Mostrar el registro sencillo del ítem
dc.contributor.author | Beristáin, José Antonio![]() |
es_ES |
dc.contributor.author | Pérez, Javier![]() |
es_ES |
dc.date.accessioned | 2022-05-24T09:22:44Z | |
dc.date.available | 2022-05-24T09:22:44Z | |
dc.date.issued | 2022-04-01 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/182825 | |
dc.description.abstract | [EN] The objective of this paper was to develop the modeling of a bidirectional high frequency isolation DC-AC converter. Two models were obtained: the switched model and the averaged model, which describe the dynamics of the system. The models obtained and validated by simulation allow considering this type of converters in complex simulations such as DC and AC microgrids. The first model accurately describes the operation of the bidirectional converter and the averaged model, which arises from the switched model, describes the operation of the fundamental frequency converter. The simulation results allow to validate both models by simulating the operation of the converter carrying out the bidirectional power flow transfer. | es_ES |
dc.description.abstract | [ES] El objetivo de este artículo fue desarrollar el modelado de un convertidor CD-CA con aislamiento en alta frecuencia bidireccional. Se obtuvieron dos modelos: el modelo conmutado y el modelo promediado, los cuales describen la dinámica del sistema. Los modelos obtenidos y validados mediante simulación permiten considerar este tipo de convertidores en simulaciones complejas como lo son las microrredes de CD y CA. El primer modelo describe fielmente el funcionamiento del convertidor bidireccional y el modelo promediado, el cual surge del modelo conmutado, describe el funcionamiento del convertidor a frecuencia fundamental. Los resultados de simulación permiten validar ambos modelos mediante la simulación de la operación del convertidor realizando la trasferencia de flujo de potencia bidireccional. | es_ES |
dc.description.sponsorship | Se agradece al Instituto Tecnológico de Sonora (ITSON) por los fondos proporcionados, a través de los programas PROFAPI y PFCE, en el desarrollo de este trabajo. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | High-frequency-link isolation | es_ES |
dc.subject | Switching functions | es_ES |
dc.subject | Modelling | es_ES |
dc.subject | Bidirectional power flow | es_ES |
dc.subject | Aislamiento en alta frecuencia | es_ES |
dc.subject | Funciones de conmutación | es_ES |
dc.subject | Modelado | es_ES |
dc.subject | Flujo de potencia bidireccional | es_ES |
dc.title | Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación | es_ES |
dc.title.alternative | Bidirectional three-phase DC-AC converter with high frequency isolation: modeling using switching functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2022.14936 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Beristáin, JA.; Pérez, J. (2022). Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación. Revista Iberoamericana de Automática e Informática industrial. 19(2):199-209. https://doi.org/10.4995/riai.2022.14936 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2022.14936 | es_ES |
dc.description.upvformatpinicio | 199 | es_ES |
dc.description.upvformatpfin | 209 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\14936 | es_ES |
dc.contributor.funder | Instituto Tecnológico de Sonora | es_ES |
dc.description.references | Chaudhury, T., & Kastha, D. (2020). A High Gain Multiport DC-DC Converter for Integrating Energy Storage Devices to DC Microgrid. IEEE Transactions on Power Electronics, 35(10), 10501-10514. https://doi.org/10.1109/TPEL.2020.2977909 | es_ES |
dc.description.references | Dos Santos Neto, P. J. (2020). Power Management Strategy based on Virtual Inertia for DC microgrids. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2020.2986283 | es_ES |
dc.description.references | Hojabri, H. (2019). Unidirectional isolated high-frequency link DC/AC converter for grid integration of DC sources. IET Renewable Power Generation, 13(15), 2880-2887. https://doi.org/10.1049/iet-rpg.2019.0284 | es_ES |
dc.description.references | Huang, R., & Mazumder, S. K. (2009). A soft-switching scheme for an isolated dc/dc converter with pulsating dc output for a three-phase high-frequency-link PWM converter. IEEE Transactions on Power Electronics, 24(10), 2276-2288. https://doi.org/10.1109/08IAS.2008.303 | es_ES |
dc.description.references | Huynh, P. S. (2020). Direct AC-AC Active-Clamped Half-Bridge Converter for Inductive Charging Applications. IEEE Transactions on Power Electronics, 36(2), 1356-1365. https://doi.org/10.1109/TPEL.2020.3009395 | es_ES |
dc.description.references | Mayer, R., El Katel, M. B., & Oliveira, S. V. (2020). Multi-Phase Interleaved Bidirectional DC/DC Converter with Coupled Inductor for Electrified-Vehicle Applications. IEEE Transactions on Power Electronics, 36(3), 2533-2547. https://doi.org/10.1109/TPEL.2020.3015390 | es_ES |
dc.description.references | R. A. Teran G., J. P. (2018). Comparison of Three-Phase Grid-Connected Inverters Topologies for Reactive Power Compensation and PV Power Injection. IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). Ixtapa, Mexico. https://doi.org/10.1109/ROPEC.2018.8661353 | es_ES |
dc.description.references | Ramirez-Murillo, H. e. (2017). An efficiency comparison of fuel-cell hybrid systems based on the versatile buck-boost converter. IEEE Transactions on Power Electronics, 33( 2), 1237-1246. https://doi.org/10.1109/TPEL.2017.2678160 | es_ES |
dc.description.references | Salari, O. e. (2020). Reconfigurable Hybrid Energy Storage System for an Electric Vehicle DC/AC Inverter. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2020.2993783 | es_ES |
dc.description.references | Sayed, M. A. (2017). PWM switching technique for three-phase bidirectional grid-tie DC-AC-AC converter with high-frequency isolation. IEEE Transactions on power electronics, 33(1), 845-858. https://doi.org/10.1109/TPEL.2017.2668441 | es_ES |
dc.description.references | Sha, D. e. (2011). A digitally controlled three-phase cycloconverter type high frequency ac link inverter using space vector modulation. Journal of Power Electronics, 11(1), 28-36. https://doi.org/10.6113/JPE.2011.11.1.028 | es_ES |
dc.description.references | Shim, J. W. (2020). Virtual Capacity of Hybrid Energy Storage Systems Using Adaptive State of Charge Range Control for Smoothing Renewable Intermittency. IEEE Access, 8, 126951-126964. https://doi.org/10.1109/ACCESS.2020.3008518 | es_ES |
dc.description.references | Teng, C. e. (2019). Distributed control strategy of hybrid energy storage system in the DC microgrid. The Journal of Engineering, 2019(16), 2851-2855. https://doi.org/10.1049/joe.2018.8493 | es_ES |
dc.description.references | Varajo, D. e. (2017). Modulation strategy for a single-stage bidirectional and isolated AC-DC matrix converter for energy storage systems. IEEE Transactions on Industrial Electronics, 65(4), 3458-3468. https://doi.org/10.1109/TIE.2017.2752123 | es_ES |
dc.description.references | Wang, X. e. (2020). A Novel Carrier-Based PWM Without Narrow Pulses Applying to High-Frequency Link Matrix Converter. IEEE Access, 8, 157654-157662. https://doi.org/10.1109/ACCESS.2020.3019086 | es_ES |
dc.description.references | Yan, Z. e. (2011). An integration SPWM strategy for high-frequency link matrix converter with adaptive commutation in one step based on de-re-coupling idea. IEEE Transactions on Industrial Electronics, 59(1), 116-128. https://doi.org/10.1109/TIE.2011.2158775 | es_ES |
dc.description.references | Zhao, S. e. (2018). Lithium-ion-capacitor-based distributed ups architecture for reactive power mitigation and phase balancing in datacenters. IEEE Transactions on Power Electronics, 34( 8), 7381-7396. https://doi.org/10.1109/TPEL.2018.2878682 | es_ES |
dc.description.references | Zhou, J. e. (2020). Design and Control of Power Fluctuation Delivery for Cell Capacitance Optimization in Multiport Modular Solid-State Transformers. IEEE Transactions on Power Electronics, 36(2), 1412-1427. https://doi.org/10.1109/TPEL.2020.3006956 | es_ES |
dc.description.references | Zmood, D. N., & Holmes, D. G. (2003). Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on power electronics, 18(3), 814-822. https://doi.org/10.1109/TPEL.2003.810852 | es_ES |