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ABSTRACT 16 

Microalgal growth and ammonium removal in a P-free medium have been studied in two 17 

batch photobioreactors seeded with a mixed microalgal culture and operated for 46 days. A 18 

significant amount of ammonium (106 mgN-NH4·l-1) was removed in a P-free medium, 19 

showing that microalgal growth and phosphorus uptake are independent processes. The 20 

ammonium removal rate decreased during the experiment, partly due to a decrease in the 21 

cellular phosphorus content. After a single phosphate addition in the medium of one of the 22 

reactors, intracellular phosphorus content of the corresponding microalgal culture rapidly 23 

increased, and so did the ammonium removal rate. These results show how the amount of 24 

phosphorus internally stored affects the ammonium removal rate. A mathematical model was 25 

proposed to reproduce these observations. The kinetic expression for microalgae growth 26 

includes a Monod term and a Hill’s function to represent the effect of ammonium and stored 27 

polyphosphate concentrations, respectively. The proposed model accurately reproduced the 28 

experimental data (r=0.952, P-value<0.01). 29 

Keywords 30 

Ammonium removal; microalgae; mathematical modeling; phosphate; wastewater. 31 

HIGHLIGHTS 32 

• Ammonium removal takes place uncoupled from phosphate uptake 33 

• Ammonium removal rate depends on the amount of phosphorus internally stored 34 

• Effect of stored polyphosphate on ammonium removal modelled using Hill’s equation  35 

• Enhanced ammonium removal at polyphosphate content higher than 2.2% dry weight 36 

 37 
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1. INTRODUCTION 38 

Interest on microalgae has increased during the last decades as they constitute a promising 39 

alternative for obtaining value-added products and biofuels such as biodiesel, biohydrogen 40 

biogas or biocrude. Moreover, microalgal systems for wastewater treatment have long been 41 

proposed and studied [1]. These systems range from open-pond cultures to closed 42 

photobioreactors [2] and focus primarily on the removal of inorganic nutrients such as 43 

ammonium, nitrate and phosphate.  44 

Several studies have proved the suitability of microalgal cultures for nutrient removal in 45 

diverse wastewaters. These studies, which showed different degrees of nutrient removal 46 

efficiencies, generally agree that the most important advantages of microalgae utilization for 47 

this purpose are CO2 abatement and the possibility of reusing biomass as fertilizer or as 48 

renewable source of energy [3-5]. On the other hand, the process spares the otherwise 49 

necessary cost of nutrients for algae cultivation. Currently, a rather extended opinion in the 50 

scientific community is that the production of algae-based biofuels, at least in the short-term, 51 

is neither economically nor energetically feasible without simultaneous wastewater treatment 52 

[6]. 53 

Phosphorus is an essential component of microalgae. According to the Redfield ratio [7], it 54 

constitutes 0.87% of its dry weight. Phosphorus is present in basic cell constituents such as 55 

phospholipids, nucleic acids or nucleotides. It can also be accumulated to higher levels inside 56 

the microalgal cells, where inorganic polyphosphate serves as reservoir.  As reviewed by 57 

Powell et al. [8], there are two mechanisms involved in this accumulation: over-58 

compensation, which occurs after re-exposure to phosphorus following a starvation phase, and 59 
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luxury uptake, where microalgae accumulate much more phosphorus than it is needed for 60 

their survival without previous exposure to P-poor medium.  61 

Different studies, which aimed at defining the polyphosphate accumulation and phosphate 62 

uptake dynamics, have shown a relationship between phosphorus stress in the medium and 63 

low polyphosphate content in the cells, together with recovery of polyphosphate levels after 64 

addition of phosphorus [9-10]. It is also known that starvation enhances the phosphate uptake 65 

rate. The effect of P-starvation on ammonium uptake rate is, however, less known. Previous 66 

studies did not focus on the influence that polyphosphate content exerts on the nitrogen 67 

uptake velocity, as these studies were not undertaken with a wastewater treatment approach. 68 

In the wastewater treatment field mathematical models are useful tools for process design, 69 

WWTP scale-up or upgrade, or water quality prediction. Up to now, microalgal growth 70 

modelling has been tackled with a diversity of approaches. There are various examples of 71 

different complexity-level models which determine phytoplankton evolution in the 72 

ecosystems [11-13], content and evolution of intracellular components of interest such as 73 

lipids or sugars [14], specific metabolism of single species [15], microalgal production inside 74 

photobioreactors [16] or others. 75 

The present work was designed to study the ammonium removal process in a phosphate-free 76 

medium and the relationship between the microalgal intracellular phosphorus content and the 77 

ammonium removal rate, with a view to designing suitable strategies for wastewater 78 

treatment. Therefore it is also the aim of this work to define a kinetic expression for 79 

microalgae growth considering the effect of ammonium concentration in the medium and the 80 

amount of internally stored polyphosphate on the rate of this process. To this aim, a 81 

mathematical model considering microalgae growth and death was proposed and model 82 
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parameters were obtained by minimizing differences between experimental data and model 83 

predictions. This model should be useful for prediction of ammonium removal rates in 84 

wastewater treatment systems. 85 

A microalgal culture was fed only with ammonium in a lab-scale photobioreactor (PBR) and 86 

afterwards separated into two identical PBRs. Phosphate was supplied only to one of them. 87 

Nutrient uptake kinetics of the two PBRs were studied, as well as biomass composition (%N 88 

and %P). Microalgae production-in terms of chemical oxygen demand and suspended solids-89 

was assessed. The experimental data obtained was successfully reproduced by the proposed 90 

model. This model can be useful for designing strategies and predicting the behavior of 91 

wastewater treatment systems where nutrient removal is achieved by microalgal growth. 92 

2. MATERIALS AND METHODS 93 

2.1. Experimental setup  94 

Three identical PBRs were used in this study (initial reactor, Nitrogen Only Reactor and 95 

Nitrogen and Phosphorus Reactor, as it will be explained in section 2.2). Each PBR consisted 96 

of a cylindrical, transparent methacrylate tank (20 cm internal diameter) with a total volume 97 

of 10 liters (see fig. 1a). The PBRs were closed and the algae culture was mixed by recycling 98 

the headspace gas through four fine bubble diffusers mounted at the bottom. Both PBRs were 99 

equipped with electronic sensors in order to obtain online measurements of conductivity, 100 

oxidation reduction potential, temperature, pH and dissolved oxygen. The probes were 101 

connected to a multiparametric analyzer (CONSORT C832, Belgium) and an oximeter (Oxi 102 

320, SET WTW, Germany), respectively. These devices were in turn connected to a PC for 103 

data monitoring and storage. Data sampling was conducted every 60 s.   104 
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pH in the PBRs was maintained around 7.5 to avoid undesirable processes such as phosphate 105 

precipitation and free ammonia stripping. Pure CO2 (99.9%) from a pressurized cylinder was 106 

injected into the gas flow whenever pH exceeded the setpoint of 7.5. Recycling gas from the 107 

headspace contributes to minimize the CO2 requirements for pH control. Since the reactors 108 

were closed CO2 stripping was also minimized but since they were not hermetically sealed 109 

extreme overpressure and overaccumulation of oxygen were avoided. Four arrays of 3 vertical 110 

fluorescent lamps (Sylvania Grolux, 18 W) 10 cm apart from each other continuously 111 

illuminated each PBR from a minimum distance of 10 cm. Photosynthetically active radiation 112 

(PAR) of 153 ± 16 µE m-2 s-1was measured at the surface of the reactors as the arrow in fig. 113 

1b) indicates. The PBRs were placed inside a climatic chamber with air temperature control 114 

set to 20 ºC. Due to the constant illumination the temperature in the culture resulted in 25.5 115 

ºC. 116 

A phosphate-free medium, adapted from [17] was used in this study, one litre of which was 117 

composed of 115 g (NH4)2SO4, 150 mg CaCO3, 400 mg CaCl2·H2O, 400 mg Na2SeO3·5H2O, 118 

350 mg MgSO4·7H2O, 54 mg (NH4)6Mo7O2·4H2O, 30 mg ZnCl2, 30 mg HBO3, 30 mg 119 

NiCl2·6H2O, 18 mg CuCl2·2H2O, 12 mg K2SO4, 1.2 mg FeCl3·4H2O, 1.2 mg CoCl2·6H2O, 120 

0.6 mg EDTA, 0.3 mg MnCl2·4H2O.  121 

2.2. Operation 122 

7L of a microalgal culture was maintained for 19 days in ammonium-rich and phosphate-free 123 

medium in a lab-scale PBR as described in section 2.1, called initial reactor. Ammonium in 124 

the form of (NH4)2SO4 was manually added at the beginning of the experiment and when its 125 

concentration dropped below 4 mg NH4-N·l-1 (day 7). On day 19, when ammonium 126 

concentration had reached again 4 mg NH4-N·l-1, the 7 L culture was split into two PBRs, 127 

6 
 



 

with a working volume of 3.5 L each. These two PBRs will henceforth be called NOP 128 

(Nitrogen Only Reactor) and N&PR (Nitrogen and Phosphorus Reactor) and were not carried 129 

out in duplicate. Immediately after the splitting, ammonium in the form of (NH4)2SO4 was 130 

added into NOR, reaching a concentration of 28 mg NH4-N·l-1, and phosphate in the form of 131 

KH2PO4 was added into N&PR, reaching a concentration of 12 mg PO4-P·l-1. From then on, 132 

both reactors were operated for 27 days. Ammonium was added again in both reactors when 133 

its concentration dropped below 4 mg NH4-N·l-1 (day 29 in NOR and days 20, 22 and 29 in 134 

N&PR)  135 

2.3. Microorganisms 136 

The initial reactor was seeded with microalgae isolated from the walls of the secondary 137 

clarifier in the Carraixet WWTP (Valencia, Spain) and maintained in the laboratory under 138 

semi-continuous feeding conditions with a cellular retention time of 4 days and continuous 139 

illumination varying between 114 and 198 µE m-2 s-1. The effluent of a submerged anaerobic 140 

membrane bioreactor (SAnMBR, described in [18]) was used as growth medium. This 141 

effluent displays a variable N/P ratio and has been proved to sustain algal growth [5]. 142 

Microalgae from the Chlorococcum genus together with cyanobacteria (Spirulina sp. and 143 

Pseudoanabaena sp.) were identified as the main groups present.  144 

2.4. Analytical Methods 145 

Nutrient removal was evaluated by regular measurements of inorganic nitrogen and 146 

phosphorus levels in the samples taken from the PBRs. Ammonium (NH4-N), nitrite (NO2-N), 147 

nitrate (NO3-N) and phosphate (PO4-P) were determined according to Standard Methods [19] 148 
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(4500-NH3-G, 4500-NO2-B, 4500-NO3-H and 4500-P-F, respectively) in a Smartchem 200 149 

automatic analyzer (Westco Scientific Instruments, Westco). Total nitrogen in the algae 150 

culture was measured using standard kits (Merck, Darmstadt, Germany, 100613). The acid 151 

peroxodisulphate digestion method [19] was used for total phosphorus (TP) measurements. 152 

The nitrogen content of the algae biomass was calculated as the difference between total 153 

nitrogen and soluble nitrogen. Likewise, the phosphorus content of the algae biomass (total 154 

suspended phosphorus, TSP) was calculated as the difference between total phosphorus and 155 

orthophosphate concentration. Total and volatile suspended solids (TSS and VSS), as well as 156 

chemical oxygen demand (COD) were determined according to Standard Methods [19]. 157 

All reported results were obtained from the previous analyses conducted in duplicate, except 158 

for TSS and VSS where single analysis were made.  159 

3. RESULTS AND DISCUSSION 160 

3.1. Nutrient removal 161 

The composition of the biomass in the initial reactor (7 L PBR) after inoculation is included 162 

in table 1. According to [20], a phosphorus concentration in the biomass greater than 3% 163 

suggests that phosphate luxury uptake has taken place. Therefore, the studied microalgal 164 

biomass had stored, before the beginning of this experiment (during the cultivation under 165 

semi-continuous mode), more phosphate than needed for growth. 166 

Figs. 2a and 2b show the ammonium and phosphate evolution in the NOR and N&PR, 167 

respectively. The experiment started in the 7 L initial reactor with biomass inoculation and 168 

ammonium addition. The initial VSS and ammonium concentrations were 340 mgVSS·l-1 and 169 

32 mg NH4-N·l-1, respectively. Ammonium was added again after 7 days because its 170 
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concentration was below 4 mg NH4-N·l-1. During this first period, which is common in both 171 

graphs, phosphate concentration in the medium was zero (fig. 2). However, the microalgal 172 

biomass removed a total of 58 mg NH4-N·l-1.  173 

Table 1 summarizes the evolution of TSS, VSS and suspended COD in the two reactors 174 

during the experiment. Yield coefficients were calculated as the ratio between the amount of 175 

biomass generated, measured as VSS and COD, and the ammonium removed. 176 

VSS as well as suspended COD concentrations clearly increased in both reactors due to 177 

microalgae growth (table 1). This increase was greater in N&PR since the amount of 178 

ammonium and phosphate taken up was higher.  179 

The biomass P content visibly decreased in the initial reactor and in the NOR, since the 180 

microalgae growth took place using the internally stored polyphosphate. In the N&PR the 181 

biomass P content sharply increased on day 19 (to a maximum of 2.8%) due to phosphorus 182 

addition and immediate uptake. It decreased from then on for the rest of the experiment. 183 

VSS yield coefficients are similar in the NOR, N&PR and in the initial reactor, whereas the 184 

N&PR shows a slightly higher COD yield coefficient. It is hypothesized that this difference 185 

could be attributed to the amount of phosphate taken up in N&PR: growth in NOR took place 186 

without phosphate addition, like in the initial reactor, while in N&PR phosphate was 187 

available and taken up by microalgae. However, analytical error of the performed 188 

measurements (VSS and COD) hinders a clear conclusion on the subject. Biomass N content 189 

obtained in the present work is in accordance with the general Redfield formulation [6] of 190 

9.20 % (0.092 gN·g-1). 191 

3.1.1. Nitrogen Only Reactor 192 
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As shown in fig. 2a, microalgal ammonium uptake took place during all the experiment (46 193 

days in total) in the NOR, without any external phosphate addition. This fact demonstrates 194 

that ammonium and phosphorus uptake from the medium are two independent processes-in 195 

the sense that one can occur without the other-, and clearly demonstrates that this microalgal 196 

culture presents a great capacity for removing a high amount of ammonium in the absence of 197 

phosphate in the medium. In this reactor a total of 106 mgN-NH4·l-1 was removed without 198 

phosphate in the culture medium. 199 

After each ammonium addition its uptake took place at a constant rate until ammonium 200 

concentration decreased to values around 10-13 mg NH4-N·l-1 (Fig 2a. Filled lines turn into 201 

dashed lines). The ammonium uptake rate significantly decreased when ammonium 202 

concentrations were below this threshold. This low ammonium affinity observed in these 203 

experiments should be taken into account in the design of PBRs for wastewater treatment 204 

since large tank volumes or high hydraulic retention times will be required to obtain very low 205 

ammonium concentrations. An exception to this was the last slope, when the constant rate was 206 

not maintained below 20 mg NH4-N·l-1. This exception will be discussed later in this section. 207 

In the NOR, the ammonium uptake rate decreased with time throughout the experiment, likely 208 

due to a decrease in the internally stored polyphosphate. The selfshading effect of the culture 209 

also exerted its influence: biomass growth during the experiment led to a decrease in the 210 

available light for microalgae even when the incident light remained constant. The calculated 211 

ammonium removal rates (slopes shown in fig. 2a) decreased from 0.209 mgN·l-1·h-1 at the 212 

beginning of the experiment to 0.09 mgN·l-1·h-1 at the end of the experiment. The specific 213 

removal rate (mgN·mgSSV-1·h-1) (table 2) decreased during all the experiment. As no 214 

phosphate was added at any time in the NOR, the P required for biomass growth could only be 215 

taken from their internal P pool, which microalgae had accumulated during the previous phase 216 
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of cultivation under semicontinuous conditions. This internal polyphosphate consumption 217 

during the experiment led to a decrease in the biomass P content, which reached 0.8% (0.008 218 

gP·gVSS-1) at the end of the experiment (at day 46, see table 1), when ammonium removal 219 

was taking place at a very slow rate. These results suggest the existence of a relationship 220 

between the P content of the cells and the ammonium removal rate. The final biomass P 221 

content is a very small value compared to the initial biomass composition (indicated in table 222 

1). It is, according to [20] still higher than the minimum amount of internal phosphorus for 223 

cell survival (between 0.2 – 0.4% in dry weight). In fact, [21] has shown a minimum 224 

phosphorus content after starvation phase of 0.185 % (0.00185 gP·g-1 biomass). However, 225 

approaching these minimum values of intracellular P content makes ammonium uptake rate 226 

decrease. Around day 35 of the experiment, biomass in the NOR reached what seems quite a 227 

critical P content. The ammonium uptake rate decreased to very slow values although 228 

ammonium concentration was still 20 mgNH4-N·l-1. At the same time, as table 1 shows, 229 

suspended solids significantly increased along the experiment. Mutual shading of the 230 

microalgae attenuates light in the PBR and microalgal growth was therefore also slowed down 231 

for this reason.  232 

3.1.2. Nitrogen and Phosphorus Reactor 233 

Phosphate was added to N&PR on day 19 and reached a concentration of 11.7 mg PO4-P·l-1. 234 

Phosphate removal started immediately and its removal rate was 2 mg PO4-P·l-1·h-1 until 235 

phosphate concentration was nearly zero. This removal rate was very high, considering that 236 

while the added phosphate was consumed, only 2.1 mg NH4-N were taken up by the 237 

microalgae. The resulting N:P uptake ratio of 0.18 is very low, which is due to the phosphorus 238 

starvation condition of the biomass. The majority of literature values on microalgal phosphate 239 

uptake rate under balanced conditions are well below the presented value: [3] reported, for 240 
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Chlorococcum, a value of 0.0475 mg PO4-P ·l·h-1 and [22] reported a value of 0.083 mg PO4-P 241 

·l·h-1 for Chlorella sp. [23] reported for Chlorella protothecoides a closer value to the one 242 

presented in this work of 1.3 mg PO4-P·l-1·h-1. 243 

N&PR was spiked with ammonium for a third, fourth and fifth time (fig. 2b). As previously 244 

observed in the NOR, the ammonium uptake rates kept constant after the ammonium additions 245 

but decreased when ammonium concentration in the medium reached values below 10-13 mg 246 

NH4-N·l-1. The value obtained for the ammonium removal rate after phosphate addition in the 247 

N&PR showed a significant increase, due to a fast increase in intracellular phosphorus 248 

concentration. Ammonium removal rate decreased along the rest of the experiment, as in 249 

NOR, due to an increase of selfshading and a decrease in phosphorus content. At the end of 250 

the experiment, ammonium concentrations reached lower values in N&PR than in NOR, and 251 

still maintained a faster decreasing trend. At this point, P content of the biomass had reached 252 

0.017 gP·gVSS-1, which is higher than the biomass P content reached in NOR (0.008 253 

gP·gVSS-1).  254 

These results suggest that ammonium removal rate depends on the amount of phosphorus 255 

stored in microalgae. Other authors modelled phytoplankton colimitation by nitrogen and 256 

phosphorus [24] assuming that the maximum potential for N uptake takes place at high 257 

concentrations of intracellular phosphorus, which is in accordance with the experimental 258 

results obtained now in this work.  259 

The specific ammonium uptake rates (with respect to VSS) obtained in the N&PR and the 260 

associated biomass P content are shown in table 2, demonstrating how intracellular 261 

polyphosphate content exerted a drastic and positive influence in the specific ammonium 262 

removal rate: it decreased for the first 2 injections into initial reactor, continued decreasing 263 
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after the N injections into NOR and increased in N&PR after P addition, catching up with the 264 

initial value of 6x10-4 mgN·mgSSV-1· h-1.  The addition of phosphorus in the medium was the 265 

only difference between reactors. 266 

The data shown in table 2 demonstrates therefore a high sensitivity of the specific ammonium 267 

removal rate to microalgal P content: the higher the biomass P content the higher the specific 268 

ammonium removal rate. However, the relationship between these variables is far from linear: 269 

a sharp increase is observed in the specific ammonium removal rate when biomass P content 270 

lies between 2.2 and 2.6%. After phosphate addition, the specific ammonium removal rate 271 

rose from 2.11x10-4 for a P content of 2.2% to 6.07x10-4 mgN·mgSSV-1· h-1 for a P content of 272 

2.6%. When biomass P content decreased down to 2.0% due to microalgae growth without 273 

phosphate addition the specific ammonium removal rate decreased to a value closed to that 274 

previously observed. On the other hand, the selfshading effect due to biomass growth is 275 

evidenced by the fact that almost no difference is observed between the ammonium uptake in 276 

the initial reactor (6.15x10-4 mgN·mgSSV-1· h-1) and the “recovered” uptake rate in N&PR 277 

(6.07x10-4 mgN·mgSSV-1·h-1) while biomass has quite a different P content (3.7 % and 2.6 % 278 

P, respectively) and thus a faster ammonium uptake rate would be expected in N&PR if 279 

intracellular content was to be the only influencing factor. 280 

Comparison between the performances of both reactors shows that, for this microalgal 281 

culture, below the threshold of around 2.2 – 2.6% of internal phosphorus the nitrogen uptake 282 

rate decreases considerably and around 1% the microalgal culture is unsuitable for ammonium 283 

removal applications due to the slow rate obtained. It has been demonstrated that under 284 

phosphorus limitation the nitrogen uptake process takes place at much slower rates. The 285 

obtained data also suggest that selfshading influences growth and nutrient uptake rates. 286 
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Therefore, these two factors (available light and available intracellular phosphorus content) 287 

will be taken into account in the modelling step. 288 

The present work has confirmed, for this microalgal culture, two main consequences of 289 

phosphate addition to a P-starving culture: 290 

-Phosphorus supplementation to the medium increases the ammonium removal rate by 291 

increasing the amount of polyphosphate the biomass is able to accumulate. 292 

-The added phosphate is removed at a fast rate due to the prior starving conditions. This could 293 

be useful in the development of different strategies for wastewater nutrient removal and also 294 

shows that biomass growth can still take place with low amounts of phosphorus, as already 295 

reported by [25]. These authors proposed a P-starvation cultivation mode to minimize 296 

phosphorus resource consumption. A low biomass P content might not be a drawback in some 297 

cases, as for instance within a biorefinery concept, where ammonium removal rates are of no 298 

concern, or substances of interest are not fertilizers. 299 

 300 

3.1.3. Biological nutrient removal 301 

All conclusions drawn from this study are based on the assumption that ammonium and 302 

phosphate removal are solely due to microalgal uptake, as the pH control assures that neither 303 

free ammonia stripping nor inorganic salts precipitation takes place. Further indication that no 304 

inorganic precipitation occurred is the fact that the VSS percentage was always higher than 305 

92% of TSS.  306 

The algal culture studied was mainly composed of three species: Chlorococcum sp., Spirulina 307 

sp. and Pseudoanabena sp. A pure culture has not been used in this study as the aim of this 308 
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work is to analyze the behavior of the culture which evolved from feeding a PBR with the 309 

effluent of a SAnMBR [5]. The results obtained might be applied to those cultures with 310 

similar species composition, since the results obtained in a microalga culture composed of 311 

close-phylogenetic species with similar nutrient requirements and similar growth conditions 312 

might reveal comparable absorption patterns. However, culture from different microalgae 313 

clade might show different growth and ammonium removal rates. 314 

On the other hand, the low nitrite and nitrate concentrations measured during all the 315 

experiment (highest measured values were 2.2 mg NO2-N·l-1 and 1.7 mg NO3-N ·l-1) indicate 316 

no bacterial nitrification/denitrification activity took place. Constant soluble COD levels 317 

(stable around 134 mg COD·l-1) support this hypothesis.   318 

3.2. Mathematical model 319 

3.2.1. Proposed model 320 

A mathematical model focused on the kinetics of microalgal ammonium uptake was proposed 321 

with the aim of representing the ammonium removal process observed in the PBRs. The main 322 

characteristics of the proposed model are:  323 

- Microalgal ammonium uptake rate does not depend on phosphate concentration in the 324 

medium, since ammonium uptake still takes place in a phosphate depleted medium. The rate 325 

of this process depends on the amount of phosphate stored. Hill function is proposed to 326 

simulate the influence of internal phosphorus concentration on ammonium removal rate since 327 

a sharp increase was observed when biomass P content exceeded 2.2%.  328 

- Microalgal ammonium uptake rate depends on ammonium concentration. The Monod 329 

kinetics is used to simulate this dependency.  330 
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- Biomass is assumed to have a constant composition, excluding the polyphosphate internally 331 

stored, which is itself a separate component in the model. 332 

-Phosphate uptake and thus intracellular phosphate accumulation is not considered in the 333 

model since this process was not experimentally studied (took place only once when P was 334 

supplemented) and thus experimental data is insufficient for obtaining the corresponding 335 

kinetic constants. It is considered that the amount of phosphate removed from the medium 336 

becomes intracellular polyphosphate. As previously explained, chemical precipitation is 337 

avoided with pH control. 338 

-Microalgal death is modelled using a first order kinetics: death rate depends on microalgal 339 

concentration. Microalgal death produces inert particulate organic material, with the same N 340 

and P composition as the active biomass. No solubilisation processes are considered. The 341 

polyphosphate of the dead cells is considered to stay unavailable for further microalgal 342 

growth. 343 

-The light influence on the microalgal growth is modelled using the Steele function (1), as 344 

suggested by [26] or [27]. A weighted average light intensity, which takes into account the 345 

reactor’s geometry and the self-shading factor of the microalgae, is used. It is calculated 346 

dividing the reactor into discrete concentric sections and applying Lambert-Beer’s Law (2) for 347 

calculating a uniform light for each section.  348 









−

ii k
I

k
I 1·exp          (1) 349 

𝐼𝐼 = 𝐼𝐼0 · exp(−𝑎𝑎 · 𝑇𝑇𝑇𝑇𝑇𝑇 · 𝑧𝑧)       (2) 350 
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Where I is light intensity (µE·m-2·s-1), ki is the optimal light intensity (µE·m-2·s-1), a is the 351 

microalgal self-shading factor (m2·gTSS-1), and z (m) is the distance from the surface of the 352 

reactor.  353 

The components considered in the model are: 354 

lgAX  , microalgal biomass, expressed in mgCOD·l-1, excluding internally accumulated 355 

polyphosphate. 356 

PPX , intracellular stored polyphosphate, expressed in mgP·l-1. It is not included in the mass of357 

lgAX . 358 

DebX , inert particulate organic material, expressed in mgCOD·l-1. Generated in the death 359 

process of microalgae, this component accumulated in the reactor during the experiment. 360 

4NHS , ammonium concentration in the medium, expressed in mg NH4-N·l-1. 361 

The kinetic equations proposed for microalgal growth (3) and death (4) are: 362 
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

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−
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−

+
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PPn
XPP

n
XPP

iiNHS

NH
A

X
Xk

k
k
I

k
I

SK
SXr

lg

lg 1·1·exp···µ     (3) 363 

lg· AXbr =           (4) 364 

The time evolution of all the components can be obtained from the following differential 365 

equations: 366 

𝑑𝑑𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝜇𝜇 · 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 · 𝑆𝑆𝑁𝑁𝑁𝑁4
𝑘𝑘𝑆𝑆+𝑆𝑆𝑁𝑁𝑁𝑁4

· 𝐼𝐼
𝑘𝑘𝑖𝑖

· exp �1 − 𝐼𝐼
𝑘𝑘𝑖𝑖
� · �1 − 𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋𝑛𝑛

𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋𝑛𝑛+�
𝑋𝑋𝑃𝑃𝑃𝑃

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋� �
𝑛𝑛� − 𝑏𝑏 · 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴  (5) 367 
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𝑑𝑑𝑆𝑆𝑁𝑁𝑁𝑁4
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 · 𝜇𝜇 · 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 · 𝑆𝑆𝑁𝑁𝑁𝑁4
𝑘𝑘𝑆𝑆+𝑆𝑆𝑁𝑁𝑁𝑁4

· 𝐼𝐼
𝑘𝑘𝑖𝑖

· exp (1 − 𝐼𝐼
𝑘𝑘𝑖𝑖

) · �1 − 𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋𝑛𝑛

𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋𝑛𝑛+�
𝑋𝑋𝑃𝑃𝑃𝑃

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴� �
𝑛𝑛�  (6) 368 

𝑑𝑑𝑋𝑋𝑃𝑃𝑃𝑃
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 · 𝜇𝜇 · 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 · 𝑆𝑆𝑁𝑁𝑁𝑁4
𝑘𝑘𝑆𝑆+𝑆𝑆𝑁𝑁𝑁𝑁4

· 𝐼𝐼
𝑘𝑘𝑖𝑖

· exp (1 − 𝐼𝐼
𝑘𝑘𝑖𝑖

) · �1 − 𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋𝑛𝑛

𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋𝑛𝑛+�
𝑋𝑋𝑃𝑃𝑃𝑃

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴� �
𝑛𝑛� − 𝑏𝑏 · 𝑋𝑋𝑃𝑃𝑃𝑃  (7) 369 

𝑑𝑑𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑𝑑𝑑

= 𝑏𝑏 · 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴           (8) 370 

Where  iPAlg (gP·gCOD-1) is the phosphorus content of the microalgal structure (constitutional 371 

P in XAlg), iNAlg (gN·gCOD-1) is the nitrogen content of the microalgal structure, µ is the 372 

maximal growth rate (h-1), KS represents the halfsaturation constant for ammonium (mgN·l-1), 373 

kXPP represents the ratio XPP/XAlg that leads to a 50% reduction of the maximal growth rate 374 

(gP·gCOD-1),  n is a constant from Hill function, and b is the microalgae death rate (h-1). 375 

3.2.2. Model calibration 376 

Model parameters were determined using the Solver program in Microsoft ® Excel software 377 

2007 for minimizing the residual sum of squared errors between the two sets of experimental 378 

data (ammonium concentrations in N&PR and NOR) and the model predictions. 379 

Initial microalgae, debris, and polyphosphate concentrations are required in order to solve the 380 

differential equations. These values can be estimated from suspended COD and TSP 381 

measurements (9 and 10) jointly with the steady-state debris balance (11) applied to the 382 

reactor where the microalgae were cultivated in semicontinuous mode. 383 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴       (9) 384 

 𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑋𝑋𝑃𝑃𝑃𝑃 + 𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 · 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴       (10) 385 

𝑏𝑏 · 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴 · 𝜃𝜃 = 𝑋𝑋𝐷𝐷𝐷𝐷𝐷𝐷        (11) 386 
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where 𝜃𝜃 is the cellular retention time in the semicontinuous reactor where the microalgae used 387 

for inoculum were cultivated. 388 

The corresponding boundary conditions were set in the solution procedure every time a 389 

reactor was spiked with ammonium. Polyphosphate concentration in N&PR was increased 390 

according to the observed phosphate decrease during the following 7 hours after the 391 

phosphate addition. The initial values for the model parameters were selected based on 392 

previous experience and on literature. All concentrations were calculated with a time step of 5 393 

minutes. 394 

𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  was established at the initial nitrogen biomass composition (9% gN·gCOD-1) and for 395 

 𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 a value of 0.1% (gP·gCOD-1) was chosen, which is necessarily below the phosphorus 396 

total composition of 0.5% (gP·gCOD-1) at the end of the experiment and accounts only for 397 

structural phosphorus and not polyphosphate. Figs. 3a and 3b show the model predictions for 398 

ammonium concentration and the experimental values along the experiment for NOR and 399 

N&PR, respectively. The obtained parameters, shown in table 3, accurately reproduce the 400 

experimental data in both reactors, as shown in fig. 4, where predicted values are plotted 401 

against their analytical values with a Pearson correlation coefficient of r = 0.952 (P-value < 402 

0.01, statistical analysis carried out using SPSS 16.1).  403 

For further model validation, a set of data from a shorter but analogous experiment was used. 404 

The experiment consisted of an identical reactor where the same procedure as in N&PR was 405 

followed, with the difference that phosphate was added to the medium after 7 days and the 406 

experiment was stopped after 18 days. Moreover, phosphorus was added at a higher 407 

concentration of 37 mgP·l-1 (fig. 5). Biomass, ammonium and phosphate were characterized 408 

as described in section 2.4 in this work. The parameters shown in table 3 were introduced in 409 
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the model to obtain the corresponding predicted values, which are shown in fig. 5, and also 410 

plotted versus their analytical values in fig. 4. The obtained accuracy (r = 0.97, P-value < 411 

0.01) confirms the suitability of the model and the determined parameters.  412 

One of the most important effects of the higher concentration of added phosphate was that 413 

XPP/XAlg ratio reached a maximum of 4% mgP·mgTSS-1. The simulation shows that from day 414 

12 of the experiment biomass P content stayed stable around 3% mgP·mgTSS-1, since 415 

ammonium was not available for growth. The high internal phosphorus concentration 416 

achieved might be the reason why remaining phosphate in the medium was not taken up by 417 

the microalgae during this period, as can be seen in fig. 5. 418 

The values obtained for 𝜇𝜇 and 𝑘𝑘𝑆𝑆 are comparable to those obtained by [24]. These authors fit 419 

ammonium uptake by Scenedesmus sp.LX1 using a Monod equation and obtained values 420 

between 0.005 - 0.025 h-1 for 𝜇𝜇 and 4.5 - 13.3 mgN·l-1 for 𝐾𝐾𝑆𝑆. The obtained value for kXPP is in 421 

complete accordance with the observations made. Literature ki values vary in a wide range 422 

between 20 and 500 W·m-2 ([28] and [26], respectively), in which our 200 µmol·m2·s-1 would 423 

be included. The selfshading factor, a, also varies in a wide range in literature. Similar values 424 

to ours are used in [29-30]. The value obtained in this study for microalgae death rate (b = 425 

0.002 h-1) compares with literature values ranging from 0.0008 h-1 [31] to 0.0058 h-1 [32].  426 

Measured and predicted COD values are shown in table 4, together with predicted XAlg and 427 

XDeb. The predictions of the COD values for initial reactor are in very good accordance with 428 

measured values. For NOR and N&PR the model underestimates COD. Because of the higher 429 

mean analytical error in COD measurements, the model has been calibrated to minimize the 430 

error in the response for ammonium concentration. The parameters obtained are those which 431 

allow the best prediction of ammonium concentration and not of suspended COD values. On 432 
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the other hand, the assumption of a constant microalgal N composition (set to its initial 433 

measured value of 9%) is a simplification of reality. With a different and/or varying 434 

microalgal N content, predicted COD values would have been certainly different. Including a 435 

variable microalgae N content according to factors such as N stress, etc., might be the way for 436 

improving a model of this kind. This was, however, out of the scope of this paper. 437 

4. CONCLUSIONS 438 

Microalgal growth and ammonium removal in the absence of phosphorus were studied in two 439 

mixed cultures of autochthonous microalgae. The results showed that microalgal growth and 440 

phosphorus uptake are independent processes. It was also proved that ammonium removal 441 

rate depends on the amount of phosphorus internally stored. The proposed microalgal growth 442 

model, which includes a Monod term for the effect of ammonium concentration, Hill’s 443 

function for the effect of the stored polyphosphate concentration and Steele’s function for 444 

light influence, accurately reproduced the experimental data. Further research should make 445 

use of these results for the development of nutrient removal strategies using microalgal 446 

cultures.  447 

ACKNOWLEDGEMENTS 448 

This research work has been supported by the Spanish Ministry of Economy and 449 

Competitiveness (MINECO, Projects CTM2011-28595-C02-01 and CTM2011-28595-C02-450 

/02) jointly with the European Regional Development Fund (ERDF). They are both gratefully 451 

acknowledged. 452 

 453 

 454 

21 
 



 

REFERENCES 455 

[1] Singh, A., Pant, D., Olsen, S.I., Nigam, P.S., 2012. Key issues to consider in 456 

microalgae based biodiesel production. Energy Education Science and Technology 457 

Part A: Energy Science and Research. 29(1): 563-576 458 

[2] Christenson, L., Sims, R., 2011. Production and harvesting of microalgae for 459 

wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29 (6), 686-702. 460 

[3] Aravantinou, A.F., Theodorakopoulos, M.A., Manariotis, I.D., 2013. Selection of 461 

microalgae for wastewater treatment and potential lipids production. Bioresour. 462 

Technol. 147, 130-134. 463 

[4] Arbib, Z., Ruiz, J., Álvarez-Diaz, P., Garrido-Pérez, C., Perales, J. A., 2014. 464 

Capability of different microalgae species for phytoremediation processes: wastewater 465 

tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res 49, 466 

465-474. 467 

[5] Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., Ferrer, J., 2012. 468 

Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane 469 

bioreactor effluent. Bioresour. Technol. 126, 247-253.  470 

[6] Pittman, J. K., Dean, A. P. 2011. The potential of sustainable algal biofuel production 471 

using wastewater resources. Bioresour. Technol. 102, 17-25.  472 

[7] Redfield, A., 1958. The biological control of chemical factors in the environment. Am. 473 

Sci. 46, 205-221. 474 

[8] Powell, N., Shilton, A., Chisti, Y., Pratt, S., 2009. Towards a luxury uptake process 475 

via microalgae – Defining the polyphosphate dynamics. Water Research 43, 4207-476 

4213. 477 

22 
 



 

[9] Jansson, M., 1993. Uptake,  exchange,  and  excretion  of  orthophosphate  in 478 

phosphate-starved  Scenedesmus  quadricauda  and  Pseudomonas  K7. Limnol. 479 

Oceanogr. 38(6), 1162-1178. 480 

[10] Nishikawa, K., Machida, H., Yamakoshi, Y., Ohtomo, R., Saito, K., Tominaga, 481 

N., 2006. Polyphosphate metabolism in an acidophilic alga Chlamydomonas 482 

acidophila KT-1 (Chlorophyta) under phosphate stress. Plant Sci. 170, 307-313. 483 

[11] Geider, R.J., MacIntiyre, H.L., Kana, T.M., 1997. Dynamic model of 484 

phytoplankton growth and acclimation: responses of the balanced growth rate and the 485 

chlorophyll a:carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. 486 

Prog. Ser. 148, 187-200. 487 

[12] Geider. R.J., MacIntiyre, H.L., Kana, T.M., 1998. A dynamic regulatory model 488 

of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. 489 

Oceanogr., 43(4), 679-694. 490 

[13] Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, 491 

L., Vanrolleghem, P., 2000. River Water Quality Model No. 1. International Water 492 

Association, London. 493 

[14] Mairet, F., Bernard, O., Masci, P., Lacour, T., Sciandra, A., 2011. Modelling 494 

neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen 495 

limitation. Bioresour. Technol. 102, 142-149. 496 

[15] Kliphuis, A.M.J., Klok, A.J., Martens, D.E., Lamers, P.P, Janssen, M., 497 

Wijffels, R.H., 2011. Metabolic modeling of Chlamydomonas reinhardtii: energy 498 

requirements for photoautotrophic growth and maintenance. J. Appl. Phycol. 24(2), 499 

253-266. 500 

23 
 



 

[16] Fernández, I., García-Acién, F.G., Fernández, J.M., Guzmán, J.L., Magán, J.J., 501 

Berenguel, M., 2012. Dynamic model of microalgal production in tubular 502 

photobioreactors. Bioresour. Technol. 126, 172-181. 503 

[17] Li, J., Ozgun, H., Ersahin, M. 2011. Procedure of SMA test. Section of 504 

Sanitary Engineering, Delft University of Technology. 505 

 506 

[18] Giménez, J.B., Robles, A., Carretero, L., Durán, F., Ruano, M.V., Gatti, M.N., 507 

Ribes, J., Ferrer, J., Seco, A., 2011. Experimental study of the anaerobic urban 508 

wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. 509 

Bioresour. Technol. 102, 8799-8806. 510 

[19] APHA, A., WEF, 2005. Standard Methods for the Examination of Waters and 511 

Wastewaters. 21st ed. Washington DC. 512 

[20] Reynolds, C.S., 2006. The Ecology of Phytoplankton (Ecology, Biodiversity 513 

and Conservation). Cambridge University Press, Cambridge, UK. 514 

[21] Markou, G., 2012. Alteration of the biomass composition of  Arthrospira 515 

(Spirulina) platensis under various amounts of limited phosphorus. Bioresour. 516 

Technol. 116, 533-535. 517 

[22] Aslan, S., Kapdan, I.K., 2006. Batch kinetics of nitrogen and phosphorus 518 

removal from synthetic wastewater by algae. Ecol. Eng. 28, 64-70. 519 

[23] Ramos Tercero, E.A., Sforza, E., Morandini, M., Bertucco, A. 2014. 520 

Cultivation of Chlorella protothecoides with urban wastewater in continuous 521 

photobioreactor: Biomass productivity and nutrient removal. Appl Biochem 522 

Biotechnol 172, 1470–1485 523 

24 
 



 

[24] Bougaran, G., Bernard, O., Sciandra, A., 2010. Modeling continuous cultures 524 

of microalgae colimited by nitrogen and phosphorus. J. Theor. Biol. 265, 443-454. 525 

[25] Wu, Y.H., Yu, Y., Hu, H.Y., Potential biomass yield per phosphorus and lipid 526 

accumulation property of seven microalgal species, 2013a. Bioresour. Technol. 130, 527 

599-602. 528 

[26] Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, 529 

L., Vanrolleghem, P., 2001. River Water Quality Model no. 1 (RWQM1):II. 530 

Biochemical process equations. Water Sci. Technol .43 (5) 11-30. 531 

[27] Wu, Y.H., Li, X., Yu, Y., Hu, H.Y., Zhang, T.Y., Li, F.M., 2013b. An 532 

integrated microalgal growth model and its application to optimize the biomass 533 

production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic 534 

secondary effluent. Bioresour. Technol. 144, 445-451. 535 

[28] Broekhuizen, N., Park, J. B. K., McBride, G. B., Craggs, R. J., 2012. 536 

Modification, calibration and verification of the IWA River Water Quality Model to 537 

simulate a pilot-scale high rate algal pond. Water Res. 46 (9) 2911-2926. 538 

[29] Quinn, J., de Winter, L., Bradley, T., 2011. Microalgae bulk growth model 539 

with application to industrial scale systems. Bioresour. Technol. 102, 5083–5092. 540 

[30] Ketheesan, B., Nirmalakhandan, N., 2013. Modeling microalgal growth in an 541 

airlift-driven raceway reactor. Bioresour. Technol. 136, 689–696. 542 

[31] Barbosa, M.J., Hadiyanto, H., Wijffels, R.H., 2004. Overcoming shear stress of 543 

microalgae cultures in sparged photobioreactors. Biotechnol. Bioeng. 85(1), 78-85. 544 

[32] Centeno da Rosa, A.P., Fernandes Carvalho, L., Goldbeck, L., Vieira Costa, 545 

J.A., 2011. Carbon dioxide fixation by microalgae cultivated in open bioreactors. 546 

Energy Convers. Manag. 52, 3071–3073.  547 

25 
 

http://www.ncbi.nlm.nih.gov/pubmed/23891148


 

FIGURE LEGENDS 548 

Fig. 1: a) Experimental setup; b) illumination and measuring point. 549 

Fig. 2: Ammonium and phosphate evolution in a) NOR and b) N&PR during the whole 550 

experiment.  551 

Fig. 3: Time evolution of ammonium concentration in a) NOR and b) N&PR, along with 552 

model predictions. 553 

Fig. 4: Predicted values plotted against their corresponding analytical values. Empty dots 554 

correspond to this experiment for model calibration and full dots correspond to data from 555 

previous experiment for model validation. 556 

Fig. 5: Time evolution of ammonium and phosphate concentrations in the model validation 557 

dataset, along with model predictions.  558 

  559 
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TABLES 560 

 561 

Table 1: Biomass evolution in the reactors and calculated yields.  562 

Time (d) TSSa 
(mg·l-1) 

VSSa 
(mg·l-1) 

Susp 
CODb 

(mg·l-1) 

Biomass N 
content 

(gN·gVSS-1) 

Biomass P 
content 

(gP·gVSS-1) 

Yield coefficient 
YN-VSS 

(gVSS·gN-1) 

Yield coefficien  
YN-COD 

(gCOD·gN-1) 
0  380 340 517 11.8% 3.7% -- -- 
19 

(end of initial 
reactor) 

882 817 1176 12.0% 1.6% 8.2 11.3 

46 
(end of NOR) 

1330 1224 1880 10.8% 0.8% 8.8 12.8 

46  
(end of N&PR) 1583 1460 2320 10.6% 1.7% 8.7 13.9 

Mean analytical error: a 50 mg·l-1; b 70 mg·l-1; 563 

 564 

  565 
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Table 2: Calculated net and specific ammonium removal rate after each ammonium addition 566 

in each reactor, together with biomass P content at those moments (beginning of slope). 567 

Reactor Slope 
number 

Removal rate 
(mgN·l-1·h-1) 

Slope 
error 

Specific removal rate 
(mgN·mgVSS-1·h-1) 

Biomass P content 
(gP·gVSS-1) 

initial 
1 0.209 0.018 6.15x10-4 3.7% 
2 0.121 0.002 2.11x10-4 2.2% 

N 
3 0.152 0.001 1.86x10-4 1.6% 
4 0.090 0.009 8.79x10-5 1.0% 

P 
3 0.514 0.051 6.07x10-4 2.6% 
4 0.247 0.004 2.41x10-4 2.0% 
5 0.176 0.014 1.41x10-4 1.5% 

 568 

  569 
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Table 3: Obtained parameters  570 

Parameter Units Obtained value 

𝜇𝜇 h-1 0.042 
𝑘𝑘𝑆𝑆 mgN·l-1 12 
𝑛𝑛 - 1.35 

𝐾𝐾𝑋𝑋𝑋𝑋𝑋𝑋 mgP·mgCOD-1 0.027 
𝑘𝑘𝐼𝐼 𝜇𝜇𝜇𝜇 · 𝑚𝑚2 · 𝑠𝑠−1 200 
b h-1 0.0005 
a m2·gTSS-1 0.03 

 571 

  572 
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Table 4: Measured COD values. Predicted total COD, XAlg and XDeb values. 573 

Time (d) 
Measured 
Susp COD 

(mg·l-1) 

Predicted 
Susp COD 

(mg·l-1) 

XAlg 
(gCOD·l-1) 

XDeb 
(gCOD·l-1) 

0 (inoculum) 517 517 434 83 

19 
(end of initial reactor) 

1176 1132 535 596 

46 
(end of NOR) 

1880 1554 357 1196 

46  
(end of N&PR) 2320 1624 412 1212 

 574 

  575 
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FIGURES 576 

 577 

Fig. 1 578 

 579 

 580 
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Fig. 2 582 
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Fig. 3 585 
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Fig. 4 589 
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Fig. 5 593 
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