Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz-Martínez, María del Alba | es_ES |
dc.contributor.author | Mas-Cabo, Javier | es_ES |
dc.contributor.author | Prats-Boluda, Gema | es_ES |
dc.contributor.author | Garcia-Casado, Javier | es_ES |
dc.contributor.author | Cardona-Urrego, Karen | es_ES |
dc.contributor.author | Monfort-Ortiz, Rogelio | es_ES |
dc.contributor.author | Lopez-Corral, Angel | es_ES |
dc.contributor.author | De Arriba-Garcia, Maria | es_ES |
dc.contributor.author | Perales, Alfredo | es_ES |
dc.contributor.author | Ye Lin, Yiyao | es_ES |
dc.date.accessioned | 2021-03-01T08:10:32Z | |
dc.date.available | 2021-03-01T08:10:32Z | |
dc.date.issued | 2020-06 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162610 | |
dc.description.abstract | [EN] Postpartum hemorrhage (PPH) is one of the major causes of maternal mortality and morbidity worldwide, with uterine atony being the most common origin. Currently there are no obstetrical techniques available for monitoring postpartum uterine dynamics, as tocodynamometry is not able to detect weak uterine contractions. In this study, we explored the feasibility of monitoring postpartum uterine activity by non-invasive electrohysterography (EHG), which has been proven to outperform tocodynamometry in detecting uterine contractions during pregnancy. A comparison was made of the temporal, spectral, and non-linear parameters of postpartum EHG characteristics of vaginal deliveries and elective cesareans. In the vaginal delivery group, EHG obtained a significantly higher amplitude and lower kurtosis of the Hilbert envelope, and spectral content was shifted toward higher frequencies than in the cesarean group. In the non-linear parameters, higher values were found for the fractal dimension and lower values for Lempel-Ziv, sample entropy and spectral entropy in vaginal deliveries suggesting that the postpartum EHG signal is extremely non-linear but more regular and predictable than in a cesarean. The results obtained indicate that postpartum EHG recording could be a helpful tool for earlier detection of uterine atony and contribute to better management of prophylactic uterotonic treatment for PPH prevention. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and the Generalitat Valenciana (GV/2018/104 and AICO/2019/220). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electrohysterogram | es_ES |
dc.subject | Uterine myoelectrical activity | es_ES |
dc.subject | Postpartum hemorrhage | es_ES |
dc.subject | Signal characterization | es_ES |
dc.subject | Uterotonic therapy | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | A Comparative Study of Vaginal Labor and Caesarean Section Postpartum Uterine Myoelectrical Activity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s20113023 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2018%2F104/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094449-A-I00/ES/ELECTROHISTEROGRAFIA PARA LA MEJORA EN LA TOMA DE DECISIONES EN SITUACIONES DE RIESGO EN OBSTETRICIA: PARTO PREMATURO E INDUCCION DEL PARTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F220/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Díaz-Martínez, MDA.; Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Cardona-Urrego, K.; Monfort-Ortiz, R.; Lopez-Corral, A.... (2020). A Comparative Study of Vaginal Labor and Caesarean Section Postpartum Uterine Myoelectrical Activity. Sensors. 20(11):1-14. https://doi.org/10.3390/s20113023 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s20113023 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 32466584 | es_ES |
dc.identifier.pmcid | PMC7308960 | es_ES |
dc.relation.pasarela | S\414452 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ngwenya, S. (2016). Postpartum hemorrhage: incidence, risk factors, and outcomes in a low-resource setting. International Journal of Women’s Health, Volume 8, 647-650. doi:10.2147/ijwh.s119232 | es_ES |
dc.description.references | Carroli, G., Cuesta, C., Abalos, E., & Gulmezoglu, A. M. (2008). Epidemiology of postpartum haemorrhage: a systematic review. Best Practice & Research Clinical Obstetrics & Gynaecology, 22(6), 999-1012. doi:10.1016/j.bpobgyn.2008.08.004 | es_ES |
dc.description.references | Souza, J. P., Gülmezoglu, A. M., Carroli, G., Lumbiganon, P., & Qureshi, Z. (2011). The world health organization multicountry survey on maternal and newborn health: study protocol. BMC Health Services Research, 11(1). doi:10.1186/1472-6963-11-286 | es_ES |
dc.description.references | Knight, M., Callaghan, W. M., Berg, C., Alexander, S., Bouvier-Colle, M.-H., Ford, J. B., … Walker, J. (2009). Trends in postpartum hemorrhage in high resource countries: a review and recommendations from the International Postpartum Hemorrhage Collaborative Group. BMC Pregnancy and Childbirth, 9(1). doi:10.1186/1471-2393-9-55 | es_ES |
dc.description.references | Callaghan, W. M., Kuklina, E. V., & Berg, C. J. (2010). Trends in postpartum hemorrhage: United States, 1994–2006. American Journal of Obstetrics and Gynecology, 202(4), 353.e1-353.e6. doi:10.1016/j.ajog.2010.01.011 | es_ES |
dc.description.references | Marshall, A. L., Durani, U., Bartley, A., Hagen, C. E., Ashrani, A., Rose, C., … Pruthi, R. K. (2017). The impact of postpartum hemorrhage on hospital length of stay and inpatient mortality: a National Inpatient Sample–based analysis. American Journal of Obstetrics and Gynecology, 217(3), 344.e1-344.e6. doi:10.1016/j.ajog.2017.05.004 | es_ES |
dc.description.references | Prick, B. W., Duvekot, J. J., van der Moer, P. E., van Gemund, N., van der Salm, P. C. M., Jansen, A. J. G., … Uyl-de Groot, C. A. (2014). Cost-effectiveness of red blood cell transfusion vs. non-intervention in women with acute anaemia after postpartum haemorrhage. Vox Sanguinis, 107(4), 381-388. doi:10.1111/vox.12181 | es_ES |
dc.description.references | Castiel, D., Bréchat, P.-H., Benoît, B., Nguon, B., Gayat, E., Soyer, P., … Barranger, E. (2008). Coût total des actes chirurgicaux dans la prise en charge des hémorragies de la délivrance. Gynécologie Obstétrique & Fertilité, 36(5), 507-515. doi:10.1016/j.gyobfe.2008.03.009 | es_ES |
dc.description.references | Fukami, T., Koga, H., Goto, M., Ando, M., Matsuoka, S., Tohyama, A., … Tsujioka, H. (2019). Incidence and risk factors for postpartum hemorrhage among transvaginal deliveries at a tertiary perinatal medical facility in Japan. PLOS ONE, 14(1), e0208873. doi:10.1371/journal.pone.0208873 | es_ES |
dc.description.references | Vogel, J. P., Williams, M., Gallos, I., Althabe, F., & Oladapo, O. T. (2019). WHO recommendations on uterotonics for postpartum haemorrhage prevention: what works, and which one? BMJ Global Health, 4(2), e001466. doi:10.1136/bmjgh-2019-001466 | es_ES |
dc.description.references | Lutomski, J., Byrne, B., Devane, D., & Greene, R. (2012). Increasing trends in atonic postpartum haemorrhage in Ireland: an 11-year population-based cohort study. BJOG: An International Journal of Obstetrics & Gynaecology, 119(9), 1150-1151. doi:10.1111/j.1471-0528.2012.03370.x | es_ES |
dc.description.references | Wilmink, F. A., Wilms, F. F., Heydanus, R., Mol, B. W. J., & Papatsonis, D. N. M. (2008). Fetal complications after placement of an intrauterine pressure catheter: A report of two cases and review of the literature. The Journal of Maternal-Fetal & Neonatal Medicine, 21(12), 880-883. doi:10.1080/14767050802220508 | es_ES |
dc.description.references | Hadar, E., Biron-Shental, T., Gavish, O., Raban, O., & Yogev, Y. (2014). A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. The Journal of Maternal-Fetal & Neonatal Medicine, 28(12), 1367-1374. doi:10.3109/14767058.2014.954539 | es_ES |
dc.description.references | Alberola-Rubio, J., Prats-Boluda, G., Ye-Lin, Y., Valero, J., Perales, A., & Garcia-Casado, J. (2013). Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Medical Engineering & Physics, 35(12), 1736-1743. doi:10.1016/j.medengphy.2013.07.008 | es_ES |
dc.description.references | Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873 | es_ES |
dc.description.references | Euliano, T. Y., Nguyen, M. T., Marossero, D., & Edwards, R. K. (2007). Monitoring Contractions in Obese Parturients. Obstetrics & Gynecology, 109(5), 1136-1140. doi:10.1097/01.aog.0000258799.24496.93 | es_ES |
dc.description.references | Benalcazar Parra, C., Tendero, A. I., Ye-Lin, Y., Alberola-Rubio, J., Perales Marin, A., Garcia-Casado, J., & Prats-Boluda, G. (2018). Feasibility of Labor Induction Success Prediction based on Uterine Myoelectric Activity Spectral Analysis. Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies. doi:10.5220/0006649400700077 | es_ES |
dc.description.references | Euliano, T., Skowronski, M., Marossero, D., Shuster, J., & Edwards, R. (2006). Prediction of intrauterine pressure waveform from transabdominal electrohysterography. The Journal of Maternal-Fetal & Neonatal Medicine, 19(12), 803-808. doi:10.1080/14767050601023657 | es_ES |
dc.description.references | Benalcazar-Parra, C., Garcia-Casado, J., Ye-Lin, Y., Alberola-Rubio, J., Lopez, Á., Perales-Marin, A., & Prats-Boluda, G. (2019). New electrohysterogram-based estimators of intrauterine pressure signal, tonus and contraction peak for non-invasive labor monitoring. Physiological Measurement, 40(8), 085003. doi:10.1088/1361-6579/ab37db | es_ES |
dc.description.references | Rooijakkers, M. J., Rabotti, C., Oei, S. G., Aarts, R. M., & Mischi, M. (2014). Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiological Measurement, 35(7), 1215-1228. doi:10.1088/0967-3334/35/7/1215 | es_ES |
dc.description.references | Schlembach, D., Maner, W. L., Garfield, R. E., & Maul, H. (2009). Monitoring the progress of pregnancy and labor using electromyography. European Journal of Obstetrics & Gynecology and Reproductive Biology, 144, S33-S39. doi:10.1016/j.ejogrb.2009.02.016 | es_ES |
dc.description.references | Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-y | es_ES |
dc.description.references | Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010 | es_ES |
dc.description.references | Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-y | es_ES |
dc.description.references | Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005 | es_ES |
dc.description.references | Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J., Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/5373810 | es_ES |
dc.description.references | Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013 | es_ES |
dc.description.references | Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154 | es_ES |
dc.description.references | Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116 | es_ES |
dc.description.references | Benalcazar-Parra, C., Ye-Lin, Y., Garcia-Casado, J., Monfort-Ortiz, R., Alberola-Rubio, J., Perales, A., & Prats-Boluda, G. (2019). Prediction of Labor Induction Success from the Uterine Electrohysterogram. Journal of Sensors, 2019, 1-12. doi:10.1155/2019/6916251 | es_ES |
dc.description.references | Sammali, F., Kuijsters, N. P. M., Schoot, B. C., Mischi, M., & Rabotti, C. (2018). Feasibility of Transabdominal Electrohysterography for Analysis of Uterine Activity in Nonpregnant Women. Reproductive Sciences, 25(7), 1124-1133. doi:10.1177/1933719118768700 | es_ES |
dc.description.references | Ye-Lin, Y., Bueno-Barrachina, J. M., Prats-boluda, G., Rodriguez de Sanabria, R., & Garcia-Casado, J. (2017). Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement, 97, 195-202. doi:10.1016/j.measurement.2016.11.009 | es_ES |
dc.description.references | Maul, H., Maner, W., Olson, G., Saade, G., & Garfield, R. (2004). Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. The Journal of Maternal-Fetal & Neonatal Medicine, 15(5), 297-301. doi:10.1080/14767050410001695301 | es_ES |
dc.description.references | Shukla, S., Singh, S. K., & Mitra, D. (2020). An efficient heart sound segmentation approach using kurtosis and zero frequency filter features. Biomedical Signal Processing and Control, 57, 101762. doi:10.1016/j.bspc.2019.101762 | es_ES |
dc.description.references | Ye-Lin, Y., Alberola-Rubio, J., Prats-boluda, G., Perales, A., Desantes, D., & Garcia-Casado, J. (2014). Feasibility and Analysis of Bipolar Concentric Recording of Electrohysterogram with Flexible Active Electrode. Annals of Biomedical Engineering, 43(4), 968-976. doi:10.1007/s10439-014-1130-5 | es_ES |
dc.description.references | Vrhovec, J., Macek-Lebar, A., & Rudel, D. (s. f.). Evaluating Uterine Electrohysterogram with Entropy. IFMBE Proceedings, 144-147. doi:10.1007/978-3-540-73044-6_36 | es_ES |
dc.description.references | Zhang, X.-S., Roy, R. J., & Jensen, E. W. (2001). EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering, 48(12), 1424-1433. doi:10.1109/10.966601 | es_ES |
dc.description.references | Aboy, M., Hornero, R., Abasolo, D., & Alvarez, D. (2006). Interpretation of the Lempel-Ziv Complexity Measure in the Context of Biomedical Signal Analysis. IEEE Transactions on Biomedical Engineering, 53(11), 2282-2288. doi:10.1109/tbme.2006.883696 | es_ES |
dc.description.references | Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145-156. doi:10.1016/0010-4825(88)90041-8 | es_ES |
dc.description.references | De Lau, H., Yang, K. T., Rabotti, C., Vlemminx, M., Bajlekov, G., Mischi, M., & Oei, S. G. (2016). Toward a new modality for detecting a uterine rupture: electrohysterogram propagation analysis during trial of labor after cesarean. The Journal of Maternal-Fetal & Neonatal Medicine, 30(5), 574-579. doi:10.1080/14767058.2016.1178227 | es_ES |
dc.description.references | Benalcazar-Parra, C., Ye-Lin, Y., Garcia-Casado, J., Monfort-Orti, R., Alberola-Rubio, J., Perales, A., & Prats-Boluda, G. (2018). Electrohysterographic characterization of the uterine myoelectrical response to labor induction drugs. Medical Engineering & Physics, 56, 27-35. doi:10.1016/j.medengphy.2018.04.002 | es_ES |
dc.description.references | Garcia-Casado, J., Ye-Lin, Y., Prats-Boluda, G., Mas-Cabo, J., Alberola-Rubio, J., & Perales, A. (2018). Electrohysterography in the diagnosis of preterm birth: a review. Physiological Measurement, 39(2), 02TR01. doi:10.1088/1361-6579/aaad56 | es_ES |
dc.description.references | Fisch, G. S., Cohen, I. L., Jenkins, E. C., & Brown, W. T. (1988). Screening developmentally disabled male populations for fragile X: The effect of sample size. American Journal of Medical Genetics, 30(1-2), 655-663. doi:10.1002/ajmg.1320300166 | es_ES |
dc.description.references | Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Alberola-Rubio, J., & Perales, A. (2014). Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Computational and Mathematical Methods in Medicine, 2014, 1-11. doi:10.1155/2014/470786 | es_ES |
dc.description.references | Alberola-Rubio, J., Garcia-Casado, J., Prats-Boluda, G., Ye-Lin, Y., Desantes, D., Valero, J., & Perales, A. (2017). Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography? Computer Methods and Programs in Biomedicine, 144, 127-133. doi:10.1016/j.cmpb.2017.03.018 | es_ES |
dc.description.references | Maner, W. L., MacKay, L. B., Saade, G. R., & Garfield, R. E. (2006). Characterization of abdominally acquired uterine electrical signals in humans, using a non-linear analytic method. Medical & Biological Engineering & Computing, 44(1-2), 117-123. doi:10.1007/s11517-005-0011-3 | es_ES |
dc.description.references | Marchini, G., Lagercrantz, H., Winberg, J., & Uvnäs-Moberg, K. (1988). Fetal and maternal plasma levels of gastrin, somatostatin and oxytocin after vaginal delivery and elective cesarean section. Early Human Development, 18(1), 73-79. doi:10.1016/0378-3782(88)90044-8 | es_ES |
dc.description.references | Pickering, K., Gallos, I. D., Williams, H., Price, M. J., Merriel, A., Lissauer, D., … Roberts, T. E. (2018). Uterotonic Drugs for the Prevention of Postpartum Haemorrhage: A Cost-Effectiveness Analysis. PharmacoEconomics - Open, 3(2), 163-176. doi:10.1007/s41669-018-0108-x | es_ES |
dc.description.references | Morfaw, F., Fundoh, M., Pisoh, C., Ayaba, B., Mbuagbaw, L., Anderson, L. N., & Thabane, L. (2019). Misoprostol as an adjunct to oxytocin can reduce postpartum-haemorrhage: a propensity score–matched retrospective chart review in Bamenda-Cameroon, 2015–2016. BMC Pregnancy and Childbirth, 19(1). doi:10.1186/s12884-019-2407-3 | es_ES |
dc.description.references | Grotegut, C. A., Paglia, M. J., Johnson, L. N. C., Thames, B., & James, A. H. (2011). Oxytocin exposure during labor among women with postpartum hemorrhage secondary to uterine atony. American Journal of Obstetrics and Gynecology, 204(1), 56.e1-56.e6. doi:10.1016/j.ajog.2010.08.023 | es_ES |
dc.description.references | Shen, Y., Oda, T., Tamura, N., Kohmura‐Kobayashi, Y., Furuta‐Isomura, N., Yaguchi, C., … Kanayama, N. (2019). Elevated bradykinin receptor type 1 expression in postpartum acute myometritis: Possible involvement in augmented interstitial edema of the atonic gravid uterus. Journal of Obstetrics and Gynaecology Research, 45(8), 1553-1561. doi:10.1111/jog.14012 | es_ES |
dc.relation.references | 10.2147/IJWH.S119232 | es_ES |
dc.relation.references | 10.1016/j.bpobgyn.2008.08.004 | es_ES |
dc.relation.references | 10.1186/1472-6963-11-286 | es_ES |
dc.relation.references | 10.1186/1471-2393-9-55 | es_ES |
dc.relation.references | 10.1016/j.ajog.2010.01.011 | es_ES |
dc.relation.references | 10.1016/j.ajog.2017.05.004 | es_ES |
dc.relation.references | 10.1111/vox.12181 | es_ES |
dc.relation.references | 10.1016/j.gyobfe.2008.03.009 | es_ES |
dc.relation.references | 10.1371/journal.pone.0208873 | es_ES |
dc.relation.references | 10.1136/bmjgh-2019-001466 | es_ES |
dc.relation.references | 10.1111/j.1471-0528.2012.03370.x | es_ES |
dc.relation.references | 10.1080/14767050802220508 | es_ES |
dc.relation.references | 10.3109/14767058.2014.954539 | es_ES |
dc.relation.references | 10.1016/j.medengphy.2013.07.008 | es_ES |
dc.relation.references | 10.1016/j.ajog.2012.10.873 | es_ES |
dc.relation.references | 10.1097/01.AOG.0000258799.24496.93 | es_ES |
dc.relation.references | 10.5220/0006649400700077 | es_ES |
dc.relation.references | 10.1080/14767050601023657 | es_ES |
dc.relation.references | 10.1088/1361-6579/ab37db | es_ES |
dc.relation.references | 10.1088/0967-3334/35/7/1215 | es_ES |
dc.relation.references | 10.1016/j.ejogrb.2009.02.016 | es_ES |
dc.relation.references | 10.1007/s11517-008-0350-y | es_ES |
dc.relation.references | 10.1016/j.medengphy.2011.03.010 | es_ES |
dc.relation.references | 10.1007/s11517-018-1888-y | es_ES |
dc.relation.references | 10.1016/j.bbe.2015.11.005 | es_ES |
dc.relation.references | 10.1155/2019/5373810 | es_ES |
dc.relation.references | 10.1016/j.compbiomed.2017.04.013 | es_ES |
dc.relation.references | 10.1371/journal.pone.0077154 | es_ES |
dc.relation.references | 10.1371/journal.pone.0132116 | es_ES |
dc.relation.references | 10.1155/2019/6916251 | es_ES |
dc.relation.references | 10.1177/1933719118768700 | es_ES |
dc.relation.references | 10.1016/j.measurement.2016.11.009 | es_ES |
dc.relation.references | 10.1080/14767050410001695301 | es_ES |
dc.relation.references | 10.1016/j.bspc.2019.101762 | es_ES |
dc.relation.references | 10.1007/s10439-014-1130-5 | es_ES |
dc.relation.references | 10.1007/978-3-540-73044-6_36 | es_ES |
dc.relation.references | 10.1109/10.966601 | es_ES |
dc.relation.references | 10.1109/TBME.2006.883696 | es_ES |
dc.relation.references | 10.1016/0010-4825(88)90041-8 | es_ES |
dc.relation.references | 10.1080/14767058.2016.1178227 | es_ES |
dc.relation.references | 10.1016/j.medengphy.2018.04.002 | es_ES |
dc.relation.references | 10.1088/1361-6579/aaad56 | es_ES |
dc.relation.references | 10.1002/ajmg.1320300166 | es_ES |
dc.relation.references | 10.1155/2014/470786 | es_ES |
dc.relation.references | 10.1016/j.cmpb.2017.03.018 | es_ES |
dc.relation.references | 10.1007/s11517-005-0011-3 | es_ES |
dc.relation.references | 10.1016/0378-3782(88)90044-8 | es_ES |
dc.relation.references | 10.1007/s41669-018-0108-x | es_ES |
dc.relation.references | 10.1186/s12884-019-2407-3 | es_ES |
dc.relation.references | 10.1016/j.ajog.2010.08.023 | es_ES |
dc.relation.references | 10.1111/jog.14012 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |