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Abstract 

This study presents a methodology to tackle robot tasks in a cost-efficient way. It poses 

a multi-objective optimization problem for trajectory planning of robotic arms that an 

efficient algorithm will solve. The method finds the minimum time to perform robot 

tasks while considering the physical constraints of the real working problem and the 

economic issues participating in the process. This process also considers robotic system 

dynamics and the presence of obstacles to avoid collisions. It generates an entire set of 

equally optimal solutions for each process, the Pareto-optimal frontiers. They provide 

information about the trade-offs between the different decision variables of the multi-

objective optimization problem. This procedure can help managers in decision-making 



processes regarding performing tasks, items to be manufactured or robotic services 

performed to meet with the current demand, and also, to define an efficient scheduling. 

It improves productivity and allows firms to stay competitive in rapid changing markets. 
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1. Introduction 

An industrial robot is an automatically controlled, reprogrammable, and multipurpose 

manipulator that industrial automation applications use. A service robot is a robot that 

operates semi or fully autonomously to perform useful services for humans and 

equipment. World robots are rapidly growing in number in recent years. Process 

complexity deriving from automation requires efficient algorithms that control them to 

provide cost-efficient solutions (e.g., Kelly, Johnson, Dorsey, & Blodgett, 2004). 

Specifically, in recent years researchers are working hard in the trajectory planning of 

robot arms (e.g., Chen & Zhao, 2013; Chettibi, Lehtihet, Haddad, & Hanchi, 2002; Cho, 

Choi, & Lee, 2006; Gasparetto & Zanotto, 2010; Huang, Xu, & Liang, 2006; Suñer et 

al., 2007; Rubio et al., 2010; Rubio, Llopis-Albert, Valero, & Suñer,  2015). 

Furthermore, mathematical optimization techniques solve many engineering problems 

(e.g., Llopis-Albert & Capilla, 2010a, 2010b). 

This study presents a new robotic technology to address robotic systems' cost-

effectiveness through a multi-objective optimization problem for robotic arm trajectory 

planning, which an efficient algorithm solves. The method finds the minimum time 

trajectory to perform robot tasks while considering the physical constraints and the 

economic issues participating in the process. The methodology also allows analyzing 



the trade-off between the different decision variables through the Pareto-optimal 

frontiers. A solution belongs to the Pareto optimal frontier if an objective does not 

improve without adversely affecting at least one other objective. This methodology 

allows an immediate change, a quality improvement of the products, an increase in 

productivity, and a reduction of cycle times, which may increase opportunities to react 

to market developments and receptivity. The procedure overcomes the limitations of 

economic analysis methods that can currently assess robotic systems cost-effectiveness 

in production lines and robot services. 

 

2. Multi-objective optimization  

Many real-world design tasks involve complex multi-objective optimization problems 

of various competing design specifications and constraints that make a single design 

highly improbable. Therefore, a trade-off among the conflicting design objectives is 

necessary. A multi-objective optimization affects several non-commensurable and often 

competing objectives, cost functions, or performance functions within a feasible 

decision variable space. This study follows above optimization model because, for 

example, a minimum time trajectory to produce an item leads to lower costs in energy 

consumption. Therefore, a trade-off exists between executable time and costs. The 

multi- objective optimization problem solves the collision-free trajectory-planning 

problem of robotic arms while considering the economic issues participating in the 

process. The algorithm, according to previous works (Rubio, Valero, Suñer, & Mata, 

2009; Rubio, Valero, Suñer, & Cuadrado, 2012; Rubio et al., 2015; Valero, Mata, & 

Besa, 2006), returns robot's minimum total traveling time. This time has to do with 

productivity and flexibility, because it accelerates operation or execution time of the 

process. Problem constraints are the torque, power, jerk (variables to do with work 



quality, accuracy, and equipment maintenance), and energy consumption (related to 

savings). Optimization problem constraints require a fulfillment because minimum-time 

algorithms have discontinuous values of acceleration and torques leading to dynamic 

problems during trajectory performance. The imposition of smooth trajectories can 

solve the problem by using spline functions in path and trajectory planning. The jerk 

constraint is crucial for working with precision and without vibrations, and affects 

control system and joints and bars' wearing. These methods enable the errors, the 

stresses (in robot's actuators and mechanical structure), and the resonance frequencies to 

shrink during trajectory tracking. 

The economic objective function is the following: 

Max B = 
1

(1+𝑟)𝑇 [∑ (𝑃𝑝 − 𝐶𝑝) · 𝑁𝑝
𝑛
𝑝=1 ]                                         (4) 

where B is the objective function to be maximized and represents the current value of 

the net benefit from a generic service task (€) defined as the revenue of the  services 

performed minus total costs; Pp is the market unitary price of the service p (€); r is the 

annual discount rate; T represents number of years; Cp stands for the unitary cost to 

perform the service p (€), ranging from costs of raw materials, energy, amortization, 

labor force, maintenance, taxes to direct and indirect costs; and Np(t) is a function 

accounting for the number of services carried out per hour: 

Np(t) =
𝐾

𝑡(𝑆𝑘)µ                                                                                          (5) 

Tasks’ sets Sk to perform the item or service (p) constitutes the work load, where k 

represents the number of tasks. The cumulated task time  

𝑡(𝑆𝑘) = ∑ 𝑡𝑗𝜖𝑆𝑘 𝑗
 is called the service time, being K a constant related to the current 



number of working hours per year. The parameter µ refers to the economic 

environment and the market seasonality. 

Each one of these tasks is carried out by the robot arm, which uses a certain time to 

describe the optimal trajectory. As above mentioned, the developed algorithm returns 

the minimum time to carry out the task of the robot arm in order to perform the service 

p (tminp), while considering the time of the other tasks as constant. The lower the time 

used by the robot to perform its task, the greater the number of services carried out per 

hour. Then, the cumulative time of all tasks can be defined as follows: 

𝑡(𝑆𝑘) = 𝑡𝑚𝑖𝑛𝑝 + ∑ 𝑡𝑗
𝑘
𝑗∉𝑆𝑟𝑜𝑏𝑜𝑡

                                                                      (6) 

 

3. Results of the application of the methodology to different examples 

This study applies multi-objective optimization methodology to different examples 

following those by Rubio et al. (2012). This study uses as a model the PUMA 560 

robot, which stands for Programmable Universal Machine for Assembly. 

Five examples provide positive results with sequences between 32 and 57 intermediate 

configurations between the initial and final ones, using different physical working 

environments (see Rubio et al., 2012). The robot uses different working constraint 

values for each actuator. 

Table 1 presents algorithm results, that is, the execution time for the robot to perform 

robot task trajectory. 
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Table 1. Execution times (s) for the different examples solved with physical constraints 

Case 

Execution 

time (s) 

Case 

Execution 

time (s) 

1_s_s 3.79 4_5_s 18.28 

1_s_75 22.55 4_10_s 14.51 

1_5_s 19.27 4_25_s 10.69 

1_5_75 25.76 4_5_s 18.28 

2_s_s 5.14 4_10_s 14.51 

2_s_200 5.15 4_25_s 10.69 

2_s_175 5.3 4_50_s 8.49 

2_s_150 5.62 4_100_s 6.74 

2_s_125 6.42 4_1000_s 3.21 

2_s_100 12.25 4_s_s 2.41 

2_s_95 21.08 4_5_40 18.65 

2_5_s 23.05 4_s_40 9.94 

2_5_95 26.35 5_s_s 3.08 

3_s_s 2.27 5_s_40 9.18 

3_s_50 7.34 5_5_s 15.91 

3_5_s 14.82 5_5_40 15.93 

3_5_50 17.94   

  

(Nomenclature used. Case: numberexample_X_Y. The first number indicates the example solved, the X 

position indicates the value of a physical constraint -jerk- and the Y position indicates the value of energy 

consumed. Letter s in any position means without that constrain)  

  

 

Subsequently, the economic issues associated to robot service tasks are analyzed. We 

suppose a cost of the service considered of 0.8 € (without considering the cost of the 

energy consumed) and a price of 1€ for the five examples. When the cost of the energy 



consumed is considered, the different cases have different costs. A cost of 0.0676 

€/kWh has been defined, which has been added to cost of 0.8 €. For reasons of clarity, 

the service tasks is provided in only one shift of 8 hours (365 working days in a year), 

and the benefits B are presented for a period of one year. Different number of service 

tasks performed per year are obtained for each case, because they present different 

minimum execution times (𝑡𝑚𝑖𝑛). The time of the other tasks needed to perform the 

service (i.e., the summation of times shown in Eq. (6), ∑ 𝑡𝑗
𝑘
𝑗∉𝑆𝑟𝑜𝑏𝑜𝑡

) has been defined as 

90 s. Therefore, the different cases also present different benefits. For instance, the case 

3_s_s, which has no constraints in both the jerk and the energy consumed, presents the 

maximum benefits per year (23243 €). Contrary, the case 2_5_95, with severe physical 

constraints, shows the minimum benefits (22962 €).  

Now we consider that three different services are performed. This exercise is intended 

to illustrate the loss of benefits on account of not using efficient algorithms. This loss of 

benefits is represented by the Pareto fronts for three different services. The services 

differ in their cumulative time to be performed but share the same execution time of the 

robot arm (𝑡𝑚𝑖𝑛𝑝). Then the minimum trajectory time for the case 3_s_s is used for all 

items, i.e., 2.27 s. The cumulative time of the Service 1=90 s; Service 2=100 s; and 

Service 3=80 s. These services also differ in the total costs (without considering the 

energy costs), prices and values of the parameter µ, which is intended to simulate 

different economic environments and market seasonality. Then the total cost of Service 

1=0.8 €; Service 2=0.82 €; and Service 3=0.84 €, while the prices are Service 1=1.0 €; 

Service 2=1.05 €; and Service 3=1.02 €.  The parameter µ takes the values for each 

service of 0.6, 0.5 and 0.55, respectively. In this case, t(Sk) has been defined as a cubic 

function of 𝑡𝑚𝑖𝑛𝑝. 



Then, if the market conditions do not change and the efficient algorithm is not used, the 

minimum trajectory time is not obtained. In this scenario, there is a benefit loss due to 

the fact that robot arm may present higher execution times. The multi-objective 

optimization problem allows obtaining the Pareto frontiers, which provides information 

about the trade-offs of the decision variables. The trade-off between the benefits and the 

execution time for the case 3_s_s (i.e., the Pareto frontier) is presented in Fig. 1.  

Then the algorithm allows quantifying the benefit loss because of no using this robot 

programming technology. Each solution in the front will have an optimal objective 

function value, an optimal value of variables and constraints. All constraints will be 

satisfied by any solution in the Pareto optimal front. 

Note that for the cases defined, the differences between their annual energy costs are 

almost negligible compared with the other costs. 

 

 

Figure 1. Pareto frontiers for the case 3_s_s when considering different services tasks. 
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4. Conclusions 

This study presents a new robot programming technology applicable to many domestic 

and professional service robots. It consists of an efficient algorithm, which solves the 

kinematics and dynamics of robot arms, to obtain minimum time trajectories to perform 

service tasks subjected to physical constraints while avoiding collisions.  This is 

performed by taking under consideration characteristics of the real working problem 

and the economic issues involved in the process. The problem has been posed as a 

multi-objective optimization problem that provides the trade-offs between the decision 

variables by means of the technique based on Pareto frontiers. With the optimal 

execution times calculated in a cost-effective manner, the results can be used for 

improving a wide variety of robot service tasks.  

The proposed procedure has been successfully assessed for different examples of 

service tasks. These examples have proven the worth of the algorithm on account of the 

higher benefits obtained if compared when it is not applied. Furthermore, the Pareto 

frontiers of the two conflicting objectives analyzed (benefits and execution times of the 

service tasks) are illustrated for three different services. They can help managers in the 

decision making process, regarding which services should be performed, and to define 

an efficient scheduling of the services. Pareto frontiers allow service firms to stay 

competitive in rapidly changing markets, which also entail high levels of quality and 

efficiency. Therefore, the design and planning of the robot service tasks is considerably 

improved by the proposed algorithm. 
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