Mostrar el registro sencillo del ítem
dc.contributor.author | Flores, Víctor M. | es_ES |
dc.contributor.author | Correa, Maritza | es_ES |
dc.contributor.author | Alique, José R. | es_ES |
dc.date.accessioned | 2020-05-28T17:24:52Z | |
dc.date.available | 2020-05-28T17:24:52Z | |
dc.date.issued | 2011-01-04 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144543 | |
dc.description.abstract | [EN] The surface quality is one of the most careful elements in the manufacture of parts in various industrial fields such as aeronautics and automotive. Often the surface quality is estimated according to the surface roughness (Ra) and depends largely on the combination of factors in machining. Works that incorporate techniques to the study of Ra Soft computing in-process or post-processing are relatively common in the literature, however, are almost non existent in this study devoted to pre-process, although this can help reduce costs associated the estimate of surface quality, etc.. This paper presents a technique to generate a model Soft computing pre-Ra predictive process based on experimentation with different characteristics of the milling process at high speed. The prediction model is a Bayesian classifier, validated the method with k-fold cross-validation. | es_ES |
dc.description.abstract | [ES] La calidad superficial es uno de los aspectos más cuidados en la fabricación de piezas. Esta calidad se estima frecuentemente en función a la rugosidad superficial. Trabajos que incorporan técnicas de softcomputing al estudio de la rugosidad superficial en-proceso o pos-proceso son relativamente frecuentes en la literatura. Sin embargo, son casi inexistentes los dedicados al estudio de la rugosidad superficial en pre-proceso, pese a que esto puede ayudar a reducir costes asociados al aseguramiento de la calidad superficial en la producción industrial. En este trabajo se presenta una técnica softcomputing para generar un modelo pre-proceso predictivo de la rugosidad superficial basado en experimentación con características diversas del proceso de fresado a alta velocidad. El modelo de predicción es un clasificador Bayesiano, validado con el método k-fold cross-validation y varios valores de mérito, lo que ha permitido verificar la calidad del modelo predictivo respecto a otros modelos basados en técnicas similares. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | High Speed Machining | es_ES |
dc.subject | High Speed milling process | es_ES |
dc.subject | Softcomputing | es_ES |
dc.subject | Bayesians networks | es_ES |
dc.subject | Predictive models | es_ES |
dc.subject | Mecanizado a alta velocidad | es_ES |
dc.subject | Proceso de fresado a alta velocidad | es_ES |
dc.subject | Redes Bayesianas | es_ES |
dc.subject | Modelos predictivos | es_ES |
dc.title | Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Softcomputing | es_ES |
dc.title.alternative | A pre-process model for surface finish prediction in high speed milling based on Softcomputing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/S1697-7912(11)70006-1 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Flores, VM.; Correa, M.; Alique, JR. (2011). Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Softcomputing. Revista Iberoamericana de Automática e Informática industrial. 8(1):38-43. https://doi.org/10.1016/S1697-7912(11)70006-1 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/S1697-7912(11)70006-1 | es_ES |
dc.description.upvformatpinicio | 38 | es_ES |
dc.description.upvformatpfin | 43 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\8537 | es_ES |
dc.description.references | Altintas, Y., & Weck, M. (2004). Chatter Stability of Metal Cutting and Grinding. CIRP Annals, 53(2), 619-642. doi:10.1016/s0007-8506(07)60032-8 | es_ES |
dc.description.references | Benardos, P. G., & Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 43(8), 833-844. doi:10.1016/s0890-6955(03)00059-2 | es_ES |
dc.description.references | Correa, M., Bielza, C., Ramirez, M. de J., & Alique, J. R. (2008). A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192. doi:10.1080/00207720802344683 | es_ES |
dc.description.references | Correa, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36(3), 7270-7279. doi:10.1016/j.eswa.2008.09.024 | es_ES |
dc.description.references | Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462-467. doi:10.1109/tit.1968.1054142 | es_ES |
dc.description.references | Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45(12-13), 1375-1385. doi:10.1016/j.ijmachtools.2005.02.004 | es_ES |
dc.description.references | Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Machine Learning, 29(2/3), 131-163. doi:10.1023/a:1007465528199 | es_ES |
dc.description.references | Gajate, A., & Haber, R. E. (2009). Control Neuroborroso en Red. Aplicación al Proceso de Taladrado de Alto Rendimiento. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(1), 31-38. doi:10.1016/s1697-7912(09)70074-3 | es_ES |
dc.description.references | Hao, W., Zhu, X., Li, X., & Turyagyenda, G. (2006). Prediction of cutting force for self-propelled rotary tool using artificial neural networks. Journal of Materials Processing Technology, 180(1-3), 23-29. doi:10.1016/j.jmatprotec.2006.04.123 | es_ES |
dc.description.references | Ko, T. J., Park, J. W., Kim, H. S., & Kim, S. H. (2006). On-machine measurement using a noncontact sensor based on a CAD model. The International Journal of Advanced Manufacturing Technology, 32(7-8), 739-746. doi:10.1007/s00170-005-0383-4 | es_ES |
dc.description.references | Lee, S. S., & Chen, J. C. (2003). On-line surface roughness recognition system using artificial neural networks system in turning operations. The International Journal of Advanced Manufacturing Technology, 22(7-8), 498-509. doi:10.1007/s00170-002-1511-z | es_ES |
dc.description.references | Lela, B., Bajić, D., & Jozić, S. (2008). Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. The International Journal of Advanced Manufacturing Technology, 42(11-12), 1082-1088. doi:10.1007/s00170-008-1678-z | es_ES |
dc.description.references | Ozel, T., Correia, A. E., & Davim, J. P. (2009). Neural network process modelling for turning of steel parts using conventional and wiper inserts. International Journal of Materials and Product Technology, 35(1/2), 246. doi:10.1504/ijmpt.2009.025230 | es_ES |
dc.description.references | Reddy, B. S., Padmanabhan, G., & Reddy, K. V. K. (2008). Surface Roughness Prediction Techniques for CNC Turning. Asian Journal of Scientific Research, 1(3), 256-264. doi:10.3923/ajsr.2008.256.264 | es_ES |
dc.description.references | Zuperl, U., & Cus, F. (2003). Optimization of cutting conditions during cutting by using neural networks. Robotics and Computer-Integrated Manufacturing, 19(1-2), 189-199. doi:10.1016/s0736-5845(02)00079-0 | es_ES |
dc.relation.references | 10.1016/S0007-8506(07)60032-8 | es_ES |
dc.relation.references | 10.1016/S0890-6955(03)00059-2 | es_ES |
dc.relation.references | 10.1080/00207720802344683 | es_ES |
dc.relation.references | 10.1016/j.eswa.2008.09.024 | es_ES |
dc.relation.references | 10.1109/TIT.1968.1054142 | es_ES |
dc.relation.references | 10.1016/j.ijmachtools.2005.02.004 | es_ES |
dc.relation.references | 10.1023/A:1007465528199 | es_ES |
dc.relation.references | 10.1016/S1697-7912(09)70074-3 | es_ES |
dc.relation.references | 10.1016/j.jmatprotec.2006.04.123 | es_ES |
dc.relation.references | 10.1007/s00170-005-0383-4 | es_ES |
dc.relation.references | 10.1007/s00170-002-1511-z | es_ES |
dc.relation.references | 10.1007/s00170-008-1678-z | es_ES |
dc.relation.references | 10.1504/IJMPT.2009.025230 | es_ES |
dc.relation.references | 10.3923/ajsr.2008.256.264 | es_ES |
dc.relation.references | 10.1016/S0736-5845(02)00079-0 | es_ES |