Riunet Móvil

Home Versión de escritorio

New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives

Mostrar el registro sencillo del ítem

dc.contributor.author Pavón-Vargas, Cristina Paola es_ES
dc.contributor.author Aldas-Carrasco, Miguel Fernando es_ES
dc.contributor.author López-Martínez, Juan es_ES
dc.contributor.author Ferrándiz Bou, Santiago es_ES
dc.date.accessioned 2020-04-07T05:49:34Z
dc.date.available 2020-04-07T05:49:34Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140418
dc.description.abstract [EN] In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives. es_ES
dc.description.sponsorship This research was supported by the Spanish State Agency of Research trough the project MAT2017-84909-C2-2-R and Universidad Politecnica de Valencia-GVA through the project "Development". es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject 3D-Printing es_ES
dc.subject Polycaprolactone es_ES
dc.subject Gum Rosin es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym12020334 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F113/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Pavón-Vargas, CP.; Aldas-Carrasco, MF.; López-Martínez, J.; Ferrándiz Bou, S. (2020). New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers. 12(2):1-20. https://doi.org/10.3390/polym12020334 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/polym12020334 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.relation.pasarela S\402167 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001 es_ES
dc.description.references Aldas, M., Paladines, A., Valle, V., Pazmiño, M., & Quiroz, F. (2018). Effect of the Prodegradant-Additive Plastics Incorporated on the Polyethylene Recycling. International Journal of Polymer Science, 2018, 1-10. doi:10.1155/2018/2474176 es_ES
dc.description.references Our Planet Is Drowning in Plastic Pollution https://www.unenvironment.org/interactive/beat-plastic-pollution/ es_ES
dc.description.references Queiroz, A. U. B., & Collares-Queiroz, F. P. (2009). Innovation and Industrial Trends in Bioplastics. Polymer Reviews, 49(2), 65-78. doi:10.1080/15583720902834759 es_ES
dc.description.references Johnson, M., Tucker, N., Barnes, S., & Kirwan, K. (2005). Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products, 22(3), 175-186. doi:10.1016/j.indcrop.2004.08.004 es_ES
dc.description.references Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007 es_ES
dc.description.references Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009 es_ES
dc.description.references Wilbon, P. A., Chu, F., & Tang, C. (2012). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 34(1), 8-37. doi:10.1002/marc.201200513 es_ES
dc.description.references Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., & Varghese, T. O. (2017). UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. doi:10.1016/j.ijbiomac.2017.01.152 es_ES
dc.description.references Kouparitsas, I. K., Mele, E., & Ronca, S. (2019). Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure. Polymers, 11(4), 677. doi:10.3390/polym11040677 es_ES
dc.description.references Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chemical Society Reviews, 38(12), 3484. doi:10.1039/b820162p es_ES
dc.description.references Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002 es_ES
dc.description.references Yao, K., & Tang, C. (2013). Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 46(5), 1689-1712. doi:10.1021/ma3019574 es_ES
dc.description.references Termentzi, A., Fokialakis, N., & Leandros Skaltsounis, A. (2011). Natural Resins and Bioactive Natural Products thereof as Potential Anitimicrobial Agents. Current Pharmaceutical Design, 17(13), 1267-1290. doi:10.2174/138161211795703807 es_ES
dc.description.references Savluchinske-Feio, S., Curto, M. J. M., Gigante, B., & Roseiro, J. C. (2006). Antimicrobial activity of resin acid derivatives. Applied Microbiology and Biotechnology, 72(3), 430-436. doi:10.1007/s00253-006-0517-0 es_ES
dc.description.references Yadav, B. K., Gidwani, B., & Vyas, A. (2015). Rosin: Recent advances and potential applications in novel drug delivery system. Journal of Bioactive and Compatible Polymers, 31(2), 111-126. doi:10.1177/0883911515601867 es_ES
dc.description.references Maiti, S., Ray, S. S., & Kundu, A. K. (1989). Rosin: a renewable resource for polymers and polymer chemicals. Progress in Polymer Science, 14(3), 297-338. doi:10.1016/0079-6700(89)90005-1 es_ES
dc.description.references Huang, W., Diao, K., Tan, X., Lei, F., Jiang, J., Goodman, B. A., … Liu, S. (2019). Mechanisms of Adsorption of Heavy Metal Cations from Waters by an Amino Bio-Based Resin Derived from Rosin. Polymers, 11(6), 969. doi:10.3390/polym11060969 es_ES
dc.description.references Schmitt, H., Guidez, A., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydrate Polymers, 115, 364-372. doi:10.1016/j.carbpol.2014.09.004 es_ES
dc.description.references Satturwar, P. M., Fulzele, S. V., & Dorle, A. K. (2003). Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech, 4(4), 434-439. doi:10.1208/pt040455 es_ES
dc.description.references Gutierrez, J., & Tercjak, A. (2014). Natural gum rosin thin films nanopatterned by poly(styrene)-block-poly(4-vinylpiridine) block copolymer. RSC Advances, 4(60), 32024. doi:10.1039/c4ra04296d es_ES
dc.description.references Tulloch, A. P. (1980). Beeswax—Composition and Analysis. Bee World, 61(2), 47-62. doi:10.1080/0005772x.1980.11097776 es_ES
dc.description.references Buchwald, R., Breed, M. D., Greenberg, A. R., & Otis, G. (2006). Interspecific variation in beeswax as a biological construction material. Journal of Experimental Biology, 209(20), 3984-3989. doi:10.1242/jeb.02472 es_ES
dc.description.references Morgan, J., Townley, S., Kemble, G., & Smith, R. (2002). Measurement of physical and mechanical properties of beeswax. Materials Science and Technology, 18(4), 463-467. doi:10.1179/026708302225001714 es_ES
dc.description.references Gaillard, Y., Mija, A., Burr, A., Darque-Ceretti, E., Felder, E., & Sbirrazzuoli, N. (2011). Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta, 521(1-2), 90-97. doi:10.1016/j.tca.2011.04.010 es_ES
dc.description.references Gaillard, Y., Girard, M., Monge, G., Burr, A., Ceretti, E. D., & Felder, E. (2012). Superplastic behavior of rosin/beeswax blends at room temperature. Journal of Applied Polymer Science, 128(5), 2713-2719. doi:10.1002/app.38333 es_ES
dc.description.references Chang, R., Rohindra, D., Lata, R., Kuboyama, K., & Ougizawa, T. (2018). Development of poly(ε-caprolactone)/pine resin blends: Study of thermal, mechanical, and antimicrobial properties. Polymer Engineering & Science, 59(s2), E32-E41. doi:10.1002/pen.24950 es_ES
dc.description.references Moustafa, H., El Kissi, N., Abou-Kandil, A. I., Abdel-Aziz, M. S., & Dufresne, A. (2017). PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging. ACS Applied Materials & Interfaces, 9(23), 20132-20141. doi:10.1021/acsami.7b05557 es_ES
dc.description.references Geurtsen, W. (2000). Biocompatibility of Resin-Modified Filling Materials. Critical Reviews in Oral Biology & Medicine, 11(3), 333-355. doi:10.1177/10454411000110030401 es_ES
dc.description.references Fratini, F., Cilia, G., Turchi, B., & Felicioli, A. (2016). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9(9), 839-843. doi:10.1016/j.apjtm.2016.07.003 es_ES
dc.description.references Weatherall, I. L., & Coombs, B. D. (1992). Skin Color Measurements in Terms of CIELAB Color Space Values. Journal of Investigative Dermatology, 99(4), 468-473. doi:10.1111/1523-1747.ep12616156 es_ES
dc.description.references Pawlak, F., Aldas, M., López-Martínez, J., & Samper, M. D. (2019). Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 11(9), 1514. doi:10.3390/polym11091514 es_ES
dc.description.references Liu, G., Wu, G., Chen, J., & Kong, Z. (2016). Synthesis, modification and properties of rosin-based non-isocyanate polyurethanes coatings. Progress in Organic Coatings, 101, 461-467. doi:10.1016/j.porgcoat.2016.09.019 es_ES
dc.description.references Wong, R. B. K., & Lelievre, J. (1981). Viscoelastic behaviour of wheat starch pastes. Rheologica Acta, 20(3), 299-307. doi:10.1007/bf01678031 es_ES
dc.description.references Costakis, W. J., Rueschhoff, L. M., Diaz-Cano, A. I., Youngblood, J. P., & Trice, R. W. (2016). Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. Journal of the European Ceramic Society, 36(14), 3249-3256. doi:10.1016/j.jeurceramsoc.2016.06.002 es_ES
dc.description.references Aldas, M., Ferri, J. M., Lopez‐Martinez, J., Samper, M. D., & Arrieta, M. P. (2019). Effect of pine resin derivatives on the structural, thermal, and mechanical properties of Mater‐Bi type bioplastic. Journal of Applied Polymer Science, 137(4), 48236. doi:10.1002/app.48236 es_ES
dc.description.references Coats, A. W., & Redfern, J. P. (1963). Thermogravimetric analysis. A review. The Analyst, 88(1053), 906. doi:10.1039/an9638800906 es_ES
dc.description.references Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467-2476. doi:10.1016/j.actbio.2010.02.002 es_ES
dc.description.references Jindal, R., Sharma, R., Maiti, M., Kaur, A., Sharma, P., Mishra, V., & Jana, A. K. (2016). Synthesis and characterization of novel reduced Gum rosin-acrylamide copolymer-based nanogel and their investigation for antibacterial activity. Polymer Bulletin, 74(8), 2995-3014. doi:10.1007/s00289-016-1877-y es_ES
dc.description.references Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381-387. doi:10.1016/j.jcis.2004.02.001 es_ES
dc.description.references Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112, 273-280. doi:10.1016/j.applthermaleng.2016.10.085 es_ES
dc.description.references Aldas, M., Rayón, E., López-Martínez, J., & Arrieta, M. P. (2020). A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 12(1), 226. doi:10.3390/polym12010226 es_ES
dc.description.references Vasile, C., Stoleru, E., Darie-Niţa, R. N., Dumitriu, R. P., Pamfil, D., & Tarţau, L. (2019). Biocompatible Materials Based on Plasticized Poly(lactic acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(lactic acid) Materials. Polymers, 11(6), 941. doi:10.3390/polym11060941 es_ES
dc.description.references Fabra, M. J., Jiménez, A., Atarés, L., Talens, P., & Chiralt, A. (2009). Effect of Fatty Acids and Beeswax Addition on Properties of Sodium Caseinate Dispersions and Films. Biomacromolecules, 10(6), 1500-1507. doi:10.1021/bm900098p es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015 es_ES
dc.description.references Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. doi:10.1016/s0001-8686(97)00040-7 es_ES
dc.description.references Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015 es_ES
dc.description.references Hambleton, A., Fabra, M.-J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion–based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi:10.1016/j.jfoodeng.2009.01.001 es_ES
dc.relation.references 10.1038/nature21001 es_ES
dc.relation.references 10.1155/2018/2474176 es_ES
dc.relation.references 10.1080/15583720902834759 es_ES
dc.relation.references 10.1016/j.indcrop.2004.08.004 es_ES
dc.relation.references 10.1016/j.tifs.2011.01.007 es_ES
dc.relation.references 10.1016/j.indcrop.2017.02.009 es_ES
dc.relation.references 10.1002/marc.201200513 es_ES
dc.relation.references 10.1016/j.ijbiomac.2017.01.152 es_ES
dc.relation.references 10.3390/polym11040677 es_ES
dc.relation.references 10.1039/b820162p es_ES
dc.relation.references 10.1016/j.progpolymsci.2010.04.002 es_ES
dc.relation.references 10.1021/ma3019574 es_ES
dc.relation.references 10.2174/138161211795703807 es_ES
dc.relation.references 10.1007/s00253-006-0517-0 es_ES
dc.relation.references 10.1177/0883911515601867 es_ES
dc.relation.references 10.1016/0079-6700(89)90005-1 es_ES
dc.relation.references 10.3390/polym11060969 es_ES
dc.relation.references 10.1016/j.carbpol.2014.09.004 es_ES
dc.relation.references 10.1208/pt040455 es_ES
dc.relation.references 10.1039/C4RA04296D es_ES
dc.relation.references 10.1080/0005772X.1980.11097776 es_ES
dc.relation.references 10.1242/jeb.02472 es_ES
dc.relation.references 10.1179/026708302225001714 es_ES
dc.relation.references 10.1016/j.tca.2011.04.010 es_ES
dc.relation.references 10.1002/app.38333 es_ES
dc.relation.references 10.1002/pen.24950 es_ES
dc.relation.references 10.1021/acsami.7b05557 es_ES
dc.relation.references 10.1177/10454411000110030401 es_ES
dc.relation.references 10.1016/j.apjtm.2016.07.003 es_ES
dc.relation.references 10.1111/1523-1747.ep12616156 es_ES
dc.relation.references 10.3390/polym11091514 es_ES
dc.relation.references 10.1016/j.porgcoat.2016.09.019 es_ES
dc.relation.references 10.1007/BF01678031 es_ES
dc.relation.references 10.1016/j.jeurceramsoc.2016.06.002 es_ES
dc.relation.references 10.1002/app.48236 es_ES
dc.relation.references 10.1039/an9638800906 es_ES
dc.relation.references 10.1016/j.actbio.2010.02.002 es_ES
dc.relation.references 10.1007/s00289-016-1877-y es_ES
dc.relation.references 10.1016/j.jcis.2004.02.001 es_ES
dc.relation.references 10.1016/j.applthermaleng.2016.10.085 es_ES
dc.relation.references 10.3390/polym12010226 es_ES
dc.relation.references 10.3390/polym11060941 es_ES
dc.relation.references 10.1021/bm900098p es_ES
dc.relation.references 10.1016/j.foodhyd.2008.04.015 es_ES
dc.relation.references 10.1016/S0001-8686(97)00040-7 es_ES
dc.relation.references 10.1016/j.jfoodeng.2013.08.015 es_ES
dc.relation.references 10.1016/j.jfoodeng.2009.01.001 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet