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Abstract 
This paper presents the theoretical formulation and the implementation of a class of finite 
elements capable of representing the slippage between border cables and membrane 
sheaths, without distortion of the cable’s tangent stiffness. After reviewing the 3-node 
Aufare’s sliding-cable element, new sliding-cable super-element is proposed, which 
simplifies the mesh generation labor and overcomes some limitations of Aufare’s elements 
to deal with large amounts of relative sliding between cables and membrane, which arises 
as long as meshes are refined.   

 
Keywords: border cables, sliding, membrane structures, nonlinear analysis. 

1. Introduction 
Programs aimed to the analysis of membrane structures, usually by means of the finite 
element method (FEM), very seldom have at hand some element which can represent 
satisfactory, and without high computational costs, the slippage between a cable and the 
membrane it is devised to restrain.  Modeling the cable as a sequence of no-compression 
truss elements is usual in engineering practice. However, that implies in perfect adherence 
between cable and membrane, which is seldom the case, if ever. This feature is not 
problematic during the phase of shape finding of the membrane, since shape finding is an 
essentially immaterial process. But it does distort the response of the actual, material 
membrane, under service loads.  
This paper is restricted to the study of cases when the cable is transversally constrained by 
the membrane surface, in such a way that sliding is only possible tangentially to the cable 
development. This is the case of the cables commonly used along the membranes borders, 
as well as of the internal ridge or valley cables used to fold and strengthen a membrane. We 
will refer to all of these cables, generically, as “border cables”.  
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For small to medium size structures, when the cable diameters are small and the fabrics 
more flexible, a practical solution to transfer the transversal loads from the membrane to the 
border cables is the use of sheaths, welded or sewn directly to the membrane fabric, as 
shown in Figure 1(a).  For larger spans, such as in Denver’s Airport, less flexible fiberglass 
fabrics and larger cable diameters are required, so the border cables are positioned 
externally to the membrane. Stresses in the membrane, transversal to the border, are 
transferred to the external border cables through a system of plates which are compressed 
against the upper and lower surfaces by a series of bolts. Polymeric strips are inserted 
between the membrane and the plates, to reduce the friction between the contact surfaces 
and avoid wearing of the fabric.  The membrane is made thicker at the border, and the 
resulting interference restrains the membrane from slipping inwards, and the plates from 
slipping outwards. From the border plates, loads are transferred to the external cable by 
means of clamps, as shown in Figure 1(b/c). 

         
Figure 1:  (a) border cables inside sheaths; (b/c) border cables of Denver’s Airport [1]. 

2. Modeling border cables 
According to [2], the problem of the slippage of cables over a membrane had been noticed 
by several researchers [3],[4],[5], but has not yet been solved completely. As reviewed by 
[5], Matsumura [3] was the first to cope with the sliding problem in membrane structures, 
introducing a sort of “bending” elements into the analysis.  
A crude frictionless slippage analysis could simply assume the cable as a chain of truss 
elements with a very flexible material, under high initial strains, in such a way that the 
normal load on the cable would remained practically unaltered by the structure’s 
deformation. That indeed provide a good approximation to structures where the cables’ 
stiffness can be disregarded, such as in post-tensioned concrete members, when cables 
sometimes are even treated as an external distributed load. Nevertheless, in the case of 
membrane structures, the stiffness of the cables usually surpasses the membrane stiffness, 
and disregarding this feature can alter the structure’s equilibrium configuration and internal 
stress state.  
A general way to simulate the slippage between border cables and membranes is the 
development of a contact analysis. However, inclusion of contact elements between cables 
and membrane is a cumbersome process, and contact analyses usually require a large 
computational effort. On this line, an interesting model to study the behavior of a 
stabilizing cable laid over the surface of the membrane, using surface-based contact 
elements available in a commercial program based on the FEM was presented in [2].  
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However, in the context of the FEM, analysis of problems such as the folding of a 
membrane by a cable sliding over it in a generic way requires very refined, adaptive 
meshes. To overcome this limitation, a mesh-free method, based on the element free 
Galerkin (EFG) method, was presented in [6], yielding satisfactory results in the 
representation of both sliding and creasing. 
In the case of border cables, where the cables are transversally restrained, and slippage can 
only occurs if tangent to the cable, a less expensive way to model the phenomenon is 
offered by the sliding-cable element first proposed by Aufare [7], in the context of the 
cables of transmission lines. Aufare’s element was subsequently generalized by Pauletti 
[8],[9], considering the influence of dry friction. The element was successfully employed to 
model non-adherent tendons of post-tensioned concrete structures [10], as well as the 
hoisting of tensegrity domes [11]. The possibility of employing this element to model 
border cables had already been advanced by [8], but the task was postponed until the 
current paper. 
Even though Aufare’s element is capable of modeling problems involving border cables, it 
requires definition of extra nodes, not belonging to the membrane mesh, to connect several 
sliding cables into a larger chain. Now, since this element collapses if the intermediate, 
“pulley” node slides until touching one of the end nodes, the maximum allowed slippage 
diminishes, as long as the mesh is refined. This is a serious nuisance, since a slippage 
analysis will probably be required precisely when concern about stress concentrations 
exists, and refined meshes become most necessary. These drawbacks were the main 
motivation to the development of the sliding-cable super-element discussed ahead. 
A brief survey of literature reveals that elements similar to the sliding-cable super-element 
proposed in this paper have been already considered by other authors. Mitsugi [12] 
presented a static analysis of cable networks and their supporting structures, proposing a 
“hyper-cable” element, with a variable number of nodes and basically the same material 
and kinematic hypothesis than the present paper. Also Zhou [13] has presented a sliding 
cable element consisting of a “string of cables that dynamically passes through a prescribed 
node, called the slider point, which can be either still or moving”, in practice an assemblage 
of one Aufare’s and several other truss elements.   

3. Geometrically non-linear equilibrium 
Assume that the nodal coordinates of a discrete system, [ ]3 1

, 1, ,i ix i n
×

= =x G … , are stored in 

a global position vector 1 2 3 1

TT T T
n n×

= ⎡ ⎤⎣ ⎦x x x x… (note that double-transpose of vectors is 
used to avoid a column-wise representation). Dealing with cables and membranes, assume 
that each node has only displacement degrees-of-freedom [ ]3 1

, 1, ,i iu i n
×

= =u G … , stored in a 

global displacement vector 1 2 3 1

TT T T
n n×

= ⎡ ⎤⎣ ⎦u u u u… . The external loads acting on these 
nodes are stored in a global external load vector F , and the nodal force interactions are 
stored in a global internal load vector P  (with definitions analogous to x  and u ). The 
position vector can be written as 0= +x x u , where 0x  is a constant vector which describes 
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an initial configuration.  

With the above definitions, the problem of finding the equilibrium configuration of a 
network of central forces can be posed as:  “find *u  such that ( ) ( ) ( )* * *= − =g u P u F u 0 ”, 

where ( )g u  is the unbalanced load vector (or “error vector”). 

This problem can be solved –within a vicinity of the solution– iterating Newton’s 
recurrence formula,  

 ( ) ( ) ( )
1

-1

1
i

i
i i i i t i

−

+

⎛ ⎞∂
= − = −⎜ ⎟⎜ ⎟∂⎝ ⎠u

gu u g u u K g u
u

,  (1) 

where the tangent stiffness matrix i
tK is defined.  

It is sometimes convenient to decompose the vector of internal forces as P = CN , where 
( )=N N u  is a vector of scalar internal loads and  ( )=C C u  is a geometric operator. 

There results, for the tangent stiffness matrix: 

 ( ) T
t g c ext

∂ ∂ ∂ ∂ ∂
= = = + − = + +
∂ ∂ ∂ ∂ ∂

g C N FK CN - F N C K K K
u u u u u

    (2) 

where the geometric, the constitutive and the external stiffness matrices are respectively 
defined. It may be also convenient to define an internal tangent stiffness matrix 

int g c= +K K K . An interpretation of these stiffness components is given in [14] and [15].   

It is not computationally convenient to calculate directly the structure’s global stiffness 
matrix. Instead, the stiffness is calculated for each structural element and then added to the 
global stiffness matrix. So proceeding, the vector of the nodal displacements of the eth 
element is written as e e=u A u , where eA  is a Boolean incidence matrix of that element, 
which also appears in the relationship between the element and the global internal load 
vectors, as well as in the relationship between the element and the global tangent stiffness 
matrices, according to  

 
1

b
eT e

e=
= ∑P A p   and   t t

1

b
eT e e

e=
= ∑K A k A  (3)  

 Of course, it is not convenient to perform the matrix multiplications presented in (3), being 
quite more economical to add the element contributions directly to the global internal load 
vector and the tangent stiffness matrix, as explained in standard FEM textbooks.  

4. Aufare’s sliding-cable element 
Figure 3(a) shows a cable passing throw a frictionless pulley. It can be shown that the 
problem is independent of the pulley radius, and thus the situation can be well represented 
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by an Aufare’s element, in which the intermediate node is allowed to slide along the 
element length, as shown in Figure 3(b). Since no friction is considered, the normal load is 
constant in both straight segments into which the cable is divided, and 3P

G
 is directed along 

the bissetrix of the angle between them. 

1P

2P

3P

1N
2N

3
1

2

 
Figure 3: (a) a cable passing through a pulley; (b) an Aufare’s sliding-cable element. 

 
Keeping implicit the element index e, the total length of the cable, in the current 
configuration, is given by the addition of the lengths of the two segments, 

( ) ( )
1 1
2 2

1 1 2 2
T T= +l l l lA , where 0 0

1 1 1 3 3= + − −l x u x u and 0 0
2 2 2 3 3= + − −l x u x u . The element is 

defined in an initial configuration, already subject to a normal force 0N . The initial length 

0A  is obtained from 0 0 0
1 1 3= −l x x  and 0 0 0

2 2 3= −l x x . The stress-free, reference length, 
considering linear-elastic behavior is given by ( )0 0/r EA EA N= +A A , and thus the normal 
load in the current configuration is ( ) /r rN EA= −A A A .  

The displacement and internal forces vectors are given, respectively, by 

 
1

2

3

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

u
u u

u
 and 

( )

1 1

2 2

3 1 2

N N
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = =⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − +⎣ ⎦ ⎣ ⎦

p v
p p v C

p v v
, (4) 

where the normal load N is uniform along the element, 1v  e 2v  are unit vectors directed 
from node 3 to nodes 1 and 2, respectively, and matrix C  is a geometric operator. 
Deriving the vector of internal forces with respect to displacements, the internal tangent 
stiffness matrix is obtained, after some algebra. Denoting T

ij i j=M v v   and 3
T

i i i= −M I v v , 
1,2i = , there results, for the elastic constitutive component of the tangent stiffness: 

       
( )
( )

( ) ( ) ( )

11 12 11 12

21 22 21 22

11 21 12 22 11 12 21 22

T
e

r r

EA EA
− +⎡ ⎤

⎢ ⎥= = − +⎢ ⎥
⎢ ⎥− + − + + + +⎣ ⎦

M M M M
k CC M M M M

M M M M M M M M
A A

 (5) 

and for the geometric component: 

2063



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

                                     

1 1
1 1

2 2
2 2

1 2 1 2
1 2 1 2

g

N N

N N

N N N N

⎡ ⎤
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥− − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

M 0 M

k 0 M M

M M M M

A A

A A

A A A A

 (6) 

It is seen that int e g= +k k k  is symmetric, as required for a conservative system.  

Application of Aufare’s element requires some caution, since the element collapses if the 
intermediate node coincides with one of the end nodes, and the intermediate node becomes 
hypostatic if the element rectifies and no further stiffness is provided to the node by other 
elements. A discussion on some actual and apparent singularities, as well as some 
elementary tests on this sliding-cable element, was presented in [8]. Pauletti [15],[16] 
presented also the matrices for the case of non-ideal, dry-friction sliding. In that case, due 
to friction, intk  looses symmetry. Aufare [17] also proposed another non-conservative 
sliding-camp/cable element, which ensures the continuity of the horizontal component of 
the internal forces at the sliding node.  
A chain of several Aufare´s elements can be used to model the ideal sliding between a 
border cable and a membrane, but modeling becomes quite laborious, because many extra 
nodes are required, besides those representing the membrane, since only the intermediate 
node of each element is able to represent the slippage over the rest of the structure. 
Furthermore, mesh refinement is constrained by the amount of sliding that the cable 
undergoes since, as long as the elements becomes smaller, they may collapse with a smaller 
amount of slippage. 

4. An ideal sliding-cable super-element 
In order to circumvent the above mentioned problems, we propose an ideal (frictionless) 
sliding-cable super-element, shown in Figure 4, which simplifies the labor associated to 
mesh generation, since it does not require definition of any extra nodes, and which does not 
resent from the collapse of the intermediate nodes (when properly attached to membrane 
elements), so that any amount of relative sliding may be considered, regardless the level of 
mesh refinement.  
The stiffness matrix of the new element could actually be obtained by static condensation 
of the degrees of freedom associated to the end nodes of each sliding-cable element, in such 
a way that only the intermediate, “pulley nodes” remains, thus the “super-element” 
nomenclature adopted in this work.  
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Figure 4: A super-element with n nodes and  nseg=n-1 segments, sliding over np=n-2 pulleys. 
 
Associated to each segment 1,..., segk n=  we obtain a vector 0 0

1 1k k k k k+ += + − −l x u x u , and 

the total current cable length is given by 
1 1

seg segn n

k k
k k= =

= =∑ ∑ lA A . The element is defined in an 

initial configuration, already under a normal force 0N , uniform along the cable, since ideal 
sliding is assumed.  Defining 0 0 0

1k k k+= −l x x , the cable length at the initial configuration is 

once again given by  0 0
1

segn

k=
= ∑ lA . For a linear-elastic material, the total undeformed, 

reference cable length is ( )0 0/r EA EA N= +A A  and the normal load at the current 

configuration is ( ) /r rN EA= −A A A . 

The inner loads acting on the nodes 1,...,i n=  of the super-element, at the current 
configuration, are ( )1i i iN −= −p v v , where /i i i=v l A . Further defining 0 n= =v v 0 , the 
vector of nodal displacements and the vector of inner nodal loads of the element are given 
by  

 

1

i

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u

u u

u

#

#
    and   

1 0 1

1

1

i i i

n n n

N N−

−

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = − =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

p v v

p p v v C

p v v

# #

# #
 (7) 

where C is a matrix geometric operator of order (3n x 1).   
After some straightforward derivations, we arrive at the elastic component of the tangent 
stiffness matrix, given by 

T
e

r

EA
=k CC
A

. (8) 

This is formally the same expression as in the case of Aufare’s three-node element, 
equation (5). Nevertheless, contrary to a cable modeled as a chain of Aufare’s elements, 
which requires additional degrees of freedom, yielding a ( ) ( )2 1 2 1n n− × − sparse-banded 
matrix, in the case of a sliding cable super-element, ek  is a full n n×  symmetric matrix.  
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Other straightforward derivations provides the geometric stiffness matrix as a tri-diagonal 
assembling of order 3 x 3 nodal stiffness sub-matrices, g ij⎡ ⎤= ⎣ ⎦k k , , 1,...,i j n= , such that, 
for the ith line,  

                           1 1
, 1 , 1

1 1

; ;i i i i
i i ii i i

i i i i

N N N− −
− +

− −

⎛ ⎞
= − = + = −⎜ ⎟

⎝ ⎠

M M M M
k k k

A A A A
 (9) 

Martins [18] compared the performance of the sliding-cable super-element with equivalent 
chains of Aufare’s element in several benchmarks, concluding that both alternatives yield 
the same numerical results, with super-elements providing an easier mesh definition.  

5. Application 
As an application, we investigate the influence of the slippage of the border cables in the 
response of the membrane roof of the “Memorial dos Povos de Belém do Pará”, shown in 
Figure 7.  An account on the design and construction of this 400m2 membrane, located at 
the main city of the State of Pará, Brazil is given in [19].  Discussions about the shape-
finding and the patterning of this structure, as well as the residual stresses intrinsic to 
simple-to-double-curvature mappings involved, are given in [15] and [19].  
In the present work, we investigate the response of a rough model of the MPBP under a 
uniform upward wind load 2286 /q N m=  acting over the whole membrane surface. All 
analyses were started from the same configuration, as determined in the phase of shape 
finding. The model had 120 nodes and 196 membrane elements, and the six vertices of the 
membrane were assumed to be fixed.  

 
Figure 6: The membrane roof of the “Memorial dos Povos de Belém do Pará” 

 
The study compared the response of the membrane bounded by six frictionless sliding 
border cables, each of them represented by one super-element (the “ideal-sliding model”), 
with the response of the membrane bounded by six fully adherent border cables, modeled 
with standard no-compression truss elements (the “fully-adherent model”).  The membrane 
was modeled by Argyris’ natural elements [20],[14],[15]. Akitas’ model for handling 
wrinkling, via a matrix projection technique [21], was also implemented, and will be the 
object of a forthcoming paper.  
Results obtained by the SATS program [14], via Newton’s iterations, for both the “ideal-
sliding” and the  “fully-adherent” models, were compared to results obtained for the same 
problem, solved in SATS via dynamic relaxation (as described in [22]). Results for the 
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“fully-adherent” model were also compared with results given by the Ansys FEM  code. A 
sliding cable is not directly available in Ansys, thus the sliding condition was not analyzed 
by that program.  
 

 

 

 
Figure 7: 1st column: ideal-sliding model; 2nd column: fully-adherent model.  

1st row: displacement norms; 2nd row: 1st principal stresses Iσ ; 3rd row: 2nd principal stresses IIσ , 
with wrinkled elements ( 0IIσ = ) shown in grey.  
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Table 1 compares some selected results obtained with both the ideal-sliding and the fully-
adherent models. All results presented very good agreement. The wrinkled elements 
detected in SATS, in the fully-adherent model, presented very low but still positive 2nd 
principal stresses ( 40 8 10II MPaσ −< < ⋅ ), in the corresponding Ansys model. 

From the analysis of the results presented in Table 1 and Figures 7 and 8, it can be seen that 
consideration of sliding provokes an increase of only about 10% in maximum membrane 
displacements, but doubles the maximum first principle stresses Iσ .   

Thus, little as may be the influence of cable slippage on the overall membrane 
configuration, it still can introduce regions of high stress concentrations, from which an 
overall structural failure can indeed result (a report on a major failure that started from 
incipient cuts along the borders is given in [23].  
Of course, further numerical and experimental investigation is required, before more 
definitive conclusions are proposed, and that will be pursued in future works.  
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