Mostrar el registro sencillo del ítem
dc.contributor.author | Toriz Palacios, A.![]() |
es_ES |
dc.contributor.author | Sánchez López, A.![]() |
es_ES |
dc.date.accessioned | 2020-05-12T18:03:42Z | |
dc.date.available | 2020-05-12T18:03:42Z | |
dc.date.issued | 2020-04-07 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/142980 | |
dc.description.abstract | [EN] The problem of Integrated Exploration is the new trend in the construction of maps of unknown environments; in it, the old paradigm of Simultaneous Localization and Mapping (SLAM) is integrated with the planning of movements necessary for this task to be performed autonomously. However, although motion control is an essential part of this new paradigm, the existing literature has been limited to developing strategies that improve travel times and environmental coverage, leaving aside the impact that these can have on robot odometry and, consequently, on the requirements of localization algorithms. Accordingly, this document presents a new efficient way of exploring environments for the SLAM problem, which aims to improve exploration times and maximize coverage of the work area, as well as minimize the accumulated odometric error to simplify the localization process. | es_ES |
dc.description.abstract | [ES] El problema de Exploración integrada es la nueva tendencia en la construcción de mapas de ambientes desconocidos; en ella, se integra el viejo paradigma de la localización y mapeo simultáneos (SLAM) con la planificación de movimientos necesarios, para que esta tarea sea realizada de forma autónoma. Sin embargo, aunque el control de movimientos es una parte esencial de este paradigma, los trabajos encontrados en la literatura se han limitado a desarrollar estrategias que mejoren los tiempos de recorridos y la cobertura del ambiente, dejado de lado el impacto que estos puede tener sobre la odometría del robot y, en consecuencia, sobre los requerimientos de los algoritmos de localización. De lo anterior, en este documento se presenta una nueva forma eficiente de exploración de ambientes para el problema de SLAM, que tiene como objetivo mejorar los tiempos de exploración y maximizar la cobertura del área de trabajo, pero además el de minimizar el error odométrico acumulado para simplificar el proceso de localización. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Autonomous mobile robot | es_ES |
dc.subject | Path planning | es_ES |
dc.subject | Motion estimation | es_ES |
dc.subject | Position errors | es_ES |
dc.subject | Error rates | es_ES |
dc.subject | Robot móvil autónomo | es_ES |
dc.subject | Planificación de rutas | es_ES |
dc.subject | Estimación de movimiento | es_ES |
dc.subject | Errores de posición odométrica | es_ES |
dc.subject | Tasa de error | es_ES |
dc.title | Sobre la mejora esperada de la estimación de la odometría en Exploración Integrada | es_ES |
dc.title.alternative | On the expected improvement of odometry estimation in integrated exploration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2019.11828 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Toriz Palacios, A.; Sánchez López, A. (2020). Sobre la mejora esperada de la estimación de la odometría en Exploración Integrada. Revista Iberoamericana de Automática e Informática industrial. 17(2):229-238. https://doi.org/10.4995/riai.2019.11828 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2019.11828 | es_ES |
dc.description.upvformatpinicio | 229 | es_ES |
dc.description.upvformatpfin | 238 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\11828 | es_ES |
dc.description.references | Abbas, T., Arif, M., Ahmed, W., 2006. Measurement and correction of systematic odometry errors caused by kinematics imperfections in mobile robots. SICE-ICASE International Joint Conference, 2073-2078. https://doi.org/10.1109/SICE.2006.315554 | es_ES |
dc.description.references | Borenstein, J., 1998. Experimental results from internal odometry error correction with the OmniMate mobile robot. IEEE Transactions on Robotics and Automation, 14(6), 963-969. https://doi.org/10.1109/70.736779 | es_ES |
dc.description.references | Brossard, M., Bonnabel, S., 2018. Learning Wheel Odometry and IMU Errors for Localization. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2019.8794237 | es_ES |
dc.description.references | Burgard, W., Moors, M., Stachniss, C., Schneider, F. E., 2005. Coordinated multi-robot exploration. IEEE Transactions on robotics, 21(3), 376-386. https://doi.org/10.1109/TRO.2004.839232 | es_ES |
dc.description.references | Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Leonard, J. J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32(6), 1309-1332. https://doi.org/10.1109/TRO.2016.2624754 | es_ES |
dc.description.references | Campos, F. M., Marques, M., Carreira, F., Calado, J. M. F., 2017. A complete frontier-based exploration method for Pose-SLAM. IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 79-84. https://doi.org/10.1109/ICARSC.2017.7964056 | es_ES |
dc.description.references | Chen, N. Y., Shaw, J., Lin, H. I., 2017. Exploration method improvements of autonomous robot for a 2-D environment navigation. Journal of Marine Science and Technology, 25(1), 34-42. http://dx.doi.org/10.6119/2fJMST-016-0719-1 | es_ES |
dc.description.references | Franchi, A., Freda, L., Oriolo, G., Vendittelli, M., 2007. A randomized strategy for cooperative robot exploration. IEEE International Conference on Robotics and Automation, 768-774. https://doi.org/10.1109/ROBOT.2007.363079 | es_ES |
dc.description.references | Franchi, A., Freda, L., Oriolo, G., Vendittelli, M., 2009. The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Transactions on Mechatronics, 14(2), 163-175. https://doi.org/10.1109/TMECH.2009.2013617 | es_ES |
dc.description.references | Freda, L., Loiudice, F., Oriolo, G., 2006. A randomized method for integrated exploration. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2457-2464. https://doi.org/10.1109/IROS.2006.281689 | es_ES |
dc.description.references | Gil, A., Juliá, M., Reinoso, Ó., 2015. Occupancy grid based graph-SLAM using the distance transform, SURF features and SGD. Engineering Applications of Artificial Intelligence, 40, 1-10. https://doi.org/10.1016/j.engappai.2014.12.010 | es_ES |
dc.description.references | Hähnel, D., Thrun, S., Wegbreit, B., Burgard, W., 2005. Towards lazy data association in SLAM. Eleventh International Symposium Robotics Research, 421-431. https://doi.org/10.1007/11008941_45 | es_ES |
dc.description.references | Hanif, M. S., Bilal, M., Munawar, K., Balamash, A. S., 2018. Implementation of an Embedded Testbed for Indoor SLAM. In 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), 1-8. https://doi.org/10.1109/AICCSA.2018.8612782 | es_ES |
dc.description.references | Hidalgo-Carrió, J., Hennes, D., Schwendner, J., Kirchner, F., 2017. Gaussian process estimation of odometry errors for localization and mapping. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 5696-5701. https://doi.org/10.1109/ICRA.2017.7989670 | es_ES |
dc.description.references | Holz, D., Basilico, N., Amigoni, F., Behnke, S., 2010. Evaluating the efficiency of frontier-based exploration strategies. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), 1-8. | es_ES |
dc.description.references | Jin, J., Chung, W., 2019. Obstacle Avoidance of Two-Wheel Differential Robots Considering the Uncertainty of Robot Motion on the Basis of Encoder Odometry Information. Sensors, 19(2), 289-299. https://doi.org/10.3390/s19020289 | es_ES |
dc.description.references | Juliá, M., Gil, A., Payá, L., Reinoso, O., 2008. Local minima detection in potential field based cooperative multirobot exploration. International Journal of Factory Automation, Robotics and Soft Computing, 3. | es_ES |
dc.description.references | Lamon, P., Siegwart, R., 2007. 3D position tracking in challenging terrain. The International Journal of Robotics Research, 26(2), 167-186. https://doi.org/10.1007/978-3-540-33453-8_44 | es_ES |
dc.description.references | Lou, Q., González, F., Kövecses, J., 2019. Kinematic Modeling and State Estimation of Exploration Rovers. IEEE Robotics and Automation Letters, 4(2), 1311-1318. https://doi.org/10.1109/LRA.2019.2895393 | es_ES |
dc.description.references | Maddahi, Y., Sepehri, N., Maddahi, A., Abdolmohammadi, M., 2012. Calibration of wheeled mobile robots with differential drive mechanisms: An experimental approach. Robotica. 30(6). https://doi.org/10.1017/S0263574711001329 | es_ES |
dc.description.references | Maddahi, Y., 2018. Off-Line Calibration of Autonomous Wheeled Mobile Robots. In Handbook of Research on Biomimetics and Biomedical Robotics, 375-389. https://doi.org/10.4018/978-1-5225-2993-4.ch016 | es_ES |
dc.description.references | Ojeda, L., Borenstein, J., 2004. Methods for the reduction of odometry errors in over-constrained mobile robots. Autonomous Robots, 16(3), 273-286. https://doi.org/10.1023/B:AURO.0000025791.45313.01 | es_ES |
dc.description.references | Prieto, R. A., Cuadra-Troncoso, J. M., Álvarez-Sánchez, J. R., Santosjuanes, I. N., 2013. Reactive Navigation and Online SLAM in Autonomous Frontier-Based Exploration. In International Work-Conference on the Interplay Between Natural and Artificial Computation, 45-55. https://doi.org/10.1007/978-3-642-38622-0_5 | es_ES |
dc.description.references | Romero, L., Morales, E. F., Sucar, L. E., 2002. An exploration approach for indoor mobile robots reducing odometric errors. In Mexican International Conference on Artificial Intelligence, 51-60. https://doi.org/10.1007/3-540-46016-0_6 | es_ES |
dc.description.references | Toriz P, A., Sánchez L, A., Bedolla Cordero, J. M. E., 2017. The random exploration graph for optimal exploration of unknown environments. International Journal of Advanced Robotic Systems, 14(1). https://doi.org/10.1177/1729881416687110 | es_ES |
dc.description.references | Torres-González, A., Martinez-de Dios, J., Ollero, A., 2014. An adaptive scheme for robot localization and mapping with dynamically configurable inter-beacon range measurements. Sensors, 14(5), 7684-7710. DOI: 10.3390/s140507684 https://doi.org/10.3390/s140507684 | es_ES |
dc.description.references | Yu, N., Wang, S., 2019. Enhanced Autonomous Exploration and Mapping of an Unknown Environment with the Fusion of Dual RGB-D Sensors. Engineering, 5(1), 164-172. https://doi.org/10.1016/j.eng.2018.11.014 | es_ES |