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Resumen: Este estudio presenta avances en la metodología de inventario forestal a nivel de masa (area-based approach, 
ABA) con datos LiDAR aerotransportado de baja densidad y destaca la utilidad de los datos LiDAR disponibles para 
España a escala nacional para realizar cartografía de las principales variables dasométricas en un bosque Mediterráneo 
de pino piñonero, caracterizado por una compleja orografía. Para ello, se ajustaron modelos lineales de regresión en 
cada tipo de bosque, a partir de los datos LiDAR de baja densidad (0,5 primeros retornos m–2), proporcionados por el 
PNOA (Plan Nacional de Ortofotografía Aérea) y los datos obtenidos en campo. Además, se investigó la influencia de 
los umbrales de altura usados en la extracción de los estadísticos de la nube de puntos LiDAR (MHT: Minimun Height 
Threshold y BHT: Break Height Threshold). Los mejores modelos de regresión explicaron un 61-85%, 67-98%, 74-98% de 
la variabilidad en altura de masa, área basimétrica y volumen, respectivamente. El error de estimación en las variables 
de masa fue mayor en bosques cerrados mixtos y puros de caducifolias que en los bosques más homogéneos de 
coníferas. Los resultados demostraron que los umbrales de altura no fueron especialmente críticos en la estimación 
de las variables de masa en bosques de coníferas, pero hubo diferencias sustanciales en el caso de volumen, cuando 
aumentaron los umbrales de altura (HBT y MHT) en las masas de estructura más compleja (bosque mixto y puro de 
caducifolias). Un análisis métrica a métrica reveló la existencia de diferencias significativas en la mayor parte de 
las variables explicativas extraídas a partir de diferentes umbrales de altura (HBT y MHT). Los mejores modelos de 
predicción se aplicaron a los rodales de referencia y se elaboró una cartografía espacialmente explícita que representa 
las principales variables de masa, facilitando así la toma de decisiones para la gestión forestal sostenible en los 
ecosistemas de bosque mediterráneo. 

Palabras clave: Láser escáner aerotransportado, inventario forestal, cartografía atributos forestales, teledetección, 
modelización forestal.

Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-
based approach and height threshold analysis
Abstract: This study reports progress in forest inventory methods involving the use of low density airborne LiDAR 
data and an area-based approach (ABA). It also emphasizes the usefulness of the Spanish countrywide LiDAR dataset 
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1. Introduction

Analysis of the spatial distribution of biomass 
and forest inventory parameters is required in 
order to support forest management decisions in 
Mediterranean Forest ecosystems. Optical remote-
ly sensed data is often used for such purposes; 
however, it is often difficult to estimate the param-
eters in areas characterized by a complex forest 
structure. During the past three decades, airborne 
LiDAR has become an established method for 
accurate derivation of the most important forest 
inventory parameters (Maltamo et al., 2014).

Single-tree and stand-level approaches can be used 
with LiDAR data to estimate forest parameters. In 
the former approach, single-tree attributes are esti-
mated by crown delineation, height measurement 
and detection of individual apexes. However, the 
performance of this approach is relatively poor in 
complex stands where individual tree segmenta-
tion algorithms frequently generate commission/
omission errors during analysis of individual trees 
(González-Ferreiro et al., 2013). This approach is 
also very expensive as it requires spatially dense 
LiDAR data. The area-based approach (ABA) is 
a less expensive alternative and has commonly 
been used to generate maps of forest attributes 
over a wide range of forest types: Temperate 
(Hall et al., 2005), Boreal (Næsset and Gobakken 
2008), Atlantic (Gonçalves-Seco et  al., 2011; 
González-Ferreiro et al., 2012) and Mediterranean 
forests (González-Olabarria et  al., 2012; Alberti 

et al., 2013). This approach establishes statistical 
relationships between plot-level LiDAR metrics 
and stand attributes such as stand height, basal 
area and volume, which are derived from field 
measurements.

Some studies have investigated the influence of 
two height thresholds (HT) used during extraction 
of LiDAR metrics (Næsset, 2011; Nyström et al., 
2012; Görgens, 2015): i) the minimum height 
threshold (MHT), which is commonly specified as 
the lower boundary for calculating height metrics, 
and ii) the height break threshold (HBT), which is 
the limit for separating the point cloud data into 
two sets, as when the canopy returns are separated 
from the under canopy group. The MHT and HBT 
can be established independently and a wide range 
of values can be applied, especially for mature 
forests where most returns are obtained from 
biological material located some distance above 
the ground (Næsset 2011). However, in young, 
closed deciduous and mixed forest, selection of a 
more specific threshold value will probably have 
a greater impact on estimation of the forest stand 
attributes.

The MHT can be obtained by various approaches. 
The first approach selects a threshold value that 
splits the cloud into below-canopy and canopy 
returns; a value of 2 m is often used for splitting 
the canopy (e.g. Næsset, 2002; Næsset, 2011; 
Montaghi et  al., 2013). A second approach uses 
the MHT to exclude returns not considered as 
necessary for estimating certain variables; thus, 

for mapping forest stand attributes in Mediterranean stone pine forest characterized by complex orography. Low-
density airborne LiDAR data (0.5 first returns m–2) was used to develop individual regression models for a set of forest 
stand variables in different types of forest. LiDAR data is now freely available for most of the Spanish territory and 
is provided by the Spanish National Aerial Photography Program (Plan Nacional de Ortofotografía Aérea, PNOA). The 
influence of height thresholds (MHT: Minimun Height Threshold and BHT: Break Height Threshold) used in extracting 
LiDAR metrics was also investigated. The best regression models explained 61-85%, 67-98% and 74-98% of the 
variability in ground-truth stand height, basal area and volume, respectively. The magnitude of error for predicting 
structural vegetation parameters was higher in closed deciduous and mixed forest than in the more homogeneous 
coniferous stands. Analysis of height thresholds (HT) revealed that these parameters were not particularly important 
for estimating several forest attributes in the coniferous forest; nevertheless, substantial differences in volume 
modelling were observed when the height thresholds (MHT and BHT) were increased in complex structural vegetation 
(mixed and deciduous forest). A metric-by-metric analysis revealed that there were significant differences in most 
of the explanatory variables computed from different height thresholds (HBT and MHT).The best models were 
applied to the reference stands to yield spatially explicit predictions about the forest resources. Reliable mapping of 
biometric variables was implemented to facilitate effective and sustainable management strategies and practices in 
Mediterranean Forest ecosystems.

Key words: Airborne laser scanning data, forest inventory, forest attribute mapping, remote sensing, forest modelling.
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for example, returns below the lowest average 
height of the smallest trees measured are usually 
removed for volume estimation (e.g. Jensen et al., 
2006; Montagnoli et  al., 2015). The third ap-
proach deals with noise from ground classification 
errors and aims to eliminate returns from under-
story, stones, dead wood and other non-relevant 
elements (e.g. García et al., 2010). For the HBT, 
the cloud is split into two sets to calculate propor-
tions (canopy density metrics or metrics related to 
crown closure). The threshold can be established 
on the basis of canopy base height (e.g. Andersen 
et al., 2005) or it can be defined as a function of 
other metrics for the whole study area, e.g. mean, 
mode or percentiles (Næsset, 2002). A HT analysis 
is important to separate the returns from canopy 
and below canopy, remove unnecessary returns 
or noise, and hence in forest variables modelling, 
since LiDAR metrics should describe biophysical 
characteristics of the analysed stands.

In this study, we used the ABA to derive forest in-
formation from low-density countrywide LiDAR 
data in a Mediterranean forest in southwestern 

Spain. The overall objectives of the study were 
as follows: i) to use LiDAR data to develop pre-
dictive linear models of biometric parameters for 
4 different types of forest; ii) to investigate the ef-
fects of height thresholds (MHT and HBT) on the 
explanatory capacity of a set of metrics aimed at 
estimating stand variables in the different types of 
forest; and iii) to use the LiDAR-derived models 
to map the stand variables across the landscape.

2. Material and methods

2.1. Study area

This study was conducted in the public Tudia 
y sus Faldas forest located near the town of 
Monasterio (Region of Extremadura, SW Spain) 
(Figure  1) (Guerra-Hernández et  al., 2015). 
The forest area, corresponding to public util-
ity forest number  1 (MUP1, Monte de Utilidad 
Pública número 1), covers an area of 748.20 ha. 
The forest is representative of stone pine forest 
in SW Spain, characterized by the dominance 

Figure 1. Boundary of the Tudia y sus Faldas forest study site (red line), forest types (coloured polygons), and forest in-
ventory plots (black dots).
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of pure stone pine (Pinus pinea L.) stands and 
mixed forest of stone pine stands associated with 
maritime pine (Pinus pinaster Ait.) and Pyrenean 
oak (Quercus pyrenaica Willd.). The MUP1 also 
includes a small proportion of pure Pyrenean oak 
and maritime pine stands. The elevation of the 
study area ranges from 600 to 1100 m.a.s.l., and 
the average slope is 25.5%.

2.2. Plot data

Field data were obtained from the forest invento-
ry carried out by the Extremadura Forest Service 
for forest management purposes. According to 
forestry management regulations in Spain, for 
a random stratified inventory, a maximum sam-
pling error of 15% in the basal areal is allowed 
with a fiducial probability of 95%. On the basis 
of this condition, the theoretical number of plots 
for each stratum was calculated according to an 
optimal and proportional allocation (system-
atically distributed in a grid of approximately 
200×200  m for pure stands of stone pine and 
150×150  m for the other strata). In total, 192 
circular sample plots of 11  m radius (area of 
380.13  m2) were measured in the study area, 
between July and August 2010. From these ref-
erence points, a LEICA GX1230 (dual frequency 
real time kinematic receiver with a planimetric 
precision of ±5  mm+0.5  ppm and an altimetric 
precision of ±10 mm+0.5 ppm) was used, along 
with a metal detector, to relocate the centre of 
each plot (marked with iron poles). At each point, 
GPS signals were logged using a roving receiver 
with an external antenna (ATX1230 GG), and 
the recordings were post-processed with correc-
tion data retrieved from the fixed base station 
in Llerena (Badajoz) (station number: 355919, 
X: 236491.04585  m, Y:  4236374.10125  m, 
Coordinates system ETRS89-30, and Altitude: 
642.39223 m), to give the plot positions. All trees 
of dbh (diameter at breast height) >7.5 cm were 
measured in each plot. Small trees (dbh <7.5 cm) 
were also tallied for the total stem number, but 
the data were not used in basal area and volume 
calculations. The tree height, height to crown 
base, crown width (in two directions at right 
angles to each other) and age were measured in 
a subsample of 3  trees per plot (the northern-
most, southernmost and one dominant tree). The 
heights of the remaining trees were estimated by 

using locally adjusted allometric models. The 
following equations were used to estimate the 
height of all trees in the sample plots (Table 1): 

Table 1. Non-linear height-diameter models.

Specie Equation RMSE

P. pinea  
(n=361) h = 0.0633024 ∙ d0.862396 1.313

P. pinaster 
(n=68)

. . .h d
d1 3 19 6814 0 22983 2

2

$
= + +^ h 2.26

Q. pyrenaica 
(n=103)

. ..h d
d1 3 033 0519 170836 2

2

$
= + +^ h 1.303

where h is total tree height (m), d is diameter at 
breast height (1.3 m above the ground level, mm).

Stand height (SH) was computed as Lorey’s 
mean height (defined as a basal-area-weighted 
average height), which is the definition of 
stand height that provides the values closest to 
the aerodynamic canopy height in pine forest 
stands (Nakai et  al., 2010) and is expected to 
adequately represent the average height of the 
dominant and co-dominant trees in a stand 
(González-Ferreiro et  al., 2014). The volume 
over bark of each tree was estimated using the 
non-linear models developed by the Spanish 
National Forest Inventory for P. pinea, P. pinas-
ter and Q. pyrenaica in Badajoz (Extremadura). 
The field measurements (diameters, heights and 
heights to crown base) were used to estimate the 
following stand variables in each plot, on a per 
hectare basis: mean height (Hm), stand height 
(SH), dominant height (H0), stand basal area 
(G), stand volume over bark (V), canopy base 
height (CBH) (Table 2). 

Further analysis was performed considering 
four types of forest: i) pure P. pinea, ii) mixed, 
iii)  Q. pyrenaica forest, and iv) P. pinaster. 
The forest type was considered dominant if the 
basal area of the dominant species represented 
more than 70% of G within the plot. Following 
this criterion, 120 plots were classified as pure 
P. pinea stands, 39 as mixed P. pinea stands, 19 
as pure Q. pyrenaica stands and 14 as P. pinas-
ter stands.
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2.3. LiDAR data

LiDAR data were acquired for the PNOA project, 
between July and August 2010 and under the di-
rection of the Spanish Ministry of Public Works 
and Transport (Dirección General del Instituto 
Geográfico Nacional, IGN, and Centro Nacional 
de Información Geográfica, CNIG), using an 
LEICA ALS50 sensor operated at 1064  nm, a 
maximum pulse repetition rate of 83 kHz, a max-
imum scan frequency of 32.1  Hz, a maximum 
scan angle of ±50° and an average flying height 
of 2866 m.a.s.l. A maximum of 4 returns per pulse 
were registered, with a theoretical laser pulse 
density required for the PNOA project of 0.5 first 
returns m-2. Summary statistics of first return den-
sity per square metre within plots are as follows: 
average = 1.76, minimum = 1, maximum = 41 and 
standard deviation = 1.62.

2.4. LiDAR metrics

LiDAR metrics are structural descriptive statis-
tics calculated from the normalised laser-derived 
point cloud. The metrics for the 192  plots were 
calculated using the FUSION LiDAR Toolkit 
(McGaughey, 2014). In summary, LiDAR met-
rics were computed for each circular plot after 
normalising the data by subtracting the DEM 
(Digital Elevation Model). For further details of 
the procedure used to obtain the LiDAR metrics, 
see González-Ferreiro et al. (2014). The variables 
related to height distribution and canopy closure 
were thus obtained. Furthermore, a set of metrics 
related to the density of returns enclosed in the 
vertical space defined by five intervals was calcu-
lated, after establishing the MHT and HBT. The 
LiDAR metrics are summarised and described in 
Table 3 and Table 4. 

Table 2. Summary of the mean, range and standard deviation of the main stand variables in the sample plots.

 
Variables

Pure Pinus pinea (n=120) Mixed Pinus pinea (n=39)
Range Mean SD Range Mean SD

N (trees ha−1) 26.32 1026.32 225.00 152.87 52.60 1605.30 359.65 300.50
G (m2 ha−1) 1.1 28.9 14.0 6.23 0.90 37.60 12.31 8.41
Vcc (m3 ha–1) 4.1 141.9 63.1 32.62 2.40 193.40 57.74 43.42
Hm (m) 3.83 13.34 9.00 2.33 2.07 13.30 7.73 1.81
SH (m) 3.93 13.58 9.30 2.65 2.81 14.49 8.47 2.77
H0 (m) 4.00 13.83 9.92 2.48 5.30 14.70 10.38 2.49
CBH (m) 0.35 7.33 2.52 1.25 0.70 7.55 2.39 1.42
 
Variables

Quercus pyrenaica (n=19) Pinus pinaster (n=14)
Range Mean SD Range Mean SD

N (trees ha−1) 26.32 1368.42 486.15 395.75 52.63 2157.89 1077.07 785.79
G (m2 ha−1) 0.34 19.20 7.57 6.35 1.33 59.37 29.41 91.79
Vcc (m3 ha–1) 1.98 96.42 38.80 31.40 7.58 302.59 152.44 94.97
Hm (m) 5.59 8.84 7.16 1.01 7.03 13.99 9.55 1.61
SH (m) 5.74 8.98 7.19 1.08 8.32 14.59 10.28 1.60
H0 (m) 5.81 11.17 8.07 1.73 10.83 15.22 11.92 1.13
CBH (m) 0.40 2.60 1.50 1.96 2.80 9.60 3.82 2.46

Table 3. Potential explanatory LiDAR metrics related to height distribution.
Variables related to height distribution (m) Description
hmin, hmax, hmean, hmode, hmedian minimum, maximum, mean, mode, median
hSD, hCV, hVAR standard deviation, coefficient of variation, variance
hskw, hkurt, hID skewness, kurtosis, interquartile distance
hAAD average absolute deviation
hMADmedian median of the absolute deviations from the overall median
hMADmode median of the absolute deviations from the overall mode
hL1, hL2,…, hL4 L-moments
hLskw L-moment of skewness
hLkurt L-moment of kurtosis
h05, h10, h20,…, h90, h95 percentiles
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The MHT establishes the lower boundary for com-
putation of height metrics, and the HBT represents 
a reference level for calculation of canopy density 
metrics. The MHT values considered were fixed 
values of 1 m, 2 m and also the canopy base height 
(CBH) for each forest type, thus defining the limits 
between laser canopy echoes and below-canopy 
echoes. The HBT values considered were a fixed 
value of 2 m, the CBH for each forest type, and the 
average middle crown length for each forest type, 
i.e. (Hm-CBH)/2 + CBH. According to plot analysis, 
the CBH ranged between 1.5 m for Q. pyrenaica 
forests and 3.82 m for P. pinaster forests. In the case 
of SH estimation, the MHT values tested ranged 
from the maximum MHT for each forest type to 
zero. Different combinations of each stand variable 
(SH, G and V) for the different height thresholds 
(MHT and HBT) are shown in Table 5.

Table 5. Combination of threshold heights (MHT and HBT) 
for each stand variable.
Variables Combination MHT(m) HBT(m)

G, V

(1) 2 2
(2) 1 2
(3) CBH CBH
(4) CBH #(Hm-CBH)/2+CBH

SH

(1) 2 2
(2) 1 2
(3) CBH CBH
(4) CBH/2 CBH
(5) 0.25 CBH
(6) 0 CBH

#HBT =5.76 m (Pure P. pinea forest); HBT =5.78 m  
(Mixed P. pinea forest); HBT =6.68 m (P. pinaster forest); 
HBT =4.34 m (Q. pyrenaica forest).

2.5. Modelling

The stepwise selection procedure (Næsset 2011, 
González-Ferreiro et al., 2012) was used to select 
the best metrics for estimating SH, G and V. The 
stepwise selection procedure was performed using 
R software, specifically the leaps package (R Core 
Team, 2014). Collinearity between regressors was 
avoided by checking the condition index (CI) and 
the variance inflation factor (VIF) at the end of each 
stepwise procedure. Regressions with a CI above 
30 or VIF above 10 were disregarded (Belsley 
et al., 2005) and a maximum 4 explanatories was 
used. The Linear models were used to establish 
forest-specific empirical relationships between field 
measurements and LiDAR variables. The general 
expression is as follows:

Y=β0+β1X1+β2X2+…+βnXn+ε� (1)

where Y is represents the different field variables: 
SH (m), V (m

3 ha-1), G (m2 ha-1) and X1, X2,…, Xn are 
metrics derived from LiDAR dataset. Comparison 
of the estimates for the selected models was based 
on the adjusted coefficient of determination (adj. R2) 
and the relative Root Mean Square Error (rRMSE).

2.6. Height threshold analysis

The effect of HT was studied initially comparing 
the goodness-of-fit statistics of the final models, 
following Næsset (2011), and not on the relation 
of the metrics themselves with the field attribute. 
In this case, if an automated procedure for metric 
selection is used, the entry or exit of different 

Table 4.Potential explanatory LiDAR metrics related to canopy closure.

Variables related to canopy closure (%) Description
CRR [(mean height – min height) / (max height – min height)]
PFRAHBT Percentage of first returns above HBT / Total all returns
PARAHBT Percentage of all returns above HBT / Total all returns
ARAHBT/TFR (All returns above HBT) / (Total first returns) × 100
PFRAM Percentage first returns above mean / Total all returns
PARAM Percentage all returns above mean / Total all returns
PFRAMO Percentage first returns above mode / Total all returns
PARAMO Percentage all returns above mode / Total all returns
ARAM/TFR (All returns above mean) / (Total first returns) × 100
ARAMO/TFR (All returns above mode) / (Total first returns) × 100
PARS 0-HBT , PARS (HBT-8)* , PARS 8-14, PARS 14-20, PARS 20-26 Ratios of the number of all laser hits within the height strata 0-HBT, 

(HBT-8)*, 8-14, 14-20, and 20-26 m (respectively) to the number of 
all laser hits for each plot

*(HBT-8) strata is shifted for (CBH-HBT #) in 3 and 4 threshold height combinations (described in Table 5).
#HBT values for the different type of forest (see Table 5).
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metrics into the model could compensate or mit-
igate the effects of the changes in HT. The REG 
procedure of SAS/STAT® (SAS Institute Inc., 
2004) was used to analyse the effect of threshold 
heights metric-by-metric for a better understanding 
of the HT on LiDAR metrics computation. Each 
of the explanatory metrics of the best model (best 
height threshold, BHT) by dependent variable were 
compared with the same metrics, extracted using 
the remaining threshold options. For this purpose, 
an analysis of variance (ANOVA) and Tukey’s test 
for multiple pairwise comparisons were performed 
to determine whether there were significant differ-
ences among the datasets.

2.7. Mapping stand variables 
Mapping was performed by applying the best forest 
type-specific models to LiDAR data. A regular grid 
that covered the entire study site was first generat-
ed; a cell size of 380.13 m2 was chosen to closely 
match the spatial unit for which the models were 
fitted (i.e. over circular study plots of diameter 
22 m). The FUSION LiDAR Toolkit (McGaughey, 
2014) was then used to obtain values (per cell) 
for the explanatory variables and to export these 
to raster files, which were subsequently used in a 
Geographic Information System (GIS) to obtain 
improved SH, G and V maps by applying the spe-
cific LiDAR models finally selected for each forest 
type (see the steps described in Guerra-Hernández 
et al. (2015).

Table 6. Summary of stand variable prediction models and assessment of plot-level accuracy for pure and mixed forest of 
P. pinea. G (m2 ha−1): Basal Area; V (m3 ha-1): Volume over bark; Lorey´s mean stand height (SH).

Threshold Independent variables1 R2
adj RMSE rRMSE(%)

Pure P. pinea (n=120)

SH

3 h70
***, hkurt S 14-20

*** 0.77 1.26 13.55
1 h80

***, hmode S 2-8
* 0.75 1.30 13.98

4 h75
***, hkurt S 14-20

*** 0.79 1.21 13.01
2 h75

***, hVAR
***, hADD

*** 0.80 1.18 12.68
5 h90

***, hkurt S 14-20
*** 0.78 1.25 13.44

6 h99
***, hmean S 14-20

*** 0.70 1.47 15.80

G

1 h10
***, ARAM/TFR*** 0.67 3.65 26.25

2 h10
***, ARAM/TFR***, ARAMO/TFR** 0.68 3.61 25.78

3 h10
***, ARAMO/TFR***, hmean 8-14

*** 0.53 4.25 30.35
4 h10

***, ARAMO/TFR***, hmode 8-14
*** 0.54 4.24 30.28

V

1 hmean
***,CRR**, PARA2*** 0.74 16.72 26.50

2 hmean
***, PFRA2***, PFRAMO*** 0.74 16.65 26.38

3 h L2
**, hmean2

***, hmin S 2.5-5.7
*, hmin S 5.7-14

* 0.61 20.27 32.12
4 hmean

***, PARAMO*** 0.66 19.1 30.26
Mixed Forest (n=39)

SH

3 h60
***, PFRA2.4*, PAR S 0-2

* 0.56 1.84 21.72
1 h50

***, PFRA2*, PFRAMO* 0.61 1.80 20.42
4 h70

***, PFRA2.4*, PAR S 0-2
* 0.53 1.90 22.43

2 h70
***, PFRA2*, PAR S 0-2

* 0.53 1.88 22.19
5 hL1

***, PFRA2.4***, PAR S 14-20
* 0.54 1.87 22.07

6 hL1
***, PFRA2.4**, PAR S 14-20

* 0.48 1.99 23.49

G

1 h95
***, PARA2**, hmean S 2-8

***, hmean S 8-14
** 0.77 4.00 32.52

2 hmean S 2-8
***, hmax S 14-20

***, PARA2*** 0.75 4.18 33.96
3 PAR S 5.7-14

***, hskw S 0-2
***, hmax S 14-20

**,hmean S 5.70-14
* 0.73 4.37 35.50

4 h20
***, hkurt

*, PAR S 0-2.40
***, hmode S 0-2.40

* 0.67 4.77 38.74

V

1 hmean S 2-8
***, h80

*, PFRAMO*, hmax S 14-20
* 0.71 23.38 40.02

2 h90
***, hmode S 2-8

*** 0.64 26.23 45.42
3 PARAM***, hcv S 0-2.40

***, hskw S 0-2.40
***, PAR S 14-20

*** 0.82 18.45 31.95
4 PARAM***, hcv S 0-2.40

***, hskw S 0-2.40
***, PAR S 14-20

*** 0.82 18.45 31.95
1 Pr(>|t|) p=<0.0001 ‘***’ <0.001 ‘**’ <0.01 ‘*’ <0.05.
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3. Results
The models selected for each type of forest and each 
combination of HT are shown in Tables 6 and 7. The 
best models are highlighted in bold type in Tables 
6 and 7. Regressions explained 61-85%, 67-98% 
and 74-98% of the variability in field estimated SH, 
G and V, respectively. In terms of rRMSE, values 
ranged from 6.8-20.59%, 7.95-32.62%, and 8.9-
31.95%, respectively. The estimates of forest stand 
parameters in P. pinea and pure P. pinaster stands 
were more accurate than those obtained for the 
mixed forest and Q. pyrenaica forest with a more 
complex vegetation structure.

The canopy threshold did not have a clear effect 
on the accuracy of V and G models, although some 
differences were observed when MHT and HBT 

increased to CBH and to the average middle crown 
length in V modelling for mixed and deciduous 
forest, respectively. The best values for MHT and 
HBT in V modelling varied between the different 
types of forest, from MHT = 1-2 m and HBT = 2 m 
(coniferous stands) to MHT = 1.50-2.46  m and 
HBT = 4.34-2.40  m (Q. pyrenaica forest and 
mixed forests, respectively). The best values for G 
modelling ranged from MHT = 1-2 m, HBT = 2 m 
(coniferous stands) to MHT = 2  m, HBT = 2  m 
(Q.  pyrenaica forest and mixed forests, respec-
tively). The optimal MHT value for SH estimation 
should be close to 1 m for pure stands and close to 
2 m for mixed and Q. pyrenaica forests. 

The ANOVA and Tukey’s test for multiple pair-
wise comparisons (Table 8) showed that many 
explanatory variables within the best model (best 

Table 7. Summary of stand variable prediction models and results of plot-level accuracy assessment for P. pinaster and 
Q. pyrenaica; Density; G (m2 ha−1): Basal Area; V (m3 ha-1):Volume over bark; HL(m): Lorey´s mean stand height (SH).

Threshold Independent variables1 R2
adj RMSE rRMSE(%)

Pure P. pinaster (n=14)

SH

3 hL4
**, h05

*, hmean S 20-26
*** 0.80 0.71 6.90

1 hmax S 0-2
*, hmode S 14-20

**, hSD S 20-26
** 0.81 0.69 6.71

4 hL4
**, h05

*, hSD S 20-26
*** 0.83 0.66 6.42

2 hmax S 0-2
*, hmax S 14-20

**, hkurt S 14-20
** 0.85 0.62 6.01

5 hmin  S 0-2
*, hmedian S 0-2

**, hmedian S 20-26
** 0.79 0.72 7.00

6 h99
***, hmean

*, hmax S 6.70-14
** 0.73 0.82 7.98

G

1 PFRAM***, hSD S 0-2
***, hkurt S 2-8

*** 0.98 2.34 7.95
2 PFRAM***, hSD S 0-2

***, hkurt S 2-8
*** 0.98 2.51 8.53

3 PARA3.80***, hmode
**, hmedian S 3.80-6.70

** 0.93 4.78 16.25
4 PARA3.80***, hmode

**, hmedian S 3.80-6.70
** 0.93 4.78 16.25

V

1 PFRAM***, PAR S 2-8
**, hkurt S 2-8

*** 0.98 13.65 8.9
2 PFRAM***, PAR S 2-8

**, hkurt S 2-8
*** 0.98 13.77 9

3 PARA3.80***, hkurt S 0-3.80
**, hskw S 6.70-14

** 0.90 29.46 19.32
4 ARA6.70/TFR ***, hkurt S 0-3.80

**, hskw S 6.70-14
** 0.91 28 18.01

Q. pyrenaica (n=19)

SH

1 h20
***, h60

***, hmax S 0-2
***, hsd S 0-2

* 0.84 0.45 6.25
3 h05

**, hmode S 1.50
**, hmax S 1.5-4.30

* 0.65 0.63 8.76
2 h60

***, hmin S 0-2
*, hmax S 0-2

***, hCV S 0-2
* 0.76 0.53 6.25

4 hmean2
***, hmode S 0-1.5

***, hSD S 1.5-4.30
**, PAR S 4.30-14

*** 0.82 0.46 6.39
5 hmode S 0-1.5

**, hmedian S 1.50-4.30
***, PAR S 4.30-14

**, hmean S 4.30-14
** 0.80 0.48 6.67

6 hmin S 4.30-14
*, hmedian S 4.30-14

*** 0.52 0.74 10.29

G

1 h10
***, h25

***, PAR S 2-8
* 0.86 2.47 32.62

2 h10
***, h30

***, PAR S-2-8
* 0.81 2.76 36.45

3 hLskw
*, hskw S 0-1.5

**, hmode S 1.50-4.30
*, PAR S 4.30-14

*** 0.83 2.58 34.08
4 ARA4.30/TFR***, hskw S 0-1.5

**, hmode S 1.50-4.30
* 0.83 2.62 34.61

V

1 h60
***, PARAMO***, ARAM/TFR***, PAR S 0-2 0.85 12.25 31.57

2 h90
***, hMADmode

** , hmax S 0-2
**, hmean S 2-8

*** 0.81 14.07 36.26
3 hskw

***, PFRA1.50*** , hkurt S 0-1.50
***, hmode S 1.50-4.30

* 0.82 13.43 34.61
4 PFRA4.30***, hmax S 0-1.50

**, hSD S 0-1.50
***, hmode S 1.50-4.30

*** 0.88 10.95 28.22
1 Pr(>|t|) p=<0.0001 ‘***’ <0.001 ‘**’ <0.01 ‘*’ <0.05.
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height threshold BHT) by dependent variable, were 
statistically different compared with the same met-
rics from the remaining thresholds combinations. 
Intermediate (hmean, h60) and upper height percen-
tiles (h95), influenced by the MBT, have suffered 
fewer the effect of HT changes than lower height 
metrics (h10) (see Table 8). Density metrics that de-
pend on fixed value of HBT (PFRA2, PARA2, and 
PFRA4.30) showed greater differences, maybe be-
cause HBT presents a wider range of variation. In 
most of the cases, the metric-by-metric threshold 
analysis showed significant differences, although 
is difficult to identify clear tendencies, due to the 

large variety of metrics, thresholds, forest types 
and dependent variables combinations analyzed 
in this study. Even so, threshold options 5 and 6 
seem to be high different from the best selected 
threshold for SH in most of forest types and very 
different combinations, like 1 and 2 respect to 3 
and 4 also show significant differences in the met-
ric-by-metric analysis.

Figure 2 shows LIDAR-based stand variable pre-
dictions in comparison with the stand-based forest 
variable estimates in the sample plots of each 
forest type. 

Table 8. Metric-by-metric height threshold analysis: All selected explanatory variables for the best models (best height 
threshold,  BHT) by dependent variable and forest type were compared with the same metrics obtained from the remaining 
height thresholds. Only the lowest p-values for the Tukey’s test for pairwise comparison are showed in the table. The 
numbers in brackets below p-values refer to the option of height threshold corresponding to the lowest found p-value (HT).

ANOVA (Tukey test)
BHT Independent variables p-value (HT)

Pure P. pinea (n=120) a b c

SH 2 a) h75 , b) hVAR , c) hADD
<0.05 

(6)
<0.05 

(6)
<0.05 

(6)

G 2 a) h10 , b) ARAM/TFR, c) ARAMO/TFR <0.05
(3,4)

0.19
(4)

0.69 
(3)

V 2 a)hmean , b)PFRA2, c) PFRAMO 0.6548
(3,4)

<0.05
(4)

<0.05
(3,4)

Pure P. pinaster (n=14)

SH 2 a) hmax S 0-2 , b) hmax S 14-20 , c) hKurt S 14-20
<0.05

(3,4,5,6) 1 1

G 1 a)PFRAM, b) hSD S 0-2 , c) hkurt S 2-8
0.51
(3,4)

<0.05
(3,4)

0.74
(3,4)

V 1 a) PFRAM, b) PAR S 2-8 , c) hkurt S 2-8
0.5

(3,4)
0.13
(3,4)

0.74
(3,4)

BHT Independent variables
ANOVA (Tukey test)

p-value (HT)
Mixed Forest (n=39) a b c d

SH 1 a) h50 , b) PFRA2, c) PFRAMO <0.05
(6)

<0.05
(3,4,5,6)

<0.05
(5,6)

G 1 a) h95 , b) PARA2, c) hmean S 2–8 , hmean S 8-14
0.96
(3,4)

<0.05
(4)

<0.05
(3,4)

<0.05
(3,4)

V 3 a) PARAM, b) hcv S 0-2.40 , c) hskw S 0-2.40 , d) PAR S 14-20
0.29
(1)

0.96
(1,2)

0.98
(1,2) 1

Q. pyrenaica (n=19)

SH 1 a) h20 , b) h60 , c) hmax S 0-2 , d) hsd S 0-2
<0.05

(2,3,4,5,6)
0.96
(6)

<0.05
(5,6)

<0.05
(5,6)

G 1 a) h10, b) h25 , c) PAR S 2-8
0.20
(2)

0.83
(2)

0.70
(3,4)

V 4 a) PFRA4.30, b) hmax S 0-1.50 , c) hSD S 0-1.50 , d) hmode S 1.50-4.30
0.08
(3)

<0.05
(1,2)

<0.05
(1,2)

<0.05
(1,2)
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Finally, spatially-explicit maps obtained by apply-
ing the best forest-specific models to the LiDAR 
data, which provides a single value per cell for the 
target stand variable (SH, G and V), are shown in 
Figure 3. 

4. Discussion and conclusions

Mapping has always been essential in forest in-
ventories, fire management planning and biomass 
exploitation in order to obtain spatially explicit 

geographic information about forest stocks and 
their distribution. In the Mediterranean basin, 
these tasks are particularly challenging because of 
the extremely high degree of variability in com-
position, volume, quality and orography of the 
forests. Forest inventories can be used to provide 

Figure 2. Scatterplots and 1:1 line for the field-measured 
and the best model-estimated results for the sample plots.

Figure 3. Maps of biometric variables across the research 
site (pixel size = 22 m).
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estimates of natural resources at national, regional 
and local scales, to meet reporting requirements 
and to support policy and management decision 
making processes. Unfortunately, field data 
acquisition from wide areas is generally time 
consuming and expensive (Hall et al., 2005). The 
combination of field and LiDAR data has proven 
a cost-viable alternative for providing accurate 
estimates (Means et al., 2000).

Airborne LiDAR and multiple-platform laser 
studies for assessing biophysical parameters in 
many types of forest ecosystems report reliable 
results with acceptable uncertainty estimates (Van 
Leeuwen and Nieuwenhuis, 2010). Laser pulse 
density and vegetation structure are the most im-
portant factors in relation to the height accuracy of 
the laser-derived Digital Elevation Model (DEM) 
(Raber et al., 2002; Clark et al., 2004; Valbuena, 
2011), especially on steep terrain (Estornell et al., 
2011). Furthermore, plot size is an important de-
sign parameter in forest surveys, because it has the 
potential to reduce or inflate the impact of the edge 
effects and co-registration error, thus affecting the 
estimated values of forest stand parameters (Ruiz 
et al., 2014). The accuracy of the results (among 
other factors) also depends on field measurements 
and allometric equations used to model variables. 
In this respect, the distribution of LiDAR data 
points used in the study demonstrated the potential 
use of very low density LiDAR data and tradition-
al inventory plot sizes for estimating biophysical 
parameters, even in closed canopy forests with 
complex vegetation structure (Q. pyrenaica stands 
and mixed forest) and topographically complex 
terrain (more than 50% of the area with strong 
slopes ranging between 25-50%).

The results obtained for modelling SH in 
pure coniferous stands (adj.  R2 = 0.80-0.85, 
rRMSE = 2.68%-6.8%) were slightly better in 
terms of rRMSE than the values obtained for 
Pinus sylvestris and Picea abies in Norway 
(Järnstedt et  al., 2012), with a pulse density of 
10.43 pulses  m-2. However, they were slightly 
poorer than those reported for P. radiata 
(González-Ferreiro et al., 2014) and for P. nigra 
and P. pinaster (González-Olabarria et al., 2012) 
in Spain, with laser pulse densities of 0.5 and 
2  pulses m-2, respectively. In the case of mixed 
forest (adj  R2 = 0.61, rRMSE = 20.42%), the 
results were similar to those obtained for mixed 

forest in Italy (adj. R2 = 0.64) (Alberti et al., 2013), 
with a laser pulse density of 2.8 pulses m-2, and for 
subtropical rainforest (adj. R2 = 0.61) in complex 
terrain in Australia (Ediriweera et al., 2014), with 
a point density of 1-1.3 pulses m-2.

In addition to laser pulse density and the presence 
of steep areas, other factors may cause errors in 
predictive LiDAR models. In the present study i) 
the heights of the remaining trees of the plot were 
estimated, rather than being measured in the field; 
ii) accurate measurement of tree heights was dif-
ficult, as broadleaved trees usually have multiple 
apexes and the highest apex is not systematically 
located above the trunk, and  in the case of P. pinea, 
the crown is rounded or umbrella-shaped because 
the trees do not display strong apical dominance; 
and iii) as demonstrated in previous studies (Raber 
et  al., 2002; Clark et  al., 2004; Estornell et  al., 
2011) for relatively dense and structural decid-
uous forest on steep slopes, data characteristics 
such as scan angle often cause DEM inaccuracies 
that affect LiDAR-derived canopy height.

Stand basal area estimates derived from linear 
models for pure stone pine stands (adj. R2 = 0.67, 
rRMSE = 26.25%) were similar to the values 
obtained for Pseudotsuga menziesii by Coops 
et al. (2007) (R2 = 0.65, plot size=400 m2) and for 
P. radiata by Stephens et  al. (2007) (R2 = 0.66, 
rRMSE = 22.47%, plot size = 200-2450 m2 and 
González-Ferreiro et  al. (2012) (R2 = 0.68, plot 
size = 225  m2), but were slightly lower than 
some estimates for boreal areas (Næsset, 2002) 
(R2 = 0.86, plot size = 200  m2) and for forest in 
Canada (Treitz et al., 2010) (R2 = 0.91-0.94, plot 
size = 400 m2). The best values for mixed forest 
(adj.  R2 = 0.77 and rRMSE = 32.52%) were bet-
ter in terms of adj.  R2 reported for subtropical 
rainforest (adj.  R2 = 0.61, plot size = 2500  m2), 
but slightly worse in terms of rRMSE reported 
for mixed stands in Sweden (21.5-23.2%, plot 
size = 452.39 m2) (Lindberg and Hollaus, 2012).

The results of volume modelling for pure P. pinea 
stands (adj.  R2 = 0.74, rRMSE = 26.38%) are 
similar to those reported by González-Ferreiro 
et  al. (2012) (R2 = 0.69, rRMSE = 25%), but 
slightly lower than those reported by Treitz 
et  al. (2010) (R2 = 0.83-0.97, rRMSE = 16-22%). 
For mixed forest, the present results (R2 = 0.82, 
rRMSE = 31.95 %) are better than those reported 
for mixed forest (R2 = 0.65, rRMSE = 37.3-41.9%) 
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in Sweden, with a pulse density of 7 returns m2 
(Lindberg and Hollaus, 2012), and mixed forest in 
Italy (R2 = 0.58) (Alberti et al., 2013). The results 
of the present study (in terms of adj. R2) show that 
the quality of the models for volume and basal 
area may be affected by plot size and LiDAR data 
density. Optimum cost-effective plot size has been 
shown to be near 500-600 m2 for this type of forest 
(Ruiz et al., 2014). 

On the other hand, G and V models utilizing 
height strata metrics performed better than models 
from previous studies (Guerra-Hernández et  al., 
2015), except for more homogeneous pure stone 
pine stands. However, it is important to note that 
models including height strata metrics always 
required more predictor variables than models 
using metrics without strata, in part due to the 
compartmentalized nature of this metrics.

We concluded that two of the HT values consid-
ered yielded models that performed equally well 
in estimating G and V, suggesting that an increase 
of 2  m in the MHT may lead to loss of useful 
information for estimating G and V in mature 
homogeneous coniferous stands with little or no 
understory, whilst a very low value of 1 m in dense 
and closed structural mixed and deciduous forests 
may include noise in the canopy data set, as re-
ported by Næsset (2011), probably due to LiDAR 
metrics that account for the presence of understory 
and small trees (not used in G and V calculations). 
As in other studies in young forest (Næsset, 2011; 
Gorgens, 2015), the results indicate that a higher 
value of HBT and MHT may return better metrics 
for volume modelling in closed structure decid-
uous and mixed forests. However, the effect on 
G was not as evident. Although a decrease in the 
MHT value to 1 m improved the models for SH 
in coniferous stands, the optimal value was close 
to 2 m, in dense and closed structural mixed and 
deciduous forests. The optimal solution for each 
forest type would be to consider a compromise 
between eliminating noise without loss of any ex-
planatory power, depending on the type of forest 
and the study variables. 

The datasets of the threshold combinations were 
not completely independent at the beginning of 
each stepwise procedure, however, the results 
showed there were many significant differences 
among the metrics from the best model (special-
ly the dataset combinations 1 and 2 respect to 

3 and  4), as revealed by ANOVA analysis. We 
can conclude that it is not simply a question of 
replacement but rather that independent variables 
truly change when HBT and MHT are modified. 
The study of the effect of threshold heights met-
ric-by-metric suggested such research would 
undergo with a high density dataset, since the 
low density nature of the dataset would also make 
these threshold heights to have a lesser effect.

In conclusion, this study demonstrated that 
low-density LiDAR data can be used to obtain im-
portant forest stand variables in closed deciduous, 
mixed forest and open canopy P. pinea-dominated 
forest, in topographically complex terrain. Most of 
the estimates in open canopy stone pine-dominated 
forest were accurate and similar to those obtained 
in related studies. Despite the structural com-
plexity of the mixed and deciduous forest and the 
steep terrain, it was possible to obtain estimates of 
structural parameters with a satisfactory level of 
accuracy. The results confirm that the accuracy of 
LiDAR estimates of vegetation structure depends 
on the complexity of the horizontal and vertical 
structural diversity of the vegetation (Estornell 
et al., 2011; Valbuena et al., 2011). The study also 
demonstrates the importance of separating the re-
turns from the canopy and from below canopy and 
of considering biological aspects during definition 
of HT.

Finally, forest technicians and scientists should 
work together to standardize the new terminology 
used in mapping and the parameters established 
from LiDAR data and also to discuss the best 
use of LiDAR technology. As LiDAR costs con-
tinue to decline and new and easier methods of 
processing data are developed, managers may 
incorporate LiDAR data in forest management, 
particularly where spatially-detailed information 
on forest structure is required across large spatial 
scales. However, to date little effort has been 
made to develop protocols for data acquisition and 
processing, representing a move towards cost-ef-
fective implementation of the technology and 
reduce the cost of forest inventories, which would 
be beneficial to governments, landowners and the 
forest industry.
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