Mostrar el registro sencillo del ítem
dc.contributor.author | Pavón-Vargas, Cristina Paola | es_ES |
dc.contributor.author | Aldas-Carrasco, Miguel Fernando | es_ES |
dc.contributor.author | López-Martínez, Juan | es_ES |
dc.contributor.author | Ferrándiz Bou, Santiago | es_ES |
dc.date.accessioned | 2020-04-07T05:49:34Z | |
dc.date.available | 2020-04-07T05:49:34Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140418 | |
dc.description.abstract | [EN] In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish State Agency of Research trough the project MAT2017-84909-C2-2-R and Universidad Politecnica de Valencia-GVA through the project "Development". | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Polymers | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | 3D-Printing | es_ES |
dc.subject | Polycaprolactone | es_ES |
dc.subject | Gum Rosin | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/polym12020334 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F113/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Pavón-Vargas, CP.; Aldas-Carrasco, MF.; López-Martínez, J.; Ferrándiz Bou, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers. 12(2):1-20. https://doi.org/10.3390/polym12020334 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/polym12020334 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2073-4360 | es_ES |
dc.relation.pasarela | S\402167 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001 | es_ES |
dc.description.references | Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176 | es_ES |
dc.description.references | Our Planet Is Drowning in Plastic Pollution https://www.unenvironment.org/interactive/beat-plastic-pollution/ | es_ES |
dc.description.references | Queiroz, A. U. B., & Collares-Queiroz, F. P. (2009). Innovation and Industrial Trends in Bioplastics. Polymer Reviews, 49(2), 65-78. doi:10.1080/15583720902834759 | es_ES |
dc.description.references | Johnson, M., Tucker, N., Barnes, S., & Kirwan, K. (2005). Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products, 22(3), 175-186. doi:10.1016/j.indcrop.2004.08.004 | es_ES |
dc.description.references | Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007 | es_ES |
dc.description.references | Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009 | es_ES |
dc.description.references | Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513 | es_ES |
dc.description.references | Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152 | es_ES |
dc.description.references | Kouparitsas, I. K., Mele, E., & Ronca, S. (2019). Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure. Polymers, 11(4), 677. doi:10.3390/polym11040677 | es_ES |
dc.description.references | Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484. doi:10.1039/b820162p | es_ES |
dc.description.references | Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002 | es_ES |
dc.description.references | Yao, K., & Tang, C. (2013). Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46(5), 1689-1712. doi:10.1021/ma3019574 | es_ES |
dc.description.references | Termentzi, A., Fokialakis, N., & Leandros Skaltsounis, A. (2011). Natural Resins and Bioactive Natural Products thereof as Potential Anitimicrobial Agents. Current Pharmaceutical Design, 17(13), 1267-1290. doi:10.2174/138161211795703807 | es_ES |
dc.description.references | Savluchinske-Feio, S., Curto, M. J. M., Gigante, B., & Roseiro, J. C. (2006). Antimicrobial activity of resin acid derivatives. Applied Microbiology and Biotechnology, 72(3), 430-436. doi:10.1007/s00253-006-0517-0 | es_ES |
dc.description.references | Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867 | es_ES |
dc.description.references | Maiti, S., Ray, S. S., & Kundu, A. K. (1989). Rosin: a renewable resource for polymers and polymer chemicals. Progress in Polymer Science, 14(3), 297-338. doi:10.1016/0079-6700(89)90005-1 | es_ES |
dc.description.references | Huang, W., Diao, K., Tan, X., Lei, F., Jiang, J., Goodman, B. A., … Liu, S. (2019). Mechanisms of Adsorption of Heavy Metal Cations from Waters by an Amino Bio-Based Resin Derived from Rosin. Polymers, 11(6), 969. doi:10.3390/polym11060969 | es_ES |
dc.description.references | Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364-372. doi:10.1016/j.carbpol.2014.09.004 | es_ES |
dc.description.references | Satturwar, P. M., Fulzele, S. V., & Dorle, A. K. (2003). Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech, 4(4), 434-439. doi:10.1208/pt040455 | es_ES |
dc.description.references | Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296d | es_ES |
dc.description.references | Tulloch, A. P. (1980). Beeswax—Composition and Analysis. Bee World, 61(2), 47-62. doi:10.1080/0005772x.1980.11097776 | es_ES |
dc.description.references | Buchwald, R., Breed, M. D., Greenberg, A. R., & Otis, G. (2006). Interspecific variation in beeswax as a biological construction material. Journal of Experimental Biology, 209(20), 3984-3989. doi:10.1242/jeb.02472 | es_ES |
dc.description.references | Morgan, J., Townley, S., Kemble, G., & Smith, R. (2002). Measurement of physical and mechanical properties of beeswax. Materials Science and Technology, 18(4), 463-467. doi:10.1179/026708302225001714 | es_ES |
dc.description.references | Gaillard, Y., Mija, A., Burr, A., Darque-Ceretti, E., Felder, E., & Sbirrazzuoli, N. (2011). Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta, 521(1-2), 90-97. doi:10.1016/j.tca.2011.04.010 | es_ES |
dc.description.references | Gaillard, Y., Girard, M., Monge, G., Burr, A., Ceretti, E. D., & Felder, E. (2012). Superplastic behavior of rosin/beeswax blends at room temperature. Journal of Applied Polymer Science, 128(5), 2713-2719. doi:10.1002/app.38333 | es_ES |
dc.description.references | Chang, R., Rohindra, D., Lata, R., Kuboyama, K., & Ougizawa, T. (2018). Development of poly(ε-caprolactone)/pine resin blends: Study of thermal, mechanical, and antimicrobial properties. Polymer Engineering & Science, 59(s2), E32-E41. doi:10.1002/pen.24950 | es_ES |
dc.description.references | Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557 | es_ES |
dc.description.references | Geurtsen, W. (2000). Biocompatibility of Resin-Modified Filling Materials. Critical Reviews in Oral Biology & Medicine, 11(3), 333-355. doi:10.1177/10454411000110030401 | es_ES |
dc.description.references | Fratini, F., Cilia, G., Turchi, B., & Felicioli, A. (2016). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9(9), 839-843. doi:10.1016/j.apjtm.2016.07.003 | es_ES |
dc.description.references | Weatherall, I. L., & Coombs, B. D. (1992). Skin Color Measurements in Terms of CIELAB Color Space Values. Journal of Investigative Dermatology, 99(4), 468-473. doi:10.1111/1523-1747.ep12616156 | es_ES |
dc.description.references | Pawlak, F., Aldas, M., López-Martínez, J., & Samper, M. D. (2019). Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 11(9), 1514. doi:10.3390/polym11091514 | es_ES |
dc.description.references | Liu, G., Wu, G., Chen, J., & Kong, Z. (2016). Synthesis, modification and properties of rosin-based non-isocyanate polyurethanes coatings. Progress in Organic Coatings, 101, 461-467. doi:10.1016/j.porgcoat.2016.09.019 | es_ES |
dc.description.references | Wong, R. B. K., & Lelievre, J. (1981). Viscoelastic behaviour of wheat starch pastes. Rheologica Acta, 20(3), 299-307. doi:10.1007/bf01678031 | es_ES |
dc.description.references | Costakis, W. J., Rueschhoff, L. M., Diaz-Cano, A. I., Youngblood, J. P., & Trice, R. W. (2016). Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. Journal of the European Ceramic Society, 36(14), 3249-3256. doi:10.1016/j.jeurceramsoc.2016.06.002 | es_ES |
dc.description.references | Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236 | es_ES |
dc.description.references | Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. The Analyst, 88(1053), 906. doi:10.1039/an9638800906 | es_ES |
dc.description.references | Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467-2476. doi:10.1016/j.actbio.2010.02.002 | es_ES |
dc.description.references | Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. K. (2016). Synthesis and characterization of novel reduced Gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. doi:10.1007/s00289-016-1877-y | es_ES |
dc.description.references | Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381-387. doi:10.1016/j.jcis.2004.02.001 | es_ES |
dc.description.references | Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112, 273-280. doi:10.1016/j.applthermaleng.2016.10.085 | es_ES |
dc.description.references | Aldas, M., Rayón, E., López-Martínez, J., & Arrieta, M. P. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 12(1), 226. doi:10.3390/polym12010226 | es_ES |
dc.description.references | Vasile, C., Stoleru, E., Darie-Niţa, R. N., Dumitriu, R. P., Pamfil, D., & Tarţau, L. (2019). Biocompatible Materials Based on Plasticized Poly(lactic acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(lactic acid) Materials. Polymers, 11(6), 941. doi:10.3390/polym11060941 | es_ES |
dc.description.references | Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of Fatty Acids and Beeswax Addition on Properties of Sodium Caseinate Dispersions and Films. Biomacromolecules, 10(6), 1500-1507. doi:10.1021/bm900098p | es_ES |
dc.description.references | Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015 | es_ES |
dc.description.references | Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. doi:10.1016/s0001-8686(97)00040-7 | es_ES |
dc.description.references | Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015 | es_ES |
dc.description.references | Hambleton, A., Fabra, M.-J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion–based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi:10.1016/j.jfoodeng.2009.01.001 | es_ES |
dc.relation.references | 10.1038/nature21001 | es_ES |
dc.relation.references | 10.1155/2018/2474176 | es_ES |
dc.relation.references | 10.1080/15583720902834759 | es_ES |
dc.relation.references | 10.1016/j.indcrop.2004.08.004 | es_ES |
dc.relation.references | 10.1016/j.tifs.2011.01.007 | es_ES |
dc.relation.references | 10.1016/j.indcrop.2017.02.009 | es_ES |
dc.relation.references | 10.1002/marc.201200513 | es_ES |
dc.relation.references | 10.1016/j.ijbiomac.2017.01.152 | es_ES |
dc.relation.references | 10.3390/polym11040677 | es_ES |
dc.relation.references | 10.1039/b820162p | es_ES |
dc.relation.references | 10.1016/j.progpolymsci.2010.04.002 | es_ES |
dc.relation.references | 10.1021/ma3019574 | es_ES |
dc.relation.references | 10.2174/138161211795703807 | es_ES |
dc.relation.references | 10.1007/s00253-006-0517-0 | es_ES |
dc.relation.references | 10.1177/0883911515601867 | es_ES |
dc.relation.references | 10.1016/0079-6700(89)90005-1 | es_ES |
dc.relation.references | 10.3390/polym11060969 | es_ES |
dc.relation.references | 10.1016/j.carbpol.2014.09.004 | es_ES |
dc.relation.references | 10.1208/pt040455 | es_ES |
dc.relation.references | 10.1039/C4RA04296D | es_ES |
dc.relation.references | 10.1080/0005772X.1980.11097776 | es_ES |
dc.relation.references | 10.1242/jeb.02472 | es_ES |
dc.relation.references | 10.1179/026708302225001714 | es_ES |
dc.relation.references | 10.1016/j.tca.2011.04.010 | es_ES |
dc.relation.references | 10.1002/app.38333 | es_ES |
dc.relation.references | 10.1002/pen.24950 | es_ES |
dc.relation.references | 10.1021/acsami.7b05557 | es_ES |
dc.relation.references | 10.1177/10454411000110030401 | es_ES |
dc.relation.references | 10.1016/j.apjtm.2016.07.003 | es_ES |
dc.relation.references | 10.1111/1523-1747.ep12616156 | es_ES |
dc.relation.references | 10.3390/polym11091514 | es_ES |
dc.relation.references | 10.1016/j.porgcoat.2016.09.019 | es_ES |
dc.relation.references | 10.1007/BF01678031 | es_ES |
dc.relation.references | 10.1016/j.jeurceramsoc.2016.06.002 | es_ES |
dc.relation.references | 10.1002/app.48236 | es_ES |
dc.relation.references | 10.1039/an9638800906 | es_ES |
dc.relation.references | 10.1016/j.actbio.2010.02.002 | es_ES |
dc.relation.references | 10.1007/s00289-016-1877-y | es_ES |
dc.relation.references | 10.1016/j.jcis.2004.02.001 | es_ES |
dc.relation.references | 10.1016/j.applthermaleng.2016.10.085 | es_ES |
dc.relation.references | 10.3390/polym12010226 | es_ES |
dc.relation.references | 10.3390/polym11060941 | es_ES |
dc.relation.references | 10.1021/bm900098p | es_ES |
dc.relation.references | 10.1016/j.foodhyd.2008.04.015 | es_ES |
dc.relation.references | 10.1016/S0001-8686(97)00040-7 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2013.08.015 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2009.01.001 | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |