- -

Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beristáin, José Antonio es_ES
dc.contributor.author Pérez, Javier es_ES
dc.date.accessioned 2022-05-24T09:22:44Z
dc.date.available 2022-05-24T09:22:44Z
dc.date.issued 2022-04-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/182825
dc.description.abstract [EN] The objective of this paper was to develop the modeling of a bidirectional high frequency isolation DC-AC converter. Two models were obtained: the switched model and the averaged model, which describe the dynamics of the system. The models obtained and validated by simulation allow considering this type of converters in complex simulations such as DC and AC microgrids. The first model accurately describes the operation of the bidirectional converter and the averaged model, which arises from the switched model, describes the operation of the fundamental frequency converter. The simulation results allow to validate both models by simulating the operation of the converter carrying out the bidirectional power flow transfer. es_ES
dc.description.abstract [ES] El objetivo de este artículo fue desarrollar el modelado de un convertidor CD-CA con aislamiento en alta frecuencia bidireccional. Se obtuvieron dos modelos: el modelo conmutado y el modelo promediado, los cuales describen la dinámica del sistema. Los modelos obtenidos y validados mediante simulación permiten considerar este tipo de convertidores en simulaciones complejas como lo son las microrredes de CD y CA. El primer modelo describe fielmente el funcionamiento del convertidor bidireccional y el modelo promediado, el cual surge del modelo conmutado, describe el funcionamiento del convertidor a frecuencia fundamental. Los resultados de simulación permiten validar ambos modelos mediante la simulación de la operación del convertidor realizando la trasferencia de flujo de potencia bidireccional. es_ES
dc.description.sponsorship Se agradece al Instituto Tecnológico de Sonora (ITSON) por los fondos proporcionados, a través de los programas PROFAPI y PFCE, en el desarrollo de este trabajo. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject High-frequency-link isolation es_ES
dc.subject Switching functions es_ES
dc.subject Modelling es_ES
dc.subject Bidirectional power flow es_ES
dc.subject Aislamiento en alta frecuencia es_ES
dc.subject Funciones de conmutación es_ES
dc.subject Modelado es_ES
dc.subject Flujo de potencia bidireccional es_ES
dc.title Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación es_ES
dc.title.alternative Bidirectional three-phase DC-AC converter with high frequency isolation: modeling using switching functions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2022.14936
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Beristáin, JA.; Pérez, J. (2022). Convertidor bidireccional CD-CA trifásico con aislamiento en alta frecuencia: modelado utilizando funciones de conmutación. Revista Iberoamericana de Automática e Informática industrial. 19(2):199-209. https://doi.org/10.4995/riai.2022.14936 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2022.14936 es_ES
dc.description.upvformatpinicio 199 es_ES
dc.description.upvformatpfin 209 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\14936 es_ES
dc.contributor.funder Instituto Tecnológico de Sonora es_ES
dc.description.references Chaudhury, T., & Kastha, D. (2020). A High Gain Multiport DC-DC Converter for Integrating Energy Storage Devices to DC Microgrid. IEEE Transactions on Power Electronics, 35(10), 10501-10514. https://doi.org/10.1109/TPEL.2020.2977909 es_ES
dc.description.references Dos Santos Neto, P. J. (2020). Power Management Strategy based on Virtual Inertia for DC microgrids. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2020.2986283 es_ES
dc.description.references Hojabri, H. (2019). Unidirectional isolated high-frequency link DC/AC converter for grid integration of DC sources. IET Renewable Power Generation, 13(15), 2880-2887. https://doi.org/10.1049/iet-rpg.2019.0284 es_ES
dc.description.references Huang, R., & Mazumder, S. K. (2009). A soft-switching scheme for an isolated dc/dc converter with pulsating dc output for a three-phase high-frequency-link PWM converter. IEEE Transactions on Power Electronics, 24(10), 2276-2288. https://doi.org/10.1109/08IAS.2008.303 es_ES
dc.description.references Huynh, P. S. (2020). Direct AC-AC Active-Clamped Half-Bridge Converter for Inductive Charging Applications. IEEE Transactions on Power Electronics, 36(2), 1356-1365. https://doi.org/10.1109/TPEL.2020.3009395 es_ES
dc.description.references Mayer, R., El Katel, M. B., & Oliveira, S. V. (2020). Multi-Phase Interleaved Bidirectional DC/DC Converter with Coupled Inductor for Electrified-Vehicle Applications. IEEE Transactions on Power Electronics, 36(3), 2533-2547. https://doi.org/10.1109/TPEL.2020.3015390 es_ES
dc.description.references R. A. Teran G., J. P. (2018). Comparison of Three-Phase Grid-Connected Inverters Topologies for Reactive Power Compensation and PV Power Injection. IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). Ixtapa, Mexico. https://doi.org/10.1109/ROPEC.2018.8661353 es_ES
dc.description.references Ramirez-Murillo, H. e. (2017). An efficiency comparison of fuel-cell hybrid systems based on the versatile buck-boost converter. IEEE Transactions on Power Electronics, 33( 2), 1237-1246. https://doi.org/10.1109/TPEL.2017.2678160 es_ES
dc.description.references Salari, O. e. (2020). Reconfigurable Hybrid Energy Storage System for an Electric Vehicle DC/AC Inverter. IEEE Transactions on Power Electronics. https://doi.org/10.1109/TPEL.2020.2993783 es_ES
dc.description.references Sayed, M. A. (2017). PWM switching technique for three-phase bidirectional grid-tie DC-AC-AC converter with high-frequency isolation. IEEE Transactions on power electronics, 33(1), 845-858. https://doi.org/10.1109/TPEL.2017.2668441 es_ES
dc.description.references Sha, D. e. (2011). A digitally controlled three-phase cycloconverter type high frequency ac link inverter using space vector modulation. Journal of Power Electronics, 11(1), 28-36. https://doi.org/10.6113/JPE.2011.11.1.028 es_ES
dc.description.references Shim, J. W. (2020). Virtual Capacity of Hybrid Energy Storage Systems Using Adaptive State of Charge Range Control for Smoothing Renewable Intermittency. IEEE Access, 8, 126951-126964. https://doi.org/10.1109/ACCESS.2020.3008518 es_ES
dc.description.references Teng, C. e. (2019). Distributed control strategy of hybrid energy storage system in the DC microgrid. The Journal of Engineering, 2019(16), 2851-2855. https://doi.org/10.1049/joe.2018.8493 es_ES
dc.description.references Varajo, D. e. (2017). Modulation strategy for a single-stage bidirectional and isolated AC-DC matrix converter for energy storage systems. IEEE Transactions on Industrial Electronics, 65(4), 3458-3468. https://doi.org/10.1109/TIE.2017.2752123 es_ES
dc.description.references Wang, X. e. (2020). A Novel Carrier-Based PWM Without Narrow Pulses Applying to High-Frequency Link Matrix Converter. IEEE Access, 8, 157654-157662. https://doi.org/10.1109/ACCESS.2020.3019086 es_ES
dc.description.references Yan, Z. e. (2011). An integration SPWM strategy for high-frequency link matrix converter with adaptive commutation in one step based on de-re-coupling idea. IEEE Transactions on Industrial Electronics, 59(1), 116-128. https://doi.org/10.1109/TIE.2011.2158775 es_ES
dc.description.references Zhao, S. e. (2018). Lithium-ion-capacitor-based distributed ups architecture for reactive power mitigation and phase balancing in datacenters. IEEE Transactions on Power Electronics, 34( 8), 7381-7396. https://doi.org/10.1109/TPEL.2018.2878682 es_ES
dc.description.references Zhou, J. e. (2020). Design and Control of Power Fluctuation Delivery for Cell Capacitance Optimization in Multiport Modular Solid-State Transformers. IEEE Transactions on Power Electronics, 36(2), 1412-1427. https://doi.org/10.1109/TPEL.2020.3006956 es_ES
dc.description.references Zmood, D. N., & Holmes, D. G. (2003). Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on power electronics, 18(3), 814-822. https://doi.org/10.1109/TPEL.2003.810852 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem