Riunet Móvil

Home Versión de escritorio

Red de sensores inalámbricos multisalto para sistemas domóticos de bajo costo y área extendida

Mostrar el registro sencillo del ítem

dc.contributor.author Mendoza, E. es_ES
dc.contributor.author Fuentes, P. es_ES
dc.contributor.author Benítez, I. es_ES
dc.contributor.author Reina, D. es_ES
dc.contributor.author Núñez, J. es_ES
dc.date.accessioned 2020-10-05T11:08:35Z
dc.date.available 2020-10-05T11:08:35Z
dc.date.issued 2020-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/151128
dc.description.abstract [EN] Wireless sensor networks have a wide range of applications and many pending challenges, especially those related to the evolution of digital electronics, bandwidth, reduction of implementation costs, network coverage and processing capacity. This document proposes a configuration of multi-hop wireless network oriented to intelligent domotic installations, based on 32-bit microcontrollers and low cost wireless communication modules, which allows to have complete coverage between the devices of the home automation system with a reduced loss of data, improvement in the processing capacity, adaptability and scalability in the nodes. The evaluation of network performance considers the following metrics: response time, network reach, scalability and precision. The experimental results determined a successful adaptation of the AODV multi-hop protocol, allowing sufficient coverage for a single-family house, at transmission speeds of 250Kbps, which guarantees the integrity and security of the data. es_ES
dc.description.abstract [ES] Las redes de sensores inalámbricos disponen de un campo muy amplio de aplicaciones y aún muchos desafíos pendientes, especialmente aquellos relacionados con la evolución de la electrónica digital, ancho de banda, reducción de costos de implementación, cobertura de red y capacidad de procesamiento. Este documento propone una configuración de red inalámbrica multisalto orientada a instalaciones domóticas inteligentes, basadas en microcontroladores de 32 bits y módulos de comunicación inalámbrica de bajo costo, que permita tener cobertura completa entre los dispositivos del sistema domótico con una reducida pérdida de datos, mejora en la capacidad de procesamiento, adaptabilidad y escalabilidad en los nodos. La evaluación del desempeño de la red considera las siguientes métricas: tiempo de respuesta, alcance de red, escalabilidad y precisión. Los resultados experimentales determinaron una adaptación exitosa del protocolo multisalto AODV, permitiendo una cobertura suficiente para una vivienda unifamiliar, a una velocidad de transmisión de 250Kbps, que garantiza la integridad y seguridad de los datos. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sensors es_ES
dc.subject Networks es_ES
dc.subject Communications systems es_ES
dc.subject Communications networks es_ES
dc.subject Microprocessors es_ES
dc.subject Architectures es_ES
dc.subject Distributed control es_ES
dc.subject Sensores es_ES
dc.subject Redes es_ES
dc.subject Sistemas de comunicaciones es_ES
dc.subject Redes de comunicaciones es_ES
dc.subject Microprocesadores es_ES
dc.subject Arquitecturas es_ES
dc.subject Control distribuido es_ES
dc.title Red de sensores inalámbricos multisalto para sistemas domóticos de bajo costo y área extendida es_ES
dc.title.alternative Network of multi-hop wireless sensors for low cost and extended area home automation systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.12301
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mendoza, E.; Fuentes, P.; Benítez, I.; Reina, D.; Núñez, J. (2020). Red de sensores inalámbricos multisalto para sistemas domóticos de bajo costo y área extendida. Revista Iberoamericana de Automática e Informática industrial. 17(4):412-423. https://doi.org/10.4995/riai.2020.12301 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.12301 es_ES
dc.description.upvformatpinicio 412 es_ES
dc.description.upvformatpfin 423 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\12301 es_ES
dc.description.references Ahmad, A., Roslan, M. F., & Amira, A., 2017. Throughput, latency and cost comparisons of microcontroller-based implementations of wireless sensor network (WSN) in high jump sports. In AIP Conference Proceedings (Vol. 1883, No. 1, p. 020010). AIP Publishing. https://doi.org/10.1063/1.5002028 es_ES
dc.description.references Abdellaoui, M., Gargouri, R., Mezghani, M., 2014. Optimization of WSNs Flooding Rates by Khalimsky Topology. Transactions on Networks and Communications, 2(6), 25-38. https://doi.org/10.14738/tnc.26.598 es_ES
dc.description.references Al-Haija, Q. A., Al-Qadeeb, H., & Al-Lwaimi, A., 2013. Case Study: Monitoring of AIR quality in King Faisal University using a microcontroller and WSN. Procedia Computer Science, 21, 517-521. https://doi.org/10.1016/j.procs.2013.09.072 es_ES
dc.description.references Asencio, G., Maestre, J., Escaño, J., Martín Macareno, C., Molina, M., Camacho, E., 2011. Interoperabilidad en Sistemas Domóticos Mediante Pasarela Infrarrojos-ZigBee. Revista Iberoamericana de Automática e Informática industrial 8(4), 397-404. https://doi.org/10.1016/j.riai.2011.09.002 es_ES
dc.description.references Baroudi, U., Bin-Yahya, M., Alshammari, M., Yaqoub, U., 2019. Ticket- based QoS routing optimization using genetic algorithm for WSN applications in smart grid. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1325-1338. https://doi.org/10.1007/s12652-018-0906-0 es_ES
dc.description.references Belagali, R., Anusha, A. M., Sangulagi, P., 2015. Energy-Efficient Secure Routing and Aggregation in Military Sensor Network using Multi-Agent Approach. In Applied and Theoretical Computing and Communication Technology (iCATccT), 2015 International Conference on 286-292. IEEE. https://doi.org/10.1109/ICATCCT.2015.7456897 es_ES
dc.description.references Benítez, J. D., Sosa, E. O., Godoy, D. A., Belloni, E. A., Favret, F., Bareiro, H., Urdinola, R., Olivera, M., 2017. Ampliando la Vida Útil de las WSN por Medio de los Protocolos de Ruteo, Modificación de AODV. In XIX Workshop de Investigadores en Ciencias de la Computación (WICC 2017, ITBA, Buenos Aires). URL: http://sedici.unlp.edu.ar/handle/10915/61567 es_ES
dc.description.references Bondorf, S., Jens, B. S., 2010. Statistical response time bounds in randomly deployed wireless sensor networks. In Local Computer Networks (LCN). IEEE 35th Conference on 340-343. IEEE. https://doi.org/10.1109/LCN.2010.5735738 es_ES
dc.description.references Campamá, D. S., 2012. Sistema operativo para redes inalámbrica de sensores. Tesis de maestría, Pontificia Universidad católica de Chile. URL: https://repositorio.uc.cl/handle/11534/1723 es_ES
dc.description.references Di Nisio, A., Di Noia, T., Carducci, C. G. C., & Spadavecchia, M., 2016. High dynamic range power consumption measurement in microcontroller-based applications. IEEE Transactions on Instrumentation and Measurement, 65(9), 1968-1976. https://doi.org/10.1109/TIM.2016.2549818 es_ES
dc.description.references Escribano, J., García, A., de la Fuente, M., 2011. Monitorización de la Condición Física de Personas en Espacios Confinados Mediante Etiquetas RFID con Sensores y Redes Inalámbricas Eficientes. Revista Iberoamericana de Automática e Informática industrial 8(4), 371-384. https://doi.org/10.1016/j.riai.2011.09.004 es_ES
dc.description.references Espressif Systems, 2018. ESP8266 Non-OS SDK. Version 3.0. URL: https://www.espressif.com/sites/default/files/documentation/2c- esp8266_non_os_sdk_api_reference_en.pdf es_ES
dc.description.references Espressif, 2016. ESP8266 Mesh User Guide. Version 1.2. URL: https://docplayer.net/33922006-Esp8266-mesh-user-guide.html es_ES
dc.description.references Fajriansyah, B., Ichwan, M., & Susana, R., 2016. Evaluasi Karakteristik XBee Pro dan nRF24L01 sebagai Transceiver Nirkabel. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, 4(1), 83. https://doi.org/10.26760/elkomika.v4i1.83 es_ES
dc.description.references Fischione, C., 2014. An Introduction to Wireless Sensor Networks. Royal Institute of technology. Draft, version 1.8. URL: https://www.kth.se/social/files/5431a388f276540a05ad2514/An_Introduc tion_WSNS_V1.8.pdf. es_ES
dc.description.references García, D., 2015. Estudio de 6loWPAN para su aplicación a Internet de las Cosas. Trabajo de fin de grado. URL: https://riull.ull.es/xmlui/bitstream/handle/915/945/Estudio+de+6loWPAN+para+su+aplicacion+a+Internet+de+las+Cosas.pdf?sequence=1. es_ES
dc.description.references Hong, S. H., Kim, B., Eom, D. S., 2007. A base-station centric data gathering routing protocol in sensor networks useful in home automation applications. IEEE Transactions on Consumer Electronics 53(3), 945- 951. https://doi.org/10.1109/TCE.2007.4341570 es_ES
dc.description.references Hsieh, F. S., Lin, J. B., 2014. A multiagent approach for managing collaborative workflows in supply chains. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD) 71-76. IEEE. https://doi.org/10.1109/CSCWD.2014.6846819 es_ES
dc.description.references Jaggi, S., and Wasson, E., 2016. Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN. Industrial Engineering & Management Systems, 15(3), 259-267. https://doi.org/10.7232/iems.2016.15.3.259 es_ES
dc.description.references Kailas, A., Cecchi, V., & Mukherjee, A., 2012. A survey of communications and networking technologies for energy management in buildings and home automation. Journal of Computer Networks and Communications, 2012(932181), 1-6. https://doi.org/10.1155/2012/932181. es_ES
dc.description.references Kelly, S. D. T., Suryadevara, N. K., Mukhopadhyay, S. C., 2013.Towards the Implementation of IoT for Environmental Condition Monitoring in Homes. IEEE Sensors Journal 13(10), 3846-3853. https://doi.org/10.1109/JSEN.2013.2263379 es_ES
dc.description.references Li, M., Lin H. J., 2015. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE Transactions On Industrial Electronics 62(7). 4430-4442. https://doi.org/10.1109/TIE.2014.2379586 es_ES
dc.description.references Liao, C., Zhu, K., Tang, J., Zhang, S., 2016. Wireless Sensor Network Performance Research for LEACH Based on Multi-Agent Simulation. IEEE International Conference on Agents (ICA) 98-99. IEEE. https://doi.org/10.1109/ICA.2016.031 es_ES
dc.description.references López Torres, V. 2014. Diseño de un modelo de red domótica libre basada en componentes OpenDomo para aplicación a un pequeño hotel. es_ES
dc.description.references Magno, M., Polonelli, T., Benini, L., Popovici, E., 2015. A Low Cost, Highly Scalable Wireless Sensor Network Solution to Achieve Smart LED Light Control for Green Buildings. IEEE Sensors Journal 15(5), 2963-2973. https://doi.org/10.1109/JSEN.2014.2383996 es_ES
dc.description.references Manda, S., Shukla, Y., Shrivastava, K., Patil, T. B., & Sawant-Patil, S. T., 2018. A Literature Survey on Wireless Sensor Network in Home Automation Based on Internet of Things. https://doi.org/10.26438/ijcse/v6i6.13621368 es_ES
dc.description.references Medina, C., 2017. Control de Congestión en Redes Inalámbicas de Sensores. Tesis de maestría, Pontificia Universidad Javeriana. Bogota-Colombia. es_ES
dc.description.references Mezghani, M., Abdellaoui, P., 2015. WSN intelligent communication based on Khalimsky theory using multi-agent systems. In 2015 SAI Intelligent Systems Conference (IntelliSys) (pp. 871-876). IEEE. https://doi.org/10.1109/IntelliSys.2015.7361245 es_ES
dc.description.references Microchip, 2020. URL: https://www.microchip.com/wwwproducts/en/ PIC16F628A es_ES
dc.description.references Mostafaei, H., 2019. Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567-5575. es_ES
dc.description.references https://doi.org/10.1109/TIE.2018.2869345 es_ES
dc.description.references Narten, T., Nordmark, E., Simpson, W., Soliman, H., 2007. Neighbor Discovery for IP version 6 (IPv6). RFC 4861, https://doi.org/10.17487/RFC4861. es_ES
dc.description.references Nikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B., 2018. Low- power wireless for the internet of things: Standards and applications. IEEE Access, 6, 67893-67926. https://doi.org/10.1109/ACCESS.2018.2879189 es_ES
dc.description.references Nordic Semiconductor. (2008). nRF24L01 Single Chip 2.4GHz Transceiver. URL: https://www.nordicsemi.com/DocLib?Product=nRF24 es_ES
dc.description.references Núñez, José Ricardo et al., 2019. Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática industrial, [S.l.], v. 17, n. 1, p. 94-105. https://doi.org/10.4995/riai.2019.11449 es_ES
dc.description.references Nuñez, J. R., Benítez, I.F., Rodriguez, A., Diaz, S., Oliveira, D., 2019. Tools for the implementation of a SCADA system in a desalination process. IEEE Latin America Transactions, 17(11), 1858-1864. https://doi.org/10.1109/TLA.2019.8986424 es_ES
dc.description.references Paavola, M., Leiviska, K., 2010. Wireless Sensor Networks in Industrial Automation. In Factory Automation. InTech. https://doi.org/10.5772/9532. es_ES
dc.description.references Peñín, P., Díaz, A., Medina, J., Sánchez P., 2017. High-Level Design of Wireless Sensor Networks for Performance Optimization Under Security Hazards. ACM Transactions on Sensor Networks (TOSN) 13(3), 19. https://doi.org/10.1145/3078359. es_ES
dc.description.references Perkins, C., Belding, E., Das, S., 2003. Ad hoc On-Demand Distance Vector (AODV) Routing. (No. RFC 3561). https://doi.org/10.17487/RFC3561 es_ES
dc.description.references Posadas Yagüe, J. L., & Poza Luján, J. L. (2009). Revisión de las arquitecturas de control distribuido. URL: https://riunet.upv.es/handle/10251/6407 es_ES
dc.description.references Qin, J., Fu, W., Gao, H., Xing W., 2016. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory. IEEE transactions on cybernetics, 47(3), 772-783. https://doi.org/10.1109/TCYB.2016.2526683. es_ES
dc.description.references Randhawa, S., 2014. Research Challenges in Wireless Sensor Network: A State of the Play. Conference Proceeding of National Conference of Science, Engineering y Management in Education and Research. arXiv preprint arXiv:1404.1469v1 [cs.NI] es_ES
dc.description.references Rawat, P., Singh, K. D., Chaouchi, H., Bonnin, J. M., 2014. Wireless sensor networks: A survey on recent developments and potential synergies. The Journal of Supercomputing 68(1), 1-48. https://doi.org/10.1007/s11227-013-1021-9 https://doi.org/10.1007/s11227-013-1021-9 es_ES
dc.description.references Rodríguez, A., 2011. Sistemas SCADA. Tercera Edición. Marcombo: Barcelona. ISBN: 978-8426717818. es_ES
dc.description.references Saha, Himadri & Mandal, Shashwata & Mitra, Shinjan & Banerjee, Soham & Saha, Urmi., 2017. Comparative Performance Analysis between nRF24L01+ and XBEE ZB Module Based Wireless Ad-hoc Networks. International Journal of Computer Network and Information Security. 9. 36-44. https://doi.org/10.5815/ijcnis.2017.07.05. es_ES
dc.description.references Saravanan, S., Poovazhaki, R., Shanker, N., 2018. Cluster Topology in WSN with SCPS for QoS. Wireless Personal Communications, 99(3), 1295- 1314. https://doi.org/10.1007/s11277-017-5185-0 es_ES
dc.description.references STMicroelectronics, 2018. STM32F103xC STM32F103x, STM32F103xE. DS5792 Rev 13. URL:https://www.st.com/resource/en/datasheet/stm32f103rc.pdf es_ES
dc.description.references STMicroelectronics, 2019. STM32F030x4 STM32F030x6 STM32F030x8 STM32F030xC. DS9773 Rev 4. URL: https://www.st.com/resource/en/datasheet/stm32f030f4.pdf es_ES
dc.description.references Snigdh, I., & Gupta, N. 2016. Quality of service metrics in wireless sensor networks: A survey. Journal of The Institution of Engineers (India): Series B, 97(1), 91-96. https://doi.org/10.1007/s40031-014-0160-6 es_ES
dc.description.references Suárez, A., and Núñez, J. R., 2019. 1D Convolutional Neural Network for Detecting Ventricular Heartbeats. IEEE Latin America Transactions, 17(12), 1970-1977. https://doi.org/10.1109/TLA.2019.9011541. es_ES
dc.description.references Sutagundar, A., Bennur, V., Anusha, A., Bhanu, K., 2016. Agent Based Fault Tolerance in Wireless Sensor Networks. 2016 International Conference on Inventive Computation Technologies (ICICT) 1, 1-6. IEEE. https://doi.org/10.1109/INVENTIVE.2016.7823265 es_ES
dc.description.references Valencia, G., Núñez, J., Vanegas, M., 2020. Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar-Colombia. Data in Brief, 27, 104753. https://doi.org/10.1016/j.dib.2019.104753 es_ES
dc.description.references Vidhya, S., Sasilatha, T., 2018. Secure Data Transfer Using Multi Layer Security Protocol with Energy Power Consumption AODV in Wireless Sensor Networks. Wireless Personal Communications, 103(4), 3055- 3077. https://doi.org/10.1007/s11277-018-5994-9 es_ES
dc.description.references Villarrubia, G., De Paz, J., De La Iglesia, D., Bajo, J., 2017. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation. 17(8), 1775. DOI: https://doi.org/10.3390/s17081775 es_ES
dc.description.references Wadhwa, L., Deshpande, R., Priye, V., 2016. Extended shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Networks, 37, 295- 300. https://doi.org/10.1016/j.adhoc.2015.08.025 es_ES
dc.description.references Yang, S.H., 2014. Wireless Sensor Network. Londres, Reino Unido: Springer. ISBN 978-1-4471-5505-8. es_ES
dc.description.references Yu, K., Xie, Z., Qian, J., y Jin, G., 2013. The Implementation of Electronic Intelligent Tag System Based on Wireless Sensor Network. Communications and Network 5(01), 39. https://doi.org/10.4236/cn.2013.51B010. es_ES
dc.description.references Zhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y., & Mukherjee, M., 2018. A survey on fault diagnosis in wireless sensor networks. IEEE Access, 6, 11349-11364. https://doi.org/10.1109/ACCESS.2018.2794519 es_ES
dc.relation.references 10.1063/1.5002028 es_ES
dc.relation.references 10.14738/tnc.26.598 es_ES
dc.relation.references 10.1016/j.procs.2013.09.072 es_ES
dc.relation.references 10.1016/j.riai.2011.09.002 es_ES
dc.relation.references 10.1007/s12652-018-0906-0 es_ES
dc.relation.references 10.1109/ICATCCT.2015.7456897 es_ES
dc.relation.references 10.1109/LCN.2010.5735738 es_ES
dc.relation.references 10.1109/TIM.2016.2549818 es_ES
dc.relation.references 10.1016/j.riai.2011.09.004 es_ES
dc.relation.references 10.26760/elkomika.v4i1.83 es_ES
dc.relation.references 10.1109/TCE.2007.4341570 es_ES
dc.relation.references 10.1109/CSCWD.2014.6846819 es_ES
dc.relation.references 10.7232/iems.2016.15.3.259 es_ES
dc.relation.references 10.1155/2012/932181 es_ES
dc.relation.references 10.1109/JSEN.2013.2263379 es_ES
dc.relation.references 10.1109/TIE.2014.2379586 es_ES
dc.relation.references 10.1109/ICA.2016.031 es_ES
dc.relation.references 10.1109/JSEN.2014.2383996 es_ES
dc.relation.references 10.26438/ijcse/v6i6.13621368 es_ES
dc.relation.references 10.1109/IntelliSys.2015.7361245 es_ES
dc.relation.references 10.1109/TIE.2018.2869345 es_ES
dc.relation.references 10.17487/rfc4861 es_ES
dc.relation.references 10.1109/ACCESS.2018.2879189 es_ES
dc.relation.references 10.4995/riai.2019.11449 es_ES
dc.relation.references 10.1109/TLA.2019.8986424 es_ES
dc.relation.references 10.5772/9532 es_ES
dc.relation.references 10.1145/3078359 es_ES
dc.relation.references 10.17487/rfc3561 es_ES
dc.relation.references 10.1109/TCYB.2016.2526683 es_ES
dc.relation.references 10.1007/s11227-013-1021-9 es_ES
dc.relation.references 10.5815/ijcnis.2017.07.05 es_ES
dc.relation.references 10.1007/s11277-017-5185-0 es_ES
dc.relation.references 10.1007/s40031-014-0160-6 es_ES
dc.relation.references 10.1109/TLA.2019.9011541 es_ES
dc.relation.references 10.1109/INVENTIVE.2016.7823265 es_ES
dc.relation.references 10.1016/j.dib.2019.104753 es_ES
dc.relation.references 10.1007/s11277-018-5994-9 es_ES
dc.relation.references 10.3390/s17081775 es_ES
dc.relation.references 10.1016/j.adhoc.2015.08.025 es_ES
dc.relation.references 10.4236/cn.2013.51B010 es_ES
dc.relation.references 10.1109/ACCESS.2018.2794519 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet