Riunet Móvil

Home Versión de escritorio

Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia

Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez-Belenguer, Pablo es_ES
dc.contributor.author Kopańska, Karolina es_ES
dc.contributor.author Llopis Lorente, Jordi es_ES
dc.contributor.author Trénor Gomis, Beatriz Ana es_ES
dc.contributor.author Saiz Rodríguez, Francisco Javier es_ES
dc.contributor.author Pastor, Manuel es_ES
dc.date.accessioned 2022-06-03T09:56:55Z
dc.date.available 2022-06-03T09:56:55Z
dc.date.issued 2022-06-03T09:56:55Z
dc.identifier.uri http://hdl.handle.net/10251/183067
dc.description.abstract In cardiotoxicity studies it is common to pre-compute the values of different biomarkers (my equation or TX) for a range of ion channel blockades. Since every simulation requires costly computations, to complete the matrix of simulations for several ion channels can be cumbersome. Some examples of how these simulations are run and used are included in the references. The relationship between the input values and the biomarker is not too complex and Machine Learning can be used to obtain a good approximation. The resulting function can be generated using only an small fraction of the computations required to generate the whole matrix. This function can then be used to predict the biomarker value for any combination of the covered range, with an excellent accuracy In this repository we have included a jupyter notebook and some simulation results that demonstrate this idea. Regarding the data matrices, they correspond to simulations using a modified version of the ventricular action potential model by O'Hara et al., which have been performed by Jordi Llopis, Beatriz Trenor and Javier Saiz at the Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València, Valencia, Spain KrKsCaL.xlsx: This is the data matrix needed to build the ML models. APD90_12CiPA_drugs_IKrIKsICaL.xlsx: This excel file contains the input and output values for CiPA compounds. EFTPC_IC50_28_CiPADrugs.xlsx: This file contains D, my equation and hill coefficient to calculate the input values for CiPA compounds of the previous excel file. Folder "Matrix Building": This folder contains MATLAB functions for generating the KrKsCaL matrix. The script "buildMatrixKrKsNaL.m" is the main script which run the electrophysioloigcal simulations and generates the matrix References Llopis J, Cano J, Gomis-Tena J, Romero L, Sanz F, Pastor M, Trenor B, Saiz J. In silico assay for preclinical assessment of drug proarrhythmicity. J Pharmacol Toxicol Methods 2019 99: 106595. PMID: 31962986 DOI: 10.1016/j.vascn.2019.05.106. O’Hara, T., Virág, L., Varró, A. & Rudy, Y. Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLOS Comput. Biol. 7, e1002061 (2011). Licensing CardioML was produced at the PharmacoInformatics lab (http://phi.upf.edu), in the framework of the eTRANSAFE project (http://etransafe.eu). eTRANSAFE has received support from IMI2 Joint Undertaking under Grant Agreement No. 777365. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Associations (EFPIA). Copyright 2022 Manuel Pastor (manuel.pastor@upf.edu) CardioML is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation version 3. CardioML is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with CardioML source code. If not, see http://www.gnu.org/licenses/. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.uri https://riunet.upv.es/handle/10251/192259
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101016496/EU/Simulation of Cardiac Devices & Drugs for in-silico Testing and Certification/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020/043 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//FPU18%2F01659 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación e Innovación en Bioingeniería - Centre de Recerca i Innovació en Bioenginyeria es_ES
dc.description.bibliographicCitation Rodríguez-Belenguer, P.; Kopańska, K.; Llopis Lorente, J.; Trénor Gomis, BA.; Saiz Rodríguez, FJ.; Pastor, M. (2022). Application of Machine Learning to improve the efficiency of electrophysiological simulations used for the prediction of drug-induced ventricular arrhythmia. http://hdl.handle.net/10251/183067 es_ES
dc.type.version info:eu-repo/semantics/submittedVersion es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Innovative Medicines Initiative 2 Joint Undertaking (IMI2/IU) N. 777365 (eTRANSAFE) es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet