
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

28 September - 2 October 2009, Universidad Politecnica de Valencia, Spain
Alberto DOMINGO and Carlos LAZARO (eds.)

Wrinkling analysis of orthotropic membranes via
semidefinite programming

Yoshinori FUJII � and Yoshihiro KANNO

Department of Mathematical Informatics,
University of Tokyo, Bunkyo, Tokyo 113-8656, Japan.

e-mail: yoshinori fujii@mist.i.u-tokyo.ac.jp

Abstract
In this paper we propose a numerical algorithm for computing the equilibrium configuration
of an orthotropic wrinkling membrane in the small deformation. We consider the minimiza-
tion problem of total potential energy of orthotropic membrane structures, which is regarded
as the infinite dimensional optimization problem. By introducing a tensor representing the
amount of wrinkle, we reformulate this problem into an infinite-dimensional SDP problem.
Throughout the numerical examples it is shown that our method can find wrinkling states, as
well as the equilibrium configurations, of orthotropic membranes without any difficulty.
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energy, Semidefinite programming, Interior-point method.

1. Introduction
In this paper we propose an optimization-based algorithm for finding the wrinkling state,
as well as the equilibrium configuration, of an orthotropic membrane structure in the small
deformation. We assume that a membrane consists of completely no-compression material,
which cannot transmit compressive forces but otherwise behaves as the linear elastic material.
Due to this property membrane structures may have wrinkles at the equilibrium state.
It should be emphasized that the constitutive law of membranes depends on the wrinkling
states, i.e. on the existence and directions of wrinkles. This is considered as a major diffi-
culty of equilibrium analysis of membrane structures, because a trial-and-error processes is
usually required in the conventional methods in order to find the wrinkling states which does
not conflict with the unknown displacements and stress states. For orthotropic membranes
the principal directions of stress do not coincide with the principal directions of strain in gen-
eral, and hence it is difficult to find the compatible wrinkling states by using the conventional
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displacement method combined with trial-and-error processes. Therefore, it is desirable to
develop a method based on a formulation irrespective of stress states. Luet al. [4] proposed
a numerical method for wrinkling membranes under the assumption of no-compression ma-
terial. Pipkin [5] and Atai and Steigmann [2] formulated the strain energy function for
membrane as a quasi-convexification of that for plate.

For planar isotropic membranes, Kanno and Ohsaki [3] proposed a formulation based on the
semidefinite program(SDP), which is independent of the wrinkling state. SDP is a class of
nonlinear convex optimization problems, which can be solved effectively by using the primal-
dual interior-point method. In this paper, we show that the method in [3] can be extended to
orthotropic membranes.

We first consider the minimization problem of total potential energy of orthotropic membrane
structures. Then we reformulate this problem into an infinite-dimensional SDP problem by
introducing an auxiliary variables representing the amount of wrinkle. It is shown from the
optimality condition of this problem that the constitutive law of no-compression material is
realized at the optimal solution.

By applying the conventional displacement-based finite-element discretizaion procedure, we
achieve a finite-dimensional SDP problem. Then the equilibrium configuration is obtained
as an optimal solution of the presented SDP problem by using the primal-dual interior-point
method.

We present numerical examples to demonstrate that our method can find wrinkling states,
as well as the equilibrium configurations, of orthotropic membrane structures without any
difficulty. It should be emphasized that our approach does not require any knowledge of
wrinkling patternsa priori, and can converge to the solution without any difficulty even if the
equilibrium state is unstable.

2. Constitutive law
In this section we introduce the constitutive law of orthotropic no-compression material.

Consider an orthotropic membrane structure in the two-dimensional space, which occupies
a bounded connected domainΩ ⊂ R2 with a sufficiently smooth boundaryΓ := ∂Ω . We
denote byu : Ω → R2 the displacement field, which is also assumed to be smooth enough.

Let S n denote the set ofn×n real symmetric matrices. we writeA ≽ O andA ≽ B if the
matricesA and(A−B) are positive semidefinite, respectively. The linear strain tensorE∈S 2

is defined by

E =
1
2

{
(u⊗∇)+(u⊗∇)⊤

}
. (1)

For simplicity, we write

E ·u =
1
2

{
(u⊗∇)+(u⊗∇)⊤

}
, (2)

whereE : R2 → S 2 can be regarded as the linear mapping.
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Figure 1: Constitutive law of no-compression isotropic material in the case ofs+
2 = 0.

Let Q ∈ S 2 denote the stress tensor corresponding toE. Considera linear elastic material
satisfying

Q = C : E,

whereC is the elasticity tensor. The elastic stored energy function is given by

w̃(E) =
∫

Q : dE =
1
2

E : C : E. (3)

For no-compression material we denote byS+ ∈S 2 the stress tensor compatible toE. Let ei
ands+

i (i = 1,2) denote the principal strains and stresses, respectively. The relation between
s+
1 ande1 is illustrated in Figure 1 for isotropic no-compression material, where we assume

s+
2 = 0 for simplicity. Note that the strainE consists of two amounts, i.e. the amount of

wrinkling which does not cause any stress and the one which contributes the elastic stored
energy. We denote byZ−E the one corresponding to the wrinkling, whereZ ∈ S 2. The
principal values ofZ andZ−E are denoted byzi andλi , respectively(i = 1,2).

Now, we consider the constitutive law of no-compression material. Recall that the no-tension
material cannot transmit compression stresses, which implies that the principal stresses should
be nonnegative, i.e.,s+

i ≥ 0 (i = 1,2). Consequently, we haveS+ ≽O. Moreover, sinceZ−E
corresponds to the amount of wrinkle, we also haveZ−E ≽ O. The internal work done by
the wrinkleZ−E is equal to be zero, which yieldsS+ : (Z−E) = 0. It follows from the
duality theory of the semidefinite program [1, Lemma 3] thatS+ andZ−E share a common
system of eigenvectors. If infinitesimal compression stresses are applied, then the material
immediately losses the stiffness in the corresponding principal directions as a consequence
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of appearance of wrinkles. In other words,s+
i = 0 if λi > 0.On the other hand, if the principal

stresss+
i is positive, then no wrinkling appears in the corresponding principal direction of the

stress, that is,λi = 0 if s+
i > 0. If there exists no wrinkling, then the no-compression material

obeys Hooke’s law, which is represented byS+ = C : Z, whereC is the elasticity tensor.

Summarizing above discussions, the constitutive law of no-compression material is given as
follows.

S+ = C : Z, (4)

S+ andZ−E commute,

{
λi = 0, if s+

i > 0

s+
i = 0, if λi > 0

(5)

s+
i ≥ 0, λi ≥ 0 (i = 1,2). (6)

We give some remarks regarding principal directions ofS+, Z−E, Z, andE. As mentioned
in (5), for orthotropic membranes, theprincipal directions ofS+ coincide with the principal
directions ofZ−E, i.e., they share a common system of eigenvectors. In addition, in the case
of isotropic membrane,Z andE also share the same system of eigenvectors. In contrast, for
orthotropic membrane, eigenvectors ofZ are different from those ofE in general.

For the implementation, it is convenient to represent (4) by using vectors instead of tensors.
Consider theL-T coordinate system, where theL- andT-axes are parallel to the elastic prin-
cipal directions of orthotropic membrane, respectively. Define the components ofS+ andZ
with respect to theL-T coordinate system as

S+ =
[

S+
L S+

LT
S+

TL S+
T

]
, Z =

[
ZL ZLT/2

ZTL/2 ZT

]
. (7)

SinceS+ andZ are symmetric tensors,S+
LT = S+

TL andZLT = ZTL hold. Hence, we consider
the three-dimensional vectors[S+

L S+
T S+

LT ]⊤ and[ZL ZT ZLT ]⊤ instead ofS+ andZ. Define
A∈ S 3 by

A =

 EL/(1−νLνT) νTEL/(1−νLνT) 0
νLET/(1−νLνT) ET/(1−νLνT) 0

0 0 GLT

 , (8)

whereEL andET are Young’s moduli in theL- andT-directions, respectively,νL andνT are
Poisson’s ratios, andGLT is shear modulus. Then (4) is rewritten as S+

L
S+

T
S+

LT

 = A

 ZL
ZT
ZLT

 . (9)

We next consider the constitutive law with respect to thex-y coordinate system. Figure 2
illustrates the relationship between theL-T andx-y coordinate systems. Note that the orien-
tation of the principal directions of elasticity is specified byθ . We write the components of
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Figure 2:L-T andx-y coordinates.

S+ andZ with respect to thex-y coordinate system as

S+ =
[

S+
x S+

xy
S+

yx S+
y

]
, Z =

[
Zx Zxy/2

Zyx/2 Zy

]
.

Let T(θ) be the transformation matrix defined by

T(θ) =

 cos2 θ sin2 θ 2sinθ cosθ
sin2 θ cos2 θ −2sinθ cosθ

−sinθ cosθ sinθ cosθ cos2 θ −sin2 θ

 .

By using vectors[S+
x S+

y S+
xy]⊤ and[Zx Zy Zxy]⊤, (9) is rewritten as S+

x
S+

y
S+

xy

 = A′

 Zx
Zy
Zxy

 , (10)

whereA′ is the matrix defined byA′ := T(θ)AT(θ)⊤.

3. Minimization of total potential energy
In this section, we formulate the minimization problem of total potential energy (TPE) for
orthotropic membranes. An equilibrium configuration is obtained as an optimal solution of
the proposed TPE minimization problem.
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For the givenE we denote byS+(E) the quantityS+ satisfying (4)–(6). The strain energy
function for a membrane material is written as

w+(E) =
∫

S+(E) : dE. (11)

Let f denote the body force per unit volume. The Dirichlet and Neumann boundary conditions
are imposed onΓu andΓt , respectively, whereΓu∪Γt is a partition ofΓ . We denote byt the
traction atΓt per unit length. Suppose that the boundary conditionsu = u andt = t are given
onΓu andΓt , respectively. Then the external work is written as∫

Ω
f ·udΩ +

∫
Γt

t ·udΓ . (12)

From (2), (11), and (12), the minimization problem of total potential energy for a membrane
structure is formulated as

(Π+) :


min

∫
Ω

(w+(E)− f ·u)dΩ −
∫

Γt

t ·udΓ

s.t. E = E ·u (in Ω),
u = u (onΓu = Γ \Γt),

(13)

whereu andE are the variables. Note that at the optimal solution,(u∗,E∗), of the prob-
lem (Π+), u∗ andE∗ coincide with the displacement and strain corresponding to the equilib-
rium state, respectively. In the next section we consider a tractable reformulation of (Π+).

4. SDP formulation
In section 3 we have shown that the equilibrium configuration of a membrane can be obtained
as the optimal solution of (Π+). However, it is difficult to solve (Π+) directly, because the
function w+ depends on the wrinkling states. This motivates us to reformulate (Π+) into a
tractable form, which is presented as the problem(P+) below.

We now establish the relation between the strain energy functions for the membrane and the
reference linearly elastic body as follows.

Lemma 4.1. Let w̃ and w+ be given by(3) and(11), respectively. Then

w+(E) = min
Y∈S n

{w̃(Y) | Y ≽ E} (14)

holds for any E∈ S n.

Lemma 4.2. E, S+, and Z satisfy(4)–(6) if and onlyif they satisfy(4) and

Z−E ≽ O, S+ ≽ O, S+ : (Z−E) = 0.
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Lemmas 4.1 and 4.2 play important roles to our reformulation of(Π+).

It follows from Lemma 4.1 that(Π+) is equivalently rewritten as
min

∫
Ω

(
min

Y∈S n
{w̃(Y) | Y ≽ E}− f ·u

)
dΩ −

∫
Γt

t ·udΓ

s.t. E = E ·u (in Ω),
u = u (onΓu).

(15)

Observe that the problem (15) includes a minimization problem in its objective function.
However, in (15)Y is subjected only to the constraint conditionY ≽ E in the inner minimiza-
tion problem. Hence, (15) is equivalently rewritten as

(P+) :


min

∫
Ω

(w̃(Y)− f ·u)dΩ −
∫

Γt

t ·udΓ

s.t. Y ≽ E, E = E ·u (in Ω),
u = u (onΓu).

(16)

Note that the problem (P+) is an SDP problem in the variablesu, Y, andE.

Applying the conventional displacement-based finite-element discretization procedure, we
obtain the discritized version of (P+) with the finite number of variables. It should be em-
phasized that (P+) includesw̃, instead ofw+, which does not depend on the wrinkling state.
Hence, no knowledge of wrinkling patterns is required in advance, and the optimal solution
of (P+) can be found without any trial-and-error procedure.

Let (u∗,Y∗,E∗) denote the optimal solution of (P+). From the construction of (P+) it follows
that (u∗,E∗) is an optimal solution of(Π+). Hence,u∗ corresponds to the displacement at
the equilibrium state. In addition, we can show thatY∗ corresponds toZ satisfying (4)–(6) as
follows.

Consider the optimization problem in the variableY min w̃(Y) =
1
2

Y : C : Y

s.t. Y−E ≽ O,
(17)

which appears in Lemma 4.1. SinceY∗ is optimal in (P+), it is also an optimizer of the
problem (17). Observe that (17)is a minimization problem of a convex function over the
convex constraint condition. Hence,Y∗ is an optimal solution of (17) if and only if there
exists a Lagrange multiplierW ∈ S n satisfying the KKT conditions, which are written as

W−C : Y∗ = O, (18)

Y∗−E∗ ≽ O, W ≽ O, W : (Y∗−E∗) = 0. (19)
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Figure 3: The membrane structure.

By puttingW = S+, it follows from Lemma 4.2 that (18) and (19) are equivalent tothe con-
stitutive law of orthotropic membrane, (4)–(6). Hence, the optimal solutionY∗ corresponds
to Z in (4)–(6). The stressS+ at the equilibrium state can be computed by (4).

5. Numerical examples
Equilibrium configurations are computed for structures consisting of orthotropic membranes
by solving the SDP problem(P+). The SDPs are solved by using SeDuMi Ver. 1.1 (Pólik
[6], Strum [7]). Computation has been carried out on Inter Core2 Duo CPU T7300 (2.00 GHz
with 1.99 GB memory) with MATLAB Ver. 7.5.0.342.

Consider a planar membrane structure in the plane stress as shown in Figure 3. The structure
is discretized into three-node triangular isoparametric finite elements, where the number of
elements is 32. Nodes (a)–(e) are pin-supported. Uniform loads of 1.0 kN are applied to
all nodes in the negative direction of they-axis. Young’s modulusEL in the L-direction
and Poisson’s ratioνL in (8) are 0.025 GPa and 0.2, respectively. Poisson’s ratio in theT-
direction, νT , satisfiesνT = (ET/EL)νL. Note that an isotropic membrane is defined by
GLT = EL/2(1+ νL) and ET/EL = 1.0. For an orthotropic membrane, we also giveGLT
asGLT = EL/2(1+ νL), and compute the equilibrium configurations for various values of
ET/EL andθ , whereθ is defined in Figure 2.

2078



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) deformed configuration and principal
stresses (displacement amplified 40 times)
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(b) wrinkle strains

Figure 4: The equilibrium configuration and stress states of the isotropic membrane
(ET/EL = 1.0, θ = 0).

5.1. Isotropic membrane

Consider an isotropic membrane defined byET/EL = 1.0 andθ = 0. The equilibrium config-
uration obtained by solving(P+) is illustrated in Figure 4 (a). The CPU time required to solve
the SDP problem is 0.60 sec. The principal values and directions of stresses on each element
are also illustrated, where the solid segments are parallel to the principal axes of stresses, and
the length of each segment is proportional to the modulus of corresponding principal value.
Figure 4 (b) illustrates the principal directions and values ofZ−E of each element, where
the direction of each segment is orthogonal to the wrinkling pattern, and the length of each
segment is proportional to the amount of wrinkle.

5.2. Orthotropic membrane

We next consider two examples of orthotropic membranes. Figure 5 illustrates the case in
which ET/EL = 0.2 andθ = 0, i.e. principal directions of elasticity are parallel to thex-
andy-axes, and the stiffness in the direction of they-axis is one fifth of that in the direction
of the x-axis. The CPU time required to solve the SDP problem is 0.56 sec. Figure 5 (a)
illustrates the obtained configuration and the stress states, while Figure 5 (b) illustrates the
principal values and directions ofZ−E in a manner similar to Figure 4. It is observed
from Figure 5 that the decrease of the stiffness in the direction of they-axis causes larger
deformation compared with the isotropic membrane. We can also observe the increase of
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(a) deformed configuration and principal
stresses (displacement amplified 40 times)
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(b) wrinkle strains

Figure 5: The equilibrium configuration and stress states of the orthotropic membrane
(ET/EL = 0.2, θ = 0).

amount of wrinkle, which is caused by Poisson’s effect.

Figure 6 illustrates the case in whichET/EL = 0.2 θ = π/4. The CPU time required to
solve the SDP problem is 0.52 sec. The principal directions of elasticity are illustrated in
Figure 7, where the thick and thin lines depict the strong and weak directions, respectively. It
is observed from Figure 6 that the equilibrium configuration and the distribution of wrinkle
are not symmetric, although we consider the symmetric boundary and loading conditions. It is
shown from the numerical examples above that the proposed method can find the equilibrium
configurations of orthotropic membranes without any difficulty, even if many elements are in
the wrinkling states.

6. Conclusions
An approach based on semidefinite programming (SDP) problem has been proposed for
finding the equilibrium configuration of structures consisting of orthotropic no-compression
membrane under the assumption of small deformations. We have shown that the minimiza-
tion problem of total potential energy for orthotropic membrane structure can be reformulated
as a SDP problem. The equilibrium configuration can be obtained as an optimal solution of
the presented SDP problem by using the primal-dual interior-point method.

The presented SDP formulation requires any knowledge on the wrinkling states in advance.

2080



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) deformed configuration and principal
stresses (displacement amplified 40 times)
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(b) wrinkle strains

Figure 6: The equilibrium configuration and stress states of the orthotropic membrane
(ET/EL = 0.2, θ = π/4).
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Figure 7: The elastic principal directions of the orthotropic membrane structure in Figure 6.
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Therefore the method does not involve any processes of trial-and-error even if the structure
has acomplicated wrinkling pattern. It is guaranteed that the number of arithmetic operations
required by this method is bounded by a polynomial of the size of problem. Numerical
examples have shown the effectiveness of this method for the cases in which many wrinkles
appear at equilibrium configurations.

Besides these advantages, there exist several well-developed software packages which solve
SDPs efficiently. Hence, it is sufficient to prepare the codes which provides the data matri-
ces and vectors of the corresponding SDP problem. Since our finite-element discretization
is based on the usual displacement-based finite element methods, we can easily utilize the
conventional software of the finite element method in order to compute the data matrices and
vectors of the SDP problem to be solved.
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