Riunet Móvil

Home Versión de escritorio

A happiness degree predictor using the conceptual data structure for deep learning architectures

Mostrar el registro sencillo del ítem

dc.contributor.author Perez-Benito, Francisco Javier es_ES
dc.contributor.author Villacampa-Fernandez, Patricia es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Garcia-Gomez, Juan M es_ES
dc.contributor.author NAVARRO-PARDO, ESPERANZA es_ES
dc.date.accessioned 2020-10-04T03:31:51Z
dc.date.available 2020-10-04T03:31:51Z
dc.date.issued 2019-01 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/151042
dc.description.abstract [EN] Background and Objective: Happiness is a universal fundamental human goal. Since the emergence of Positive Psychology, a major focus in psychological research has been to study the role of certain factors in the prediction of happiness. The conventional methodologies are based on linear relationships, such as the commonly used Multivariate Linear Regression (MLR), which may suffer from the lack of representative capacity to the varied psychological features. Using Deep Neural Networks (DNN), we define a Happiness Degree Predictor (H-DP) based on the answers to five psychometric standardized questionnaires. Methods: A Data-Structure driven architecture for DNNs (D-SDNN) is proposed for defining an HDP in which the network architecture enables the conceptual interpretation of psychological factors associated with happiness. Four different neural network configurations have been tested, varying the number of neurons and the presence or absence of bias in the hidden layers. Two metrics for evaluating the influence of conceptual dimensions have been defined and computed: one quantifies the influence weight of the conceptual dimension in absolute terms and the other one pinpoints the direction (positive or negative) of the influence. Materials: A cross-sectional survey targeting the non-institutionalized adult population residing in Spain was completed by 823 cases. The total of 111 elements of the survey are grouped by socio-demographic data and by five psychometric scales (Brief COPE Inventory, EPQR-A, GHQ-28, MOS-SSS, and SDHS) measuring several psychological factors acting one as the outcome (SDHS) and the four others as predictors. Results: Our D-SDNN approach provided a better outcome (MSE: 1.46 · 10^-2 ) than MLR (MSE: 2.30 · 10^-2 ), hence improving by 37% the predictive accuracy, and allowing to simulate the conceptual structure. Conclusions: We observe a better performance of Deep Neural Networks (DNN) with respect to traditional methodologies. This demonstrates its capability to capture the conceptual structure for predicting happiness degrees through psychological variables assessed by standardized questionnaires. It also permits to estimate the influence of each factor on the outcome without assuming a linear relationship. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Deep learning es_ES
dc.subject Data-structure driven deep neural network (D-SDNN) es_ES
dc.subject Happiness,Happiness-Degree Predictor (H-DP) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title A happiness degree predictor using the conceptual data structure for deep learning architectures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2017.11.004 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Perez-Benito, FJ.; Villacampa-Fernandez, P.; Conejero, JA.; Garcia-Gomez, JM.; Navarro-Pardo, E. (2019). A happiness degree predictor using the conceptual data structure for deep learning architectures. Computer Methods and Programs in Biomedicine. 168:59-68. https://doi.org/10.1016/j.cmpb.2017.11.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2017.11.004 es_ES
dc.description.upvformatpinicio 59 es_ES
dc.description.upvformatpfin 68 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 168 es_ES
dc.identifier.pmid 29183649 es_ES
dc.relation.pasarela S\388301 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet