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Abstract  

Rice fields contribute substantially to global warming of the atmosphere through the 

emission of methane (CH4). This paper reviews the state-of-the-art of factors affecting 

CH4 emissions in rice fields, focusing on soil organic matter content and water 

management practices. It establishes a quantitative relationship between these factors 

based on a literature survey through a meta-analysis, useful to update the emission 

factors used to estimate CH4 in National Emission Inventories. Methane emissions in 

rice fields can be as much as 90% higher in continuously flooded rice fields compared 

with other water management systems, independent from straw addition. Water 

management systems which involve absence of flooding in total or part of the growing 

period such as midseason drainages, intermittent flooding and percolation control can 

reduce CH4 emissions substantially. Moreover, CH4 emissions increase with the amount 

of straw added until 7.7 t/ha for continuously flooded soils and until 5.1 t/ha for other 

water regimes. Above these levels, no further increase is produced with further addition 

of straw. As regards to rice straw management mitigation strategies, recommended 

practices are: composting rice straw, straw burning under controlled conditions, 

recollecting rice straw for biochar production, generation of energy, to be used as a 

substrate, or to obtain other by-products with added value. This review improves the 

understanding of the relationship between straw application rate, water regimes and CH4 

emissions from rice fields to date. This relationship can help to select the most 

appropriate management practices to improve current mitigation strategies to reduce 

atmospheric CH4.  

 

Keywords: atmospheric pollution, greenhouse gases, paddy field, regression modeling, 

water regime. 
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1. Introduction 

The mitigation of greenhouse gas emissions from agriculture is a major focus 

nowadays. In accordance with the Kyoto protocol (1997), nations are not only obliged 

to reduce greenhouse gas emissions, but also to report on them in The National 

Greenhouse Gas Emission Inventories. Among agricultural sources, rice fields release 

annually about 60 to 100 million tons of methane (CH4) worldwide, which represent 

from 5 to 20% of the total anthropogenic CH4 emission (Aulakh et al., 2000; IPCC, 

2006). Considering that CH4’s global warming potential is 23 times higher than carbon 

dioxide (CO2) (IPCC, 2006), rice fields can contribute substantially to global warming 

of the atmosphere. Moreover, rice paddies can be expected to continue to be major 

sources of CH4 in the future, due to the need to feed the increasing human population 

and thus to increase rice yield and its harvested area (Minamikawa et al., 2006). This is 

especially relevant in Southern Asian countries, where rice cultivation represents a 

relatively large surface area, and in specific localized production regions like in Spain, 

Italy or North America. Therefore, there is a strong need for economically viable and 

environmentally sustainable ways of cultivating rice, which imply improving straw and 

water management practices and reducing CH4 emissions. 

The amount of straw applied and the continuously flooded water management exert a 

strong influence on CH4 emissions (Yan et al., 2009). However, knowledge on the 

effect of the type of organic matter, especially on the dose and quality of rice straw, on 

CH4 emission from rice fields is still limited. Moreover, information on the combined 

effect of the addition of rice straw (increasing soil organic matter content) with varying 

water regimes is missing. 

The aim of this paper is therefore, to review the state-of-the-art of factors affecting CH4 

emissions in rice fields, focusing on two management factors: soil organic matter 
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content (affected by the addition of straw and its management) and water management 

practices. Furthermore, it establishes a quantitative relationship between these 

management factors influencing CH4 emissions based on a literature survey through a 

meta-analysis. This quantitative relationship can help to select the most appropriate 

management practices to improve current mitigation strategies to reduce atmospheric 

CH4 from rice cultivation and hence contribute to reduce its environmental impacts. 

2. Factors affecting methane emission in rice fields 

The emission of CH4 from rice fields results from a complex process where the organic 

matter in the soil is anaerobically broken down, and CH4
 is finally produced as a by-

product in the metabolism of methanogenic archaea. Anaerobic conditions arise from 

the flooding of fields, which considerably decreases the availability of oxygen in the 

soil (Conrad, 1993; Neue, 1997; Watanabe et al., 2001). Once CH4 is formed in rice 

soils, it can be released to the atmosphere through three pathways: ebullition, molecular 

diffusion and transport through the rice plant (Neue et al., 1994; Khalil and Shearer, 

2006) (Fig. 1). 

Methane fluxes in rice fields show distinct diurnal and seasonal variations. Moreover, 

the emission of CH4 from rice fields depends on different factors, summarized in Fig. 1, 

such as water regime (Kang et al., 2002; Cai et al., 2003; Zhang et al., 2011), 

frequency, dosage and type of fertilization (Krüger and Frenzel, 2003; Nayak et al., 

2006; Ma et al., 2007), soil organic matter content (Naser et al., 2007; Ma et al., 2009; 

Wang et al., 2010), rice cultivar and plant activity (Setyanto et al., 2004; Jia et al., 

2006; Khosa et al., 2010), temperature (Wang and Li, 2002; Watanabe et al., 2005) and 

soil properties such as texture, pH, redox potential, and carbon/nitrogen ratio among 

others (Neue and Roger, 2000; Setyanto et al., 2002; Xu et al., 2003).  
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Fig. 1 Factors affecting methane emissions from rice fields 

Among the factors shown in Fig. 1, organic matter content and water regime are 

recognized as the most influencing field management practices affecting CH4 emissions 

from rice fields (Majumdar, 2003; Yan et al., 2005; Minamikawa et al., 2006; Zhang et 

al., 2011).  

Water management in rice cultivation is highly site-specific and depends on water 

availability and traditional cultural practices. In fact, water regime (irrigation and 

drainage) affects directly soil characteristics, preventing or promoting the development 

of reductive conditions. The presence of standing surface water is essential for the 

development of the anaerobic conditions in paddy soil by limiting the transport of 

atmospheric oxygen into soil, which is favorable for CH4 production (Yagi et al., 1996; 

Bharati et al., 2001; Singh et al., 2009). Consequently, CH4 mitigation strategies from 

rice fields must consider rice agricultural practices and water regimes which reduce or 

limit the flooded period.  
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As regards soil organic matter content, readily mineralizable organic matter in the soil 

also constitutes a major source for CH4 formation in paddies (Neue et al., 1995). The 

available carbon in the soil from residues of previous crops is one of the main CH4 

production sources. Therefore, the addition of organic matter such as rice straw into a 

flooded rice field provides an extra source of carbon, which can serve as substrate for 

methanogenic activity (Wassmann et al., 1993b). Furthermore, soil organic matter 

enhances the reduction of soils, contributing to the production of CH4 (Denier Van der 

Gon and Neue, 1995). The effect of organic matter addition is more pronounced in soils 

with low intrinsic organic matter content. 

Although the relationship between CH4 emissions and straw application has been 

reported in several studies carried out in Italy (Schütz et al., 1989), Japan (Yagi and 

Minami, 1990; Naser et al., 2007; Xu and Hosen2010), United States (Cicerone et al., 

1992; Bossio et al., 1999; Kongchum et al., 2006), China (Hou et al., 2000; Lu et al., 

2000; Zou et al., 2005; Wang et al., 2010; Zhang et al., 2011), Thailand (Chareonsilp et 

al., 2000; Vibol and Towprayoon, 2010), India (Jain et al., 2000; Khosa et al., 2010), 

and Philippines (Neue et al., 1994; Denier Van der Gon and Neue, 1995); knowledge 

gaps related with the combined effect of the type, dose, and quality of rice straw with 

varying water regimes still remain. 

3. Relationship between water and straw management practices on methane 

emissions: a meta-analysis 

Over the past 20 years, research studies have been conducted to give insight into the 

effect of water and straw management practices on CH4 emissions from rice fields. 

Table 1 compiles reported CH4 emission rates (ER) related to these rice management 

practices based on a literature survey. The survey was performed from a total of 149 ER 

values from 24 published research papers in eight countries, Four water management 
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practices were identified: continuously flooded, non-flooding irrigated, rainfed, and 

intermittently flooded. Reported straw incorporation rates in the literature show a wide 

range, from 0 to 12.5 t/ha. Table 1 shows the ER values as well as the seasonal emission 

factor (EF) for each source and location, accounting for specific water regime and straw 

rate incorporation. Methane ER ranged from 0.1 to 952 mg/m2/day.  

Table 1 Methane emission rates (ER) and seasonal emission factors (EF) reported in the literature with 

varying water management practices and addition of straw rates in descending chronological order 

Location  Water regimea 

Straw 

rate 

ER Seasonal EF 

Source 

(t/ha) (mg CH4/m2/day) (kg CH4/ha/year) 

India Cont. and int. flood 0 11 - 53 11.9 - 58.83 Khosa et al. (2011) 

China Cont. and int. flood 0 - 4.8 197 - 544 302 - 832 Zhang et al. (2011) 

India 
Irrigated 0 - 10 20 - 213 21.8 - 229.8 

Khosa et al. (2010) 

China Cont. flood 0 - 10.6 241- 538 255 - 570 Wang et al. (2010) 

China 
Int. flood 0 - 3.75 39 - 657 50 - 828 

Ma et al. (2009) 

China Int. flood 0 - 4.8 55 - 216 69.3 – 272.2 Ma et al. (2008) 

China Int. flood 
0 - 3.75 30 - 544 40.5 - 712.6 Ma et al. (2007) 

Japan Cont. flood 0 - 2.19 31 - 456 40.4 - 408 Naser et al. (2007) 

Japan 
Cont. and int. flood 4 93 -273 116 - 341.3 Saito et al. (2006) 

China Cont. and int. flood 0 - 2.25 72 - 186 85 - 220 Zou et al. (2005) 

Japan Cont. and int. flood 0 - 3 43 - 502.7 46.7 - 502.7 Goto et al. (2004) 

Philippines Irrigated and rainfed 0 - 5 35 - 565.7 35 - 565.7 Wassmann et al. (2002) 

Thailand 

Irrigated and cont. 

flood 

0 - 12.5 22 - 311 22 - 619 Chareonsilp et al. (2000) 

Philippines Cont. flood 0 - 4 165 - 952 160 - 952 Corton et al. (2000) 

China Int. flood 0 - 1.7 167 - 280 141.9 – 279.4 Lu et al. (2000) 

Indonesia Rainfed 0 - 6.1 52 - 80 53 - 78 Setyanto et al. (2000) 
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Location  Water regimea 

Straw 

rate 

ER Seasonal EF 

Source 

(t/ha) (mg CH4/m2/day) (kg CH4/ha/year) 

China Int. flood 0 - 1.3 4 - 100 6 - 141 Wang et al. (2000) 

USA Int. flood 9.8 96 - 103 118.3 - 126.9 Bossio et al. (1999) 

Japan Cont. and int. flood 5.8 8 - 216 30 - 790 Kanno et al. (1997) 

Japan Cont. flood 0 - 6 54 - 807 54 - 807 

Chidthaisong et al. 

(1996) 

India Irrigated 1 0.1 0.1 Singh et al. (1996) 

Thailand Rainfed and int. flood 0 - 0.31 6 - 238 6 - 214 

Jermsawatdipong et al. 

(1994) 

Japan Int. flood 0 - 9 10 - 326 11 - 448 Yagi y Minami (1990) 

Italy Int. flood 3 - 12 230 - 680 242 - 767 Schütz et al. (1989) 

a Int. flood: intermittently flooded; Cont. flood: continuously flooded. 

To analyze the effect of straw addition and water management on CH4 emissions, the 

values presented in Table 1 were related using a weighted quadratic regression model. 

In the model, reported seasonal EF were used as dependent variable and each water 

management practice and straw dose were used as independent variable using Proc Reg 

of SAS software (SAS, 2009). Average values for each straw incorporation rate were 

used. The selection of this model was based on the literature, where CH4 emissions have 

been reported to increase with straw addition until certain value where no further 

increase in emissions occurs with further addition of straw (Schütz et al., 1989; Kludze 

and DeLaune, 1995). As a result, the regression equation indicated in Eq 1 was 

obtained: 

EF = β0 + β1·Straw + β2·Straw2 + β3·Cont.flood + β4·Straw x Cont.flood + ε  (Eq 1) 

where EF is the methane emission factor (kg CH4/ha/year), β0 is the intercept of the 

regression model; β1 is the regression coefficient of the linear effect of straw 

incorporation (straw, t/ha); β2 is the regression coefficient of the quadratic effect of 
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straw incorporation (straw, t/ha); β3 is the coefficient for a dummy variable defining the 

effect of continuous flooding on CH4 emission, and β4 is the linear effect of straw 

incorporation in continuous flooding, with respect to the other alternatives. Finally, ε is 

the model error.  

Table 2 shows the results of the regression modeling. Results from the quadratic 

regression model showed a significant effect (p<0.001) of straw addition rate on CH4 

emissions. The effect of continuous flooding was significantly different from the other 

water management practices (p<0.05). However, intermittently flooded, non-flooding 

irrigated, and rainfed water management did not differ significantly among them 

(p>0.05) in terms of CH4 emissions. 

Table 2 Effect of straw addition rate and water management practices on methane emissions. The model 

was significant at p<0.0001 (R2 = 0.85). 

Parameter Estimate Standard error t Value P > t 

Independent term (β0) 82.9 17.5 4.73 < 0.001 

Straw rate (β1) 69.1 10.2 6.78 < 0.001 

Straw rate2 (β2) -6.70 1.25 -5.37 < 0.001 

Continuously flooded (β3) 77.1 32.8 2.35 0.028 

Straw rate x Cont.flood.(β4) 34.2 8.8 3.89 < 0.001 

 

According to Table 2, the following regression equations can be used to predict CH4 

emission factor within the range of straw incorporation rate from 0 to 10 t/ha. In 

continuously flooded rice fields, the model corresponds to Eq. 2, when the variable 

Cont.flood. equals 1. Eq 3 explains CH4 emissions from paddies when water 

management is rainfed, intermittently flooded or non-flooding irrigated (when the 

variable Cont.flood. equals 0): 

EF continuously flooded = 160.0 + 103.3 straw rate – 6.70 straw rate2   (Eq 2) 

EF other water regimes = 82.9 + 69.1 straw rate – 6.70 straw rate2   (Eq 3) 
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Fig. 2 shows the graphical representation of the quadratic regression model obtained 

from the literature survey. According to the model, average CH4 emissions in rice fields 

where no straw had been incorporated (e.g. straw was burned or removed) were 82.9 kg 

CH4/ha/year, using either rainfed, intermittently flooded, or non-flooded irrigated water 

management. However, CH4 emissions were on average 93% higher (160 kg 

CH4/ha/year) in continuously flooded rice fields where no straw had been incorporated, 

which is significantly higher than in other water management systems. This indicates 

that continuous flooding can promote conditions for CH4 formation, independent from 

the addition of organic matter into the soil. Consequently, CH4 emissions can arise from 

other organic matter sources such as roots and organic compounds supplied by root 

exudation and biomass litter, including leakages, secretions, mucilage, mucigel and 

lysates (Schütz et al., 1991; Aulakh et al., 2001). Compounds leaked from roots 

normally include carbohydrates, organic acids and amino acids (Vancura and Hovadik, 

1965). As a result, those water management systems which involve water regimes 

different from continuously flooded management (absence of flooding in total or part of 

the growing period) present lower CH4 emissions compared with continuously flooded 

management system independent from the amount of organic matter incorporated. The 

meta-analysis confirms that water management practices have a strong influence on the 

process involved in CH4 emission from rice fields.  
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Fig. 2 Regression model of methane emissions in rice cultivation based on straw addition rate and water 

management practices. 

Regarding straw addition rate, results from the meta-analysis showed that the addition 

of straw increased CH4 emissions differently depending on the water management 

regime. In those systems without permanent flooding, CH4 emissions increase with rice 

straw incorporation up to a maximum of approximately 5.1 t/ha of incorporated straw, 

corresponding to about 261 kg CH4/ha/year. This straw application rate is common in 

rice fields; however, this value could vary for each country on the basis of the rice or 

wheat straw yield. Above 5 t/ha, no further increase in CH4 emissions is produced with 

further addition of straw. For continuous flooding, the maximum emission is produced 

at a higher straw application rate, equal to 7.7 t/ha (corresponding to about 481 kg 

CH4/ha/year). 

This behavior corresponds to a law of diminishing returns, which is common in many 

agricultural scenarios. When straw is incorporated at low rates, the increase of organic 

matter in the soil considerably enhances methanogenic activity with respect to no 
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application of straw. However, as long as organic matter increases, it is not longer the 

limiting factor for CH4 emissions, and the emission process is then limited by other 

factors related with the activity of methanogenic archaea. Wassmann et al. (1998) 

explained that the dynamic changes in soils with high CH4 production rates can be 

attributed to intense bacterial degradation of organic material exceeding the availability 

of oxidants. Therefore, the inherent CH4 production capacity may be determined by an 

interaction of various chemical and physical parameters under anaerobic conditions. 

Even more, CH4 generation from rice fields can decrease at very high straw 

incorporation rates if the excess of organic matter obstructs the usual pathways of CH4 

formation. This decrease in CH4 may be the consequence of the formation of phytotoxic 

substrates in the soil, which are formed at high organic carbon contents (Takai and 

Asami, 1962; Hollis and Rodriguez-Kabana, 1967) and may inhibit plant development 

and, consequently, CH4 emission. 

The emission model obtained in this study seems to be consistent with reported 

emission values within the range of straw application rate from 0 to 10 t/ha, but 

contradictory results were found for higher straw incorporation rates. Several authors 

have observed a similar trend as shown in the dose-response curve presented in Fig. 2. 

Schütz et al. (1989) reported that application of rice straw at 5 t/ha and 12 t/ha increased 

CH4 rates by factors of 2.0 and 2.4, respectively, compared with no addition of straw. 

However, adding as much as 24 t/ha of rice straw did not increase CH4 emissions with 

respect to 12 t/ha. In the same way, Kludze and DeLaune (1995) reported that 

application of rice straw at 11 t/ha enhanced CH4 emissions compared with no addition 

of straw, whereas 22 t/ha retarded CH4 emissions. However, Chareonsilp et al. (2000) 

found very low and variable CH4 emissions for a straw incorporation rate of 12.5 t/ha 

under continuous flooding. According to these observations, further studies are required 
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to quantify more precisely how high incorporation rates (>10 t/ha) interact with 

different water regimes. 

Other researchers have observed a linear relationship between CH4 emission and the 

amount of straw incorporated (Cicerone et al., 1992; Wang et al., 1992; Xu et al., 2003; 

Watanabe et al., 2005; Naser et al., 2007; Gogoi et al., 2008), however, results from the 

meta-analysis show that increasing organic matter inputs will only stimulate CH4 

emission until a certain value, when other factor than organic carbon availability seems 

to become limiting (Denier Van der Gon and Neue, 1995). Nevertheless, although straw 

addition and water management are significant factors influencing CH4 emission from 

rice fields, other factors such as mineral fertilizer, the variety of rice, the type of soil and 

environmental conditions may also considerably affect CH4 emission.  

4. Mitigation strategies based on water and straw management practices  

Mitigation of greenhouse gases is mandatory and so is its estimation. To reduce CH4 

from rice fields, all influencing factors with its synergies and antagonisms must be 

studied. So far, CH4 estimations in National Greenhouse Gas Emission Inventories are 

based on the methodology proposed by the Intergovernmental Panel on Climate Change 

(IPCC) Guidelines (IPCC, 2006). The results from this review and the regression 

equations which derive from the meta-analysis can be useful to update the CH4 emission 

factor proposed in IPCC (2006). Current IPCC emission factor is based on studies 

carried out by Yan et al. (2005), which revised emission and scaling factors from an 

updated analysis of a large data set of field studies until 2003. Our results improve the 

relationship between the straw application rate, water regimes, and CH4 emissions from 

rice fields to date. Our model describes more precisely how straw incorporation, water 

regime and their interaction are affecting CH4 emissions, according to literature data. 
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In this framework, possible strategies to reduce CH4 emission from rice cultivation can 

be implemented by controlling production, oxidation or transport processes through the 

plant, as shown in Fig. 1. These options include: managing water regime and straw 

addition, establishing an adequate fertilization program, using nitrification inhibitors, 

changing tillage practices, including crop rotation and selecting less vigorous rice 

varieties (Aulakh et al., 2000; Wassmann et al., 2000; Majumdar, 2003; Minamikawa et 

al., 2006; Yan et al., 2009). However, mitigation strategies should be effective, 

technically and economically applicable and easily understood and accepted by farmers. 

If possible, these techniques should also increase rice yield (Majumdar, 2003). As a 

result from this review, straw and water management practices have been identified as 

key factors affecting CH4 emissions, and consequently mitigation strategies should 

focused on these factors. 

4.1. Water management strategies 

Continuous flooding increases CH4 emissions regardless straw addition. Several studies 

have focused on management strategies to mitigate these emissions without 

compromising rice yields, such as limiting irrigation and allowing the standing water to 

drain from the field. However, mitigation options through water management can vary 

depending on different factors, such as: soil texture, percolation rate, frequency of 

drainage, duration of dry period and soil redox potential (Cai et al., 1997; Majumdar, 

2003; Minamikawa et al., 2006).  

Previous research has demonstrated that midseason aeration of rice paddy fields can 

reduce CH4 emission by about 50% (Kimura et al., 1992; Kanno et al., 1997; Yagi et 

al., 1997; Wassmann et al., 2000; Cai et al., 2003). Sass et al. (1992) and Kimura et al. 

(1991) observed that a single midseason drainage may reduce seasonal emission rates 

by about 50%. Bronson et al. (1997) reported that midseason drainage at maximum 
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tillering or panicle initiation suppressed CH4 emissions. However, midseason drainage 

is not feasible during periods of heavy rainfall and when excess water is not available to 

flood the field again. Therefore, in case of non-availability of water for re-flooding, it 

has limited applicability in time and space (Singh et al., 2009). 

Draining paddy fields which used to be under continuous flooding in the fallow season 

significantly decreases CH4 emission from the fields (Cai et al., 2003; Xu et al., 2000). 

This technique is able not only to stop directly CH4 emission from the rice fields in the 

fallow season, but also to reduce CH4 emission substantially during the following rice 

season (Cai et al., 2003). However, the rice yields in fields drained in the fallow season 

may be compromised compared with permanently flooded fields (Zhang et al., 2011). 

Techniques including intermittent irrigation can also reduce CH4 emissions improving 

soil permeability and increasing soil redox potentials, which often result in increased 

rice yield (Wang et al., 1999). Jain et al. (2000), Buendia (1997) and Sass (1992) 

observed that CH4 emissions decreased in 28%, 55% and 88% respectively, when 

intermittent irrigation was applied. Moreover, in most cases this practice did not reduce 

rice yield but required more water than the normal floodwater treatment. 

However, soil aeration requires more water than continuous flooding regime (Sass et 

al., 1992). Furthermore, drainage techniques must be managed carefully to prevent 

losses of nitrogen corresponding with nitrous oxide (N2O) emissions, a very active 

greenhouse gas (Wassmann et al., 1993a; Abao et al., 2000; Zou et al., 2005). These 

emissions could be increased through nitrification and denitrification processes, which 

are associated with soil drying and wetting, respectively (Neue, 1993; Bronson et al., 

1997; Corton et al., 2000). 

Methane emission rates decrease as the percolation rates increase by improving soil 

physical properties or by using under-ground pipe drainage (Yagi et al., 1997; 
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Minamikawa and Sakai2006). Therefore, reducing water depth and time of flooding by 

maintaining the soil saturated without standing water could be a technically feasible and 

agronomically and environmentally appropriate alternative to reduce CH4 emissions 

(Rath et al., 1999; Lemer and Roger, 2001). 

4.2. Straw management strategies 

A promising strategy to mitigate CH4 emissions consists in the integration of 

intermittent irrigation techniques and of organic matter management (Wang et al., 1999; 

Zou et al., 2005). Alternative uses of straw crop residue should be considered as regards 

straw management. 

Straw incorporation practices alter organic matter availability. The kind, rate timing and 

degree of maturation of organic matter affect the magnitude of CH4 emission 

(Minamikawa et al., 2006). Moreover, the addition of straw has been associated with 

putrefaction processes releasing sulfur gases that can generate odor nuisances, harmful 

effects on aquatic organisms, and transmission of crop diseases (Chareonsilp et al., 

2000; Tanji et al., 2003; Yi et al., 2008). In addition, straw incorporation could promote 

reducing conditions under which toxic products such as sulfides may be produced, 

causing toxicity to rice plants (Gao et al., 2004). Reducing the amount of labile organic 

matter in soils by composting organic substrates or promoting aerobic decomposition of 

biomass is considered as one of the effective means of mitigating CH4 emission in soils 

(Corton et al., 2000; Majumdar, 2003). However, this could increase nitrous oxide 

emission by nitrification of released ammonium (Flessa and Beese, 1995). 

An alternative method of disposing rice straw is to apply it off-season. According to the 

2006 IPCC guidelines, rice straw applied off-season produces less CH4 emission than if 

rice straw is applied just before rice transplanting (Yan et al., 2009). Consequently, 

incorporation of rice straw in the fallow season instead of the rice season is 
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recommended as an option to reduce CH4 emission from rice fields (Lu et al., 2000; Xu 

et al., 2000). 

The type of organic matter applied to the soil affects CH4 emission. Wassmann et al., 

(1993a) observed that applying residues from a biogas generator CH4 emissions 

decreased by approximately 60% as compared to fresh organic amendments and 52%, 

compared to the combination of urea and organic amendments. According to 

Chareonsilp et al. (2000), burning straw instead of incorporating it directly reduces CH4 

emission by 89%. According to these authors, zero tillage and mulching also reduced 

emissions when compared with fresh straw incorporation. Moreover, straw burning 

poses several benefits for the farmer since it controls weed and crop diseases, prepares 

fields for the next harvest and releases nutrients for the next crop (Lemieux et al., 2004; 

Cheng et al., 2009; Gadde et al., 2009).  

Straw burning, however, produces high amounts of CO2, as well as considerable 

amounts of carbon monoxide (CO), CH4, nitrogen oxides (NOx), sulfur oxides (SOx), 

non-methane hydrocarbons (NMHC), dioxins, polycyclic aromatic hydrocarbons 

(PAHs) and particulate matter (Gadde et al., 2009). The emission of these pollutants 

during open burning of crop residues can cause relevant local air pollution problems and 

severe impacts on human health (Gullett and Touati, 2003; Hays et al., 2005; Lin et al., 

2007), for example bronchial asthma (Arai et al., 1998; Torigoe et al., 2000). Some of 

these air pollutants have significant toxicological properties and are considered potential 

carcinogens (Gadde et al., 2009). Due to the growing concern for air quality related 

with rice straw burning, this practice has been restricted in some parts of the world. 

Therefore, in most cases, straw burning can not be recommended as a CH4 mitigation 

option.  



18 

 

It has been demonstrated that rice straw is not suitable for animal nutrition unless 

treated to improve its feeding value (Doyle et al., 1986; Bae et al., 1997). However, the 

high interest for re-using the large amount of rice straw generated worldwide has 

resulted in a wide variety of other potential treatments. Perhaps the most traditional use 

is the generation of energy (Zhang and Zhang, 1999; Okasha, 2007). A variety of 

technologies have been developed which include from direct burning to pyrolysis 

techniques to transform rice straw in a more versatile energy source (Pütün et al., 2004), 

producing different by-products such as biochar which could help to improve soils, 

avoid CH4 emissions, and sequester carbon in rice soils (Zhang et al., 2010; Haefele et 

al., 2011; Liu et al., 2011) .  

Rice straw has also been used for mulch production and as a substrate for mushroom 

production (Zhang et al., 2002). More recently, a variety of technologies have been 

developed to obtain other by-products with added value. Rice straw has been used to 

obtain xylitol (Mayerhoff et al., 1997), sugars (Karimi et al., 2006), cellulose and 

lignine pulp (Rodríguez et al., 2008) and enzymes such as laccase (Niladevi et al., 

2007). The potential of rice straw to produce natural fibers has been also investigated 

(Reddy and Yang, 2006), and it has been successfully used to produce biopolymers in 

combination with PVC (Kamel, 2004) and polypropylene (Grozdanov et al., 2006), or 

as a construction material with isolation properties (Yang et al., 2003). 

However, the harvesting of straw from rice fields continues to be a major challenge. 

Therefore, although several alternative management strategies are available for it, the 

harvesting of rice straw implies using different agricultural machinery and an additional 

economical cost to be paid by farmers.  

To optimize straw management, it is essential to improve our knowledge on crop 

characteristics, to develop a group of mitigation strategies to minimize emissions to the 
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atmosphere as well as to maximize rice production and yield, without considerably 

modifying culture practices. 

5. Conclusions -Recommendations 

As a result from the review of the state-of-the-art of factors affecting CH4 emissions in 

rice fields and a meta-analysis on how soil organic matter content (affected by the 

addition of straw and its management) and water management practices influence CH4 

emissions; the following conclusions can be extracted:  

Continuous flooding can promote conditions for CH4 formation, independent from the 

addition of organic matter into the soil. Methane emissions in rice fields where no straw 

has been incorporated are 90% higher in continuously flooded rice fields compared with 

other water management systems such as rainfed, intermittently flooded, or non-

flooding irrigated.  

Water management systems other than continuously flooded are recommended to 

reduce CH4 emissions. The recommended water management mitigation strategies are: 

midseason drainages, intermittent flooding, and percolation control. 

Methane emissions increase with straw incorporation rates up to 5.1 t/ha of incorporated 

straw, under non-permanent flooding conditions. For continuously flooded soils, CH4 

increased with straw incorporation up to 7.7 t/ha. Above these levels, no further increase 

in CH4 emissions is produced with further addition of straw for straw addition between 

o t/ha to 10 t/ha. Further studies are required to quantify more precisely how high 

incorporation rates (>10 t/ha) interact with different water regimes. 

As regards to rice straw management mitigation strategies, recommended practices are: 

composting rice straw, straw burning under controlled conditions, recollecting rice 

straw for biochar production, generation of energy, to be used as a substrate, or to 

obtain other by-products with added value. 
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Our results improve the understanding of the relationship between straw application 

rate, water regimes and CH4 emissions from rice fields to date. These data are useful to 

update the CH4 emission factor used to estimate CH4 emissions in the National 

Greenhouse Gas Emission Inventories.  

The main challenge concerning CH4 mitigation options from rice fields is the difficulty 

of establishing a single global solution. Mitigation techniques based on straw and water 

management, however, may achieve relevant reduction and can be effective, technically 

and economically applicable, easily understood and accepted by farmers. If possible 

these techniques should also increase rice yield. The effect of mitigation strategies in the 

light of gaseous pollutants other than CH4, and the global environmental impact caused 

by rice cultivation should also be assessed. 
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