1 ≤ qi ≤ QC+

i , and a chromosome includes a gene like
this for each one of the vessels. For example, for an instance
with 5 vessels where the maximum number of QCs is 2, 3,
4, 3 and 2, respectively, two feasible chromosomes are the
following ones:

chr1: ( (1 1) (2 1) (3 1) (4 2) (5 1) )

chr2: ( (3 2) (1 2) (2 2) (5 2) (4 3) )

Note that, the same vessel may have different number of
QCs in each chromosome. In accordance with this encod-
ing, a chromosome expresses the number of QCs that each
vessel is assigned in the solution and an order for building
the schedule.

The order of vessels in chromosomes is used as a dis-
patching rule. Hence, we use the following decoding algo-
rithm: the genes are visited from left to right in the chromo-
some sequence. For each gene (i,qi) the vessel i is scheduled
at the earliest mooring time with qi consecutive QCs avail-
able, so that none of the constraints is violated. If there are
several positions available at the earliest time, that closest
to one of the berth extremes is selected. Also, the QCs are
chosen starting from the same extreme of the berth.

For chromosome mating we have considered a classical
crossover operator such as Generalized Position Crossover
(GPX) which is commonly used in permutation based en-
codings. This is a two points crossover operator which work
as follows. Let us consider two parents like:
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pt1: ( (1 1) | (2 1) (3 1) | (4 2) (5 1) )

pt2: ( (3 2) | (1 2) (2 2) | (5 2) (4 3) )

Symbols "|" represent crossover positions, 1 and 3 re-
spectively in this example, which are selected at random for
each mating. Then two offsprings are built taking the sub-
strings between positions 1 and 3 in each parent and then
filling the remaining positions with the genes representing
the remaining vessels taken from the other parent keeping
their relative order. So in this case the two offsprings are:

o f f1: ( (1 2) | (2 1) (3 1) | (5 2) (4 3) )

o f f2: ( (3 1) | (1 2) (2 2) | (4 2) (5 1) )

For mutation we have implemented an operator that shuf-
fles a random substring of the chromosome and at the same
time changes the number of QCs assigned to each one of the
shuffled genes at random, provided that the number of QCs
is kept in between the proper limits for the vessel.

The initial population in generated at random, i.e. a ran-
dom order for the vessels is chosen and each vessel i is as-
signed a number of QCs chosen uniformly in [1,QC+

i ]. The
termination condition is given in one of these three forms:
(1) a number of generations, (2) a time limit or (3) a number
of evaluations.

6.2 A Genetic Algorithm to solve the robust BAP+QCAP

In this section, we describe a GA that proposes a set of po-
tentially efficient solutions M considering two optimization
criteria: the service time and the robustness. The objective
of this approach is to find a set M that is as closest as to
the optimal Pareto front of the same instance. Thus, we have
modified the Algorithm 1 in the following issues:

– The initial population is constructed in such a way a per-
centage of this population is at least, as good as the so-
lution that the FCFS policy would propose.

– For each generation and for each chromosome, a pair of
random weights that sum 1, are assigned to each objec-
tive function.

– Gene representation changes. The initial berthing posi-
tion is added to the pair (i,qi). Thus, each gene is repre-
sented by (i,qi, pi), where qi and pi are feasible values
for vessel i.

– Before performing crossover, mutation and replacement,
daughter and son inherits mom and dad weights, respec-
tively. Therefore, the replacement operation compares
daughter and mom, and son with dad. The two best chro-
mosomes pass to the following generation.

– In the decoding process to evaluate each chromosome,
the initial berthing position is given by each gene. There-
fore, this value is not computed by the decoding process.
A mooring time should be assigned to vessel i so that is

feasible, taking into account that vessel i must be berthed
at quay from position pi with qi QCs without break any
of the problem constraints.

– Once the population of the next generation is obtained,
the efficient set M is updated.

Following, we describe in detail the issues that have been
modified with respect to the single-objective GA.

Representation Structure of each chromosome is similar to
the structure that is used in single-objective GA (Section
6.1). However, the gene has been modified to consider the
initial berthing position as part of its data. Thus, this value is
assigned by the GA instead of being computed by the decod-
ing function. Structure of each gene and each chromosome
are shown by Figure 6.
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Fig. 6 Chromosome representation

It should be noted that each gene must be composed by
feasible values with respect to vessel i. That is, according
to the problem constraints, each vessel i can be assigned at
most QC+

i cranes. Therefore, 1≤ qi ≤QC+
i . Likewise, if the

berth length is L, then ηi ≤ pi ≤ L− li−ηi.
Algorithm 2 shows an outline of the multi-objective GA.

Variable O indicates the number of objective functions that
are considered by the algorithm.

Algorithm 2 multi-objective genetic algorithm

Require: A BAP+QCAP instance P, popsize, N,O
Ensure: M: set of non-dominated solutions

pop0← generate_the_initial_population(popsize,N, O)
t← 0
while No termination criterion is satisfied do

assign_weights(popt ,N,O)
popt+1← construct_next_generation(popsize,N, O)
t← t +1

end while
return schedule for each element of efficient set M

Below, we describe the main steps of this algorithm.

Initialization Construction of initial population is performed
so that the service time of a percentage of the initial pop-
ulation (GA parameter) is at least as good as the solution
provided by the policy FCFS. The other chromosomes are
constructed by instantiating each gene in the following way:
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– Vessel identifier (i): an integer, between 1 and N is cho-
sen randomly. Two genes of the same chromosome can-
not have the same vessel identifier.

– Number of QCs: an integer, between 1 and QC+
i , is cho-

sen randomly.
– Initial position: an integer pi, between ηi and L− li−ηi,

is chosen randomly.

Each chromosome x in the initial population is consid-
ered to update the efficient set M. Following, we describe
how is performed this operation [2].

Update of efficient set M Updating set M with a new solu-
tion x consists of:

– adding x to M if there is no other solution y ∈ M such
that y dominates x,

– removing from set M all solutions dominated by x.

Generations After the initial population has been generated,
the algorithm constructs a new generation of population for
each iteration, until some stop criterion is fulfilled.

Let popt be the population obtained in the generation t,
Algorithm 3 shows how each generation is constructed.

Crossover Crossover operation is performed by using the
same operator that is used by the single-objective GA (GPX).
However, some differences there exist and these are explained
in the following.

The crossover receives one pair of chromosomes (mom
and dad), which are in the current population popt and have
been selected randomly. The objective of this operator is to
construct two offspring chromosomes (daughter and son).
For that, each time the crossover operation is performed, the
following steps are made:

1. Two cross points are chosen randomly, k1 and k2 (1 ≤
k1 < k2 ≤ N). Figures 7(a) and 7(b) show an example,
where N = 8, k1 = 3 and k2 = 6.
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(a) Chromosome mom
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(b) Chromosome dad

Fig. 7 Crossover points applied to the parents.

Algorithm 3 construct_next_generation

Require: popt ,popsize,N,O
Ensure: popt+1

i← 0
assign_weights(popt ,N,O)
i← 0
while i < popsize do

m← random integer between 1 and popsize, which has not been
selected yet in the current loop.
d← random integer between 1 and popsize, which has not been
selected yet, in the current loop.
p← random real between 0 and 1
daughter.weights← chromosomem.weights
son.weights← chromosomed .weights
if p≤crossover probability Pc then

crossover(chromosomem,chromosomed ,daughter,son)
else

daughter← chromosomem
son← chromosomed

end if
p← random real between 0 and 1
if p≤ mutation probability Pm then

mutation(daughter)
end if
p← random real between 0 and 1
if p≤mutation probability Pm then

mutation(son)
end if
if daughter 6= chromosomem then

evaluate daughter
M← update_efficient_set(daughter)

end if
if son 6= chromosomed then

evaluate son
M← update_efficient_set(son)

end if
if daughter. f itness≤ chromosomem. f itness then

popt+1← popt+1∪{daughter}
else

popt+1← popt+1∪{chromosomem}
end if
if son. f itness≤ chromosomed . f itness then

popt+1← popt+1∪{son}
else

popt+1← popt+1∪{chromosomed}
i← i+2

end if
end while

2. Each gene in chromosome mom and dad, which is in
position p, k1 ≤ p < k2 is copied to the same position in
chromosomes daughter and son, respectively.

3. Each gene in chromosome mom/dad, which is in posi-
tion p, 1≤ p < k1 is copied to the same position in chro-
mosome son/daughter.

4. Each gene in chromosome mom/dad, which is in posi-
tion p, k2≤ p≤N is copied to the same position in chro-
mosome son/daughter.

Figure 8 shows the position of genes that will be copied
from the chromosome mom to the offspring son. The same



10 Mario Rodriguez-Molins et al.

procedure is made for the chromosome dad and the off-
spring daughter.
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Fig. 8 Copy of genes to complete the offspring

In one chromosome cannot be two genes with the same
vessel identifier. Therefore, if the vessel identifier in the gene
that will be copied already exists in the offspring (daughter/son),
the vessel identifier in the new chromosome must be modi-
fied.

The new value (i′) is obtained from the first gene in the
chromosome parent (mom/dad) that has a vessel identifier
that does not exist in the offspring. Due to the original vessel
identifier has been modified, it is necessary to ensure that the
number of QCs and the initial position in the gene are feasi-
ble with respect to the new vessel identifier (i′). If the num-
ber of QCs or the initial position in the gene is higher than
the maximum value that is allowed for vessel (i′), these val-
ues are also modified, by the maximum values correspond-
ing to vessel (i′).

Figure 9 shows an example where the identifier 6 must
be changed by the identifier 2, because the vessel 6 already
exists in the offspring. Once the identifier is modified by
2, the procedure must verify the number of QCs and initial
position in the same gene are feasible, with respect to the
vessel 2. In this case, the maximum initial position of vessel
2 is 400. Therefore, the value 473 in the same gene must be
modified to 400.
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Fig. 9 Ensure offspring feasibility

Mutation Mutation operation is performed on one chromo-
some, following these steps:

1. Two positions (k1 and k2) of the chromosome are chosen
randomly (1≤ k1 < k2 ≤ N).

2. Positions of genes that are between k1 and k2, both in-
cluded, are modified randomly.

3. The number of QCs in each gene that is between k1 and
k2, both included, is modified by a feasible random value
with respect to the vessel in the same gene.

4. The initial position in each gene that is between k1 and
k2, both included, is modified by a random value that
is feasible with respect to the vessel that is in the same
gene.

Figure 10 shows how the offspring son, which has been
obtained after the crossover operation, is mutated. First, two
values k1 = 2 and k2 = 4 are selected randomly. Then, all
genes between both positions are shuffled. The gene 2 is
moved to position 4, the gene 3 to position 1 and gene 4
to position 3. Finally, the number of QCs and the initial po-
sition of each gene in position p, 2≤ p≤ 4 are modified by
selecting feasible random values for each one.
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Fig. 10 An example of mutation operation

Evaluation of one chromosome/solution Function that eval-
uates each objective function of one chromosome and its fit-
ness (evaluate in Algorithm 3), is the responsible of assign-
ing a valid mooring time to each vessel. For that, it processes
each vessel in the same order that it appears in the chromo-
some. For each gene g in the chromosome, this procedure
assigns the mooring time most near to the arrival time of the
vessel g.i, such that all the problem constraints are fulfilled,
considering the initial position of the vessel i must be g.pi
and the number of QCs that must be available at this time is
at least g.qi.

Once a valid mooring time has been assigned to each
gene g, the two normalized objective functions: service time
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(Equation 9) and robustness (Equation 10) are computed;
and, the fitness assigned to the chromosome is computed
according to the Equation 11.

7 Evaluation

The experiments were performed in a corpus of 100 instances
randomly generated following the suggestions of container
terminal operator. Each one is composed of a queue from
5 to 20 vessels. These instances follow an exponential dis-
tribution for the inter-arrival times of the vessels (β = 20).
The number of required movements and length of vessels
are uniformly generated in [100,1000] and [100,500], re-
spectively. In all cases, the berth length (L) was fixed to 700
meters; the number of QCs was 7 (corresponding to a deter-
mined MSC berth line) and the maximum number of QCs
per vessel was 5 (maxQC); the safety distance between QCs
(safeQC) was 35 meters and the number of movements that
QCs carry out was 2.5 (movsQC) per time unit.

The two approaches developed in this paper, the GA and
the MILP model, were coded using C++ and the IBM ILOG
CPLEX Optimization Studio 12.5, respectively. They were
solved on a Core 2 Quad 2.83Ghz with 4Gb RAM.

In the GA, the population size was 500. Mutation and
crossover probabilities were Pm = 0.1 and Pc = 0.8, respec-
tively. Due to the stochastic nature of the GA process, each
instance was solved 5 times and the results show the average
obtained values.

7.1 BAP+QCAP

Table 1 shows the average results for CPLEX and GA for
each group of 100 instances with the same number of ves-
sels (5 to 20). The timeout was 10 seconds. For CPLEX,
the reported values are the average value of Ts for the so-
lutions reached (AvgTs), the number of instances solved to
optimality (#Opt) and the number of instances solved with-
out certify optimality (#NOpt). The last two columns show
the best and the average values of the solutions obtained by
the GA in 5 runs, respectively. Obviously, in all cases, the
objective function (Ts) increases as the number of incoming
vessels increases from 5 up to 20.

From these results, it can be observed that CPLEX was
not able to reach any optimal solution by the given timeout
in at least 25% of the instances with 8 vessels or more. In
addition, it cannot get any optimal solution from 18 up to
20 vessels with this timeout. Regarding GA, all instances
were solved and it can be observed that the average values
were better than those from CPLEX, the differences being in
direct ratio with the number of vessels. Here, it is important
to remark that GA reached 2053 generations in 10 seconds.
However, the GA was able to converge in lower times.

Table 1 Comparision CPLEX with GA (timeout 10 secs)

|V| CPLEX GA

Avg Ts #Opt #NOpt Best Ts Avg Ts

5 267.08 100 0 267.08 267.08
6 339.25 97 3 339.21 339.21
7 417.52 88 12 416.70 416.80
8 501.41 74 26 497.70 498.05
9 585.94 58 42 575.57 576.42

10 690.91 38 62 667.50 669.57
11 797.15 24 76 759.07 763.13
12 927.85 18 82 854.45 861.35
13 1065.32 12 88 949.55 959.35
14 1212.86 6 94 1055.05 1066.19
15 1406.21 3 97 1158.88 1173.59
16 1610.21 2 98 1276.12 1296.09
17 1796.58 1 99 1379.01 1407.02
18 2101.27 0 100 1497.33 1526.94
19 2333.46 0 100 1621.19 1658.57
20 2603.36 0 100 1798.63 2090.61
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Fig. 11 Convergence of the Genetic Algorithm.

Figure 11 shows the GA convergence for one represen-
tative instance of 20 vessels indicating for each generation
the average of the best value (Avg(Best)) and the average of
the entire population (Avg(Pop)), so that near-optimal val-
ues were obtained after 150 generations, taking 0.73 sec-
onds. Furthermore, Table 2 shows how the average Ts for 20
vessels decreases as more computation time was allowed.
In this experiment, the timeout was set from 5 to 60 sec-
onds. It can be observed, the GA approach does not require
a large timeout (the improvement is lower than 1% beyond 5
seconds). Moreover, CPLEX was given a timeout up to 300
seconds and it obtained an average Ts (1876.27) greater than
the one obtained by the GA after 5 seconds (1807.90).

7.2 Robust BAP+QCAP

Table 3 shows the results of the CPLEX and the GA for the
robust BAP+QCAP for each group of 100 instances with
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Table 2 Average Ts for 20 vessels setting different timeouts.

Timeout (Secs.) CPLEX Best GA Avg. GA

5 3187.01 1807.90 2097.67
10 2603.36 1798.63 2090.61
20 2406.16 1791.38 2088.08
40 2251.88 1783.68 2079.25
60 2126.56 1780.74 2073.32

the same number of vessels (5 to 20) and the same weights
λ ∈ {0,0.2,0.5,0.8,1}. The timeout was set to 10 seconds.
For CPLEX, the reported values were the average value of
F for the solutions reached (AvgF), the number of instances
solved to optimality (#Opt), the number of instances solved
without certify optimality (#NOpt) and the number of in-
stances for which no solution was reached by the timeout
(#NSol). Note that CPLEX was not able to reach the optimal
solution even for instances with 5 vessels (e.g. λ = 0.2). Fur-
thermore, for instances with more than 8 vessels, CPLEX
was not able to reach a feasible solution for all instances
while robust GA always obtains feasible solutions for all in-
stances. Note that robust GA was able to get better solutions
(lower F values) for instances with more than 10 vessels.

The evaluation of the robust BAP+QCAP model pre-
sented in Section 3, as a multi-objective optimization prob-
lem, requires the study of the dominance of solutions as well
as the Pareto front. Thus, for each instance, a set of non-
dominated solutions after a timeout of 10 seconds was ob-
tained. Figure 12 shows the Pareto front for two representa-
tive instances of 10 and 20 vessels, respectively. This Pareto
front is an important tool for the decision maker (the con-
tainer terminal operators), to assess the trade-off between T̂s
and R̂ of the different schedules obtained according to their
preferences. Note that the GA obtained a large set of solu-
tions over the Pareto front. Moreover, in the case of 10 ves-
sels, the solutions obtained by the GA dominates the ones
obtained by CPLEX (Figure 12(a)). Figure 12(b) shows the
Pareto front for a representative schedule of 20 vessels. In
this case, CPLEX was not able to reach feasible solutions.

The performance (robustness) of the schedules obtained
by the GA with a timeout of 10 seconds was evaluated by
generating actual scenarios with some incidences in the ac-
tual handling time of the vessels. An incidence over a vessel
i is modeled as a delay d in the handling time of this vessel
i. An incidence is absorbed if there is enough buffer time
behind the vessel i as to not alter the mooring time of the
subsequent vessels. For each instance, the vessels that vary
their handling times were uniformly chosen among all the
vessels.

In this experiment, 100 instances of 20 vessels were eval-
uated. For each instance, four different schedules were cho-
sen from the set of efficient solutions of the multi-objective
GA according to their robustness: the one with the minimum

Table 3 Average F values obtained by CPLEX with robust
BAP+QCAP model.

|V| λ Robust CPLEX Robust GA

Avg F #Opt #NOpt #NSol Best F Avg. F

5

0 -0.723 100 0 0 -0.672 -0.674
0.2 -0.481 99 1 0 -0.468 -0.475
0.5 -0.141 97 3 0 -0.219 -0.223
0.8 0.150 99 1 0 -0.301 -0.306

1 0.324 100 0 0 0.481 0.357

6

0 -0.698 82 18 0 -0.670 -0.685
0.2 -0.450 83 17 0 -0.415 -0.430
0.5 -0.106 86 14 0 -0.069 -0.078
0.8 0.180 90 10 0 -0.091 -0.093

1 0.346 92 8 0 0.522 0.439

7

0 -0.684 53 47 0 -0.640 -0.653
0.2 -0.438 48 52 0 -0.416 -0.435
0.5 -0.091 57 43 0 -0.021 -0.030
0.8 0.184 70 30 0 0.234 0.234

1 0.342 83 17 0 0.478 0.426

8

0 -0.637 27 73 0 -0.632 -0.664
0.2 -0.391 29 70 1 -0.379 -0.402
0.5 -0.059 34 65 1 -0.020 -0.029
0.8 0.217 42 57 1 0.284 0.273

1 0.368 60 40 0 0.471 0.432

9

0 -0.612 15 80 5 -0.597 -0.631
0.2 -0.353 14 81 5 -0.370 -0.399
0.5 -0.019 16 81 3 -0.006 -0.021
0.8 0.254 27 70 3 0.287 0.287

1 0.404 40 58 2 0.447 0.415

10

0 -0.549 9 80 11 -0.585 -0.627
0.2 -0.294 6 80 14 -0.357 -0.390
0.5 0.019 12 74 14 -0.003 -0.018
0.8 0.310 14 79 7 0.301 0.299

1 0.454 24 68 8 0.443 0.416

15

0 -0.461 0 17 83 -0.508 -0.562
0.2 -0.167 0 15 85 -0.297 -0.339
0.5 0.103 0 17 83 0.020 0.008
0.8 0.372 0 16 84 0.326 0.324

1 0.546 1 18 82 0.388 0.367

20

0 - 0 0 100 -0.422 -0.462
0.2 -0.035 0 1 99 -0.229 -0.263
0.5 0.243 0 1 99 0.060 -0.047
0.8 0.520 0 1 99 0.350 0.346

1 - 0 0 100 0.381 0.365

robustness (Rm), the one with the maximum robustness (RM)
and two intermediate robust schedules (R1 and R2).

The incidences (delays, d) introduced were randomly
chosen from a range. This range varies from a minimum
value (1) to a maximum value, which is related to the han-
dling time (hi) of the vessel affected by the incidence (first
column of Table 4). For each range, 100 incidences were
uniformly created and applied to the four schedules (Rm, R1,
R2 and RM) of each instance.

Table 4 shows the percentage of incidences absorbed by
each type of schedule. It can be observed that the more ro-
bust schedule, the more incidences absorbed. For instance,
with delays d ∈ [1,0.5hi], the Rm schedule only absorbed
25.75% of incidences in average, but the RM schedule ab-
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Fig. 12 Pareto Front for representative instances.

Table 4 Average of incidences absorbed in schedules of 20 vessels.

Range Rm R1 R2 RM

d ∈ [1, 0.2hi] 30.18 36.68 56.14 66.82
d ∈ [1, 0.5hi] 25.75 32.82 54.65 65.63
d ∈ [1, 0.8hi] 23.40 30.28 51.80 64.09
d ∈ [1, 1.0hi] 22.65 29.95 50.94 62.41
d ∈ [1, 1.2hi] 20.90 26.99 47.89 60.44

sorbed up to 65.63%. Note that as the delay became larger,
fewer schedules can absorb the incidences. With delays be-
tween ranges of [1,0.2hi], the RM schedule can absorb 66.82%
of incidences in average. However, with larger ranges, the
incidences absorbed decreased down to 60.44% in average.

8 Conclusions

The competitiveness among container terminals causes the
need to improve the efficiency of each one of the subpro-
cesses that are performed within them. However, this ef-
ficiency is affected by the uncertainty of the environment

such as bad weather, breakdowns of the engines, delays, etc.
This paper focuses on two of the main related problems, the
Berth Allocation and Quay Crane Assignment Problems, in
an integrated way. To this end, a mixed integer lineal pro-
gramming model and a Genetic Algorithm were developed
in a dynamic and continuous BAP+QCAP. The MILP model
was unable to get optimal solutions when a reasonable time-
out is set or when the problem becomes harder (more than
10 vessels). Moreover, many of the instances were solved
but without any guarantees of being the optimal ones since
the timeout was reached. However, the GA approach was
able to obtain near-optimal solutions in lower computational
times and it also maintained a rapid convergence of the re-
sults even with large vessel queues. From these results, it is
concluded the adequacy of a metaheuristic approach based
on GA for solving the BAP+QCAP problem.

These two approaches, the MILP model and the GA,
were extended as a multi-objective optimization problem to
cope the uncertainty by obtaining robust schedules. The ro-
bustness of a schedule is related to the operational buffer
times between the vessels. This new problem (robust BAP+
QCAP) becomes harder and even instances of 5 vessels were
not optimally solved by the MILP model in a reasonable
time. Since the two objectives considered in this study, ’ser-
vice time’ and ’robustness’, are opposite, there is no single
optimal solution for these scheduling problems such that it
is necessary to evaluate the trade-off between these objec-
tives functions. Thereby, the multi-objective GA was able to
obtain a set of efficient solutions and a study of the Pareto
front was presented. Visualizing this Pareto front helps to
the container terminal operators to decide which schedule is
better depending on the actual state.

The robustness that is tackled in this study is related to
the resource of the berth. In further works, since there is no
previous knowledge about incidences, there should be ana-
lyzed how to distribute the operational buffer times among
all the vessels equally. Furthermore, robustness related to
shared QCs is going to be studied. When QCs are consid-
ered, a delay over a vessel may not prevent another vessel to
moor. However, it might prevent all QCs allocated in subse-
quent vessels were employed. Thus, an incidence is propa-
gated in these subsequent vessels. In this case, a further anal-
ysis is needed to re-allocate the QC correctly, which gives
rise to a new re-scheduling problem.
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