Mostrar el registro sencillo del ítem
dc.contributor.author | García-Segovia, Purificación | es_ES |
dc.contributor.author | García-Alcaraz, V. | es_ES |
dc.contributor.author | Balasch Parisi, Sebastià | es_ES |
dc.contributor.author | Martínez-Monzó, Javier | es_ES |
dc.date.accessioned | 2021-06-03T03:32:11Z | |
dc.date.available | 2021-06-03T03:32:11Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 1466-8564 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/167207 | |
dc.description.abstract | [EN] 3D printing technology is a promising technology with the possibility of use for developing personalised food. To make this technology easier, and readily available for consumers, greater knowledge of the printing conditions and characteristics of food-ink is needed. This paper investigates the printability of gels based on syrup, xanthan, and konjac gums, while affecting printing variables. Those variables include the printing temperature (25¿°C and 50¿°C) and the composition of the product analysed using rheological and textural characterisation techniques. Also, the link between rheological and textural properties of gels, and printability was analysed. The higher values of G¿, G¿ and ¿* correlated to the mixtures with lower syrup concentration, and higher values of xanthan and konjac gum. Syrup, xanthan gum and konjac gum content influenced the textural properties. With the increase of syrup content, the Fmax, Fmean, Area, and slope showed reductions giving more weak gels. Rheological and textural values can define composition of formulations that give rise to valid 3D printed figures. Industrial relevance There is an increasing market need for customized food products. Three-dimensional (3D) food printing will be developed in the coming years. Undoubtedly, food printing can have many advantages, but whether the market is ready for such a big change and the technology will grow fast enough are the questions. Also it seems to be the right solution to meet the needs of today's consumers who increasingly have too little time to prepare meals on their own, especially in small or single-person households. In the future, ready, healthy meal, tailored to their individual needs, will be waiting when coming home. 3D printed gels can contribute to develop personalised food with specific nutritional characteristics. For example, this kind of gels can be used to manufacture soft foods for the elderly who have problems to swallow. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Innovative Food Science & Emerging Technologies | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 3D printing | es_ES |
dc.subject | Rheological properties | es_ES |
dc.subject | Extrusion | es_ES |
dc.subject | Konjac gum | es_ES |
dc.subject | Xanthan gum | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | 3D printing of gels based on xanthan/konjac gums | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ifset.2020.102343 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | García-Segovia, P.; García-Alcaraz, V.; Balasch Parisi, S.; Martínez-Monzó, J. (2020). 3D printing of gels based on xanthan/konjac gums. Innovative Food Science & Emerging Technologies. 64:1-9. https://doi.org/10.1016/j.ifset.2020.102343 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ifset.2020.102343 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 64 | es_ES |
dc.relation.pasarela | S\406526 | es_ES |
dc.description.references | Abbaszadeh, A., MacNaughtan, W., Sworn, G., & Foster, T. J. (2016). New insights into xanthan synergistic interactions with konjac glucomannan: A novel interaction mechanism proposal. Carbohydrate Polymers, 144, 168-177. doi:10.1016/j.carbpol.2016.02.026 | es_ES |
dc.description.references | Agoub, A. A., Smith, A. M., Giannouli, P., Richardson, R. K., & Morris, E. R. (2007). «Melt-in-the-mouth» gels from mixtures of xanthan and konjac glucomannan under acidic conditions: A rheological and calorimetric study of the mechanism of synergistic gelation. Carbohydrate Polymers, 69(4), 713-724. doi:10.1016/j.carbpol.2007.02.014 | es_ES |
dc.description.references | Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65-75. doi:10.1016/j.jfoodeng.2017.05.015 | es_ES |
dc.description.references | Diañez, I., Gallegos, C., Brito-de la Fuente, E., Martínez, I., Valencia, C., Sánchez, M. C., … Franco, J. M. (2019). 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids, 87, 321-330. doi:10.1016/j.foodhyd.2018.08.010 | es_ES |
dc.description.references | Fitzsimons, S. M., Tobin, J. T., & Morris, E. R. (2008). Synergistic binding of konjac glucomannan to xanthan on mixing at room temperature. Food Hydrocolloids, 22(1), 36-46. doi:10.1016/j.foodhyd.2007.01.023 | es_ES |
dc.description.references | Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54. doi:10.1016/j.jfoodeng.2016.01.025 | es_ES |
dc.description.references | Hamilton, C. A., Alici, G., & in het Panhuis, M. (2018). 3D printing Vegemite and Marmite: Redefining «breadboards». Journal of Food Engineering, 220, 83-88. doi:10.1016/j.jfoodeng.2017.01.008 | es_ES |
dc.description.references | Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12-19. doi:10.1016/j.jfoodeng.2017.06.008 | es_ES |
dc.description.references | Le Tohic, C., O’Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., … Kelly, A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering, 220, 56-64. doi:10.1016/j.jfoodeng.2017.02.003 | es_ES |
dc.description.references | Liu, Z., Bhandari, B., Prakash, S., Mantihal, S., & Zhang, M. (2019). Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids, 87, 413-424. doi:10.1016/j.foodhyd.2018.08.026 | es_ES |
dc.description.references | Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology, 69, 83-94. doi:10.1016/j.tifs.2017.08.018 | es_ES |
dc.description.references | Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2018). Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering, 220, 76-82. doi:10.1016/j.jfoodeng.2017.04.017 | es_ES |
dc.description.references | Mao, C.-F., Klinthong, W., Zeng, Y.-C., & Chen, C.-H. (2012). On the interaction between konjac glucomannan and xanthan in mixed gels: An analysis based on the cascade model. Carbohydrate Polymers, 89(1), 98-103. doi:10.1016/j.carbpol.2012.02.056 | es_ES |
dc.description.references | Severini, C., Azzollini, D., Albenzio, M., & Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 106, 666-676. doi:10.1016/j.foodres.2018.01.034 | es_ES |
dc.description.references | Severini, C., & Derossi, A. (2016). Could the 3D Printing Technology be a Useful Strategy to Obtain Customized Nutrition? Journal of Clinical Gastroenterology, 50(Supplement 2), S175-S178. doi:10.1097/mcg.0000000000000705 | es_ES |
dc.description.references | Sun, J., Peng, Z., Zhou, W., Fuh, J. Y. H., Hong, G. S., & Chiu, A. (2015). A Review on 3D Printing for Customized Food Fabrication. Procedia Manufacturing, 1, 308-319. doi:10.1016/j.promfg.2015.09.057 | es_ES |
dc.description.references | Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101-108. doi:10.1016/j.jfoodeng.2017.02.029 | es_ES |
dc.description.references | Yang, F., Zhang, M., & Bhandari, B. (2015). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition, 57(14), 3145-3153. doi:10.1080/10408398.2015.1094732 | es_ES |
dc.description.references | Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT, 87, 67-76. doi:10.1016/j.lwt.2017.08.054 | es_ES |
dc.description.references | Zhang, M., Vora, A., Han, W., Wojtecki, R. J., Maune, H., Le, A. B. A., … Nelson, A. (2015). Dual-Responsive Hydrogels for Direct-Write 3D Printing. Macromolecules, 48(18), 6482-6488. doi:10.1021/acs.macromol.5b01550 | es_ES |
dc.relation.references | 10.1016/j.carbpol.2016.02.026 | es_ES |
dc.relation.references | 10.1016/j.carbpol.2007.02.014 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2017.05.015 | es_ES |
dc.relation.references | 10.1016/j.foodhyd.2018.08.010 | es_ES |
dc.relation.references | 10.1016/j.foodhyd.2007.01.023 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2016.01.025 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2017.01.008 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2017.06.008 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2017.02.003 | es_ES |
dc.relation.references | 10.1016/j.foodhyd.2018.08.026 | es_ES |
dc.relation.references | 10.1016/j.tifs.2017.08.018 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2017.04.017 | es_ES |
dc.relation.references | 10.1016/j.carbpol.2012.02.056 | es_ES |
dc.relation.references | 10.1016/j.foodres.2018.01.034 | es_ES |
dc.relation.references | 10.1097/MCG.0000000000000705 | es_ES |
dc.relation.references | 10.1016/j.promfg.2015.09.057 | es_ES |
dc.relation.references | 10.1016/j.jfoodeng.2017.02.029 | es_ES |
dc.relation.references | 10.1080/10408398.2015.1094732 | es_ES |
dc.relation.references | 10.1016/j.lwt.2017.08.054 | es_ES |
dc.relation.references | 10.1021/acs.macromol.5b01550 | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |