- -

Mining for Signals of Future Consumer Expenditure on Twitter and Google Trends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mining for Signals of Future Consumer Expenditure on Twitter and Google Trends

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pekar, Viktor es_ES
dc.date.accessioned 2018-11-08T08:12:27Z
dc.date.available 2018-11-08T08:12:27Z
dc.date.issued 2018-09-07
dc.identifier.isbn 9788490486894
dc.identifier.uri http://hdl.handle.net/10251/112101
dc.description.abstract [EN] Consumer expenditure constitutes the largest component of Gross Domestic Product in developed countries, and forecasts of consumer spending are therefore an important tool that governments and central bank use in their policy-making. In this paper we examine methods to forecast consumer spending from user-generated content, such as search engine queries and social media data, which hold the promise to produce forecasts much more efficiently than traditional surveys. Specifically, the aim of the paper is to study the relative utility of evidence about purchase intentions found in Google Trends versus those found in Twitter posts, for the problem of forecasting consumer expenditure. Our main findings are that, firstly, the Google Trends indicators and indicators extracted from Twitter are both beneficial for the forecasts: adding them as exogenous variables into regression model produces improvements on the pure AR baseline, consistently across all the forecast horizons. Secondly, we find that the Google Trends variables seem to be more useful predictors than the semantic variables extracted from Twitter posts, the differences in performance are significant, but not very large. es_ES
dc.format.extent 9 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject QCA es_ES
dc.subject PLS es_ES
dc.subject SEM es_ES
dc.subject Conference es_ES
dc.subject Google trends and search engine data es_ES
dc.subject Social media and public opinion mining es_ES
dc.subject Internet econometrics es_ES
dc.subject Machine learning econometrics es_ES
dc.subject Consumer behavior es_ES
dc.subject eWOM and social media marketing es_ES
dc.title Mining for Signals of Future Consumer Expenditure on Twitter and Google Trends es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2018.2018.8337
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Pekar, V. (2018). Mining for Signals of Future Consumer Expenditure on Twitter and Google Trends. En 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018). Editorial Universitat Politècnica de València. 157-165. https://doi.org/10.4995/CARMA2018.2018.8337 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2018 - 2nd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 12-13,2018 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2018/paper/view/8337 es_ES
dc.description.upvformatpinicio 157 es_ES
dc.description.upvformatpfin 165 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\8337 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem