Mostrar el registro sencillo del ítem
dc.contributor.author | Zurriaga Carda, Javier | es_ES |
dc.contributor.author | Lastra, Maria L. | es_ES |
dc.contributor.author | Antolinos-Turpin, Carmen M. | es_ES |
dc.contributor.author | Morales-Román, Rosa M. | es_ES |
dc.contributor.author | Sancho-Tello, María | es_ES |
dc.contributor.author | Perea-Ruiz, Sofía | es_ES |
dc.contributor.author | Milián, Lara | es_ES |
dc.contributor.author | Fernández, Juan M. | es_ES |
dc.contributor.author | Cortizo, Ana M. | es_ES |
dc.contributor.author | Carda, Carmen | es_ES |
dc.contributor.author | Gallego-Ferrer, Gloria | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.date.accessioned | 2021-07-21T03:31:13Z | |
dc.date.available | 2021-07-21T03:31:13Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.issn | 1552-4973 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169640 | |
dc.description.abstract | [EN] The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3¿mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them with a poly(l-lactic acid) (PLLA) membrane manufactured by electrospinning. Experimental groups included a group where exclusively PLLA microspheres were implanted, another group where a mixture of 50/50 microspheres of PLLA (hydrophobic and rigid) and others of chitosan (a hydrogel) were used, and a third group used as a control where no material was used and only the membrane was covering the defect. The histological characteristics of the regenerated tissue have been evaluated 3 months after the operation. We found that during the regeneration process the microspheres, and the membrane covering them, are displaced by the neoformed tissue in the regeneration space toward the subchondral bone region, leaving room for the formation of a tissue with the characteristics of hyaline cartilage. | es_ES |
dc.description.sponsorship | Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata, Grant/Award Number: 11/X643; Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional de la Unión Europea, Grant/Award Number: MAT2016-76039-C4-1 2-R; Spanish Ministry of Economy and Competitiveness (MINECO) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of Biomedical Materials Research Part B Applied Biomaterials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Articular cartilage regeneration | es_ES |
dc.subject | Cartilage engineering | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject | Microspheres | es_ES |
dc.subject | Polylactide | es_ES |
dc.subject | Rabbit knee model | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jbm.b.34490 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UNLP//11%2FX643/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Zurriaga Carda, J.; Lastra, ML.; Antolinos-Turpin, CM.; Morales-Román, RM.; Sancho-Tello, M.; Perea-Ruiz, S.; Milián, L.... (2020). A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model. Journal of Biomedical Materials Research Part B Applied Biomaterials. 108(4):1428-1438. https://doi.org/10.1002/jbm.b.34490 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jbm.b.34490 | es_ES |
dc.description.upvformatpinicio | 1428 | es_ES |
dc.description.upvformatpfin | 1438 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 108 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 31520507 | es_ES |
dc.relation.pasarela | S\405032 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universidad Nacional de La Plata, Argentina | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Allepuz, A., Martínez, O., Tebé, C., Nardi, J., Portabella, F., & Espallargues, M. (2014). Joint Registries as Continuous Surveillance Systems: The Experience of the Catalan Arthroplasty Register (RACat). The Journal of Arthroplasty, 29(3), 484-490. doi:10.1016/j.arth.2013.07.048 | es_ES |
dc.description.references | Almeida, C. R., Serra, T., Oliveira, M. I., Planell, J. A., Barbosa, M. A., & Navarro, M. (2014). Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 10(2), 613-622. doi:10.1016/j.actbio.2013.10.035 | es_ES |
dc.description.references | Bell, A. D., Hurtig, M. B., Quenneville, E., Rivard, G.-É., & Hoemann, C. D. (2016). Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model. CARTILAGE, 8(4), 417-431. doi:10.1177/1947603516676872 | es_ES |
dc.description.references | Bitencourt, C. da S., Silva, L. B. da, Pereira, P. A. T., Gelfuso, G. M., & Faccioli, L. H. (2015). Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages. Colloids and Surfaces B: Biointerfaces, 136, 678-686. doi:10.1016/j.colsurfb.2015.10.011 | es_ES |
dc.description.references | Bonasia, D. E., Martin, J. A., Marmotti, A., Kurriger, G. L., Lehman, A. D., Rossi, R., & Amendola, A. (2015). The use of autologous adult, allogenic juvenile, and combined juvenile–adult cartilage fragments for the repair of chondral defects. Knee Surgery, Sports Traumatology, Arthroscopy, 24(12), 3988-3996. doi:10.1007/s00167-015-3536-5 | es_ES |
dc.description.references | Carmona, L. (2001). The burden of musculoskeletal diseases in the general population of Spain: results from a national survey. Annals of the Rheumatic Diseases, 60(11), 1040-1045. doi:10.1136/ard.60.11.1040 | es_ES |
dc.description.references | Chu, J., Zeng, S., Gao, L., Groth, T., Li, Z., Kong, J., … Li, L. (2016). Poly (L-Lactic Acid) Porous Scaffold-Supported Alginate Hydrogel with Improved Mechanical Properties and Biocompatibility. The International Journal of Artificial Organs, 39(8), 435-443. doi:10.5301/ijao.5000516 | es_ES |
dc.description.references | Conoscenti, G., Schneider, T., Stoelzel, K., Carfì Pavia, F., Brucato, V., Goegele, C., … Schulze-Tanzil, G. (2017). PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Materials Science and Engineering: C, 80, 449-459. doi:10.1016/j.msec.2017.06.011 | es_ES |
dc.description.references | Dashtdar, H., Murali, M. R., Abbas, A. A., Suhaeb, A. M., Selvaratnam, L., Tay, L. X., & Kamarul, T. (2013). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy, 23(5), 1368-1377. doi:10.1007/s00167-013-2723-5 | es_ES |
dc.description.references | Denlinger, L. C., Fisette, P. L., Garis, K. A., Kwon, G., Vazquez-Torres, A., Simon, A. D., … Corbett, J. A. (1996). Regulation of Inducible Nitric Oxide Synthase Expression by Macrophage Purinoreceptors and Calcium. Journal of Biological Chemistry, 271(1), 337-342. doi:10.1074/jbc.271.1.337 | es_ES |
dc.description.references | Fernández, J. M., Cortizo, M. S., & Cortizo, A. M. (2014). Fumarate/Ceramic Composite Based Scaffolds for Tissue Engineering: Evaluation of Hydrophylicity, Degradability, Toxicity and Biocompatibility. Journal of Biomaterials and Tissue Engineering, 4(3), 227-234. doi:10.1166/jbt.2014.1158 | es_ES |
dc.description.references | García Cruz, D. M., Escobar Ivirico, J. L., Gomes, M. M., Gómez Ribelles, J. L., Sánchez, M. S., Reis, R. L., & Mano, J. F. (2008). Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2(6), 378-380. doi:10.1002/term.106 | es_ES |
dc.description.references | Gordon, S. (2007). The macrophage: Past, present and future. European Journal of Immunology, 37(S1), S9-S17. doi:10.1002/eji.200737638 | es_ES |
dc.description.references | Goyal, D., Keyhani, S., Lee, E. H., & Hui, J. H. P. (2013). Evidence-Based Status of Microfracture Technique: A Systematic Review of Level I and II Studies. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29(9), 1579-1588. doi:10.1016/j.arthro.2013.05.027 | es_ES |
dc.description.references | Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04 | es_ES |
dc.description.references | Hoemann, C., Kandel, R., Roberts, S., Saris, D. B. F., Creemers, L., Mainil-Varlet, P., … Buschmann, M. D. (2011). International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials. CARTILAGE, 2(2), 153-172. doi:10.1177/1947603510397535 | es_ES |
dc.description.references | Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104(12), 6017-6084. doi:10.1021/cr030441b | es_ES |
dc.description.references | Kuo, T.-F., Lin, M.-F., Lin, Y.-H., Lin, Y.-C., Su, R.-J., Lin, H.-W., & Chan, W. P. (2011). Implantation of platelet-rich fibrin and cartilage granules facilitates cartilage repair in the injured rabbit knee: preliminary report. Clinics, 66(10), 1835-1838. doi:10.1590/s1807-59322011001000026 | es_ES |
dc.description.references | Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. doi:10.2307/2529310 | es_ES |
dc.description.references | Lao, L., Tan, H., Wang, Y., & Gao, C. (2008). Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 66(2), 218-225. doi:10.1016/j.colsurfb.2008.06.014 | es_ES |
dc.description.references | Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2017). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study. Journal of Biomedical Materials Research Part A, 106(2), 570-579. doi:10.1002/jbm.a.36260 | es_ES |
dc.description.references | Lastra, M. L., Molinuevo, M. S., Cortizo, A. M., & Cortizo, M. S. (2016). Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromolecular Bioscience, 17(5). doi:10.1002/mabi.201600219 | es_ES |
dc.description.references | Lebourg, M., Martínez-Díaz, S., García-Giralt, N., Torres-Claramunt, R., Ribelles, J. G., Vila-Canet, G., & Monllau, J. (2013). Cell-free cartilage engineering approach using hyaluronic acid–polycaprolactone scaffolds: A study in vivo. Journal of Biomaterials Applications, 28(9), 1304-1315. doi:10.1177/0885328213507298 | es_ES |
dc.description.references | Luzardo-Alvarez, A., Blarer, N., Peter, K., Romero, J. F., Reymond, C., Corradin, G., & Gander, B. (2005). Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. Journal of Controlled Release, 109(1-3), 62-76. doi:10.1016/j.jconrel.2005.09.015 | es_ES |
dc.description.references | Mainil-Varlet, P., Van Damme, B., Nesic, D., Knutsen, G., Kandel, R., & Roberts, S. (2010). A New Histology Scoring System for the Assessment of the Quality of Human Cartilage Repair: ICRS II. The American Journal of Sports Medicine, 38(5), 880-890. doi:10.1177/0363546509359068 | es_ES |
dc.description.references | Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448 | es_ES |
dc.description.references | McCormick, F., Harris, J. D., Abrams, G. D., Frank, R., Gupta, A., Hussey, K., … Cole, B. (2014). Trends in the Surgical Treatment of Articular Cartilage Lesions in the United States: An Analysis of a Large Private-Payer Database Over a Period of 8 Years. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30(2), 222-226. doi:10.1016/j.arthro.2013.11.001 | es_ES |
dc.description.references | Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution of in Vivo Articular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404 | es_ES |
dc.description.references | Sancho-Tello, M., Forriol, F., de Llano, J. J. M., Antolinos-Turpin, C., Gómez-Tejedor, J. A., Ribelles, J. L. G., & Carda, C. (2017). Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits. The International Journal of Artificial Organs, 40(7), 350-357. doi:10.5301/ijao.5000598 | es_ES |
dc.description.references | Steadman, J. R., Rodkey, W. G., Briggs, K. K., & Rodrigo, J. J. (1999). The microfracture technique to treat full thickness articular cartilage defects of the knee. Der Orthopäde, 28(1), 26-32. doi:10.1007/pl00003545 | es_ES |
dc.description.references | Tetè, S., Mastrangelo, F., Carone, L., Nargi, E., Costanzo, G., Vinci, R., … Ciccarelli, R. (2007). Morphostructural Analysis of Human Follicular Stem Cells on Highly Porous Bone Hydroxyapatite Scaffold. International Journal of Immunopathology and Pharmacology, 20(4), 819-826. doi:10.1177/039463200702000418 | es_ES |
dc.description.references | Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005 | es_ES |
dc.description.references | Vikingsson, L., Sancho-Tello, M., Ruiz-Saurí, A., Díaz, S. M., Gómez-Tejedor, J. A., Ferrer, G. G., … Ribelles, J. L. G. (2015). Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations. The International Journal of Artificial Organs, 38(12), 659-666. doi:10.5301/ijao.5000457 | es_ES |
dc.description.references | Zan, Q., Wang, C., Dong, L., Cheng, P., & Tian, J. (2008). Effect of surface roughness of chitosan-based microspheres on cell adhesion. Applied Surface Science, 255(2), 401-403. doi:10.1016/j.apsusc.2008.06.074 | es_ES |
dc.description.references | Zhang, C., Cai, Y., & Lin, X. (2016). One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32(7), 1444-1450. doi:10.1016/j.arthro.2016.01.061 | es_ES |
dc.description.references | Zhu, W., Chen, K., Lu, W., Sun, Q., Peng, L., Fen, W., … Zeng, Y. (2013). In vitro study of nano-HA/PLLA composite scaffold for rabbit BMSC differentiation under TGF-β1 induction. In Vitro Cellular & Developmental Biology - Animal, 50(3), 214-220. doi:10.1007/s11626-013-9699-9 | es_ES |
dc.relation.references | 10.1016/j.arth.2013.07.048 | es_ES |
dc.relation.references | 10.1016/j.actbio.2013.10.035 | es_ES |
dc.relation.references | 10.1177/1947603516676872 | es_ES |
dc.relation.references | 10.1016/j.colsurfb.2015.10.011 | es_ES |
dc.relation.references | 10.1007/s00167-015-3536-5 | es_ES |
dc.relation.references | 10.1136/ard.60.11.1040 | es_ES |
dc.relation.references | 10.5301/ijao.5000516 | es_ES |
dc.relation.references | 10.1016/j.msec.2017.06.011 | es_ES |
dc.relation.references | 10.1007/s00167-013-2723-5 | es_ES |
dc.relation.references | 10.1074/jbc.271.1.337 | es_ES |
dc.relation.references | 10.1166/jbt.2014.1158 | es_ES |
dc.relation.references | 10.1002/term.106 | es_ES |
dc.relation.references | 10.1002/eji.200737638 | es_ES |
dc.relation.references | 10.1016/j.arthro.2013.05.027 | es_ES |
dc.relation.references | 10.3928/0147-7447-19980701-04 | es_ES |
dc.relation.references | 10.1177/1947603510397535 | es_ES |
dc.relation.references | 10.1021/cr030441b | es_ES |
dc.relation.references | 10.1590/S1807-59322011001000026 | es_ES |
dc.relation.references | 10.2307/2529310 | es_ES |
dc.relation.references | 10.1016/j.colsurfb.2008.06.014 | es_ES |
dc.relation.references | 10.1002/jbm.a.36260 | es_ES |
dc.relation.references | 10.1002/mabi.201600219 | es_ES |
dc.relation.references | 10.1177/0885328213507298 | es_ES |
dc.relation.references | 10.1016/j.jconrel.2005.09.015 | es_ES |
dc.relation.references | 10.1177/0363546509359068 | es_ES |
dc.relation.references | 10.1177/0363546509352448 | es_ES |
dc.relation.references | 10.1016/j.arthro.2013.11.001 | es_ES |
dc.relation.references | 10.5301/ijao.5000404 | es_ES |
dc.relation.references | 10.5301/ijao.5000598 | es_ES |
dc.relation.references | 10.1007/PL00003545 | es_ES |
dc.relation.references | 10.1177/039463200702000418 | es_ES |
dc.relation.references | 10.1016/j.joca.2007.05.005 | es_ES |
dc.relation.references | 10.5301/ijao.5000457 | es_ES |
dc.relation.references | 10.1016/j.apsusc.2008.06.074 | es_ES |
dc.relation.references | 10.1016/j.arthro.2016.01.061 | es_ES |
dc.relation.references | 10.1007/s11626-013-9699-9 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |