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Abstract  70 

Gene flow is usually thought to reduce genetic divergence and impede local adaptation by 71 

homogenising gene pools between populations. However, evidence for local adaptation and 72 

phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is 73 

emerging. Assessing population genetic structure at different spatial scales is thus a crucial 74 

step towards understanding mechanisms underlying intraspecific differentiation and 75 

diversification. Here, we studied the population genetic structure of a highly mobile species – 76 

the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 77 

sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. 78 

Overall we found a low but significant genetic differentiation among sites (FST = 0.008). 79 

Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. 80 

These regional differences were statistically best explained by winter temperature. Overall, 81 

our results suggest that great tits form a single patchy metapopulation across Europe, in which 82 

genetic differentiation is independent of geographical distance and gene flow may be 83 

regulated by environmental factors via movements related to winter severity. This might have 84 

important implications for the evolutionary trajectories of sub-populations, especially in the 85 

context of climate change, and calls for future investigations of local differences in costs and 86 

benefits of philopatry at large scales. 87 

  88 

  89 

90 



Introduction  91 

Gene flow is generally thought to impede local adaptation by introducing locally maladapted 92 

genotypes into populations exchanging individuals. Consequently, micro-evolutionary 93 

processes at small scales are predicted to be rare in highly mobile organisms with high gene 94 

flow over large spatial scales, due to spatial genetic homogenisation. However, evidence for 95 

genetic differentiation and local adaptation at small scales despite high levels of gene flow at 96 

large scales has recently started to accumulate in different taxa (e.g. mammals: Musiani et al., 97 

2007; marine invertebrates: Sanford & Kelly, 2011; birds: Charmantier et al., 2015; fish: 98 

Junge et al., 2011; trees: Savolainen, Pyhäjärvi & Knürr, 2007). This evidence suggests that 99 

dispersal is not a diffusion-like movement process and that ultimately gene flow may vary in 100 

space. 101 

Spatial variation in gene flow is probably common, especially in relation to 102 

environmental factors in highly mobile species. High mobility and long distance dispersal 103 

facilitate spatial spread and the colonization of new habitats (Nathan et al., 2003). As a 104 

consequence, highly mobile species are likely to experience a large set of environmental 105 

conditions that may shape locally adaptive processes. In addition, high mobility combined 106 

with the ability to cross physical barriers such as seas or mountains may minimize the 107 

influence of geographical factors. Increased mobility may also reduce the impact of historical 108 

factors on gene flow by homogenising gene pools, increasing local population size and 109 

counteracting genetic drift (Slatkin, 1987). In this case, environmental factors may become 110 

the main force shaping gene flow (e.g. Pilot et al., 2006). Assessing gene flow between 111 

populations at small and large spatial scales in highly mobile species and the links between 112 

gene flow and environmental factors is crucial to understand the ecological mechanisms 113 

leading to intraspecific differentiation and diversification. When dispersal movements and 114 

immigration rate do not provide reliable estimates of gene flow, such as in highly mobile 115 



species, a population genetic approach may help investigating patterns of gene flow at 116 

different spatial scales (Nathan et al., 2003).  117 

The great tit Parus major, a widespread passerine bird across Eurasia (Snow & 118 

Perrins, 1998), is a particularly interesting biological model to address such questions. This 119 

species is considered to be an “evolutionary winner”, given its ability to colonize and rapidly 120 

adapt to new habitats. Its rapid spread across Europe since the last glaciation period (Kvist et 121 

al., 2003; Pavlova et al., 2006) suggests high dispersal ability and gene flow among sub-122 

populations (Caswell, Lensink & Neubert, 2003; Pilot et al., 2006 but see Peterson & Denno, 123 

1998). Conversely, long-term monitoring studies provide evidence for small-scale local 124 

adaptation (Garant et al., 2005; Postma & van Noordwijk, 2005) with a considerable fraction 125 

of individuals dispersing over short distances (e.g. Verhulst, Perrins & Riddington, 1997). 126 

Thus, although great tits are considered highly mobile and forming a homogeneous 127 

population across Europe, microevolutionary processes linked with limited gene flow occur at 128 

small scales and with it, the detection of subtle fine-scale genetic structures (Björklund, Ruiz 129 

& Senar, 2010; Garroway et al., 2013; Van Bers et al., 2012). These conflicting observations 130 

call for investigating genetic differentiation using microsatellite markers at different spatial 131 

scales in this species. Indeed microsatellite markers generating multi-locus diploid genotypes 132 

provide an ideal resolution to study recent or ongoing micro-evolutionary processes occurring 133 

both at small and large scales (e.g.Wang, 2010). 134 

Moreover, the environmental heterogeneity over the species’ range combined with its 135 

colonisation history provides excellent conditions to study the influence of environmental 136 

factors on population genetic structure in this species. Indeed, phylogeographic studies based 137 

on mitochondrial DNA (mtDNA) suggest that other tit species colonized Europe from 138 

different glacial refugia, each harbouring distinct mitochondrial lineages and forming 139 

secondary contact zones within Europe (Kvist et al., 2004; Päckert, Martens & Sun, 2010; 140 



Pentzold et al., 2013). In contrast, all western-European great tits share a common haplotype, 141 

suggesting that they originate from a single glacial refugium located in southern Europe 142 

(Kvist et al., 2007; Kvist et al., 1999; Pavlova et al., 2006, Fig. S1, Table S1). Therefore 143 

genetic differentiation in great tits estimated with microsatellites that evolve faster than 144 

mtDNA and are more powerful to detect recent and local micro-evolutionary processes 145 

among populations, are less likely to result from past genetic discontinuities across different 146 

glacial refugia as is the case for many other species (e.g. Hewitt, 2000; Kvist et al., 1999).  147 

Using 22 microsatellite markers, we investigated population genetic diversity and 148 

structure, as well as the scale of genetic differentiation, in great tits by sampling 30 sites 149 

across Europe including 10 close-by (i.e. up to 50 km) sites. We expected the genetic 150 

differentiation to be correlated with the geographical distance either at small or large scales: 151 

the studied geographical scale should allow us to determine at which scale isolation-by-152 

distance would occur in great tits. In addition, a signal of historical range expansion from the 153 

South to the North should result in decreased genetic diversity with increasing latitude. In a 154 

second step, we explored the influence of environmental factors on the observed genetic 155 

diversity and differentiation patterns, focusing on factors that can be expected to affect 156 

individual movement. In particular, temperature may strongly shape genetic differentiation 157 

among populations by acting on both dispersal movements (e.g. Parn et al., 2012) and 158 

establishment success (i.e. survival and reproductive success after settlement) of long-distance 159 

immigrants (e.g. Van Doorslaer et al., 2009). Three different patterns may thus be predicted in 160 

relation to temperature. First, because temperature can be positively correlated with survival 161 

and population density (Ahola et al., 2009; Garant et al., 2004; Parn et al., 2012) that increase 162 

dispersal propensities (Forsman & Monkkonen, 2003; Matthysen, 2005), genetic diversity 163 

could increase and genetic differentiation decrease with increasing temperature. Second, a 164 

negative relationship between temperature and dispersal propensities may be expected in the 165 

case of partial migration (e.g. Nilsson et al., 2006). In this case, temperature should relate to 166 



environmental conditions during winter, triggering partial migration and favouring dispersal 167 

in general or the establishment of migrants in non-natal breeding areas. Genetic diversity 168 

should consequently decrease while genetic differentiation should increase with temperature 169 

(e.g. Miller et al., 2012). Third, if the establishment success of immigrants is linked to 170 

adaptation to temperature, we predicted that genetic differentiation should increase with the 171 

difference of temperature between sites.  172 

 173 

 174 

Material and Methods  175 

Species description, sampling and genotyping  176 

The great tit is a hole-nesting passerine bird that readily breeds in nest boxes, providing easy 177 

access to breeding pairs. In this study, all individuals from all but one site (FI.TU, see Table 178 

S2) were breeding adults caught in nest boxes during the nestling period. Thirty woodland 179 

sites across Europe were sampled between 2005-2010 (Fig.1, Table S2), 10 of which were 180 

within a range of 50 km on the island of Gotland (57°10’N, 18°20’E). Overall, our studied 181 

populations fell along a south-west – northeast gradient (Fig.1). Either blood or feather 182 

samples were obtained. Most sites were sampled once, except when the sample size was too 183 

low for statistical analysis (in 10 sites). In this case, samples of two consecutive years were 184 

pooled. The number of sampled individuals per site ranged from 18 to 47 with an average of 185 

29. 186 

DNA was extracted with magnetic beads (MagneSil Blue, Promega AG, Dübendorf, 187 

Switzerland) and genotyped at 22 microsatellite loci (Table S3, Saladin & Richner, 2012). 188 

These 22 microsatellite markers were developed using individuals from CH.BE, a site in the 189 

geographical centre of our sampling scheme. For details on the PCR protocols and allele 190 



scoring procedure, see Saladin & Richner, 2012). Twelve individuals with missing alleles or 191 

atypical profiles at different loci were excluded from all analyses. None of the individuals 192 

shared the same multilocus genotype indicating that none of the individuals was sampled 193 

twice. Overall, 884 individuals were analysed. Allelic dropout, scoring errors and null alleles 194 

were checked for each locus per site with MICRO-CHECKER (Van Oosterhout et al., 2004). 195 

Among all loci, no evidence for allelic dropout was detected and only one locus in one 196 

sampling site showed scoring errors. Moreover, null alleles were randomly distributed, and 197 

present at only 19 (i.e. 2.9%) locus × site combinations. Genotypic linkage disequilibrium and 198 

departure from Hardy-Weinberg equilibrium (HWE) were tested with probability tests per 199 

locus per site. In addition, departure from HWE for the overall population, i.e. across loci and 200 

sites, was tested using a multisample score test. All tests were performed using GENEPOP on 201 

the web (Rousset, 2008). P-values for multiple tests were corrected with a sequential 202 

Bonferroni procedure (Rice, 1989). 203 

 204 

Genetic diversity and differentiation among sites 205 

To assess genetic diversity at each sampling site, both the observed and unbiased expected 206 

heterozygosity (HO and HE) were calculated using GENALEX v6 (Peakall & Smouse, 2006). In 207 

addition, the mean allelic richness per site (AR) based on 18 individuals, corresponding to the 208 

smallest number of individuals sampled in a given site, was estimated with FSTAT v2.9.3 209 

(Goudet, 1995). Genetic differentiation among sites was quantified using pairwise and global 210 

FST calculated in FSTAT with 10,000 permutations to assess significance. Because FST 211 

estimates may be strongly affected by the polymorphism of the markers used (Meirmans & 212 

Hedrick, 2011), standardized estimators G’’ST and D were calculated with GENODIVE 2.0B27 213 

(Meirmans & Van Tienderen, 2004).  214 



To test for a spatial pattern of genetic differentiation among sites, two methods were 215 

used: (i) a principal coordinate analysis (PCoA), based on codominant genotypic distance 216 

among sites with a standardized covariance matrix, using GENALEX 6.5 and (ii) a neighbour-217 

joining (NJ) phenogram based on Nei’s genetic distance between sites, using PHYLIP v3.68 218 

(Felsenstein, 2008). The presence of genetic clusters was also tested using two methods. First, 219 

an individual-based Bayesian cluster analysis was implemented in STRUCTURE v2.2 (Pritchard, 220 

Stephens & Donnelly, 2000). Ten runs of an admixture model with correlated allele 221 

frequencies among sites and LOCPRIOR were performed for each value of putative 222 

population number (K) between 1 and 40 with a burn-in of 50,000 iterations followed by 223 

100,000 iterations in the Markov chain. The most likely number of genetically different 224 

populations was determined from the posterior probability of the data for a given K and the 225 

ΔK (Evanno, Regnaut & Goudet, 2005). To test for a potential bias due to the inclusion of 10 226 

close-by sites from Gotland, the PCoA and STRUCTURE analyses were run once using 227 

individuals from all 30 sites and once using individuals from 21 sites including only a single 228 

site from Gotland (SE.OG). Since the results did not qualitatively differ (Fig.S2-S6, Table 229 

S4), we presented only the results based on 30 sites. In addition, assignment probabilities of 230 

individuals to their original site (PA) were calculated using a discriminant analysis of principal 231 

components (DAPC - Jombart, Devillard & Balloux, 2010) in R 3.0.1 (R CORE TEAM, 2013). 232 

Second, the clustering of sites into groups was investigated by a K-Means clustering using an 233 

analysis of molecular variance (AMOVA) with 40 independent Markov chains with 50,000 234 

iterations each assuming 2 to 15 clusters with GENODIVE. The most likely number of clusters 235 

was determined from the smallest bayesian information criterium (BIC). Furthermore, genetic 236 

differentiation was quantified between groups and among sampling sites within groups using 237 

an AMOVA with 10,000 permutations to assess significance using GENODIVE. Additionally, 238 

within-group global FST values were calculated and compared with 10,000 permutations using 239 

FSTAT.  240 



To test for the presence of isolation-by-distance patterns, a decomposed pairwise 241 

regression analysis (DPR) was conducted in R to account for potential between-site 242 

differences in the gene flow-drift equilibrium (Koizumi, Yamamoto & Maekawa, 2006). 243 

Briefly, DPR first detects outlier sites based on the distribution of residuals from the overall 244 

regression between genetic and geographical distances. In a second step, genetic distances are 245 

regressed against geographical distances for each site against all other non-outlier sites to 246 

obtain a regression intercept and slope per site. The intercept and slope of the decomposed 247 

regressions measures genetic differentiation to other populations and isolation-by-distance 248 

(IBD) respectively for each site (see Koizumi et al., 2006 for details). 249 

 250 

Testing for the influence of environmental factors on differences among sites 251 

To investigate potential mechanisms underlying differences in genetic diversity, the 252 

relationships between indices of genetic diversity per site and the following environmental 253 

factors, which may be expected to influence individuals’ movements, were tested: (i) 254 

geographical location (latitude and longitude); (ii) vegetation type (deciduous or coniferous 255 

trees; excluding SP.MU and ES.KI, where birds were sampled in orange tree plantations or 256 

mixed areas); (iii) temperature and (iv) minimal distance to the sea. Latitude, longitude and 257 

minimal distance to the sea were obtained using GOOGLE EARTH v5.2.1. Using the position 258 

along a southwest – northeast axis as a geographical location did not affect the results, and 259 

thus only results including latitude and longitude are reported. Temperatures were obtained 260 

from the European photovoltaic geographical information system (Huld et al., 2006). The 261 

measures based on temperature were (i) average daily temperature per month, (ii) temperature 262 

variance per year, (iii) difference between the most extreme annual temperatures and (iv) 263 

average temperature during autumn-winter (September - February) and spring-summer 264 

(March- August). In addition to the indices of genetic diversity per site, we calculated an 265 



estimate of effective population size (Ne) with the linkage disequilibrium method using a 266 

threshold of 0.05 for the exclusion of rare alleles in NEESTIMATOR v2 (Do et al., 2014) and the 267 

kinship coefficient of Loiselle et al. (1995) averaged per site with GENODIVE. The 268 

relationships between genetic diversities (AR and HE), assignment probabilities, kinship 269 

coefficients, effective population sizes and environmental factors were tested using linear 270 

models since all indices were normally distributed (residuals were checked for normality and 271 

homoscedasticity). Because the environmental factors were correlated with each other 272 

(correlation coefficients ranging from 0.31 to 0.86, all P < 0.001, results not shown), Akaike’s 273 

information criterion (AIC) values of models including each factor separately were compared 274 

in order to identify the environmental factor(s) that best explained the data using the package 275 

AICmodavg (Mazerolle, 2015) in R. The best models included the model with the smallest 276 

AIC and all models with a difference in AIC (ΔAIC) to this model of less than 2 (Burnham, 277 

Anderson & Huyvaert, 2011). Once the best models were identified, the significance of the 278 

effects retained was assessed with an F test. 279 

In a second step, the influence of the following environmental factors on genetic 280 

differentiation among sampling sites was tested: (i) geographical distance between sites, (ii) 281 

mean geographical location of sites, (iii) absolute difference in average daily temperature 282 

between sites and (iv) mean of the average daily temperature of sites. Because previous 283 

analyses showed that genetic diversity was best explained by temperatures in autumn-winter 284 

(see Results section), only the difference in average autumn-winter temperatures between 285 

sites (hereafter called autumn-winter temperature difference) and the mean of the average 286 

daily temperature in autumn-winter of sites (hereafter called mean autumn-winter 287 

temperature) were tested in the analyses of genetic differentiation. Similarly, only the latitude 288 

was retained here to characterize geographical location for analyses on genetic differentiation 289 

since site latitude and longitude were correlated in our study (i.e. sites were distributed along 290 

a south-west / north-east axis). The difference between values for the two sites in pairwise 291 



comparisons provides a measure of the environmental contrast between sites, whereas the 292 

mean value gives a measure of the position of the pair of sites in each pairwise comparison 293 

along the environmental gradient considered (geographical position or winter severity). The 294 

genetic differentiation between sites was calculated for each pair of sites and summarized in a 295 

pairwise matrix; the same approach was used for the differences and mean values of the 296 

environmental factors between sites. Correlations between levels of pairwise genetic 297 

differentiation based on either FST, G’’ST or D and pairwise differences in environmental 298 

factors were investigated with Mantel tests (or partial Mantel tests when more than two 299 

matrices were compared) with 10,000 permutations using the package vegan (Oksanen et al., 300 

2011) in R . By homogenising the genetic composition of connected populations, gene flow 301 

should reduce both the mean level and the variability of genetic differentiation between 302 

populations (Hutchison & Templeton, 1999). Consequently, a factor affecting gene flow 303 

should be correlated with both the level of genetic differentiation and the absolute values of 304 

residuals of the linear regression between the factor and the level of genetic differentiation 305 

(hereafter called residual pairwise FST , G’’ST or D respectively) Hutchison & Templeton, 306 

1999). Therefore, the correlation between matrices of environmental factors and their residual 307 

pairwise genetic differentiation was also tested.  308 

 309 

Results 310 

Genetic diversity and equilibrium 311 

No evidence for linkage disequilibrium at any locus in any site or departure from HWE was 312 

found after correction for multi-comparisons. Pooling all sites, a significant deviation from 313 

HWE was observed (score-test: P < 0.001), suggesting the existence of sub-populations. The 314 

number of alleles per locus ranged from 4 to 41 with an average of 16 alleles across loci. 315 



Mean allelic richness per site ranged from 6.32 to 7.66 (Table S2). Expected heterozygosity 316 

varied between 0.60 and 0.68 and the number of effective alleles between 3.94 and 4.92 317 

(Table S2). FIS per site ranged from -0.049 to 0.047 (Table S2), but no FIS value differed 318 

significantly from zero after correcting for multiple tests, as expected under within-site HWE. 319 

 320 

Genetic differentiation among sampling sites 321 

Genetic differentiation among sampling sites across Europe was low, but significant (global 322 

FST = 0.008, G’’ST = 0.024, D = 0.016, all P < 0.001). Pairwise FST ranged from -0.004 to 323 

0.040 (Table S3). Out of 435 pairwise FST comparisons, 147 (i.e. 33.8%) were significantly 324 

different from zero after sequential Bonferoni correction. Interestingly, the majority of 325 

significant comparisons (134 out of 147, i.e. 91.1%) involved six (out of seven) sampling sites 326 

located in the south-western part of Europe, i.e. below 47°N (CH.BE, FR.MO, SP.MU, 327 

SP.FR, SP.MA and PO.CO), indicating different levels of genetic differentiation between 328 

northern and southern sites (Fig. 2). FR.RO was the only site located in the southern region 329 

for which pairwise FST values were non-significant. Results of both the PCoA analysis and NJ 330 

phenogram based on Nei’s genetic distance were congruent with the observed pairwise FST 331 

pattern for six out of the seven southern sites (Fig. 3). The PCoA accounted for 62% of the 332 

total genetic variation on the first 3 axes (26.5%, 18% and 17.5% respectively). Independently 333 

of the axes considered, PO.CO, SP.MU, SP.MA, SP.FR, FR.MO were identified as being 334 

rather distinct from all other sites (i.e. outside the 50% and close to the 95% limit of the 335 

confidence interval; Fig. 3a-b). These south-western sites were also differentiated from each 336 

other, except SP.MA and SP.FR, which also showed lower pairwise FST values. Only CH.BE, 337 

which had relatively low FST values, was not identified as a differentiated site by the PCoA 338 

and the NJ phenogram analyses. Furthermore the central cluster was randomly distributed on 339 

each PCoA axis, in particular with no clumping of the 10 close-by sampling sites located on 340 



Gotland (Fig. 3a-b), which was confirmed on the NJ phenogram. In fact, populations on 341 

Gotland showed similar levels of differentiation among themselves as among the other sites 342 

from northern Europe (Fig. 3c). Depending on the method used, some of the northern sites 343 

appeared differentiated from the central cluster (e.g. SE.LO, Fig. 2b and 3a; SE.SA, Fig. 3a-c; 344 

or NE.LA, Fig. 3a) suggesting that they could be distinct from the central cluster yet less 345 

differentiated than the south-western sites. Overall, the results indicate that (i) genetic 346 

differentiation among sampling sites was low (Fig. 2 and 3); (ii) many sites (including close-347 

by ones) presented similar and low levels of genetic differentiation without spatial structure 348 

(e.g. a centred star-like pattern; Fig. 3c); and (iii) at least five southern sites were 349 

differentiated from the central cluster and differentiated from each other, except SP.MA and 350 

SP.FR (Fig. 2 and 3). 351 

STRUCTURE identified three genetic clusters (K=3) following the Evanno correction 352 

(Fig. S4-S5). Two of these clusters were mainly associated with the four Iberian sites, where 353 

the Portuguese site (PO.CO) was further distinct from all Spanish sites (SP.MU, SP.MA and 354 

SP.FR), however no individual was fully assigned to either cluster (Fig. S6). All other sites 355 

were predominantly assigned to a third cluster except for CH.BE, which showed evidence for 356 

introgression from south-western Europe. Concordantly, the AMOVA based K-means 357 

clustering identified two groups: one comprising the four Iberian sites and CH.BE and a 358 

second including all other sites (all northern sites and the two sites in France). The AMOVA 359 

using south-western (i.e. below 47° latitude: PO.CO, SP.MU, SP.MA, SP.FR, FR.MO, 360 

FR.RO, CH.BE) and northern (above 47° latitude) sites as grouping variable suggested low 361 

but significant genetic differentiation between these groups (Fgroup-total = 0.002, P < 0.001) and 362 

among sites within groups (Fsites-group = 0.008, P < 0.001). In addition, the differentiation was 363 

higher within southern sites than other sites (global FST = 0.016 and 0.005, G’’ST = 0.052 and 364 

0.014, D = 0.034 and 0.009, for southern sites and other sites, respectively; P < 0.001). 365 



Excluding CH.BE, FR.MO and FR.RO, did not change qualitatively the results of the 366 

hierarchical AMOVA and the level of differentiation, suggesting that the observed clustering 367 

was mainly driven by the four Iberian sites, which are more differentiated than the other 368 

south-western sites. Interestingly, the weak overall differentiation among the northern sites 369 

did not result from differentiation between specific sampling sites since 19 sites had to be 370 

excluded one after the other (starting from the sites with the highest mean pairwise FST value 371 

and going downwards) for the overall differentiation to become non-significant (results not 372 

detailed). Moreover, differentiation among the close-by sites on Gotland (with distance 373 

ranging from 3 to 50 km) was not lower than among other northern sites (global FST = 0.006 374 

and 0.004 respectively, P = 0.646; Fig. 5a).  375 

Finally, the DPR analysis identified FR.MO (the only urban site) as an outlier, since 376 

the model excluding this site had a lower AIC (-94.78) and higher R
2
 (0.17) values, although 377 

other models (either comprising all sites or with additional outliers) could not be excluded 378 

(ΔAIC < 1.28). Overall, the DPR divided sampling sites into five groups (see Fig. 1 for 379 

location, Table S2): (1) two southern sites (FR.MO and FR.RO) showed a significant atypical 380 

negative IBD pattern and significant differentiation from other sites; (2) the four Iberian sites 381 

(SP.MU, SP.MA, SP.FR and PO.CO) and CH.BE showed no significant IBD but significant 382 

differentiation from other sites; (3) ten northern sites in Fennoscandia showed both significant 383 

differentiation from other sites and an IBD pattern; (4) nine northern sites from different 384 

locations showed no differentiation from other sites but significant IBD; and (5) four central 385 

sites (UK.WY, UK.CA, BE.CE, BE.BO) showed no differentiation and no IBD. Interestingly, 386 

all but two close-by sites on Gotland showed both significant differentiation from other sites 387 

and an IBD pattern. 388 

 389 

Exploring the influence of environmental factors on genetic differences among sites 390 



Models including latitude, longitude, and the variance and difference in daily temperature 391 

were retained for none of the five indices (allelic richness AR, expected heterozygosity HE, 392 

assignment probability PA, kinship coefficient and effective population size Ne, ΔAIC > 2 in 393 

all cases; Table S5). Conversely, models with average daily temperature for months 394 

September to January, and consequently average autumn-winter temperature, were among the 395 

models best explaining the data for PA, AR, HE (ΔAIC < 2 in all cases; Table S5). For kinship 396 

coefficient, models with average daily temperature for months August, September and 397 

December were among the models best explaining the data (ΔAIC < 2) but not the model with 398 

average autumn-winter temperature despite a relative low AIC (ΔAIC < 2.5). The model 399 

including vegetation type was the only best model in explaining the data for the effective 400 

population size. Allelic richness decreased (F1,28 = 6.90, P = 0.014, R
2
 = 0.20) while 401 

assignment probabilities and kinship coefficients increased (F1,28 = 10.57, P = 0.003, R
2
 = 402 

0.27; F1,28 = 17.04, P < 0.001, R
2
 = 0.36 respectively) with increasing average autumn-winter 403 

temperature (Fig. 4). Expected heterozygosity and effective population size were not 404 

correlated with average autumn-winter temperature (F1,28=0.81, P = 0.38; F1,24 = 0.56, P = 405 

0.46 respectively, Fig. 4). Effective population size was similar for coniferous and deciduous 406 

forests (F1,22 = 0.03, P = 0.87). Models with other factors were retained for part of the indices 407 

only: temperatures in summer months (July to August) for AR and HE, temperature in 408 

February for HE, average spring-summer temperature for HE, vegetation type for AR and 409 

distance to the sea for HE (Table S5). However, allelic richness was similar in coniferous and 410 

deciduous forests (F1,26 = 0.08, P = 0.77), and expected heterozygosity was not correlated 411 

with spring-summer temperature or distance to the sea (F1,28<2.5, P > 0.12). Based on these 412 

results, only the average autumn-winter temperature was retained among temperature 413 

measures for the analyses of genetic differentiation. 414 

All pairwise genetic differentiation indices increased with geographical distance 415 

between sites, autumn-winter temperature difference between sites and mean autumn-winter 416 



temperature of the two sites in pairwise comparisons, and decreased with mean latitude of the 417 

two sites (Table 2; Fig. 5). Each environmental factor explained 36 to 57% of the variation in 418 

pairwise genetic differentiation. Furthermore, both mean autumn-winter temperature and 419 

latitude, but not geographical distance or autumn-winter temperature difference, were 420 

correlated with their respective residual pairwise genetic differentiation (Table 2). This 421 

suggests that genetic differentiation is mainly driven by site characteristics (latitude, mean 422 

autumn-winter temperature) rather than environmental contrast between sites. Mean autumn-423 

winter temperature remained significantly correlated with genetic differentiation after 424 

correcting for latitude (partial Mantel test: rM = 0.31, P = 0.019), whereas mean latitude was 425 

not correlated with genetic differentiation anymore after correcting for mean autumn-winter 426 

temperature (partial Mantel test: rM = -0.03, P = 0.534). This suggests that mean autumn-427 

winter temperature was the best predictor of genetic differentiation among the tested 428 

environmental effects. 429 

 430 

Discussion 431 

Biological relevance of the observed genetic differentiation 432 

The low but significant global genetic differentiation based on microsatellite markers suggests 433 

extensive gene flow among great tit populations across Europe. Nevertheless, the overall 434 

deviation from Hardy-Weinberg equilibrium, the absence of inbreeding within sites (as 435 

revealed by heterozygosity) and the overall population differentiation support a Wahlund 436 

effect, i.e. a substructure among sites. Individual-based clustering methods failed to 437 

characterise discrete genetic groups, yet found some indication for substructure among south-438 

western sites. This is consistent with the high proportion of the genetic variance (> 98%) 439 

observed within populations (e.g. Chen et al., 2007; Latch et al., 2006). We are nevertheless 440 



confident about the validity of the significant global genetic differentiation given the 441 

relatively large sample sizes and because none of the analyses suggested a bias in both global 442 

and pairwise genetic differentiation due to variation in sample size among sites or being 443 

associated by specific loci and sites.  444 

In general, a significant IBD supports the biological relevance of low genetic 445 

differentiation among populations (e.g. FST values around 0.003), especially in species 446 

characterised by large population sizes and high gene flow such as birds (e.g. Prochazka et al., 447 

2011) or marine fish (e.g. Purcell et al., 2006). But low genetic differentiation even in absence 448 

of IBD may also reflect heterogeneity in gene flow affecting ongoing microevolutionary 449 

processes in highly mobile organisms. This is illustrated by the case of a physically isolated 450 

island population of great tits, where immigrants from the mainland can be easily identified 451 

(Postma & van Noordwijk, 2005). In this population, direct (i.e. observed movements of 452 

individuals) and indirect (i.e. genetic, based on microsatellite markers) measures of gene flow 453 

were compared. The genetic differentiation between resident and immigrant individuals was 454 

low but significant (FST=0.007; Postma et al., 2009). Consistent with a higher immigration 455 

rate in the western part (43%) compared to the eastern part (13%) of the study island, a low 456 

but significant genetic differentiation was found between the two parts (FST=0.011; Postma et 457 

al., 2009). Because mainland individuals lay larger clutches, immigration was shown to 458 

impede local adaptation in the western but not the eastern part of the island (Postma & van 459 

Noordwijk, 2005). Using similar microsatellite markers in the present study, we also found 460 

comparable levels of genetic differentiation between populations, supporting the biological 461 

implications of our findings. Lastly, using a restricted set of microsatellite markers, we 462 

retrieved a comparable level of genetic differentiation between two sites (NE.HO and 463 

UK.WY; FST = 0.005) as has been observed with several thousand SNP markers for the same 464 

sites (van Bers et al. 2012; FST = 0.010). The slightly higher level of genetic differentiation in 465 

their study could be due to the inclusion of some highly divergent outlier loci. Another study 466 



also using the same SNP set further identified cryptic genetic differentiation within the 467 

UK.WY site, which was similarly driven by few (<1%) markers (Garroway et al., 2013). Thus 468 

our microsatellite data set seems to be suitable to accurately calculate population genetic 469 

estimates that resemble average genome wide patterns (i.e.Van Bers et al., 2012), whereas 470 

few genomic regions may exist that underlie patterns of local adaptation (Garroway et al., 471 

2013; Van Bers et al., 2012). 472 

Our analyses revealed higher genetic differentiation in south-western compared to 473 

northern European sites. This finding suggests decreased gene flow between south-western 474 

and northern Europe as well as within south-western Europe. Subsequent generalisations 475 

towards other southern European populations need to be done with caution since our sampling 476 

design focused only on south-western populations. A similar pattern was reported for 477 

different passerine species as well as for plants and mammals (Hewitt, 2000; Kvist et al., 478 

2004; Pentzold et al., 2013; Prochazka et al., 2011) and is generally interpreted as the result of 479 

postglacial recolonisation. In the present case, the higher divergence of southern populations 480 

compared to northern ones could be due to the fact that both groups may have derived from 481 

different glacial refugia (Hewitt, 2000). Such scenario has been suggested for other tit species, 482 

for which distinct glacial refugia may have existed in the Mediterranean region (Kvist et al., 483 

2004) and across Europe (Pentzold et al., 2013). However, for several reasons, the genetic 484 

differentiation observed in great tits using microsatellite markers seems unlikely to result 485 

from the occurrence of one or several genetic lineages that have recolonized northern Europe 486 

from distinct refugia. First, the presence of several glacial refugia would have led to the 487 

existence, at least in southwestern populations, of genetic variations specific to the multiple 488 

refugia causing a higher genetic diversity within the Iberian Peninsula (Pentzold et al., 2013; 489 

Prochazka et al., 2011). In contrast, the Iberian Peninsula harboured a level of allelic richness 490 

at microsatellite markers that was comparable to all other sites (7.26 and 7.32 alleles 491 

respectively). Similarly, phylogenetic studies showed in great tits a homogeneous 492 



mitochondrial diversity from northern to southern Europe (Fig S1), which is consistent with a 493 

colonisation from a single refugium and the absence of strong geographical barriers to 494 

dispersal (Kvist et al., 2003; Kvist et al., 1999; Pavlova et al., 2006). Second, a rapid post-495 

glacial range expansion from a single refugium is likely to result in lower genetic diversity 496 

within the colonized range as opposed to the ancestral refugium (Antoniazza et al., 2014; 497 

Pavlova et al., 2006). In contrast, Iberian populations had a slightly lower allelic richness per 498 

site compared to all other sites (6.71 ± 0.29 and 7.11 ± 0.29 alleles respectively, Table S2). 499 

Interestingly haplotype diversity was lower in all south-western populations than in the north-500 

eastern populations in coal tits (Pentzold et al., 2013) suggesting that a lower genetic diversity 501 

in southern regions could have arisen long time ago. However such pattern was not detected 502 

with mitochondrial DNA in great tits (Pavlova et al., 2006). Therefore, the observed patterns 503 

of genetic differentiation at microsatellite loci among great tit populations are unlikely to 504 

result from post-glacial recolonization processes from one or several refugia but rather 505 

represent other historical and/or recent processes. Further studies using genetic modelling 506 

approaches combined with increased genomic coverage are however necessary to elucidate 507 

the factors underlying the pattern observed here. 508 

 509 

How could gene flow be shaped by temperature?  510 

Latitude and (autumn-winter) temperature were significantly correlated with both the level of 511 

genetic differentiation among populations and its level of variation in contrast to the 512 

geographical distance and the difference of temperature that explained only the level of 513 

genetic differentiation among populations. Moreover, only temperature was significantly 514 

associated with the level of genetic differentiation after taking into account latitude. Finally, 515 

temperature but not latitude explained the decrease of genetic diversity from the South to the 516 

North. The effect of temperature on different components of the genetic variation suggests a 517 



strong relationship between temperature and neutral genetic structure among great tit 518 

populations. However we cannot exclude that temperature is correlated with additional 519 

environmental factors such as photoperiod or irradiance cues (De Frenne et al., 2013) and 520 

then the correlation between temperature and genetic differentiation is a by-product of the 521 

effect of environmental factors on genetic variation that we did not measure here. Nonetheless 522 

the relationship between temperature and neutral genetic structure suggests that genetic 523 

differentiation, and hence gene flow, may be related to winter local movements and partial 524 

migration (Nilsson, Alerstam & Nilsson, 2008; Nowakowski & Vähätalo, 2003). This could 525 

also be associated with winter severity: food availability may be especially restricted in 526 

northern Europe (Newton, 2011 but see Nilsson et al., 2008; Nowakowski & Vähätalo, 2003) 527 

when insect abundances are lowest and great tits become mainly granivorous (Vel'ky, Kanuch 528 

& Kristin, 2011). Great tits are considered to be resident in southern and western Europe, but 529 

partial migrants in northern Europe, as shown in particular by captures at migratory passage 530 

sites in autumn and spring (Nowakowski & Vähätalo, 2003; Poluda, 2011; Gosler, 2002). Part 531 

of the birds (especially juveniles) may move during winter over short to long distances (up to 532 

> 1000 km; Nilsson et al., 2008; Nowakowski & Vähätalo, 2003). In spring, these migrants 533 

may either stay on the wintering grounds or return to their natal region to breed more or less 534 

close to their natal site (Gosler, 2002; Nilsson et al., 2008; Nowakowski & Vähätalo, 2003). 535 

Partial migration could therefore generate on average longer dispersal distances, associated 536 

with higher variance, in the northern compared to southern European populations (see Orell et 537 

al., 1999). Although part of the immigrant individuals (often around 50% of local breeders in 538 

monitored populations) may originate from the surroundings of study areas (e.g. Verhulst et 539 

al., 1997), differences in immunological, behavioural and/or life-history traits between 540 

potential immigrants (i.e. not previously captured in the population) and locally born 541 

individuals (e.g. Postma & van Noordwijk, 2005; Snoeijs et al., 2004) may support the 542 

existence of long-distance immigration in great tits. Because obtaining additional information 543 



on the origin of immigrant individuals in the field is highly challenging, this hypothesis 544 

however remains difficult to test. 545 

Interestingly, similar genetic structures across Europe have been found in other small 546 

passerine species, i.e. for the bluethroat (Luscinia svecica; Johnsen et al., 2006) and the pied 547 

flycatcher (Ficedula hypoleuca; Lehtonen et al., 2009). In the latter case,, no large-scale 548 

differentiation was observed in north-eastern Europe but small-scale differentiation was found 549 

in southern Europe. Because the pied flycatcher is an obligatory migratory species, wintering 550 

in Sub-Saharan Africa, the lower genetic differentiation of northern sites cannot be explained 551 

by differences in winter movements linked to winter severity. Nevertheless, lower philopatry 552 

and local recruitment rates, and thus higher dispersal rates, have been suggested in northern 553 

compared to southern sites for several migratory species, including the pied flycatcher 554 

(Lehtonen et al., 2009) and the barn swallow (Balbontin et al., 2009). In these species 555 

dispersal may be linked to other environmental factors such as e.g. habitat stability, 556 

fragmentation or elevation. Both here and in the study by Lehtonen et al. (2009), southern 557 

populations were sampled in specific habitats, including high elevation sites (great tits: 558 

SP.MA, SP.FR and CH.BE > 500 m.a.s.l.; pied flycatchers: Lehtonen et al., 2009), urban 559 

environment (FR.MO) or plantations (SP.MU), in contrast to northern sites located mainly in 560 

temperate lowland forests. In southern Europe, stable habitat heterogeneity, niche 561 

specialisation or high temperature may promote local adaptation (e.g.Husby, Visser & Kruuk, 562 

2011). This could increase local genetic differentiation and select against dispersal to a higher 563 

degree than in the northern regions (Van Doorslaer et al., 2009), where the availability of 564 

large and/or homogeneous habitat patches may reduce dispersal costs (Travis & Dytham, 565 

1999) in both migratory and sedentary species. Individuals of the southern populations may 566 

therefore be less prone to accept breeding in new sites, leading to lower gene flow. 567 

Consequently, intraspecific differentiation might be more likely than neutral differentiation in 568 

southern sites (e.g. Johnsen et al., 2006; Lehtonen et al., 2011). 569 



 570 

Conclusion 571 

Non-random dispersal and genetic structure in great tits have previously been investigated at 572 

small scales, providing evidence for local adaptation (i.e. within a few km; Garant et al., 573 

2005; Garroway et al., 2013; Postma et al., 2009; Postma & van Noordwijk, 2005). Here, we 574 

compared populations across Europe and found low but significant genetic differentiation 575 

among populations. This differentiation was unrelated to geographical distance between sites 576 

but was influenced by geographic location and environmental factors, in particular autumn-577 

winter temperature. This might have important implications for the evolutionary trajectories 578 

of great tit populations and other species showing similar patterns. The northern populations 579 

may represent a single large population in which gene flow drives demographic and 580 

evolutionary processes. In this case, habitat choice and assortative mating may play a central 581 

role in local adaptation processes (e.g. Postma & van Noordwijk, 2005). In contrast, the 582 

southern populations may be more isolated and experience stronger genetic drift and/or higher 583 

selective pressures (e.g. Lehtonen et al., 2011). Studying potentially ongoing intraspecific 584 

diversification may be particularly relevant in these populations.  585 

The association between genetic differentiation and winter severity may have further 586 

implications in the context of climate change. If the increase of winter temperatures favours 587 

increased philopatry in northern populations (e.g. Van Vliet, Musters & Ter Keurs, 2009), the 588 

latter may reach a gene flow-drift equilibrium. As a consequence, increased genetic 589 

differentiation and IBD could arise, favouring neutral genetic differentiation and/or local 590 

adaptation. Conversely, southern populations may become extinct if genetic adaptation or 591 

phenotypic plasticity fail to allow to adapt sufficiently fast (Visser, 2008; Boeye et al., 2013). 592 

Alternatively, an increase of philopatry among northern populations, induced by warmer 593 

winters could intensify competition especially during the breeding season, leading to a 594 



population decline (Kokko, 2011 but see Stenseth et al., 2015). And southern populations may 595 

persist if climate change combined with habitat fragmentation select for less emigration but 596 

larger dispersal distances (Boeye et al., 2013; Fronhofer et al., 2014). If global warming 597 

results in population extinction, proportionally more genetic diversity would be lost in the 598 

South than in the North of Europe. Because most studies on great tits have been conducted in 599 

north-central Europe, further work is needed to assess both the large-scale variation of 600 

philopatry, its relation to local and regional winter partial migration movements and its 601 

consequence in terms of gene flow between populations.  602 
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Table 1. Decomposed pairwise regression (DPR) of the genetic differentiation with 619 

geographic distance for each sampling site. Intercepts indicate the level of differentiation of 620 

sites, and slopes indicate isolation-by-distance (IBD). FR.MO was identified as an outlier site 621 

and was therefore excluded to calculate the pairwise regressions of other sites. Significant 622 

values are indicated in bold. 623 

 Intercept ± SE   Slope ± SE     

Site  (10
-2

) P (10
-6

) P R
2
 Genetic differentiation pattern 

FR.MO 2.57 0.26 0.000 -3.87 1.71 0.032 0.159 Negative IBD, differentiated 

sites FR.RO 0.95 0.27 0.002 -3.75 1.77 0.044 0.147 

SP.MU 1.79 0.21 0.000 0.07 1.06 0.950 0.000 

No IBD, differentiated sites 

PO.CO 1.70 0.22 0.000 0.34 0.97 0.729 0.005 

SP.MA 1.28 0.23 0.000 -0.24 1.09 0.828 0.002 

SP.FR 1.21 0.21 0.000 -0.58 0.99 0.561 0.013 

CH.BE 0.61 0.22 0.010 1.73 1.80 0.344 0.035 

SE.SA 0.92 0.14 0.000 2.65 1.13 0.027 0.175 

IBD, differentiated sites 

SE.LO 0.87 0.12 0.000 4.35 1.01 0.000 0.418 

SE.BO 0.52 0.12 0.000 2.86 1.02 0.010 0.232 

FI.TU 0.50 0.17 0.006 2.36 1.11 0.043 0.148 

NO.DA 0.44 0.13 0.002 2.59 1.02 0.017 0.199 

SE.OG 0.42 0.11 0.001 3.50 0.92 0.001 0.355 

SE.JA 0.35 0.11 0.005 5.31 0.93 0.000 0.558 

SE.GE 0.33 0.12 0.009 2.51 0.97 0.016 0.203 

SE.SI 0.30 0.13 0.035 3.34 1.08 0.005 0.269 

SE.BI 0.26 0.11 0.021 2.61 0.86 0.005 0.264 

NE.LA 0.43 0.24 0.081 6.43 2.27 0.009 0.235 

IBD, undifferentiated sites 

FI.KO 0.20 0.17 0.251 2.38 0.94 0.018 0.197 

SE.ET 0.10 0.12 0.407 3.23 0.99 0.003 0.292 

NE.HO 0.07 0.21 0.754 4.33 2.02 0.042 0.150 

SE.DT 0.01 0.13 0.944 4.13 1.06 0.001 0.369 

NE.WE 0.00 0.17 0.994 3.94 1.55 0.018 0.199 

ES.KI 0.00 0.14 0.997 2.14 0.97 0.036 0.159 

PL.PU -0.16 0.25 0.520 4.30 1.98 0.039 0.154 

HU.PI -0.21 0.29 0.490 5.21 2.24 0.028 0.172 

UK.WY 0.45 0.25 0.089 0.80 1.96 0.687 0.006 

No IBD, undifferentiated sites 
BE.BO 0.38 0.22 0.098 2.83 2.03 0.175 0.070 

BE.CE 0.27 0.17 0.127 2.76 1.57 0.090 0.106 

UK.CA 0.22 0.23 0.331 2.84 1.83 0.132 0.085 

All 0.45 0.06 0.000 3.21 0.40 0.000 0.130 IBD, differentiated sites 



Table 2: Effects of environmental factors on the genetic differentiation between sampling sites across Europe and its variation based on Mantel tests 624 

(rM). Genetic distance was measured as pairwise FST, G’’ST and D and their variation was investigated using the residuals of a linear regression 625 

between each environmental factor and the respective pairwise genetic distances. See text for details. Significant correlations are indicated in bold. 626 

 627 

  Response variable: FST Residuals on FST G’’ST Residuals on G’’ST D Residuals on D 

Explanatory variable: rM P rM P rM P rM P rM P rM P 

Mean autumn- winter temperature 0.57 <0.001 0.17 0.022 0.57 <0.001 0.16 0.025 0.57 <0.001 0.15 0.023 

Latitude   -0.50 0.002 -0.23 0.010 -0.50 0.002 -0.22 0.010 -0.51 0.001 -0.22 0.007 

Geographic distance 0.36 <0.001 0.06 0.205 0.37 0.001 0.07 0.188 0.37 <0.001 0.07 0.166 

Difference in autumn-winter temperature 0.39 0.002 0.10 0.125 0.39 0.002 0.10 0.120 0.39 0.002 0.10 0.114 



Figure legends: 628 

 629 

Figure 1. Location of the 30 sampling sites across Europe. The inset shows the 10 sampling 630 

sites on the island of Gotland, Sweden. The dashed line shows the 47° latitude. IBD analysis 631 

treats all populations into a single quantity assuming that all local populations have similar 632 

characteristics. In contrast, the DPR analysis extracts the elements of individual local 633 

population from the information on an entire metapopulation and identifies five groups 634 

differing in relative strengths of gene flow and genetic drift patterns (i.e. different patterns of 635 

genetic differentiation and IBD summarised by different colours).  636 

 637 

 638 



Figure 2. Heatmap of the pairwise FST values between all sites. Sites are ordinated by 639 

pairwise FST values. Black bars highlight the sites located below the 47° latitude (i.e. south-640 

western sites). 641 

 642 

 643 

 644 

645 



Figure 3. (a, b) Principal coordinate analysis (PCoA) contrasting axes 1 vs. 2 (a) and 1 vs. 3 646 

(b), and (c) NJ phenogram based on Nei’s genetic distance, with bootstrap values of specific 647 

clusters. (a,b) On the PCoA plots, the smallest and largest ellipses represent the 50% and 95% 648 

confidence intervals respectively; black dots represent the five sites identified as satellites, 649 

grey dots potential other satellites and white dots non-differentiated sites. (c) On the NJ 650 

phenogram, the three grey circles indicate identified clusters and the five sites identified as 651 

satellites are indicated in bold. 652 

 653 

 654 

 655 



Figure 4. Relationships between average autumn-winter temperature and (a) latitude and (b-f) 656 

different population indices: assignment probability (b), allelic richness (c), mean pairwise 657 

kinship (d), unbiased expected heterozygosity (e), effective population size (f). 658 

 659 

 660 

 661 

662 



Figure 5. Relationship between pairwise FST values and (a) geographic distance between sites 663 

and (b) mean autumn-winter temperature of the two sites in pairwise comparisons. White 664 

dots: pairwise FST values between northern sites; grey dots: pairwise FST values between one 665 

northern and one south-western site; black dots: pairwise FST values between south-western 666 

sites. 667 
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