Mostrar el registro sencillo del ítem
dc.contributor.author | Brizuela Guerra, Nayrim | es_ES |
dc.contributor.author | González-García, Cristina | es_ES |
dc.contributor.author | Llopis, Virginia | es_ES |
dc.contributor.author | Rodriguez-Hernandez, Jose Carlos | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.contributor.author | Rico Tortosa, Patricia María | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.date.accessioned | 2018-11-04T05:32:32Z | |
dc.date.available | 2018-11-04T05:32:32Z | |
dc.date.issued | 2010 | es_ES |
dc.identifier.issn | 1744-683X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/111804 | |
dc.description.abstract | [EN] A family of polymer substrates which consists of a vinyl backbone chain with the side groups ¿COO(CH2)xCH3, with x ¿ 0, 1, 3, 5 was prepared. Substrates with decreasing stiffness, characterised by the elastic modulus at 37 C, and similar chemical groups were obtained. Firstly, we have investigated whether these minute variations in polymer chemistry lead to differences in fibronectin (FN) adsorption: the same FN density was obtained on every substrate (450 ng cm2 ) but the supramolecular organisation of the protein at the material interface, as obtained with AFM, was different for x ¿ 0 and the other surfaces (x ¿ 1, 3, 5). Consequently, this allows one to use a set of substrates (x ¿ 1, 3, 5) to investigate the effect of substrate stiffness on cell behavior as the unique physical parameter, i.e. after ruling out any influence of the length of the side group on protein conformation. Moreover, the importance of investigating the intermediate layer of proteins at the cellmaterial interface is stressed: the effect of x ¿ 0 and x ¿ 1 on cell behavior cannot be ascribed to the different stiffness of the substrate anymore, since the biological activity of the protein on the material surface was also different. Afterwards, initial cellular interaction was investigated using MC3T3-E1 osteoblasts-like cells and focusing on actin cytoskeleton development, focal adhesion formation and the ability of cells to reorganize the adsorbed FN layer on the different substrates. Image analysis was used to quantify the frequency distribution of the focal plaques, which revealed broader distributions on the stiffer substrates, with formation of larger focal plaques revealing that cells exert higher forces on stiffer substrates. | es_ES |
dc.description.sponsorship | The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is kindly acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was supported by funds for research in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Soft Matter | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | TERMODINAMICA APLICADA (UPV) | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c0sm00074d | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Brizuela Guerra, N.; González-García, C.; Llopis, V.; Rodriguez-Hernandez, JC.; Moratal, D.; Rico Tortosa, PM.; Salmerón Sánchez, M. (2010). Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity. Soft Matter. 6(19):4748-4755. https://doi.org/10.1039/c0sm00074d | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c0sm00074d | es_ES |
dc.description.upvformatpinicio | 4748 | es_ES |
dc.description.upvformatpfin | 4755 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.pasarela | S\39386 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 | es_ES |
dc.description.references | Schwarz, U. S., & Bischofs, I. B. (2005). Physical determinants of cell organization in soft media. Medical Engineering & Physics, 27(9), 763-772. doi:10.1016/j.medengphy.2005.04.007 | es_ES |
dc.description.references | SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x | es_ES |
dc.description.references | Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089 | es_ES |
dc.description.references | García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071 | es_ES |
dc.description.references | Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j | es_ES |
dc.description.references | Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6 | es_ES |
dc.description.references | Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066 | es_ES |
dc.description.references | Anderson, J. M. (2001). Biological Responses to Materials. Annual Review of Materials Research, 31(1), 81-110. doi:10.1146/annurev.matsci.31.1.81 | es_ES |
dc.description.references | Wong, J. Y., Leach, J. B., & Brown, X. Q. (2004). Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surface Science, 570(1-2), 119-133. doi:10.1016/j.susc.2004.06.186 | es_ES |
dc.description.references | Gray, D. S., Tien, J., & Chen, C. S. (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. Journal of Biomedical Materials Research, 66A(3), 605-614. doi:10.1002/jbm.a.10585 | es_ES |
dc.description.references | Genes, N. G., Rowley, J. A., Mooney, D. J., & Bonassar, L. J. (2004). Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and Biophysics, 422(2), 161-167. doi:10.1016/j.abb.2003.11.023 | es_ES |
dc.description.references | Schneider, A., Francius, G., Obeid, R., Schwinté, P., Hemmerlé, J., Frisch, B., … Picart, C. (2006). Polyelectrolyte Multilayers with a Tunable Young’s Modulus: Influence of Film Stiffness on Cell Adhesion. Langmuir, 22(3), 1193-1200. doi:10.1021/la0521802 | es_ES |
dc.description.references | Ryan, P. L., Foty, R. A., Kohn, J., & Steinberg, M. S. (2001). Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proceedings of the National Academy of Sciences, 98(8), 4323-4327. doi:10.1073/pnas.071615398 | es_ES |
dc.description.references | Wong, J. Y., Velasco, A., Rajagopalan, P., & Pham, Q. (2003). Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels†. Langmuir, 19(5), 1908-1913. doi:10.1021/la026403p | es_ES |
dc.description.references | Lo, C.-M., Wang, H.-B., Dembo, M., & Wang, Y. (2000). Cell Movement Is Guided by the Rigidity of the Substrate. Biophysical Journal, 79(1), 144-152. doi:10.1016/s0006-3495(00)76279-5 | es_ES |
dc.description.references | Bischofs, I. B., & Schwarz, U. S. (2003). Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences, 100(16), 9274-9279. doi:10.1073/pnas.1233544100 | es_ES |
dc.description.references | Schwarz, U. (2007). Soft matters in cell adhesion: rigidity sensing on soft elastic substrates. Soft Matter, 3(3), 263-266. doi:10.1039/b606409d | es_ES |
dc.description.references | Choquet, D., Felsenfeld, D. P., & Sheetz, M. P. (1997). Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages. Cell, 88(1), 39-48. doi:10.1016/s0092-8674(00)81856-5 | es_ES |
dc.description.references | Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7(4), 265-275. doi:10.1038/nrm1890 | es_ES |
dc.description.references | Discher, D. E. (2005). Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 310(5751), 1139-1143. doi:10.1126/science.1116995 | es_ES |
dc.description.references | Harjanto, D., & Zaman, M. H. (2010). Matrix mechanics and receptor–ligand interactions in cell adhesion. Org. Biomol. Chem., 8(2), 299-304. doi:10.1039/b913064k | es_ES |
dc.description.references | Pelham, R. J., & Wang, Y. -l. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences, 94(25), 13661-13665. doi:10.1073/pnas.94.25.13661 | es_ES |
dc.description.references | Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141 | es_ES |
dc.description.references | Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 | es_ES |
dc.description.references | Altankov, G., Thom, V., Groth, T., Jankova, K., Jonsson, G., & Ulbricht, M. (2000). Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. Journal of Biomedical Materials Research, 52(1), 219-230. doi:10.1002/1097-4636(200010)52:1<219::aid-jbm28>3.0.co;2-f | es_ES |
dc.description.references | García, A. (1999). Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials, 20(23-24), 2427-2433. doi:10.1016/s0142-9612(99)00170-2 | es_ES |
dc.description.references | Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044 | es_ES |
dc.description.references | Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102 | es_ES |
dc.description.references | Barrias, C. C., Martins, M. C. L., Almeida-Porada, G., Barbosa, M. A., & Granja, P. L. (2009). The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 30(3), 307-316. doi:10.1016/j.biomaterials.2008.09.048 | es_ES |
dc.description.references | Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology-Cell Physiology, 290(6), C1640-C1650. doi:10.1152/ajpcell.00455.2005 | es_ES |
dc.description.references | Kong, H. J., Polte, T. R., Alsberg, E., & Mooney, D. J. (2005). FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proceedings of the National Academy of Sciences, 102(12), 4300-4305. doi:10.1073/pnas.0405873102 | es_ES |
dc.description.references | Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062 | es_ES |
dc.description.references | Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537 | es_ES |
dc.description.references | Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 | es_ES |
dc.description.references | Gugutkov, D., Altankov, G., RodrÃguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374 | es_ES |
dc.description.references | Bae, Y. H., Johnson, P. A., Florek, C. A., Kohn, J., & Moghe, P. V. (2006). Minute changes in composition of polymer substrates produce amplified differences in cell adhesion and motility via optimal ligand conditioning. Acta Biomaterialia, 2(5), 473-482. doi:10.1016/j.actbio.2006.04.001 | es_ES |
dc.description.references | Nicolas, A., Geiger, B., & Safran, S. A. (2004). Cell mechanosensitivity controls the anisotropy of focal adhesions. Proceedings of the National Academy of Sciences, 101(34), 12520-12525. doi:10.1073/pnas.0403539101 | es_ES |
dc.description.references | Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., … Geiger, B. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3(5), 466-472. doi:10.1038/35074532 | es_ES |
dc.relation.references | 10.1083/jcb.103.6.2697 | es_ES |
dc.relation.references | 10.1016/j.medengphy.2005.04.007 | es_ES |
dc.relation.references | 10.1111/j.1749-6632.2002.tb03040.x | es_ES |
dc.relation.references | 10.1007/12_089 | es_ES |
dc.relation.references | 10.1007/12_071 | es_ES |
dc.relation.references | 10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J | es_ES |
dc.relation.references | 10.1016/S0092-8674(02)00971-6 | es_ES |
dc.relation.references | 10.1038/35099066 | es_ES |
dc.relation.references | 10.1146/annurev.matsci.31.1.81 | es_ES |
dc.relation.references | 10.1016/j.susc.2004.06.186 | es_ES |
dc.relation.references | 10.1002/jbm.a.10585 | es_ES |
dc.relation.references | 10.1016/j.abb.2003.11.023 | es_ES |
dc.relation.references | 10.1021/la0521802 | es_ES |
dc.relation.references | 10.1073/pnas.071615398 | es_ES |
dc.relation.references | 10.1021/la026403p | es_ES |
dc.relation.references | 10.1016/S0006-3495(00)76279-5 | es_ES |
dc.relation.references | 10.1073/pnas.1233544100 | es_ES |
dc.relation.references | 10.1039/B606409D | es_ES |
dc.relation.references | 10.1016/S0092-8674(00)81856-5 | es_ES |
dc.relation.references | 10.1038/nrm1890 | es_ES |
dc.relation.references | 10.1126/science.1116995 | es_ES |
dc.relation.references | 10.1039/B913064K | es_ES |
dc.relation.references | 10.1073/pnas.94.25.13661 | es_ES |
dc.relation.references | 10.1089/ten.tea.2009.0141 | es_ES |
dc.relation.references | 10.1109/TSMC.1979.4310076 | es_ES |
dc.relation.references | 10.1002/1097-4636(200010)52:1<219::AID-JBM28>3.0.CO;2-F | es_ES |
dc.relation.references | 10.1016/S0142-9612(99)00170-2 | es_ES |
dc.relation.references | 10.1016/j.cell.2006.06.044 | es_ES |
dc.relation.references | 10.1073/pnas.0407356102 | es_ES |
dc.relation.references | 10.1016/j.biomaterials.2008.09.048 | es_ES |
dc.relation.references | 10.1152/ajpcell.00455.2005 | es_ES |
dc.relation.references | 10.1073/pnas.0405873102 | es_ES |
dc.relation.references | 10.1016/j.biomaterials.2004.01.062 | es_ES |
dc.relation.references | 10.1002/jbm.a.10537 | es_ES |
dc.relation.references | 10.1021/la9012203 | es_ES |
dc.relation.references | 10.1002/jbm.a.32374 | es_ES |
dc.relation.references | 10.1016/j.actbio.2006.04.001 | es_ES |
dc.relation.references | 10.1073/pnas.0403539101 | es_ES |
dc.relation.references | 10.1038/35074532 | es_ES |