Riunet Móvil

Home Versión de escritorio

Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity

Mostrar el registro sencillo del ítem

dc.contributor.author Brizuela Guerra, Nayrim es_ES
dc.contributor.author González-García, Cristina es_ES
dc.contributor.author Llopis, Virginia es_ES
dc.contributor.author Rodriguez-Hernandez, Jose Carlos es_ES
dc.contributor.author Moratal, David es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2018-11-04T05:32:32Z
dc.date.available 2018-11-04T05:32:32Z
dc.date.issued 2010 es_ES
dc.identifier.issn 1744-683X es_ES
dc.identifier.uri http://hdl.handle.net/10251/111804
dc.description.abstract [EN] A family of polymer substrates which consists of a vinyl backbone chain with the side groups ¿COO(CH2)xCH3, with x ¿ 0, 1, 3, 5 was prepared. Substrates with decreasing stiffness, characterised by the elastic modulus at 37 C, and similar chemical groups were obtained. Firstly, we have investigated whether these minute variations in polymer chemistry lead to differences in fibronectin (FN) adsorption: the same FN density was obtained on every substrate (450 ng cm2 ) but the supramolecular organisation of the protein at the material interface, as obtained with AFM, was different for x ¿ 0 and the other surfaces (x ¿ 1, 3, 5). Consequently, this allows one to use a set of substrates (x ¿ 1, 3, 5) to investigate the effect of substrate stiffness on cell behavior as the unique physical parameter, i.e. after ruling out any influence of the length of the side group on protein conformation. Moreover, the importance of investigating the intermediate layer of proteins at the cellmaterial interface is stressed: the effect of x ¿ 0 and x ¿ 1 on cell behavior cannot be ascribed to the different stiffness of the substrate anymore, since the biological activity of the protein on the material surface was also different. Afterwards, initial cellular interaction was investigated using MC3T3-E1 osteoblasts-like cells and focusing on actin cytoskeleton development, focal adhesion formation and the ability of cells to reorganize the adsorbed FN layer on the different substrates. Image analysis was used to quantify the frequency distribution of the focal plaques, which revealed broader distributions on the stiffer substrates, with formation of larger focal plaques revealing that cells exert higher forces on stiffer substrates. es_ES
dc.description.sponsorship The support of the Spanish Ministry of Science and Innovation through project MAT2009-14440-C02-01 is kindly acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was supported by funds for research in the field of Regenerative Medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III. en_EN
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Soft Matter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c0sm00074d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Brizuela Guerra, N.; González-García, C.; Llopis, V.; Rodriguez-Hernandez, JC.; Moratal, D.; Rico Tortosa, PM.; Salmerón Sánchez, M. (2010). Subtle variations in polymer chemistry modulates substrate stiffness and fibronectin activity. Soft Matter. 6(19):4748-4755. https://doi.org/10.1039/c0sm00074d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c0sm00074d es_ES
dc.description.upvformatpinicio 4748 es_ES
dc.description.upvformatpfin 4755 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\39386 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Grinnell, F. (1986). Focal adhesion sites and the removal of substratum-bound fibronectin. The Journal of Cell Biology, 103(6), 2697-2706. doi:10.1083/jcb.103.6.2697 es_ES
dc.description.references Schwarz, U. S., & Bischofs, I. B. (2005). Physical determinants of cell organization in soft media. Medical Engineering & Physics, 27(9), 763-772. doi:10.1016/j.medengphy.2005.04.007 es_ES
dc.description.references SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x es_ES
dc.description.references Werner, C., Pompe, T., & Salchert, K. (2006). Modulating Extracellular Matrix at Interfaces of Polymeric Materials. Advances in Polymer Science, 63-93. doi:10.1007/12_089 es_ES
dc.description.references García, A. J. (s. f.). Interfaces to Control Cell-Biomaterial Adhesive Interactions. Advances in Polymer Science, 171-190. doi:10.1007/12_071 es_ES
dc.description.references Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., Iost, A., & Hardouin, P. (2000). Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. Journal of Biomedical Materials Research, 49(2), 155-166. doi:10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j es_ES
dc.description.references Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6 es_ES
dc.description.references Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nature Reviews Molecular Cell Biology, 2(11), 793-805. doi:10.1038/35099066 es_ES
dc.description.references Anderson, J. M. (2001). Biological Responses to Materials. Annual Review of Materials Research, 31(1), 81-110. doi:10.1146/annurev.matsci.31.1.81 es_ES
dc.description.references Wong, J. Y., Leach, J. B., & Brown, X. Q. (2004). Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surface Science, 570(1-2), 119-133. doi:10.1016/j.susc.2004.06.186 es_ES
dc.description.references Gray, D. S., Tien, J., & Chen, C. S. (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. Journal of Biomedical Materials Research, 66A(3), 605-614. doi:10.1002/jbm.a.10585 es_ES
dc.description.references Genes, N. G., Rowley, J. A., Mooney, D. J., & Bonassar, L. J. (2004). Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and Biophysics, 422(2), 161-167. doi:10.1016/j.abb.2003.11.023 es_ES
dc.description.references Schneider, A., Francius, G., Obeid, R., Schwinté, P., Hemmerlé, J., Frisch, B., … Picart, C. (2006). Polyelectrolyte Multilayers with a Tunable Young’s Modulus:  Influence of Film Stiffness on Cell Adhesion. Langmuir, 22(3), 1193-1200. doi:10.1021/la0521802 es_ES
dc.description.references Ryan, P. L., Foty, R. A., Kohn, J., & Steinberg, M. S. (2001). Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proceedings of the National Academy of Sciences, 98(8), 4323-4327. doi:10.1073/pnas.071615398 es_ES
dc.description.references Wong, J. Y., Velasco, A., Rajagopalan, P., & Pham, Q. (2003). Directed Movement of Vascular Smooth Muscle Cells on Gradient-Compliant Hydrogels†. Langmuir, 19(5), 1908-1913. doi:10.1021/la026403p es_ES
dc.description.references Lo, C.-M., Wang, H.-B., Dembo, M., & Wang, Y. (2000). Cell Movement Is Guided by the Rigidity of the Substrate. Biophysical Journal, 79(1), 144-152. doi:10.1016/s0006-3495(00)76279-5 es_ES
dc.description.references Bischofs, I. B., & Schwarz, U. S. (2003). Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences, 100(16), 9274-9279. doi:10.1073/pnas.1233544100 es_ES
dc.description.references Schwarz, U. (2007). Soft matters in cell adhesion: rigidity sensing on soft elastic substrates. Soft Matter, 3(3), 263-266. doi:10.1039/b606409d es_ES
dc.description.references Choquet, D., Felsenfeld, D. P., & Sheetz, M. P. (1997). Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages. Cell, 88(1), 39-48. doi:10.1016/s0092-8674(00)81856-5 es_ES
dc.description.references Vogel, V., & Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nature Reviews Molecular Cell Biology, 7(4), 265-275. doi:10.1038/nrm1890 es_ES
dc.description.references Discher, D. E. (2005). Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 310(5751), 1139-1143. doi:10.1126/science.1116995 es_ES
dc.description.references Harjanto, D., & Zaman, M. H. (2010). Matrix mechanics and receptor–ligand interactions in cell adhesion. Org. Biomol. Chem., 8(2), 299-304. doi:10.1039/b913064k es_ES
dc.description.references Pelham, R. J., & Wang, Y. -l. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences, 94(25), 13661-13665. doi:10.1073/pnas.94.25.13661 es_ES
dc.description.references Rico, P., Hernández, J. C. R., Moratal, D., Altankov, G., Pradas, M. M., & Salmerón-Sánchez, M. (2009). Substrate-Induced Assembly of Fibronectin into Networks: Influence of Surface Chemistry and Effect on Osteoblast Adhesion. Tissue Engineering Part A, 15(11), 3271-3281. doi:10.1089/ten.tea.2009.0141 es_ES
dc.description.references Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 es_ES
dc.description.references Altankov, G., Thom, V., Groth, T., Jankova, K., Jonsson, G., & Ulbricht, M. (2000). Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. Journal of Biomedical Materials Research, 52(1), 219-230. doi:10.1002/1097-4636(200010)52:1<219::aid-jbm28>3.0.co;2-f es_ES
dc.description.references García, A. (1999). Integrin–fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials, 20(23-24), 2427-2433. doi:10.1016/s0142-9612(99)00170-2 es_ES
dc.description.references Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102 es_ES
dc.description.references Barrias, C. C., Martins, M. C. L., Almeida-Porada, G., Barbosa, M. A., & Granja, P. L. (2009). The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 30(3), 307-316. doi:10.1016/j.biomaterials.2008.09.048 es_ES
dc.description.references Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology-Cell Physiology, 290(6), C1640-C1650. doi:10.1152/ajpcell.00455.2005 es_ES
dc.description.references Kong, H. J., Polte, T. R., Alsberg, E., & Mooney, D. J. (2005). FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proceedings of the National Academy of Sciences, 102(12), 4300-4305. doi:10.1073/pnas.0405873102 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062 es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537 es_ES
dc.description.references Gugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203 es_ES
dc.description.references Gugutkov, D., Altankov, G., Rodríguez Hernández, J. C., Monleón Pradas, M., & Salmerón Sánchez, M. (2010). Fibronectin activity on substrates with controlled OH density. Journal of Biomedical Materials Research Part A, 92A(1), 322-331. doi:10.1002/jbm.a.32374 es_ES
dc.description.references Bae, Y. H., Johnson, P. A., Florek, C. A., Kohn, J., & Moghe, P. V. (2006). Minute changes in composition of polymer substrates produce amplified differences in cell adhesion and motility via optimal ligand conditioning. Acta Biomaterialia, 2(5), 473-482. doi:10.1016/j.actbio.2006.04.001 es_ES
dc.description.references Nicolas, A., Geiger, B., & Safran, S. A. (2004). Cell mechanosensitivity controls the anisotropy of focal adhesions. Proceedings of the National Academy of Sciences, 101(34), 12520-12525. doi:10.1073/pnas.0403539101 es_ES
dc.description.references Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., … Geiger, B. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3(5), 466-472. doi:10.1038/35074532 es_ES
dc.relation.references 10.1083/jcb.103.6.2697 es_ES
dc.relation.references 10.1016/j.medengphy.2005.04.007 es_ES
dc.relation.references 10.1111/j.1749-6632.2002.tb03040.x es_ES
dc.relation.references 10.1007/12_089 es_ES
dc.relation.references 10.1007/12_071 es_ES
dc.relation.references 10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J es_ES
dc.relation.references 10.1016/S0092-8674(02)00971-6 es_ES
dc.relation.references 10.1038/35099066 es_ES
dc.relation.references 10.1146/annurev.matsci.31.1.81 es_ES
dc.relation.references 10.1016/j.susc.2004.06.186 es_ES
dc.relation.references 10.1002/jbm.a.10585 es_ES
dc.relation.references 10.1016/j.abb.2003.11.023 es_ES
dc.relation.references 10.1021/la0521802 es_ES
dc.relation.references 10.1073/pnas.071615398 es_ES
dc.relation.references 10.1021/la026403p es_ES
dc.relation.references 10.1016/S0006-3495(00)76279-5 es_ES
dc.relation.references 10.1073/pnas.1233544100 es_ES
dc.relation.references 10.1039/B606409D es_ES
dc.relation.references 10.1016/S0092-8674(00)81856-5 es_ES
dc.relation.references 10.1038/nrm1890 es_ES
dc.relation.references 10.1126/science.1116995 es_ES
dc.relation.references 10.1039/B913064K es_ES
dc.relation.references 10.1073/pnas.94.25.13661 es_ES
dc.relation.references 10.1089/ten.tea.2009.0141 es_ES
dc.relation.references 10.1109/TSMC.1979.4310076 es_ES
dc.relation.references 10.1002/1097-4636(200010)52:1<219::AID-JBM28>3.0.CO;2-F es_ES
dc.relation.references 10.1016/S0142-9612(99)00170-2 es_ES
dc.relation.references 10.1016/j.cell.2006.06.044 es_ES
dc.relation.references 10.1073/pnas.0407356102 es_ES
dc.relation.references 10.1016/j.biomaterials.2008.09.048 es_ES
dc.relation.references 10.1152/ajpcell.00455.2005 es_ES
dc.relation.references 10.1073/pnas.0405873102 es_ES
dc.relation.references 10.1016/j.biomaterials.2004.01.062 es_ES
dc.relation.references 10.1002/jbm.a.10537 es_ES
dc.relation.references 10.1021/la9012203 es_ES
dc.relation.references 10.1002/jbm.a.32374 es_ES
dc.relation.references 10.1016/j.actbio.2006.04.001 es_ES
dc.relation.references 10.1073/pnas.0403539101 es_ES
dc.relation.references 10.1038/35074532 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet