Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Sánchez, P.![]() |
es_ES |
dc.contributor.author | Gutiérrez–Giles, A.![]() |
es_ES |
dc.contributor.author | Pliego–Jiménez, J.![]() |
es_ES |
dc.contributor.author | Arteaga–Pérez, M.A.![]() |
es_ES |
dc.date.accessioned | 2019-09-24T07:49:37Z | |
dc.date.available | 2019-09-24T07:49:37Z | |
dc.date.issued | 2019-09-20 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/126286 | |
dc.description.abstract | [EN] In this article, we present the Levant’s Robust Differentiator applied to robot manipulators whose objective is to follow a desired trajectory. The robots’ dynamic model is unknown. The velocity obtained using the Robust Differentiator is applied in the control structure in order to fulfill the tracking task. A comparative study is made between the Levant’s Robust Differentiator and the most-used techniques to calculate the velocity. Experimental results are presented. | es_ES |
dc.description.abstract | [ES] En este artículo se presenta el uso de un diferenciador robusto de Levant aplicado a robots manipuladores cuyo objetivo es realizar el seguimiento de una trayectoria deseada. El modelo dinámico de los robots es desconocido. La velocidad obtenida empleando el diferenciador robusto se aplica en la estructura de control con la finalidad de cumplir con la tarea de seguimiento. Se realiza un estudio comparativo entre el diferenciador robusto de Levant y las técnicas más usadas para calcular la velocidad. Son presentados resultados experimentales. | es_ES |
dc.description.sponsorship | Los autores agradecen a PRODEP (PROMEP) con el número de Folio BUAP–811 y los proyectos PAPIIT 116314 y 114617 por el apoyo recibido, a CONACYT por la Cátedra CONACYT–CICESE 2017 y al Laboratorio de Robótica de la Facultad de Ciencias de la Electrónica de la Benemérita Universidad Autónoma de Puebla. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática. | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Índice de desempeño | es_ES |
dc.subject | Control | es_ES |
dc.subject | Dinámica de robots | es_ES |
dc.subject | Planificación y seguimiento de trayectorias | es_ES |
dc.subject | Robots manipuladores | es_ES |
dc.subject | Diferenciador robusto | es_ES |
dc.subject | Performance index | es_ES |
dc.subject | Robot dynamics | es_ES |
dc.subject | Planning and tracking | es_ES |
dc.subject | Robot manipulators | es_ES |
dc.subject | Robust differentiator | es_ES |
dc.title | Seguimiento de trayectorias con incertidumbre del modelo usando un diferenciador robusto | es_ES |
dc.title.alternative | Track trajectories with model uncertainty using a robust differentiator | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-09-24T06:57:43Z | |
dc.identifier.doi | 10.4995/riai.2019.10265 | |
dc.relation.projectID | info:eu-repo/grantAgreement/DGESU//PRODEP-PROMED-BUAP–811/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM/PAPIIT/IN116314/MX/Control de robots coordinados por medio de sistemas maestro-esclavo/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/UNAM/PAPIIT/IN114617/MX/Diseño de observadores para la tele-operación bilateral de sistemas con retardo/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sánchez-Sánchez, P.; Gutiérrez–giles, A.; Pliego–jiménez, J.; Arteaga–pérez, M. (2019). Seguimiento de trayectorias con incertidumbre del modelo usando un diferenciador robusto. Revista Iberoamericana de Automática e Informática. 16(4):423-434. https://doi.org/10.4995/riai.2019.10265 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2019.10265 | es_ES |
dc.description.upvformatpinicio | 423 | es_ES |
dc.description.upvformatpfin | 434 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | |
dc.description.issue | 4 | |
dc.identifier.eissn | 1697-7920 | |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | |
dc.contributor.funder | Dirección General de Educación Superior Universitaria, México | es_ES |
dc.contributor.funder | Dirección General de Educación Superior Tecnológica, México | |
dc.contributor.funder | Universidad Nacional Autónoma de México | |
dc.description.references | Alcocer, A. and Robertsson, A. and Valera, A. and Johansson, R., 2003. Force Estimation and Control in Robot Manipulators. Proceedings of 7th Symposium on Robot Control (SYROCO'03) 55-60. Wroclaw, Poland https://doi.org/10.1016/S1474-6670(17)33369-4 | es_ES |
dc.description.references | Atassi, A. N. and Khalil, H. K., 2000. Separation results for the stabilization of nonlinear systems using di_erent high-gain observer designs. Systems and Control Letters, 39(15), 183-191. https://doi.org/10.1016/S0167-6911(99)00085-7 | es_ES |
dc.description.references | Berghuis, H. and Nijmeijer, H., 1994. Robust control of robots via linear estimated state feedback. IEEE Transactions on Automatic Control, 39(10), 2159-2162. | es_ES |
dc.description.references | https://doi.org/10.1109/9.328807 | es_ES |
dc.description.references | Calafiore, G. and Indri, M. and Bona, B., 1997. Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation. Journal of Robotic Systems 18(2), 55-68. https://doi.org/10.1002/1097-4563(200102)18:2<55::AID-ROB1005>3.3.CO;2-F | es_ES |
dc.description.references | Cruz-Zavala, E. and Moreno, J. A. and Fridman, L. M., 2010. Diferenciador Robusto Exacto y Uniforme. Proceedings of AMCA 2010, 1-6. | es_ES |
dc.description.references | Dabroom, A. M. and Khalil, H. K., 1994. Numerical differentiation using high gain observers. Proceedings of of the IEEE Conference on Decision and Control, 4790-4795. https://doi.org/10.1109/CDC.1997.649776 | es_ES |
dc.description.references | Diop, S. and Grizzle, J. and Moraal, P. and Stefanopoulou, A., 1994. Interpolation and numerical differentiation for observer design. Proceedings of the American Control Conference, 1329-1333. https://doi.org/10.1109/ACC.1994.752275 | es_ES |
dc.description.references | Hacksel, P. J. and Salcudean, S. E., 1994. Estimation of Environment Forces and Rigid-Body Velocities using Observers. Proc. IEEE International Conference on Robotics and Automation, 931-936. San Diego, CA, USA https://doi.org/10.1109/ROBOT.1994.351233 | es_ES |
dc.description.references | Kelly, R. and Ortega, R. and Ailon, A. and Loria, A., 1994. Global regulation of flexible joint robots using approximate differentiation. IEEE Transactions on Automatic Control 39(6), 1222-1224. https://doi.org/10.1109/9.293181 | es_ES |
dc.description.references | Kelly, R. and Santibáñez, V., 2003. Control de Movimiento de Robots Manipuladores. Prentice-Hall | es_ES |
dc.description.references | Khalil, H. K., 1996. Nonlinear Systems. Prentice-Hall | es_ES |
dc.description.references | Khatib, O., 1987. A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation. IEEE Journal of Robotics and Automation 3(1), 43-53. https://doi.org/10.1109/JRA.1987.1087068 | es_ES |
dc.description.references | Kumar, B. and Dutta-Roy, S. C., 1988. Design of digital differentiators for low frequencies. Proceedings of the IEEE, 76(3), 287-289. https://doi.org/10.1109/5.4408 | es_ES |
dc.description.references | Levant, A., 1998. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 58(6), 1247-1263. https://doi.org/10.1080/00207179308923053 | es_ES |
dc.description.references | Levant, A., 1998. Robust exact diferentiation via sliding mode technique. Automatica, 34(3), 379-384. https://doi.org/10.1016/S0005-1098(97)00209-4 | es_ES |
dc.description.references | Levant, A., 2003. Higher-order sliding modes, diferentiation and output-feedback control. International Journal of Control, 76(9), 924-941. https://doi.org/10.1080/0020717031000099029 | es_ES |
dc.description.references | Loria, A., 2016. Observers are Unnecessary for Output-Feedback Control of Lagrangian Systems. IEEE Transactions on Automatic Control, 61(4), 905- 920. https://doi.org/10.1109/TAC.2015.2446831 | es_ES |
dc.description.references | Martínez-Rosas, J. C. and Arteaga-Pérez, M. A. and Castillo-Sánchez, A., 2006. Decentralized Control of Cooperative Robots without Velocity-Force Measurements. Automatica 42, 329-336. https://doi.org/10.1016/j.automatica.2005.10.007 | es_ES |
dc.description.references | Martínez-Rosas, J. C. and Arteaga-Pérez, M. A., 2008. Force and Velocity Observers for the Control of Cooperative Robots. Robotica 26, 85-92. https://doi.org/10.1017/S026357470700361X | es_ES |
dc.description.references | Moreno, J. and Kelly, R., 2002. On motor velocity control by using only position measurements: two case studies. International Journal of Electrical Engineering Education 39(2), 118-127. https://doi.org/10.7227/IJEEE.39.2.4 | es_ES |
dc.description.references | Nicosia, S. and Tornambe, A. and Valigi, P., 1990. Experimental results in state estimation of industrial robots. Proceedings of 29th IEEE Conference on Decision and Control, 360-365. https://doi.org/10.1109/CDC.1990.203613 | es_ES |
dc.description.references | Parsa, K. and Aghili, F., 2006. Adaptive Observer for the Calibration of the Force-Moment Sensor of a Space Robot. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 1667-1673. Orlando, Florida. https://doi.org/10.1109/ROBOT.2006.1641946 | es_ES |
dc.description.references | Rabiner, L. R. and Steiglitz, K., 1970. The design of wide-band recursive and nonrecursive digital differentiators. IEEE Transactions on Audio and Electroacoustics, 18(2), 204-209. https://doi.org/10.1109/TAU.1970.1162090 | es_ES |
dc.description.references | Radkhah, K. and Kulic, D. and Croft, E., 2007. Dynamic parameter identification for the CRS A460 robot. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1-6. San Diego, CA, USA. https://doi.org/10.1109/IROS.2007.4399314 | es_ES |
dc.description.references | Sira-Ramírez, H., 2005. Control de sistemas no lineales linealización aproximada, extendida, exacta. Pearson Prentice-Hall | es_ES |
dc.description.references | Stotsky, A. and Hedrick, J. K. and Yip, P. P., 1994. The use of sliding modes to simplify the backstepping control method. Proceedings of the American Control Conference, 1703-1708. https://doi.org/10.1109/ACC.1997.610875 | es_ES |
dc.description.references | Stotsky, A. and Kolmanovsky, I., 2001. Simple Unknown Input Estimation Techniques for Automotive Applications. Proceedings of the American Control Conference, 3312-3317. Arlington, VA, USA. https://doi.org/10.1109/ACC.2001.946139 | es_ES |
dc.description.references | Swevers, J. and Ganseman, C. and Tukel, D. B. and de-Schutter, J. and Van-Brussel, H., 1997. Optimal robot excitation and identification. IEEE Transactions on Robotics and Automation 13(5), 730-740. https://doi.org/10.1109/70.631234 | es_ES |