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Some results and examples concerning
Whyburn spaces
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ABSTRACT

We prove some cardinal inequalities valid in the classes of Whyburn
and hereditarily weakly Whyburn spaces and we construct examples of
non-Whyburn and non-weakly Whyburn spaces to illustrate that some
previously known results cannot be generalized.
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1. INTRODUCTION

A Hausdorff space X is said to be Whyburn if whenever A C X is not closed
and z € cl(A) \ A, there is B C A such that cl(B) \ A = {z}. The space
is weakly Whyburn if whenever A C X is not closed, there is B C A such
that |cl(B) \ A] = 1. These classes of spaces have been studied previously in
[1], [4] and also earlier in [7] and elsewhere under the names AP-spaces, and
WAP-spaces. If A C X, then the Whyburn closure of A, denoted by wcl(A) is
defined as

AU J{d(©):C C A, [ed(C)\ A] =1},
It follows immediately that a space is weakly Whyburn if and only if every

Whyburn closed set is closed. Undefined terminology can be found in [2] or [5]
and all spaces are assumed to be (at least) Hausdorff.
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2. WHYBURN AND WEAKLY WHYBURN SPACES

In [4], a pseudocompact Whyburn space which is not Fréchet was constructed
and Proposition 2.1 of [7] states that a weakly Whyburn compact Hausdorff
space must have a non-trivial convergent sequence. It is easy to see that this
latter result generalizes to countably compact Hausdorff spaces and also to fee-
bly compact spaces with an infinite set of isolated points (recall that a space is
feebly compact if every locally finite family of non-empty open sets is finite).
The question then arises whether this result is true for all pseudocompact or
feebly compact spaces. To answer this question we need the following termi-
nology.

If Y is a non-empty scattered space, then we set

Yo = {x : {z} is open} and for each ordinal «,

Yo ={x:{z}isopenin Y\ U{Ys: 8 < a}}.
The dispersion order of Y is then the least ordinal for which Y, = @. For
the sequel, we note that for each n € w, the dispersion order of the countable
ordinal w™ +1isn+ 1.

We also need two lemmas, the simple proof of the first of which we omit.

Lemma 2.1. For n € w, an infinite scattered subset A of a Ty-space X has
dispersion order at most n if and only if it is the union of n discrete subspaces.

Lemma 2.2. IfY is a scattered metric space of finite dispersion order n+ 1,
where n > 1, and x € Y,, then for any ¢ > 0, there is an embedding h :
w"+1—=Y such that h(w™) =z and diam(h[w™ + 1]) < e.

Proof. The proof is by induction on the dispersion order of Y. If n = 1, then
each point x € Y7 is the limit of a sequence S in Yj; S can be taken to have
arbitrarily small diameter and S U {z} is homeomorphic to w + 1.

Suppose now that the result is true for each n < k and let Y be a scattered
space of dispersion order k 4+ 1. Suppose that z € Y; and ¢ > 0; pick a
sequence (x,,) = S C Yj_; converging to x such that diam(S) < ¢/2. Since
Y is hereditarily collectionwise normal, we may find mutually disjoint open
sets U, such that z,, € U,,; each set U,, is scattered and has dispersion
order k. Applying the inductive hypothesis, for each m € w, we may find an
embedding h,, : w*~! +1 — U, such that h,,(w*~') = z,, and such that
diam(T,) < €/4™, where T),, = h[w* 1 +1]. Let T = U{Tm : m € w} U {z};
it is straightforward to check that 7' is homeomorphic to w”* + 1 since each
neighbourhood of z contains all but finitely many of the sets T;,; furthermore,
diam(7T) < e/2+€/4 4 €/16 < e. O

Example 2.3. There is a Whyburn H-closed (hence feebly compact) Hausdorff
space with no non-trivial convergent sequences.

Proof. We consider the space X = [0, 1] with the usual metric topology p. Let
7 be the topology on X generated by

pwU{X\D:DC X is u—discrete}.
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Since {X \ D : D C X is u—discrete} is a filter of dense subsets of (X, u) it
follows that (X, 7) is H-closed. Furthermore, it is clear that (X, 7) is Hausdorff
and has no convergent non-trivial sequences. Even more is true: It follows from
Lemma 2.1 that every scattered subspace of (X, ) of finite dispersion order is
closed in the topology 7. We will show that (X, 7) is a Whyburn space. To
this end, suppose that A C X is not closed and let = € cl;(A) \ A. Now in
(X, ), A is the union of a scattered subset C' C A and a dense-in-itself subset
B C A, hence either (i) = € cl.(B) or (i1) x € cl;(C). We consider the cases
separately.

(i) Since B is dense-in-itself, every non-empty open subset of B contains a
dense subset homeomorphic to the rationals, Q. Choose a nested local base at
x of p-closed sets V = {V,, : n € w}; we may assume that V41 C int(V},) and
BN (int(V,,) \ V1) # @ for each n € w. Since Q is universal for countable
metric spaces, for each n € w, in the open subset B N (int(V},) \ Vi41) of B we
may find a subspace D,, homeomorphic to the compact ordinal w™ + 1 which
has dispersion order n + 1; let D = |J{D,, : n € w}. Tt is easy to see that D
is scattered and has dispersion order w and since x € cl,, (D) a straightforward
argument shows that cl.(D)\ D = {z}.

(74) Choose a nested local base at x of p-closed sets V = {V,, : n € w}. If
x € ¢l (C), since each scattered subspace of (X, u) of finite dispersion order
is 7-closed, it follows that for each n € w, C' NV, has (countably) infinite
dispersion order x and since every countable limit ordinal has cofinality w, we
may assume without loss of generality that xk = w. Then, for each n € w, using
the previous lemma we may find embeddings h, : W™ +1 — V, N C and it
is not hard to see that the maps h, may be chosen so that if m # n, then
T, NT,, = @, where T}, = hi[w” + 1]. Each of the sets T}, is y-compact and 7-
discrete but T' = [ J{T} : k € w} has infinite dispersion order and so z € cl,(T).
Furthermore, since for each p-neighbourhood V' of z, the set T'\ V' is 7-closed,
it follows that cl(T') \ C = {«}. O

In the sequel d(X), L(X), t(X) and (X)) will denote respectively the den-
sity, tightness, Lindel6f number and pseudocharacter of a space (X, 7) and
¥ (z, X) will denote the pseudocharacter of x in X. If (X, 7) is a Hausdorff space
and x € X, then let ¢c(z, X) = min{|| : {z} = ({l(U): 2 € U €U C 7}}.

Theorem 2.4. A k-space is weakly Whyburn if and only if for each mnon-
closed set A C X, there is some compact set K C X and x € A such that
cd(KNA)=(KNA)U{z} =K.

Proof. The sufficiency is clear, since KN A is not closed in K. For the necessity,
suppose that (X, 7) is a Hausdorfl weakly Whyburn k-space and that A C X
is not closed in X. Then there is some compact set C' C X such that C N A
is not closed in C. Since C'is a closed subset of X, C' is weakly Whyburn and
hence there is some € C'\ A and a set B C C'N A such that cl(B) \ A = {z}.
Clearly cl(B) is the required compact subset of X. O

Corollary 2.5. A weakly Whyburn k-space is pseudoradial.
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Proof. This is an immediate consequence of the previous lemma and the fact
that a compact weakly Whyburn space is pseudoradial (see [7]). O

The next result extends Theorem 3 of [1] to the class of Hausdorff spaces.

Theorem 2.6. If X is a weakly Whyburn Lindeléf P-space and for each x € X,
Pz, X) < Ny, then X is pseudoradial.

Proof. For any Hausdorff space t.(z, X) < L(X)y(z, X) (see 2.8(c) of [3]) and
hence 9. (x, X) < R, foreachz € X. Let A C X be a non-closed set and B C A
such that cl(B)\ A = {z} for some x € X. Let Y = {U, : @ < £} be a family of
minimal cardinality s of open sets in cl(B) such that ({cl(Ua) : @ < 6} = {z}.
Since X is a P-space and « is not isolated, k is a regular uncountable cardinal.
Since x is minimal, for each @ € k we may choose z, € ({cl(Up) : 8 <
a}\{z} C A. Since cl(B) is Lindelof, the set so constructed {z, : @ < K} must
have a complete accumulation point z € cl(B). Since (J{cl(U,) : a < k} = {z}
and the well-ordered net S = (z4) ey is finally in each set cl(Ug) it follows that
z = z and z is the unique complete accumulation point of S. Furthermore,
S = (Za)aex must converge to x, for otherwise there would exist a subset of S
of size k with no complete accumulation point. 1

Theorem 2.7. The product of two Whyburn spaces, one of which is a k-space
and the other is locally compact is weakly Whyburn.

Proof. Suppose that X is a Whyburn k-space and Y is a Whyburn locally
compact space. It is known (see [7]) that a compact Whyburn Hausdorff space
is Fréchet-Urysohn and it is easy to see that the same is true of a Whyburn
Hausdorff k-space. It then follows from 3.3.J of [2] that X x Y is sequential
and hence weakly Whyburn. O

Question 2.8. Is the product of two Whyburn k-spaces, weakly Whyburn?
Theorem 2.9. If X is weakly Whyburn, then | X| < d(X)!X).

Proof. If X is finite, the result is trivial; thus we assume that X is infinite.
Suppose that d(X) = 6, t¢(X) = x and D C X is a dense (proper) subset
of cardinality §. Let D = Dy and define recursively an ascending chain of
subspaces {D, : a < k*} as follows:

Since X is weakly Whyburn, there is some 2z € X \ D and B, C D such that
cl(B;) \ D = {z}; clearly, we have |cl(B;)| < § < 6" and we may assume that
|B.| < k.

We then define

Dy =| J{cU(B) : B C Dy, |B| < &, [cl(B) \ Do| = 1}.

Clearly D1 2 Dy and since there are at most §* such sets B it follows that
|Dy| < 6%,

Suppose now that for each 8 < a < k™ we have defined dense sets Dg such
that |Dg| < 6" and D, C Dy whenever v < A < . If o is a limit ordinal, then
define D, = |J{Ds : 8 < a} and then |D,| < |a|.6" < k1.6% = §%. If on the
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other hand o = 3+ 1, and Dg & X, then since X is weakly Whyburn there is
some z € X \ Dg and B, C Dg such that cl(B;) \ Dg = {z}. Again we have
that |cl(B,)| < 6" and we may assume that |B,| < k. Now we may define

Do =|_J{cU(B) : B C Dg,|B| < k,|cl(B) \ Dg| =1}.

Clearly D, 2 Dg and since there are at most (6")" such sets B it follows that
|Dg| < 6%

To complete the proof it suffices to show that for some o < kT, we have
that D, = X. Suppose to the contrary that A = J{D, : a < T} # X;
|A| < kT.0% = §%. Then, since X is weakly Whyburn and has tightness ,
there is some z € X \ A and some set B C A of cardinality at most «, such
that cl(B) \ A = {z}. Since the sets {D, : @ < T} form an ascending chain
and cf(k*) > &, it follows that for some v < k*, B C |J{D4 : @ < v} and
hence z € D, 41, a contradiction. (]

Lemma 2.10. If X is hereditarily weakly Whyburn, then |X| < 24X),

Proof. Suppose to the contrary that |X| > 2%X). Let A be a dense subset
of X of minimal cardinality, A = {4 C A : |clx(A4)] < 24X} and V =
U{clx(4) : A € A}. Since |P(A)| = 2% it follows that |Y| < 24X and
hence if we put Z = AU (X \ Y), then |Z]| > 2¢X). Now if B € P(A)\ A,
then |clx (B) N Z| > 2%X) thus showing that A is Whyburn closed in Z but
not closed. Thus Z is not weakly Whyburn and hence X is not hereditarily
weakly Whyburn. O

3. THE WHYBURN PROPERTY IN SCATTERED AND SUBMAXIMAL SPACES

We recall our convention that all spaces are Hausdorff. A space is said
to be submaximal if every dense subset is open. A standard procedure for
constructing submaximal topologies is as follows. Suppose that (X,7) is a
(Hausdorff) space and D is a maximal filter in the family of dense subsets of
X. Then the topology o generated by the subbase 7 U D is submaximal and
is called a submaximalization of 7. Note that o is semiregular if and only if 7
is semiregular and submaximal (then o = 7). Obviously, a scattered space is
submaximal if and only if it has dispersion order 2.

As we mentioned earlier, every regular scattered space is weakly Whyburn
and the Katétov extension of w (see 4.8(n) of [5]) shows that this is not true
in the class of Urysohn spaces. Thus it is natural to ask the following two
questions.

(1) Must a dense-in-itself submaximal Whyburn space be regular?, and
(2) Is every scattered semiregular space Whyburn?

We give a partial answer to the first question by showing that a submaxi-
malization of a resolvable space is never Whyburn and answer the second by
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constructing a semiregular scattered space of dispersion order 2 which is not
weakly Whyburn.

Recall that a space is resolvable if it possesses two mutually disjoint dense
subsets.

Theorem 3.1. A submazimalization of a resolvable Hausdorff space is not
weakly Whyburn.

Proof. Suppose that (X, 7) is a resolvable Ts-space and F is a maximal filter
of dense sets in X. We first show that there is F' € F such that X \ F'is
somewhere dense in X. To this end, suppose to the contrary that no such F
exists, then for each F' € F, Up = X \ F is nowhere dense. Now let D and
D’ be complementary dense subsets of X; clearly D, D’ & F. For each F' € F,
since int(F) = X \ cl(X \ F), it follows that int(F') is dense in X and so too
are DNint(F) C DN F and D' Nint(F)) C D' N F. Since F is maximal, any
dense set which meets each element of F in a dense set is an element of F and
so it follows that D € F and D’ € F contradicting the fact that F is a filter.
Now let o be the topology generated by 7 U F and F' € F be such that
X \ F is somewhere dense; thus int,(clo(X \ F)) =U # @. Let V=UNF,
z € cle(V) \ F and note that V is infinite. Then if B C V is such that
x € cly(B), it follows that W = int,(B) # @. But then, cl,(W)N (X \ F) =
cl,(W)YN(X\F)=cly(cl,(W)N (X \ F)) N (X \ F) which is infinite. O

An example of a scattered submaximal Whyburn (even first countable) space
which is not regular (nor even semiregular) is easy to construct. Let Q denote
the rational numbers and X = Q x {0, 1} with the following topology:

Each point of Q x {0} is isolated and a basic open neighbourhood of (g, 1) is
of the form {(¢q,1)} U[(Uy\ {¢}) x {0}] where U, is a Euclidean neighbourhood

of ¢ € Q.

A space X is said to be w-resolvable if X possesses infinitely many mutu-
ally disjoint dense subsets. The construction of the next example depends on
the existence of a countable w-resolvable Hausdorff space which is not weakly
Whyburn. Before constructing such a space, the following lemma is needed

Lemma 3.2. A space X, w C X C fw is hereditarily weakly Whyburn if and
only if X is scattered.

Proof. The sufficiency is clear since a subspace of a scattered space is scattered
and it was proved in [4] that a regular scattered space is weakly Whyburn.
Furthermore, it is easy to see that if the dispersion order of X is 2, then it is
Whyburn also.

For the inverse implication, suppose that D C X \ w is dense in itself and let
Y =wUD; if Y were weakly Whyburn, then we could find p € D and B C w
such that cly (B) \ w = {p}, in other words, cly(B) = B U {p}. However,
cly(B) = clg,(B)NY and so cly(B) N D is an open subset of D to which p
belongs; since p is not isolated, this set must be infinite. O
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By way of contrast to the last result we note that under CH the subspace
of P-points of fw \ w has character wy and it then follows from Proposition 2.7
of [4] that this space is Whyburn.

Consider a countable dense-in-itself subset D C clgg(N)\N C fQ\Q (where
once again, Q denotes the set of rational numbers with the Euclidean topology).
Let X = QUD; X is a countable Tychonoff space which, is clearly w-resolvable.
That N is Whyburn closed in X follows from the previous lemma and the fact
that clgg(N) is homeomorphic to Sw.

Example 3.3. There is a semiregular scattered space (of dispersion order 2)
which is not weakly Whyburn.

Proof. Let (Z,0) be an w-resolvable (dense-in-itself) countable Tychonoff space
which is not weakly Whyburn and let F be an infinite family of mutually
disjoint dense subsets of (Z,0) and ¢ : Z — F a bijection. Let X = Z x {0,1}
and for each z € Z, let V. be an open neighbourhood base at z. We define a
topology 7 on X = Z x {0, 1} as follows:

Each point of Z x {0} is isolated and an open neighbourhood of (z,1) is of
the form

Wy ={(z D} UV x{0})\ ({(,0)} Ug(z)), where V € V..

The space (X, 7) is a scattered space of dispersion order 2 and we proceed
to show that it is neither regular nor weakly Whyburn.

It is easy to see that X is not regular since the open neighbourhood Wy,
of (z,1) contains no closed neighbourhood of that point. To prove that X
is semiregular, it suffices to show that each of the sets Wy, . is regular open.
To see this, suppose that (¢,1) € clx(Wy,,) where ¢ # z; then since ¢(z) is
dense in Z, each neighbourhood of (¢, 1) meets the set ¢(z) x {0} showing that
(t,1) & intx (cl(Wy,)).

Finally, to show that (X, 7) is not Whyburn, it suffices to prove that there is
some A C Z such that Ax {0} is Whyburn closed but not closed in X. However,
Z is not weakly Whyburn and hence there is some A C Z which is Whyburn
closed but not closed in Z and so if B C A is such that clz(B)\ A is nonempty,
we must have clz(B)\ A has no isolated points (and hence is infinite). We claim
that if B C A is such that clz(B)\ A is nonempty then clx (B x {0})\ (4 x {0})
is infinite. To prove our claim, suppose that s € clz(B) \ A; then either
(s,1) € clx(B x {0}) \ (A x {0}) or not. If (s,1) & clx (B x {0})\ (4 x {0})
then there is some open neighbourhood U of s in Z such that clz (U)NB C ¢(s)
and U contains infinitely many points of clz(B)\ A. If s #t € UN(clz(B)\ A),
then since BNU ¢ ¢(t), it follows that ¢ € clx (B x {0}) \ (A x {0}), showing
that clx (B x {0})\ (4 x {0}) is infinite. O
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4. SOME OPEN QUESTIONS

The space constructed in Example 2.3 is not regular, thus we are led to ask:

Question 4.1. Does every (weakly) Whyburn pseudocompact Tychonoff space
have a convergent sequence?

A number of dense pseudocompact subspaces of {0,1}¢ and I have been
constructed which do not possess a non-trivial convergent sequence (for exam-
ple see [6]); however, the question of whether such constructions can produce
a weakly Whyburn space has apparently not been studied.

Question 4.2. Is the bound ¥(z, X) < R, necessary in Theorem 2.67
Question 4.3. Suppose that | X| > 2%X); can X be weakly Whyburn?

Question 4.4. Does there exist in ZFC a dense Whyburn subspace of fw \ w?
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