Riunet Móvil

Home Versión de escritorio

K-seq, an affordable, reliable, and open Klenow NGS-based genotyping technology

Mostrar el registro sencillo del ítem

dc.contributor.author Ziarsolo, Peio es_ES
dc.contributor.author Hasing, Tomas es_ES
dc.contributor.author Hilario, Rebeca es_ES
dc.contributor.author García-Carpintero, Víctor es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Bombarely, Aureliano es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.date.accessioned 2022-09-29T18:04:51Z
dc.date.available 2022-09-29T18:04:51Z
dc.date.issued 2021-03-25 es_ES
dc.identifier.issn 1746-4811 es_ES
dc.identifier.uri http://hdl.handle.net/10251/186756
dc.description.abstract [EN] Background: K-seq, a new genotyping methodology based on the amplification of genomic regions using two steps of Klenow amplification with short oligonucleotides, followed by standard PCR and Illumina sequencing, is presented. The protocol was accompanied by software developed to aid with primer set design. Results: As the first examples, K-seq in species as diverse as tomato, dog and wheat was developed. K-seq provided genetic distances similar to those based on WGS in dogs. Experiments comparing K-seq and GBS in tomato showed similar genetic results, although K-seq had the advantage of finding more SNPs for the same number of Illumina reads. The technology reproducibility was tested with two independent runs of the tomato samples, and the correlation coefficient of the SNP coverages between samples was 0.8 and the genotype match was above 94%. K-seq also proved to be useful in polyploid species. The wheat samples generated specific markers for all subgenomes, and the SNPs generated from the diploid ancestors were located in the expected subgenome with accuracies greater than 80%. Conclusion: K-seq is an open, patent-unencumbered, easy-to-set-up, cost-effective and reliable technology ready to be used by any molecular biology laboratory without special equipment in many genetic studies. es_ES
dc.description.sponsorship This work was supported by the University Polytechnic of Valencia, Grant Number 20180051 "Desarrollo de herramientas para la identificacion de genes y loci de interes en la mejora genetica del tomate y otras horticolas". es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Plant Methods es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Klenow polymerase es_ES
dc.subject K-seq es_ES
dc.subject K-mer es_ES
dc.subject Low cost es_ES
dc.subject SNP es_ES
dc.subject Genotyping es_ES
dc.subject GRR es_ES
dc.subject NGS es_ES
dc.subject.classification GENETICA es_ES
dc.title K-seq, an affordable, reliable, and open Klenow NGS-based genotyping technology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13007-021-00733-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20180051//Desarrollo de herramientas para la identificación de genes y loci de interés en la mejora genética del tomate y otras hortícolas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Ziarsolo, P.; Hasing, T.; Hilario, R.; García-Carpintero, V.; Blanca Postigo, JM.; Bombarely, A.; Cañizares Sales, J. (2021). K-seq, an affordable, reliable, and open Klenow NGS-based genotyping technology. Plant Methods. 17(1):1-11. https://doi.org/10.1186/s13007-021-00733-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s13007-021-00733-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 33766048 es_ES
dc.identifier.pmcid PMC7993484 es_ES
dc.relation.pasarela S\432080 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Hoheisel JD. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet. 2006;7(3):200–10. es_ES
dc.description.references Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breeding. 2014;33(1):1–14. es_ES
dc.description.references Scolnick JA, Dimon M, Wang I-C, Huelga SC, Amorese DA. An efficient method for identifying gene fusions by targeted RNA sequencing from fresh frozen and FFPE samples. PLoS ONE. 2015;10(7): es_ES
dc.description.references Barchi L, Acquadro A, Alonso D, Aprea G, Bassolino L, Demurtas O, et al. Single primer enrichment technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Front Plant Sci. 2019;10:1005. es_ES
dc.description.references Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5): es_ES
dc.description.references Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17(2):81–92. es_ES
dc.description.references Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12(7):499–510. es_ES
dc.description.references Chilamakuri CSR, Lorenz S, Madoui M-A, Vodák D, Sun J, Hovig E, et al. Performance comparison of four exome capture systems for deep sequencing. BMC Genom. 2014;15(1):449. es_ES
dc.description.references Cruz VMV, Kilian A, Dierig DA. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop Lesquerella and related species. PLoS ONE. 2013;8(5): es_ES
dc.description.references Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol Biol. 2012;888:67–89. es_ES
dc.description.references Zhang J, Yang J, Zhang L, Luo J, Zhao H, Zhang J, et al. A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep. 2020;10(1):5623. es_ES
dc.description.references Ruff TM, Marston EJ, Eagle JD, Sthapit SR, Hooker MA, Skinner DZ, et al. Genotyping by multiplexed sequencing (GMS): a customizable platform for genomic selection. PLoS ONE. 2020;15(5): es_ES
dc.description.references Buckler ES, Ilut DC, Wang X, Kretzschmar T, Gore M, Mitchell SE. rAmpSeq: Using repetitive sequences for robust genotyping. bioRxiv [Internet]. 2016; Disponible en: https://www.biorxiv.org/content/early/2016/12/24/096628. es_ES
dc.description.references Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement MJ, et al. Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol. 2011;3:1312–23. es_ES
dc.description.references Suo W, Shi X, Xu S, Li X, Lin Y. Towards low cost, multiplex clinical genotyping: 4-fluorescent Kompetitive Allele-Specific PCR and its application on pharmacogenetics. PLoS ONE. 2020;15(3): es_ES
dc.description.references Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. es_ES
dc.description.references Mata-Nicolás E, Montero-Pau J, Gimeno-Paez E, García-Pérez A, Ziarsolo P, Blanca J, et al. Discovery of a Major QTL Controlling Trichome IV Density in Tomato Using K-Seq Genotyping. Genes [Internet]. 2021;12(2). https://www.mdpi.com/2073-4425/12/2/243. es_ES
dc.description.references Riaz A, Hathorn A, Dinglasan E, Ziems L, Richard C, Singh D, et al. Into the vault of the Vavilov wheats: old diversity for new alleles. Genet Resour Crop Evol. 2017;64(3):531–44. es_ES
dc.description.references Chu J, Zhao Y, Beier S, Schulthess AW, Stein N, Philipp N, et al. Suitability of single-nucleotide polymorphism arrays versus genotyping-by-sequencing for Genebank genomics in wheat. Front Plant Sci. 2020;11:42. es_ES
dc.description.references Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, et al. Unlocking the genetic diversity of Creole wheats. Sci Rep. 2016;6(1):23092. es_ES
dc.description.references Keilwagen J, Lehnert H, Berner T, Beier S, Scholz U, Himmelbach A, et al. Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front Plant Sci. 2019;10:1133. es_ES
dc.description.references Bernhardt N, Brassac J. Genomic and phylogenetic data for the identification of ancient and recurrent hybridizations in wheat taxa [Internet]. e!DAL - Plant Genomics and Phenomics Research Data Repository (PGP), IPK Gatersleben, Seeland OT Gatersleben, Corrensstraße 3, 06466, Germany; 2019. https://doi.ipk-gatersleben.de:443/DOI/005cf59f-a628-416d-a0d5-69dd708201c3/757b83b3-dc23-42fd-a053-82890150b9c1/2. es_ES
dc.description.references Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531–5. es_ES
dc.description.references Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE. 2014;9(2):e90346. es_ES
dc.description.references Doyle JJ. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5. es_ES
dc.description.references Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. es_ES
dc.description.references Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. es_ES
dc.description.references Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. es_ES
dc.relation.references 10.1038/nrg1809 es_ES
dc.relation.references 10.1007/s11032-013-9917-x es_ES
dc.relation.references 10.1371/journal.pone.0128916 es_ES
dc.relation.references 10.3389/fpls.2019.01005 es_ES
dc.relation.references 10.1371/journal.pone.0019379 es_ES
dc.relation.references 10.1038/nrg.2015.28 es_ES
dc.relation.references 10.1038/nrg3012 es_ES
dc.relation.references 10.1186/1471-2164-15-449 es_ES
dc.relation.references 10.1371/journal.pone.0064062 es_ES
dc.relation.references 10.1007/978-1-61779-870-2_5 es_ES
dc.relation.references 10.1038/s41598-020-62518-6 es_ES
dc.relation.references 10.1371/journal.pone.0229207 es_ES
dc.relation.references 10.1101/096628 es_ES
dc.relation.references 10.1093/gbe/evr106 es_ES
dc.relation.references 10.1371/journal.pone.0230445 es_ES
dc.relation.references 10.1093/nar/gks596 es_ES
dc.relation.references 10.3390/genes12020243 es_ES
dc.relation.references 10.1007/s10722-016-0380-5 es_ES
dc.relation.references 10.3389/fpls.2020.00042 es_ES
dc.relation.references 10.1038/srep23092 es_ES
dc.relation.references 10.3389/fpls.2019.01133 es_ES
dc.relation.references 10.1093/nar/18.22.6531 es_ES
dc.relation.references 10.1371/journal.pone.0090346 es_ES
dc.relation.references 10.1093/bioinformatics/btp324 es_ES
dc.relation.references 10.1093/bioinformatics/btp352 es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 

Tema móvil para Riunet