Mostrar el registro sencillo del ítem
dc.contributor.author | Alves Ferreira, Rafael![]() |
es_ES |
dc.contributor.author | Espôsto, Kleber F.![]() |
es_ES |
dc.contributor.author | Santos, Lucas A. S.![]() |
|
dc.date.accessioned | 2022-09-08T07:16:39Z | |
dc.date.available | 2022-09-08T07:16:39Z | |
dc.date.issued | 2022-07-29 | |
dc.identifier.uri | http://hdl.handle.net/10251/185593 | |
dc.description.abstract | [EN] Companies deal with different customer groups, requirements differ among them, which makes it important to define the service level precisely and improve customer service through different supply chain strategies for each group. An alternative to deal with imprecision related to the segmentation processes suggested by either the Leagile or the Dynamic Alignment Schools is the application of fuzzy set theory. The objective of this work is to develop a quantitative model that uses the fuzzy set theory and, based on sales data, assess the company s supply chain(s). The model's aim is to facilitate managers' decision-making processes to achieve the dynamic alignment. It was possible to identify the supply chains that serve the client groups evaluated, providing answers faster than the analysis proposed by the models found in the literature. The application in two real situations validated the model since the results obtained were consistent with the reality pointed out by the experts of the companies assessed. The model indicates possible actions for the realignment of the supply chain by their managers. Results obtained should improve practice, preparing managers to cope with the organizations` multiple supply chains. This study is the first one that aims to segment quantitatively supply chains on a company applying fuzzy set theory, providing a novel approach to align operations and supply chain strategy dynamically. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | International Journal of Production Management and Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Supply chain segmentation | es_ES |
dc.subject | Supply chain management | es_ES |
dc.subject | Fuzzy inference system | es_ES |
dc.title | Quantitative supply chain segmentation model for dynamic alignment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/ijpme.2022.16494 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Alves Ferreira, R.; Espôsto, KF.; Santos, LAS. (2022). Quantitative supply chain segmentation model for dynamic alignment. International Journal of Production Management and Engineering. 10(2):99-113. https://doi.org/10.4995/ijpme.2022.16494 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ijpme.2022.16494 | es_ES |
dc.description.upvformatpinicio | 99 | es_ES |
dc.description.upvformatpfin | 113 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2340-4876 | |
dc.relation.pasarela | OJS\16494 | es_ES |
dc.description.references | Banaeian, N., Mobli, H., Fahimnia, B., Nielsen, I. E., & Omid, M. (2016). Green Supplier Selection Using Fuzzy Group Decision Making Methods: A Case Study from the Agri-Food Industry. Computers & Operations Research, 1–11. https://doi.org/10.1016/j.cor.2016.02.015 | es_ES |
dc.description.references | Bertrand, J. W. M., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. In International Journal of Operations & Production Management (Vol. 22, Issue 2). https://doi.org/Doi 10.1108/01443570210414338 | es_ES |
dc.description.references | Bojadziev, G., & Bojadziev, M. (2007). Fuzzy logic for business, finance, and management. (2 ed.). World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/6451 | es_ES |
dc.description.references | Celik, E., Gul, M., Aydin, N., Gumus, A. T., & Guneri, A. F. (2015). A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85, 329–341. https://doi.org/10.1016/j.knosys.2015.06.004 | es_ES |
dc.description.references | Christopher, M., & Gattorna, J. (2005). Supply chain cost management and value-based pricing. Industrial Marketing Management, 34(2 SPEC. ISS.), 115–121. https://doi.org/10.1016/j.indmarman.2004.07.016 | es_ES |
dc.description.references | Christopher, M., & Towill, D. R. (2000). Marrying the lean and agile paradigms. Proceedings of the EUROMA 2000 Conference, 114–121. | es_ES |
dc.description.references | Christopher, M., & Towill, D.R. (2002). Developing Market Specific Supply Chain Strategies. The International Journal of Logistics Management, 13(1), 1–14. https://doi.org/10.1108/09574090210806324 | es_ES |
dc.description.references | Christopher, M., Towill, D.R., Aitken, J., & Childerhouse, P. (2009). Value stream classification. Journal of Manufacturing Technology Management, 20(4), 460–474. https://doi.org/10.1108/17410380910953720 | es_ES |
dc.description.references | Fichtinger, J., Chan, C. (Wan C., & Yates, N. (2019). A joint network design and multi-echelon inventory optimisation approach for supply chain segmentation. International Journal of Production Economics, 209(August 2017), 103–111. https://doi.org/10.1016/j.ijpe.2017.09.003 | es_ES |
dc.description.references | Fu, X., Zeng, X.J., Luo, X., Wang, D., Xu, D., & Fan, Q.L. (2017). Designing an intelligent decision support system for effective negotiation pricing: A systematic and learning approach. Decision Support Systems, 96, 49–66. https://doi.org/10.1016/j.dss.2017.02.003 | es_ES |
dc.description.references | Ganga, G. M. D., & Carpinetti, L. C. R. (2011). A fuzzy logic approach to supply chain performance management. International Journal of Production Economics, 134(1), 177–187. https://doi.org/10.1016/j.ijpe.2011.06.011 | es_ES |
dc.description.references | García, N., Puente, J., Fernández, I., & Priore, P. (2013). Supplier selection model for commodities procurement. Optimised assessment using a fuzzy decision support system. Applied Soft Computing Journal, 13(4), 1939–1951. https://doi.org/10.1016/j.asoc.2012.12.008 | es_ES |
dc.description.references | Gattorna, J. (2015). Dynamic Supply Chains: How to design, build and manage people-centric value networks (3rd ed.). Pearson Education Limited. | es_ES |
dc.description.references | Gattorna, J., & Walters, D. W. (1996). Managing the Supply Chain: A Strategic Perspective (1st editio). Palgrave. https://doi.org/10.1007/978-1-349-24841-4_1 | es_ES |
dc.description.references | Giri, B.C., Molla, M.U., & Biswas, P. (2022). Pythagorean fuzzy DEMATEL method for supplier selection in sustainable supply chain management. Expert Systems with Applications, 193. https://doi.org/10.1016/j.eswa.2021.116396 | es_ES |
dc.description.references | Godsell, J., Diefenbach, T., Clemmow, C., Towill, D., & Christopher, M. (2011). Enabling supply chain segmentation through demand profiling. International Journal of Physical Distribution & Logistics Management, 41(3), 296–314. https://doi.org/10.1108/09600031111123804 | es_ES |
dc.description.references | Hjort, K., Lantz, B., Ericsson, D., & Gattorna, J. (2016). Customer Segmentation Based on Buying and Returning Behaviour: Supporting Differentiated Service Delivery in Fashion E-Commerce. In Developments in Logistics and Supply Chain Management (pp. 153–169). Palgrave Macmillan UK. https://doi.org/10.1057/9781137541253_14 | es_ES |
dc.description.references | Kumar, D., Singh, J., Singh, O. P., & Seema. (2013). A fuzzy logic based decision support system for evaluation of suppliers in supply chain management practices. Mathematical and Computer Model-ling, 57(11–12), 2945–2960. https://doi.org/10.1016/j.mcm.2013.03.002 | es_ES |
dc.description.references | Lima Junior, F.R., Osiro, L., & Carpinetti, L.C. R. (2013). A fuzzy inference and categorization approach for supplier selection using compensatory and non-compensatory decision rules. Applied Soft Computing Journal, 13(10), 4133–4147. https://doi.org/10.1016/j.asoc.2013.06.020 | es_ES |
dc.description.references | Lima Junior, F. R., Osiro, L., & Carpinetti, L. C. R. (2014). A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing Journal, 21, 194–209. https://doi.org/10.1016/j.asoc.2014.03.014 | es_ES |
dc.description.references | Lima Junior, F.R., & Carpinetti, L.C. R. (2020). An adaptive network-based fuzzy inference system to supply chain performance evaluation based on SCOR® metrics. Computers and Industrial Engineering, 139(May 2019), 106191. https://doi.org/10.1016/j.cie.2019.106191 | es_ES |
dc.description.references | Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13. https://doi.org/10.1016/S0020-7373(75)80002-2 | es_ES |
dc.description.references | Mason-Jones, R., Naylor, B., & Towill, D. R. (2000). Engineering the leagile supply chain. International Journal of Agile Management Systems, 2, 54–61. https://doi.org/10.1108/14654650010312606 | es_ES |
dc.description.references | Pedrycz, W., & Gomide, F. (2007). Fuzzy Systems Engineering—Toward Human-Centric Computing. Wiley. https://doi.org/10.1002/9780470168967 | es_ES |
dc.description.references | Renganath, K., & Suresh, M. (2017). Supplier selection using fuzzy MCDM techniques: A literature review. 2016 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2016. https://doi.org/10.1109/ICCIC.2016.7919590 | es_ES |
dc.description.references | Routroy, S. a, & Shankar, A. b. (2015). Performance analysis of agile supply chain. International Journal of Manufacturing Technology and Management, 29(3–4), 180–210. https://doi.org/10.1504/IJMTM.2015.069255 | es_ES |
dc.description.references | Santos, L.F. de O.M., Osiro, L., & Lima, R.H. P. (2017). A model based on 2-tuple fuzzy linguistic representation and Analytic Hierarchy Process for supplier segmentation using qualitative and quantitative criteria. Expert Systems with Applications, 79, 1339–1351. https://doi.org/10.1016/j.eswa.2017.02.032 | es_ES |
dc.description.references | Simchi-Levi, D., Clayton, A., & Raven, B. (2013). When One Size Does Not Fit All. MIT Sloan Management Review, 54(2), 15–17. | es_ES |
dc.description.references | Simões, M. G., & Shaw, I. S. (2007). Controle e modelagem fuzzy (2 ed.). Editora Blucher. | es_ES |
dc.description.references | Von Altrock, C. (1997). Fuzzy Logic & Neurofuzzy Applications in Business & Finance. Prentice Hall. | es_ES |
dc.description.references | Wen, X., Choi, T.M., & Chung, S.H. (2019). Fashion retail supply chain management: A review of operational models. International Journal of Production Economics, 207, 34–55. https://doi.org/10.1016/J.IJPE.2018.10.012 | es_ES |
dc.description.references | Yusuf, Y. Y., Gunasekaran, A., Musa, A., Dauda, M., El-Berishy, N. M., & Cang, S. (2014). A relational study of supply chain agility, competitiveness and business performance in the oil and gas industry. International Journal of Production Economics, 147(Part B), 531–543. https://doi.org/10.1016/j.ijpe.2012.10.009 | es_ES |
dc.description.references | Zadeh, L. a. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X | es_ES |
dc.description.references | Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst., 3, 28–44. https://doi.org/10.1109/TSMC.1973.5408575 | es_ES |
dc.description.references | Zimmermann, H.J. (1987). Fuzzy Sets, Decision Making and Expert Systems. Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-3249-4 | es_ES |
dc.description.references | Zimmermann, H.J. (2001). Fuzzy Set Theory and Its Applications. In Kluwer Academic Publishers, USA (4th ed.). Kluwer Academic. https://doi.org/10.1007/978-94-010-0646-0 | es_ES |